

### **Schedule 1: Designer Information**

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

| A. Project Information                                                      |                        |                                |                                        |          |
|-----------------------------------------------------------------------------|------------------------|--------------------------------|----------------------------------------|----------|
| Building number, street name Baross                                         | sa 3                   |                                | Lot:                                   |          |
| S38-                                                                        | 3                      |                                | Lot/con.                               |          |
| Municipality Bradford                                                       | Postal code            | Plan number/ other description |                                        |          |
| B. Individual who reviews and takes responsibility for design               | gn activities          |                                |                                        |          |
| Name David DaCosta                                                          |                        | Firm                           | gtaDesigns Inc.                        |          |
| Street address 2985 Drew Roa                                                | d, Suite 202           |                                |                                        | Lot/con. |
| Municipality  Mississauga                                                   | Postal code<br>L4T 0A4 | Province<br>Ontario            | E-mail <u>hvac@gtadesi</u>             | gns.ca   |
| Telephone number (905) 671-9800                                             | Fax number             |                                | Cell number                            |          |
| C. Design activities undertaken by individual identified in S               | ection B. [Bu          | ilding Code Table 3            | 3.5.2.1 of Division C]                 |          |
| ☐ House ☒ HVAC – H                                                          | louse                  |                                | ☐ Building Structural                  |          |
| ☐ Small Buildings ☐ Building Se                                             | ervices                |                                | ☐ Plumbing – House                     |          |
| ☐ Large Buildings ☐ Detection,                                              | Lighting and Po        | wer                            | ☐ Plumbing – All Buildings             |          |
| ☐ Complex Buildings ☐ Fire Protect                                          | ction                  |                                | ☐ On-site Sewage System                | S        |
| Description of designer's work Mod                                          | del Certification      | 1                              | Project #:                             | PJ-00041 |
| Heating and Cooling Load Calculations Main                                  | X                      | Duildor                        | Layout #:                              | JB-07351 |
| Heating and Cooling Load Calculations Main Air System Design Alternate      | ^                      | Builder<br>Project             | Bayview Wellingto<br>Green Valley East |          |
| Residential mechanical ventilation Design Summary Area Sq ft:               | 2544                   |                                | Barossa 3                              |          |
| Residential System Design per CAN/CSA-F280-12                               |                        | Model                          | S38-3                                  |          |
| Residential New Construction - Forced Air                                   |                        | SB-12                          | Package A1                             |          |
| D. Declaration of Designer                                                  |                        |                                |                                        |          |
| David DaCosta                                                               | declare that (d        | choose one as appro            | priate):                               |          |
| (print name)                                                                |                        |                                |                                        |          |
|                                                                             |                        |                                |                                        |          |
| ☐ I review and take responsibility for 3.2.4 Division C of the Building Cod |                        |                                |                                        |          |
| classes/categories.                                                         | ,,,,,                  | .,                             |                                        |          |
| Individual BCIN:                                                            |                        |                                | ı                                      |          |
| Firm BCIN:                                                                  |                        |                                |                                        |          |
|                                                                             |                        |                                |                                        |          |
| Individual BCIN:                                                            | 3296                   | 64                             |                                        |          |
| Basis for exemp                                                             | tion from registr      | ation:                         | Division C 3.2.4.1. (4)                |          |
| ☐ The design work is exempt from the                                        | e registration and     | d qualification requirem       | ents of the Building Code.             |          |
| Basis for exemp                                                             | tion from registr      | ation and qualification:       |                                        |          |
| I certify that:                                                             |                        |                                |                                        |          |
| The information contained in this schedule is true to the best of n         | ny knowledge.          |                                |                                        |          |
| I have submitted this application with the knowledge and consent            | of the firm.           |                                |                                        |          |
| July 21, 2021                                                               |                        | Mane Sto                       |                                        |          |
| Date                                                                        |                        | Signature of Des               | signer                                 |          |

NOTE:

1. For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d), of Division C, Article 3.2.5.1. of Division C and all other persons who are exempt from qualifications under Subsections 3.2.4. and 3.2.5.of Division C.

Schedule 1 does not require to be completed a holder of a license, temporay license, or a certificate of authorization, issed by the
Ontario Associstion of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited licence to
practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.



2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

Page 2

|                    | Heat los                  | s and gain             | calcula      | ition su       | mmary she              | et                | CSA-F280-M12  |      | ndard<br>No. 1 |
|--------------------|---------------------------|------------------------|--------------|----------------|------------------------|-------------------|---------------|------|----------------|
| These document     | s issued for the use of   |                        |              | yview Welling  | -                      |                   | Layou         |      |                |
| and may not be u   | used by any other persons | without authorization. | Documents    | for permit and | or construction are    | signed in red.    | JB-0          |      |                |
| ·                  |                           |                        | uilding L    | •              |                        |                   |               |      |                |
| Address (Model):   | : \$38-3                  |                        |              | Site:          | Green Valley East      |                   |               |      |                |
| Model:             | Barossa 3                 |                        |              | Lot:           |                        |                   |               |      |                |
| City and Province  | e: <b>Bradford</b>        |                        |              | Postal code:   |                        |                   |               |      |                |
|                    |                           | Cal                    | culations    | based or       | 1                      |                   |               |      |                |
| Dimensional info   | rmation based on:         |                        |              | VA3 Desi       | ign13/May/2021         |                   |               |      |                |
| Attachment:        | Detached                  |                        |              | Front facing:  | East/West              |                   | Assumed       | l?   | Yes            |
| No. of Levels:     | 3 Ver                     | ntilated? Included     |              | Air tightness: | 1961-Present           | (ACH=3.57)        | Assumed       | l? ' | Yes            |
| Weather location   | n: Bradford               |                        |              | Wind exposu    | re: Sheltered          |                   |               |      |                |
| HRV?               | VanEE                     | V150H7                 | 5NS          | Internal shad  | ling: Light-translu    | cent Occu         | oants:        | 5    |                |
| Sensible Eff. at - | 25C <b>60%</b> App        | parent Effect. at -0C  | 83%          | Units:         | Imperi                 | al Area           | Sq ft:        | 2544 |                |
| Sensible Eff. at - | 0C <b>75</b> %            |                        |              |                |                        |                   |               |      |                |
|                    | Heating design c          | onditions              |              |                | Cooling de             | sign condi        | tions         |      |                |
| Outdoor temp       | -9.4 Indoor temp: 72      | 2 Mean soil temp:      | 48           | Outdoor temp   | p <b>86</b> Indoor ter | mp: <b>75</b> Lat | itude:        | 44   |                |
|                    | Above grade               | walls                  |              |                | Below                  | grade wall        | S             |      |                |
| Style A: As p      | per OBC SB12 Packa        | age A1 R 22            |              | Style A: A     | s per OBC SB12         | Package A1        |               | R    | 20ci           |
| Style B:           |                           |                        |              | Style B:       |                        |                   |               |      |                |
| Style C:           |                           |                        |              | Style C:       |                        |                   |               |      |                |
| Style D:           |                           |                        |              | Style D:       |                        |                   |               |      |                |
|                    | Floors on                 | soil                   |              |                | C                      | eilings           |               |      |                |
| Style A: As        | per Selected OBC SB12     | Package A1             |              | Style A:       | As per Selected OB     | C SB12 F          | ackage A1     | R    | 60             |
| Style B:           |                           |                        |              | Style B:       | As per Selected OB     | C SB12 F          | ackage A1     | R    | 31             |
|                    | Exposed flo               | oors                   |              | Style C:       |                        |                   |               |      |                |
| Style A: As        | per Selected OBC SB12     | Package A1             | R 31         |                |                        | Doors             |               |      |                |
| Style B:           |                           |                        |              | Style A:       | As per Selected OB     | C SB12 F          | ackage A1     | R    | 4.00           |
|                    | Window                    | s                      |              | Style B:       |                        |                   |               |      |                |
| Style A: As        | per Selected OBC SB12     | Package A1             | R 3.55       | Style C:       |                        |                   |               |      |                |
| Style B:           |                           |                        |              |                | SI                     | kylights          |               |      |                |
| Style C:           |                           |                        |              | Style A:       | As per Selected OB     | C SB12 F          | ackage A1     | R    | 2.03           |
| Style D:           |                           |                        |              | Style B:       |                        |                   |               |      |                |
| Attached docume    | ents: As per She          | dule 1                 | Heat Loss/0  | ain Caculatio  | ons based on CSA-      | F280-12 Effect    | tive R-Values |      |                |
| Notes:             |                           | Reside                 | ential New C | onstruction -  | Forced Air             |                   |               |      |                |
|                    |                           | Calcu                  | ulations p   | erformed l     | ру                     |                   |               |      |                |
| Name:              | David DaCosta             |                        |              | Postal code:   | L4T 0A4                |                   |               |      |                |
| Company:           | gtaDesigns Inc.           |                        |              | Telephone:     | (905) 671-980          | 0                 |               |      |                |
| Address:           | 2985 Drew Road, Sui       | ite 202                |              | Fax:           |                        |                   |               |      |                |
| City:              | Mississauga               |                        |              | E-mail         |                        |                   |               |      |                |



Builder: Bayview Wellington

### Air System Design

SB-12 Package A1 2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

Date: July 21, 2021 Barossa 3

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under Division C subsection 3.2.5. of the Building Code.

Project #

Page 3 PJ-00041

| Project: Green V                                                                                                                                                                                                                                                                                                                                                                                                             | Valley Eas                                                                     | st                                                                                  |                                                                                                                                         | Model:                                                                                       |                                                                                   |                                                                                 | Baros<br>S38                                                                         |                                                                                       |                                                                                |                                                                               |                                               | Sys                                                   | stem 1                                 |                          |                                          | uilding Co<br>idividual E           |                                                  | 32964                                              | Ma                       | ne 160                                                                       | A                                              |                                  | David DaCo                                  | osta                                |                                   | oject #<br>yout #                    | PJ-<br>JB-                                       | -07351           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|----------------------------------------|--------------------------|------------------------------------------|-------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------|------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|---------------------------------------------|-------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------------|------------------|
| DESIGN LOAD SPECIFICATION                                                                                                                                                                                                                                                                                                                                                                                                    | IS                                                                             |                                                                                     | 7                                                                                                                                       | AIR DISTR                                                                                    | RIBUTION                                                                          | & PRESSU                                                                        | JRE                                                                                  |                                                                                       |                                                                                |                                                                               | FU                                            | JRNACE/A                                              | IR HANDLE                              | ER DATA                  | <b>\</b> :                               |                                     |                                                  | BOILER/W                                           | ATER HEA                 | TER DAT                                                                      | A:                                             |                                  |                                             | 1                                   | A/C UNIT D                        | ATA:                                 |                                                  |                  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                | •                                                                                   | _                                                                                                                                       |                                                                                              |                                                                                   |                                                                                 |                                                                                      |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        |                          |                                          | •                                   | -                                                |                                                    |                          |                                                                              |                                                |                                  |                                             | _                                   |                                   |                                      |                                                  | -                |
| Level 1 Net Load                                                                                                                                                                                                                                                                                                                                                                                                             | 18,405 b                                                                       | otu/h                                                                               | E                                                                                                                                       | Equipmen                                                                                     | t External                                                                        | Static Pre                                                                      | essure                                                                               |                                                                                       | 0.5 "                                                                          | w.c.                                                                          | Ma                                            | ake                                                   |                                        | Aman                     | а                                        |                                     |                                                  | Make                                               |                          |                                                                              | Ty                                             | /pe                              |                                             | A                                   | Amana                             |                                      | 2.5 T                                            | on               |
| Level 2 Net Load                                                                                                                                                                                                                                                                                                                                                                                                             | 18,930 k                                                                       | otu/h                                                                               | ,                                                                                                                                       | Additional                                                                                   | I Equipme                                                                         | nt Pressur                                                                      | re Drop                                                                              |                                                                                       | 0.225 "                                                                        | w.c.                                                                          | Mo                                            | odel                                                  | AM                                     | /IEC96060                | 03ANA                                    |                                     | 1                                                | Model                                              |                          |                                                                              |                                                |                                  |                                             | (                                   | Cond                              |                                      | 2.5                                              |                  |
| Level 3 Net Load                                                                                                                                                                                                                                                                                                                                                                                                             | 17,668 b                                                                       | otu/h                                                                               |                                                                                                                                         |                                                                                              | Design Pr                                                                         |                                                                                 |                                                                                      |                                                                                       | 0.275 "                                                                        |                                                                               | Inp                                           | put Btu/h                                             |                                        | 60000                    |                                          |                                     |                                                  | Input Btu/I                                        |                          |                                                                              |                                                |                                  |                                             | C                                   | Coil                              |                                      | 2.5                                              |                  |
| Level 4 Net Load                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                | otu/h                                                                               |                                                                                                                                         |                                                                                              |                                                                                   | gest Effect                                                                     | ive Lengt                                                                            | :h                                                                                    | 300 ft                                                                         |                                                                               |                                               | utput Btu/h                                           | 1                                      | 57600                    |                                          |                                     |                                                  | Output Btu                                         |                          |                                                                              |                                                |                                  |                                             |                                     |                                   |                                      |                                                  |                  |
| Total Heat Loss                                                                                                                                                                                                                                                                                                                                                                                                              | 55,002 k                                                                       |                                                                                     |                                                                                                                                         |                                                                                              | m Pressui                                                                         |                                                                                 |                                                                                      |                                                                                       | 0.138 "                                                                        |                                                                               |                                               | s.p.                                                  |                                        | 0.50                     |                                          | W.C.                                |                                                  | Min.Outpu                                          | t Btu/h                  |                                                                              | Al                                             | WH                               |                                             |                                     |                                   |                                      |                                                  |                  |
| Total Heat Gain                                                                                                                                                                                                                                                                                                                                                                                                              | 28,387 k                                                                       | otu/h                                                                               |                                                                                                                                         | S/A Plenu                                                                                    | m Pressur                                                                         | e                                                                               |                                                                                      |                                                                                       | 0.14 "                                                                         | w.c.                                                                          |                                               | ater Temp                                             |                                        |                          | d                                        | eg. F.                              |                                                  |                                                    |                          |                                                                              |                                                | Blo                              | wer DATA                                    | :                                   |                                   |                                      |                                                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                     |                                                                                                                                         | _                                                                                            |                                                                                   | oportionin                                                                      | -                                                                                    |                                                                                       | 0.0169 c                                                                       |                                                                               |                                               | TUE                                                   |                                        | 96%                      |                                          |                                     | - 1                                              | Blower Sp                                          | eed Select               | ed:                                                                          | W2                                             |                                  |                                             | E                                   | Blower Typ                        |                                      | СМ                                               |                  |
| Building Volume Vb                                                                                                                                                                                                                                                                                                                                                                                                           | 33025 f                                                                        |                                                                                     | (                                                                                                                                       | Cooling A                                                                                    | ir Flow Pr                                                                        | oportionin                                                                      | -                                                                                    |                                                                                       | 0.0327 c                                                                       |                                                                               |                                               | ıx. Heat                                              |                                        | _                        |                                          |                                     |                                                  |                                                    |                          |                                                                              |                                                |                                  |                                             |                                     | •                                 |                                      | 3C 12.3.1.                                       | ,                |
| Ventilation Load                                                                                                                                                                                                                                                                                                                                                                                                             | 1,188 E                                                                        |                                                                                     |                                                                                                                                         |                                                                                              |                                                                                   |                                                                                 | R/A Temp                                                                             |                                                                                       |                                                                                | eg. F.                                                                        | SB                                            | 3-12 Packa                                            | ge                                     | Package                  | e A1                                     |                                     |                                                  | Heating Cl                                         | neck                     | 929 cf                                                                       | m                                              |                                  |                                             | (                                   | Cooling Ch                        | eck                                  | 929 c                                            | fm               |
| Ventilation PVC                                                                                                                                                                                                                                                                                                                                                                                                              | 79.5 0                                                                         | fm                                                                                  |                                                                                                                                         | D!#                                                                                          |                                                                                   |                                                                                 | S/A Temp                                                                             |                                                                                       | 127 d                                                                          | eg. F.                                                                        | т.                                            | Di                                                    |                                        | F7 4-                    |                                          |                                     |                                                  | 0-141 -                                            |                          | 000 -4                                                                       |                                                |                                  | •                                           | II A !                              | - Fl D-1                          | _                                    | 000 -                                            | •                |
| Supply Branch and Grill Sizing                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                |                                                                                     |                                                                                                                                         | Diffuser lo                                                                                  | ess =                                                                             | 0.01                                                                            | w.c.                                                                                 |                                                                                       |                                                                                |                                                                               | ie                                            | mp. Rise>                                             | <sup>&gt;&gt;</sup>                    | <u>57</u> de             | eg. F.                                   |                                     | ,                                                | Selected c                                         | <sup>tm&gt;</sup> =      | 929 cf                                                                       | m                                              |                                  | C                                           | ooling Ai                           | ir Flow Rat                       | e =                                  | <u>929</u> c                                     | TIM .            |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                     |                                                                                                                                         |                                                                                              |                                                                                   |                                                                                 | Leve                                                                                 | el 1                                                                                  |                                                                                |                                                                               |                                               |                                                       |                                        |                          |                                          |                                     |                                                  |                                                    |                          |                                                                              | Level                                          | 2                                |                                             |                                     |                                   |                                      |                                                  |                  |
| S/A Outlet No.                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                              | 2                                                                                   | 3                                                                                                                                       | 4                                                                                            |                                                                                   |                                                                                 |                                                                                      |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        | -                        | 5                                        | 6                                   | 7                                                | 8                                                  | 9                        | 10                                                                           |                                                |                                  |                                             |                                     |                                   |                                      |                                                  |                  |
| Room Use                                                                                                                                                                                                                                                                                                                                                                                                                     | BASE                                                                           | BASE                                                                                | BASE                                                                                                                                    | BASE                                                                                         |                                                                                   |                                                                                 |                                                                                      |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        |                          | KIT                                      | KIT                                 | GRT                                              | LAUND                                              | FOY                      | DIN                                                                          |                                                |                                  |                                             |                                     |                                   |                                      |                                                  |                  |
| Btu/Outlet                                                                                                                                                                                                                                                                                                                                                                                                                   | 4601                                                                           | 4601                                                                                | 4601                                                                                                                                    | 4601                                                                                         |                                                                                   |                                                                                 |                                                                                      |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        |                          | 2160                                     | 2160                                | 3727                                             | 2435                                               | 4139                     | 4308                                                                         |                                                |                                  |                                             |                                     |                                   |                                      |                                                  |                  |
| Heating Airflow Rate CFM                                                                                                                                                                                                                                                                                                                                                                                                     | 78                                                                             | 78                                                                                  | 78                                                                                                                                      | 78                                                                                           |                                                                                   |                                                                                 |                                                                                      |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        |                          | 36                                       | 36                                  | 63                                               | 41                                                 | 70                       | 73                                                                           |                                                |                                  |                                             |                                     |                                   |                                      |                                                  |                  |
| Cooling Airflow Rate CFM                                                                                                                                                                                                                                                                                                                                                                                                     | 16                                                                             | 16                                                                                  | 16                                                                                                                                      | 16                                                                                           |                                                                                   |                                                                                 |                                                                                      |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        |                          | 87                                       | 87                                  | 96                                               | 60                                                 | 76                       | 91                                                                           |                                                |                                  |                                             |                                     |                                   |                                      |                                                  |                  |
| Duct Design Pressure                                                                                                                                                                                                                                                                                                                                                                                                         | 0.13                                                                           | 0.13                                                                                | 0.13                                                                                                                                    | 0.13                                                                                         | 0.13                                                                              | 0.13                                                                            | 0.13                                                                                 | 0.13                                                                                  | 0.13                                                                           | 0.13                                                                          | 0.13                                          | 0.13                                                  | 0.13                                   | 0.13                     | 0.13                                     | 0.13                                | 0.13                                             | 0.13                                               | 0.13                     | 0.13                                                                         | 0.13                                           | 0.13                             | 0.13                                        | 0.13                                | 0.13                              | 0.13                                 | 0.13                                             | 0.13             |
| Actual Duct Length                                                                                                                                                                                                                                                                                                                                                                                                           | 24                                                                             | 42                                                                                  | 25                                                                                                                                      | 41                                                                                           |                                                                                   |                                                                                 |                                                                                      |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        |                          | 33                                       | 39                                  | 46                                               | 25                                                 | 27                       | 5                                                                            |                                                |                                  |                                             |                                     |                                   |                                      |                                                  |                  |
| Equivalent Length                                                                                                                                                                                                                                                                                                                                                                                                            | 90                                                                             | 120                                                                                 | 70                                                                                                                                      | 110                                                                                          | 70                                                                                | 70                                                                              | 70                                                                                   | 70                                                                                    | 70                                                                             | 70                                                                            | 70                                            | 70                                                    | 70                                     | 70                       | 80                                       | 130                                 | 110                                              | 170                                                | 110                      | 130                                                                          | 70                                             | 70                               | 70                                          | 70                                  | 70                                | 70                                   | 70                                               | 70               |
| Total Effective Length                                                                                                                                                                                                                                                                                                                                                                                                       | 114                                                                            | 162                                                                                 | 95                                                                                                                                      | 151                                                                                          | 70                                                                                | 70                                                                              | 70                                                                                   | 70                                                                                    | 70                                                                             | 70                                                                            | 70                                            | 70                                                    | 70                                     | 70                       | 113                                      | 169                                 | 156                                              | 195                                                | 137                      | 135                                                                          | 70                                             | 70                               | 70                                          | 70                                  | 70                                | 70                                   | 70                                               | 70               |
| Adjusted Pressure                                                                                                                                                                                                                                                                                                                                                                                                            | 0.11                                                                           | 0.08                                                                                | 0.14                                                                                                                                    | 0.09                                                                                         | 0.19                                                                              | 0.19                                                                            | 0.19                                                                                 | 0.19                                                                                  | 0.19                                                                           | 0.19                                                                          | 0.19                                          | 0.19                                                  | 0.19                                   | 0.19                     | 0.12                                     | 0.08                                | 0.08                                             | 0.07                                               | 0.09                     | 0.10                                                                         | 0.19                                           | 0.19                             | 0.19                                        | 0.19                                | 0.19                              | 0.19                                 | 0.19                                             | 0.19             |
| Duct Size Round                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                              | 6                                                                                   | 6                                                                                                                                       | 6                                                                                            |                                                                                   |                                                                                 |                                                                                      |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        |                          | 6                                        | 6                                   | 6                                                | 5                                                  | 6                        | 6                                                                            |                                                |                                  |                                             |                                     |                                   |                                      |                                                  |                  |
| Outlet Size                                                                                                                                                                                                                                                                                                                                                                                                                  | 4x10                                                                           | 4x10                                                                                | 4x10                                                                                                                                    | 4x10                                                                                         | 4x10                                                                              | 4x10                                                                            | 4x10                                                                                 | 4x10                                                                                  | 4x10                                                                           | 4x10                                                                          | 4x10                                          | 4x10                                                  | 4x10                                   | 4x10                     | 4x10                                     | 4x10                                | 4x10                                             | 3x10                                               | 4x10                     | 4x10                                                                         | 4x10                                           | 4x10                             | 4x10                                        | 4x10                                | 4x10                              | 4x10                                 | 4x10                                             | 4x10             |
| Trunk                                                                                                                                                                                                                                                                                                                                                                                                                        | Α                                                                              | В                                                                                   | Α                                                                                                                                       | С                                                                                            |                                                                                   |                                                                                 |                                                                                      |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        |                          | Α                                        | В                                   | В                                                | С                                                  | С                        | Α                                                                            |                                                |                                  |                                             |                                     |                                   |                                      |                                                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                     |                                                                                                                                         |                                                                                              |                                                                                   |                                                                                 |                                                                                      |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        |                          |                                          |                                     |                                                  |                                                    |                          |                                                                              |                                                |                                  |                                             |                                     |                                   |                                      |                                                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                     |                                                                                                                                         |                                                                                              |                                                                                   |                                                                                 | Leve                                                                                 |                                                                                       |                                                                                |                                                                               |                                               |                                                       |                                        |                          |                                          |                                     |                                                  |                                                    |                          |                                                                              | Level                                          | 4                                |                                             |                                     |                                   |                                      |                                                  |                  |
| S/A Outlet No.                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                             | 12                                                                                  | 13                                                                                                                                      | 14                                                                                           | 15                                                                                | 16                                                                              | 17                                                                                   | 18                                                                                    | 19                                                                             | 20                                                                            |                                               |                                                       |                                        |                          |                                          |                                     |                                                  |                                                    |                          |                                                                              | Level                                          | 4                                |                                             |                                     |                                   |                                      |                                                  |                  |
| Room Use                                                                                                                                                                                                                                                                                                                                                                                                                     | MAST                                                                           | MAST                                                                                | BED 2                                                                                                                                   | BATH                                                                                         | BED 3                                                                             | BED 3                                                                           | 17<br>LOFT                                                                           | 18<br>BED 4                                                                           | ENS 2                                                                          | ENS                                                                           |                                               |                                                       |                                        |                          |                                          |                                     |                                                  |                                                    |                          |                                                                              | Level                                          | 4                                |                                             |                                     |                                   |                                      |                                                  |                  |
| Room Use<br>Btu/Outlet                                                                                                                                                                                                                                                                                                                                                                                                       | MAST<br>1705                                                                   | MAST<br>1705                                                                        | BED 2<br>1748                                                                                                                           | BATH<br>1675                                                                                 | BED 3<br>1907                                                                     | BED 3<br>1907                                                                   | 17<br>LOFT<br>3247                                                                   | 18<br>BED 4<br>1361                                                                   | ENS 2<br>638                                                                   | ENS<br>1777                                                                   |                                               |                                                       |                                        |                          |                                          |                                     |                                                  |                                                    |                          |                                                                              | Level                                          | 4                                |                                             |                                     |                                   |                                      |                                                  |                  |
| Room Use<br>Btu/Outlet<br>Heating Airflow Rate CFM                                                                                                                                                                                                                                                                                                                                                                           | MAST<br>1705<br>29                                                             | MAST<br>1705<br>29                                                                  | BED 2<br>1748<br>30                                                                                                                     | BATH<br>1675<br>28                                                                           | BED 3<br>1907<br>32                                                               | BED 3<br>1907<br>32                                                             | 17<br>LOFT<br>3247<br>55                                                             | 18<br>BED 4<br>1361<br>23                                                             | ENS 2<br>638<br>11                                                             | ENS<br>1777<br>30                                                             |                                               |                                                       |                                        |                          |                                          |                                     |                                                  |                                                    |                          |                                                                              | Level                                          | 4                                |                                             |                                     |                                   |                                      |                                                  |                  |
| Room Use<br>Btu/Outlet<br>Heating Airflow Rate CFM<br>Cooling Airflow Rate CFM                                                                                                                                                                                                                                                                                                                                               | MAST<br>1705<br>29<br>41                                                       | MAST<br>1705<br>29<br>41                                                            | BED 2<br>1748<br>30<br>28                                                                                                               | BATH<br>1675<br>28<br>24                                                                     | BED 3<br>1907<br>32<br>46                                                         | BED 3<br>1907<br>32<br>46                                                       | 17<br>LOFT<br>3247<br>55<br>70                                                       | 18<br>BED 4<br>1361<br>23<br>34                                                       | ENS 2<br>638<br>11<br>11                                                       | ENS<br>1777<br>30<br>27                                                       | 0.42                                          | 0.42                                                  | 0.42                                   | 0.42                     | 0.42                                     | 0.42                                | 0.42                                             | 0.42                                               | 0.42                     | 0.42                                                                         |                                                |                                  | 0.42                                        | 0.42                                | 0.42                              | 0.42                                 | 0.42                                             | 0.12             |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure                                                                                                                                                                                                                                                                                                                                   | MAST<br>1705<br>29<br>41<br>0.13                                               | MAST<br>1705<br>29<br>41<br>0.13                                                    | BED 2<br>1748<br>30<br>28<br>0.13                                                                                                       | BATH<br>1675<br>28<br>24<br>0.13                                                             | BED 3<br>1907<br>32<br>46<br>0.13                                                 | BED 3<br>1907<br>32<br>46<br>0.13                                               | 17<br>LOFT<br>3247<br>55<br>70<br>0.13                                               | 18<br>BED 4<br>1361<br>23<br>34<br>0.13                                               | ENS 2<br>638<br>11<br>11<br>0.13                                               | ENS<br>1777<br>30<br>27<br>0.13                                               | 0.13                                          | 0.13                                                  | 0.13                                   | 0.13                     | 0.13                                     | 0.13                                | 0.13                                             | 0.13                                               | 0.13                     | 0.13                                                                         | 0.13                                           | 0.13                             | 0.13                                        | 0.13                                | 0.13                              | 0.13                                 | 0.13                                             | 0.13             |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length                                                                                                                                                                                                                                                                                                                | MAST<br>1705<br>29<br>41<br>0.13<br>49                                         | MAST<br>1705<br>29<br>41<br>0.13<br>61                                              | BED 2<br>1748<br>30<br>28<br>0.13<br>54                                                                                                 | BATH<br>1675<br>28<br>24<br>0.13<br>42                                                       | BED 3<br>1907<br>32<br>46<br>0.13<br>43                                           | BED 3<br>1907<br>32<br>46<br>0.13<br>39                                         | 17<br>LOFT<br>3247<br>55<br>70<br>0.13<br>36                                         | 18<br>BED 4<br>1361<br>23<br>34<br>0.13                                               | ENS 2<br>638<br>11<br>11<br>0.13                                               | ENS<br>1777<br>30<br>27<br>0.13<br>29                                         |                                               |                                                       |                                        |                          |                                          |                                     |                                                  |                                                    |                          |                                                                              | 0.13                                           | 0.13                             |                                             |                                     |                                   |                                      |                                                  |                  |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length                                                                                                                                                                                                                                                                                              | MAST<br>1705<br>29<br>41<br>0.13<br>49                                         | MAST<br>1705<br>29<br>41<br>0.13<br>61<br>120                                       | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150                                                                                          | BATH<br>1675<br>28<br>24<br>0.13<br>42<br>160                                                | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150                                    | BED 3<br>1907<br>32<br>46<br>0.13<br>39<br>140                                  | 17<br>LOFT<br>3247<br>55<br>70<br>0.13<br>36<br>120                                  | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150                                  | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120                                  | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140                                  | 70                                            | 70                                                    | 70                                     | 70                       | 70                                       | 70                                  | 70                                               | 70                                                 | 70                       | 70                                                                           | 0.13<br>70                                     | 0.13<br>70                       | 70                                          | 70                                  | 70                                | 70                                   | 70                                               | 70               |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length                                                                                                                                                                                                                                                                       | MAST<br>1705<br>29<br>41<br>0.13<br>49<br>140                                  | MAST<br>1705<br>29<br>41<br>0.13<br>61<br>120<br>181                                | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204                                                                                   | BATH<br>1675<br>28<br>24<br>0.13<br>42<br>160<br>202                                         | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>193                             | BED 3<br>1907<br>32<br>46<br>0.13<br>39<br>140<br>179                           | 17<br>LOFT<br>3247<br>55<br>70<br>0.13<br>36<br>120<br>156                           | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150                                  | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144                           | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169                           | 70<br>70                                      | 70<br>70                                              | 70<br>70                               | 70<br>70                 | 70<br>70                                 | 70<br>70                            | 70<br>70                                         | 70<br>70                                           | 70<br>70                 | 70<br>70                                                                     | 0.13<br>70<br>70                               | 0.13<br>70<br>70                 | 70<br>70                                    | 70<br>70                            | 70<br>70                          | 70<br>70                             | 70<br>70                                         | 70<br>70         |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure                                                                                                                                                                                                                                                     | MAST<br>1705<br>29<br>41<br>0.13<br>49<br>140<br>189<br>0.07                   | MAST<br>1705<br>29<br>41<br>0.13<br>61<br>120<br>181<br>0.07                        | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06                                                                           | BATH<br>1675<br>28<br>24<br>0.13<br>42<br>160                                                | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>193<br>0.07                     | BED 3<br>1907<br>32<br>46<br>0.13<br>39<br>140<br>179<br>0.07                   | 17<br>LOFT<br>3247<br>55<br>70<br>0.13<br>36<br>120<br>156                           | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150<br>184<br>0.07                   | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09                   | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140                                  | 70                                            | 70                                                    | 70                                     | 70                       | 70                                       | 70                                  | 70                                               | 70                                                 | 70                       | 70                                                                           | 0.13<br>70                                     | 0.13<br>70                       | 70                                          | 70                                  | 70                                | 70                                   | 70                                               | 70               |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round                                                                                                                                                                                                                                     | MAST<br>1705<br>29<br>41<br>0.13<br>49<br>140<br>189<br>0.07                   | MAST<br>1705<br>29<br>41<br>0.13<br>61<br>120<br>181<br>0.07<br>5                   | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06                                                                           | BATH<br>1675<br>28<br>24<br>0.13<br>42<br>160<br>202<br>0.06<br>4                            | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>193<br>0.07                     | BED 3<br>1907<br>32<br>46<br>0.13<br>39<br>140<br>179<br>0.07<br>5              | 17<br>LOFT<br>3247<br>55<br>70<br>0.13<br>36<br>120<br>156<br>0.08<br>6              | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150<br>184<br>0.07<br>4              | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09                   | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08                   | 70<br>70<br>0.19                              | 70<br>70<br>0.19                                      | 70<br>70<br>0.19                       | 70<br>70<br>0.19         | 70<br>70<br>0.19                         | 70<br>70<br>0.19                    | 70<br>70<br>0.19                                 | 70<br>70<br>0.19                                   | 70<br>70<br>0.19         | 70<br>70<br>0.19                                                             | 0.13<br>70<br>70<br>0.19                       | 0.13<br>70<br>70<br>0.19         | 70<br>70<br>0.19                            | 70<br>70<br>0.19                    | 70<br>70<br>0.19                  | 70<br>70<br>0.19                     | 70<br>70<br>0.19                                 | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size                                                                                                                                                                                                                         | MAST<br>1705<br>29<br>41<br>0.13<br>49<br>140<br>189<br>0.07                   | MAST<br>1705<br>29<br>41<br>0.13<br>61<br>120<br>181<br>0.07                        | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06                                                                           | BATH<br>1675<br>28<br>24<br>0.13<br>42<br>160<br>202                                         | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>193<br>0.07                     | BED 3<br>1907<br>32<br>46<br>0.13<br>39<br>140<br>179<br>0.07                   | 17<br>LOFT<br>3247<br>55<br>70<br>0.13<br>36<br>120<br>156                           | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150<br>184<br>0.07                   | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09                   | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169                           | 70<br>70                                      | 70<br>70                                              | 70<br>70<br>0.19                       | 70<br>70                 | 70<br>70                                 | 70<br>70                            | 70<br>70                                         | 70<br>70                                           | 70<br>70                 | 70<br>70                                                                     | 0.13<br>70<br>70                               | 0.13<br>70<br>70                 | 70<br>70                                    | 70<br>70                            | 70<br>70                          | 70<br>70                             | 70<br>70                                         | 70<br>70         |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round                                                                                                                                                                                                                                     | MAST<br>1705<br>29<br>41<br>0.13<br>49<br>140<br>189<br>0.07<br>5              | MAST<br>1705<br>29<br>41<br>0.13<br>61<br>120<br>181<br>0.07<br>5                   | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06<br>4<br>3x10                                                              | BATH<br>1675<br>28<br>24<br>0.13<br>42<br>160<br>202<br>0.06<br>4<br>3x10                    | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>193<br>0.07<br>5                | BED 3<br>1907<br>32<br>46<br>0.13<br>39<br>140<br>179<br>0.07<br>5<br>3x10      | 17<br>LOFT<br>3247<br>55<br>70<br>0.13<br>36<br>120<br>156<br>0.08<br>6              | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150<br>184<br>0.07<br>4              | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10      | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3x10      | 70<br>70<br>0.19                              | 70<br>70<br>0.19                                      | 70<br>70<br>0.19                       | 70<br>70<br>0.19         | 70<br>70<br>0.19                         | 70<br>70<br>0.19                    | 70<br>70<br>0.19                                 | 70<br>70<br>0.19                                   | 70<br>70<br>0.19         | 70<br>70<br>0.19                                                             | 0.13<br>70<br>70<br>0.19                       | 0.13<br>70<br>70<br>0.19         | 70<br>70<br>0.19                            | 70<br>70<br>0.19                    | 70<br>70<br>0.19                  | 70<br>70<br>0.19                     | 70<br>70<br>0.19                                 | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size                                                                                                                                                                                                                         | MAST<br>1705<br>29<br>41<br>0.13<br>49<br>140<br>189<br>0.07<br>5<br>3x10<br>B | MAST<br>1705<br>29<br>41<br>0.13<br>61<br>120<br>181<br>0.07<br>5<br>3x10<br>B      | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06<br>4<br>3x10                                                              | BATH<br>1675<br>28<br>24<br>0.13<br>42<br>160<br>202<br>0.06<br>4<br>3x10<br>C               | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>193<br>0.07<br>5                | BED 3<br>1907<br>32<br>46<br>0.13<br>39<br>140<br>179<br>0.07<br>5<br>3x10      | 17<br>LOFT<br>3247<br>55<br>70<br>0.13<br>36<br>120<br>156<br>0.08<br>6<br>4x10<br>C | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150<br>184<br>0.07<br>4              | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10      | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3x10      | 70<br>70<br>0.19                              | 70<br>70<br>0.19<br>4x10                              | 70<br>70<br>0.19                       | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10                 | 70<br>70<br>0.19                    | 70<br>70<br>0.19                                 | 70<br>70<br>0.19                                   | 70<br>70<br>0.19         | 70<br>70<br>0.19<br>4x10                                                     | 0.13<br>70<br>70<br>0.19                       | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10                    | 70<br>70<br>0.19                    | 70<br>70<br>0.19                  | 70<br>70<br>0.19                     | 70<br>70<br>0.19                                 | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk                                                                                                                                                                                                                   | MAST<br>1705<br>29<br>41<br>0.13<br>49<br>140<br>189<br>0.07<br>5<br>3x10<br>B | MAST<br>1705<br>29<br>41<br>0.13<br>61<br>120<br>181<br>0.07<br>5<br>3x10<br>B      | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06<br>4<br>3x10<br>B                                                         | BATH<br>1675<br>28<br>24<br>0.13<br>42<br>160<br>202<br>0.06<br>4<br>3x10<br>C               | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>193<br>0.07<br>5                | BED 3<br>1907<br>32<br>46<br>0.13<br>39<br>140<br>179<br>0.07<br>5<br>3x10<br>C | 17<br>LOFT<br>3247<br>55<br>70<br>0.13<br>36<br>120<br>156<br>0.08<br>6<br>4x10<br>C | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150<br>184<br>0.07<br>4              | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10      | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3x10      | 70<br>70<br>0.19                              | 70<br>70<br>0.19<br>4x10                              | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10                 | 70<br>70<br>0.19<br>4x10            | 70<br>70<br>0.19                                 | 70<br>70<br>0.19                                   | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10                                                     | 0.13<br>70<br>70<br>0.19<br>4x10               | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing          | 70<br>70<br>0.19<br>4x10            | 70<br>70<br>0.19                  | 70<br>70<br>0.19                     | 70<br>70<br>0.19<br>4x10                         | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk Return Branch And Grill Sizing                                                                                                                                                                                    | MAST<br>1705<br>29<br>41<br>0.13<br>49<br>140<br>189<br>0.07<br>5<br>3x10<br>B | MAST<br>1705<br>29<br>41<br>0.13<br>61<br>120<br>181<br>0.07<br>5<br>3x10<br>B      | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06<br>4<br>3x10<br>B                                                         | BATH<br>1675<br>28<br>24<br>0.13<br>42<br>160<br>202<br>0.06<br>4<br>3x10<br>C               | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>193<br>0.07<br>5<br>3x10<br>C   | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C                                  | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C                                     | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150<br>184<br>0.07<br>4<br>3x10<br>A | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3x10<br>A | 70<br>70<br>0.19<br>4x10                      | 70<br>70<br>0.19<br>4x10                              | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10                 | 70<br>70<br>0.19<br>4x10            | 70<br>70<br>0.19<br>4x10                         | 70<br>70<br>0.19<br>4x10                           | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10                                                     | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing          | 70<br>70<br>0.19<br>4x10            | 70<br>70<br>0.19<br>4x10          | 70<br>70<br>0.19<br>4x10             | 70<br>70<br>0.19<br>4x10                         | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk  Return Branch And Grill Sizing R/A Inlet No.                                                                                                                                                                     | MAST<br>1705<br>29<br>41<br>0.13<br>49<br>140<br>189<br>0.07<br>5<br>3x10<br>B | MAST<br>1705<br>29<br>41<br>0.13<br>61<br>120<br>181<br>0.07<br>5<br>3x10<br>B      | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06<br>4<br>3x10<br>B                                                         | BATH<br>1675<br>28<br>24<br>0.13<br>42<br>160<br>202<br>0.06<br>4<br>3x10<br>C               | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>193<br>0.07<br>5<br>3x10<br>C   | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C                                  | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C                                     | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150<br>184<br>0.07<br>4<br>3x10<br>A | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3x10<br>A | 70<br>70<br>0.19<br>4x10                      | 70<br>70<br>0.19<br>4x10                              | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10                 | 70<br>70<br>0.19<br>4x10            | 70<br>70<br>0.19<br>4x10                         | 70<br>70<br>0.19<br>4x10                           | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10                                                     | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing          | 70<br>70<br>0.19<br>4x10            | 70<br>70<br>0.19<br>4x10          | 70<br>70<br>0.19<br>4x10             | 70<br>70<br>0.19<br>4x10                         | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk  Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM                                                                                                                                                | MAST<br>1705<br>29<br>41<br>0.13<br>49<br>140<br>189<br>0.07<br>5<br>3x10<br>B | MAST 1705 29 41 0.13 61 120 181 0.07 5 3x10 B  2R 414 0.12 17                       | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06<br>4<br>3x10<br>B<br>Grill Press<br>3R<br>105<br>0.12                     | BATH 1675 28 24 0.13 42 160 202 0.06 4 3x10 C sure Loss 4R 105 0.12 41                       | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>0.07<br>5<br>3x10<br>C          | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C                                  | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C                                     | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150<br>184<br>0.07<br>4<br>3x10<br>A | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3x10<br>A | 70<br>70<br>0.19<br>4x10                      | 70 70 0.19 4x10  Re Tru                               | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>zing<br>FM P | 70<br>70<br>0.19<br>4x10<br>ress. R | 70<br>70<br>0.19<br>4x10                         | 70<br>70<br>0.19<br>4x10                           | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br><u>Si</u><br>Ti                                  | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing<br>CFM P | 70<br>70<br>0.19<br>4x10            | 70<br>70<br>0.19<br>4x10          | 70<br>70<br>0.19<br>4x10             | 70<br>70<br>0.19<br>4x10                         | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk  Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure                                                                                                                           | MAST 1705 29 41 0.13 49 140 189 0.07 5 3x10 B                                  | MAST 1705 29 41 0.13 61 120 181 0.07 5 3x10 B  2R 414 0.12                          | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06<br>4<br>3x10<br>B<br>Grill Press<br>3R<br>105<br>0.12                     | BATH 1675 28 24 0.13 42 160 202 0.06 4 3x10 C sure Loss 4R 105 0.12                          | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>0.07<br>5<br>3x10<br>C          | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C                                  | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C                                     | 18<br>BED 4<br>1361<br>23<br>34<br>0.13<br>34<br>150<br>184<br>0.07<br>4<br>3x10<br>A | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3x10<br>A | 70<br>70<br>0.19<br>4x10                      | 70<br>70<br>0.19<br>4x10<br>Re<br>Tru                 | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>zing P       | 70<br>70<br>0.19<br>4x10<br>ress. R | 70<br>70<br>0.19<br>4x10<br>ound                 | 70<br>70<br>0.19<br>4x10                           | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10                                                     | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing P        | 70<br>70<br>0.19<br>4x10<br>ress. F | 70<br>70<br>0.19<br>4x10          | 70<br>70<br>0.19<br>4x10<br>Rect. \$ | 70<br>70<br>0.19<br>4x10                         | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk  Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length                                                                                                        | MAST 1705 29 41 0.13 49 140 189 0.07 5 3x10 B  1R 155 0.12                     | MAST 1705 29 41 0.13 61 120 181 0.07 5 3x10 B  2R 414 0.12 17                       | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06<br>4<br>3x10<br>B<br>Grill Press<br>3R<br>105<br>0.12                     | BATH 1675 28 24 0.13 42 160 202 0.06 4 3x10 C sure Loss 4R 105 0.12 41                       | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>0.07<br>5<br>3x10<br>C          | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C                                  | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C                                     | 18 BED 4 1361 23 34 0.13 34 150 184 0.07 4 3x10 A                                     | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3x10<br>A | 70<br>70<br>0.19<br>4x10                      | 70 70 0.19 4x10  Re Tru                               | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>zing<br>FM P | 70<br>70<br>0.19<br>4x10<br>ress. R | 70<br>70<br>0.19<br>4x10<br>ound<br>15.5<br>15.5 | 70<br>70<br>0.19<br>4x10<br>Rect.<br>24x10<br>28x8 | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br><u>Si</u><br>Ti<br>A<br>B<br>C                   | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing<br>CFM P | 70<br>70<br>0.19<br>4x10<br>ress. F | 70<br>70<br>0.19<br>4x10<br>Round | 70<br>70<br>0.19<br>4x10<br>Rect. \$ | 70<br>70<br>0.19<br>4x10<br>Size<br>14x10<br>127 | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk  Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length                                                                                      | MAST 1705 29 41 0.13 49 140 189 0.07 5 3x10 B  1R 155 0.12 9 110               | MAST 1705 29 41 0.13 61 120 181 0.07 5 3x10 B  2R 414 0.12 17 125                   | BED 2 1748 30 28 0.13 54 150 204 0.06 4 3x10 B Grill Press 3R 105 0.12 36 180                                                           | BATH 1675 28 24 0.13 42 160 202 0.06 4 3x10 C sure Loss 4R 105 0.12 41 195                   | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>0.07<br>5<br>3x10<br>C          | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C 0.02 6R 0.12                     | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C 7R 0.12                             | 18 BED 4 1361 23 34 0.13 34 1500 184 0.07 4 3x10 A                                    | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3x10<br>A | 70<br>70<br>0.19<br>4x10<br>11R<br>0.12       | 70 70 0.19 4x10  Ree Tru  Dru  Z                      | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>zing<br>FM P | 70<br>70<br>0.19<br>4x10<br>ress. R | 70<br>70<br>0.19<br>4x10<br>ound<br>15.5<br>15.5 | 70<br>70<br>0.19<br>4x10<br>Rect.<br>24x10<br>28x8 | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br><u>Si</u><br>Ti<br>A<br>B                        | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing<br>CFM P | 70<br>70<br>0.19<br>4x10<br>ress. F | 70<br>70<br>0.19<br>4x10<br>Round | 70<br>70<br>0.19<br>4x10<br>Rect. \$ | 70<br>70<br>0.19<br>4x10<br>Size<br>14x10<br>127 | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk  Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Equivalent Length Total Effective Length                                             | MAST 1705 29 41 0.13 49 140 189 0.07 5 3x10 B  1R 155 0.12 9 110 119 0.10 7.0  | MAST 1705 29 41 0.13 61 120 181 0.07 5 3x10 B  2R 414 0.12 17 125 142               | BED 2<br>1748<br>30<br>28<br>0.13<br>54<br>150<br>204<br>0.06<br>4<br>3x10<br>B<br>Grill Press<br>3R<br>105<br>0.12<br>36<br>180<br>216 | BATH 1675 28 24 0.13 42 160 202 0.06 4 3x10 C c sure Loss 4R 105 0.12 41 195 236             | BED 3<br>1907<br>32<br>46<br>0.13<br>150<br>193<br>0.07<br>5<br>3x10<br>C         | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C 0.02 6R 0.12 50 50               | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C 7R 0.12 50 50                       | 18 BED 4 1361 23 34 0.13 34 150 184 0.07 4 3x10 A  8R  0.12 50 50                     | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3×10<br>A | 70<br>70<br>0.19<br>4x10<br>11R<br>0.12<br>50 | 70 70 0.19 4x10  Ree Tru Dru Z Y X W V                | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>zing<br>FM P | 70<br>70<br>0.19<br>4x10<br>ress. R | 70<br>70<br>0.19<br>4x10<br>ound<br>15.5<br>15.5 | 70<br>70<br>0.19<br>4x10<br>Rect.<br>24x10<br>28x8 | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br><u>Si</u><br>Ti<br>A<br>B<br>C                   | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing<br>CFM P | 70<br>70<br>0.19<br>4x10<br>ress. F | 70<br>70<br>0.19<br>4x10<br>Round | 70<br>70<br>0.19<br>4x10<br>Rect. \$ | 70<br>70<br>0.19<br>4x10<br>Size<br>14x10<br>127 | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk  Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Inlet Size Round Inlet Size | MAST 1705 29 41 0.13 49 140 189 0.07 5 3x10 B 1R 155 0.12 9 110 119 0.10       | MAST 1705 29 41 0.13 61 120 181 0.07 5 3x10 B  2R 414 0.12 17 125 142 0.08          | BED 2 1748 30 28 0.13 54 150 204 0.06 4 3x10 B Grill Press 3R 105 0.12 36 180 216                                                       | BATH 1675 28 24 0.13 42 160 202 0.06 4 3x10 C sure Loss 4R 105 0.12 41 195 236 0.05          | BED 3<br>1907<br>32<br>46<br>0.13<br>43<br>150<br>193<br>0.07<br>5<br>3x10<br>C   | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C 0.02 6R 0.12 50 50               | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C 7R 0.12 50 50                       | 18 BED 4 1361 23 34 0.13 34 150 184 0.07 4 3x10 A  8R  0.12 50 50                     | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3×10<br>A | 70<br>70<br>0.19<br>4x10<br>11R<br>0.12<br>50 | 70 70 0.19 4x10  Ree Tru  Dru  Z  Y  X  W  V  U       | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>zing<br>FM P | 70<br>70<br>0.19<br>4x10<br>ress. R | 70<br>70<br>0.19<br>4x10<br>ound<br>15.5<br>15.5 | 70<br>70<br>0.19<br>4x10<br>Rect.<br>24x10<br>28x8 | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Si<br>Ti<br>A<br>B<br>C<br>C<br>D<br>E<br>F<br>G | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing<br>CFM P | 70<br>70<br>0.19<br>4x10<br>ress. F | 70<br>70<br>0.19<br>4x10<br>Round | 70<br>70<br>0.19<br>4x10<br>Rect. \$ | 70<br>70<br>0.19<br>4x10<br>Size<br>14x10<br>127 | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk  Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure                                             | MAST 1705 29 41 0.13 49 140 189 0.07 5 3x10 B  1R 155 0.12 9 110 119 0.10 7.0  | MAST 1705 29 41 0.13 61 120 181 0.07 5 3x10 B  2R 414 0.12 17 125 142 0.08 10.5     | BED 2 1748 30 28 0.13 54 150 204 0.06 4 3x10 B Grill Press 3R 105 0.12 36 180 216 0.05 6.0                                              | BATH 1675 28 24 0.13 42 160 202 0.06 4 3x10 C cure Loss 4R 105 0.12 41 195 236 0.05 6.0      | BED 3 1907 32 46 0.13 43 150 193 0.07 5 3x10 C                                    | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C 0.02 6R 0.12 50 50               | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C 7R 0.12 50 50                       | 18 BED 4 1361 23 34 0.13 34 150 184 0.07 4 3x10 A  8R  0.12 50 50                     | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3×10<br>A | 70<br>70<br>0.19<br>4x10<br>11R<br>0.12<br>50 | 70 70 0.19 4x10  Ree Tru  Dru  Z  Y  X  W  V  U  T    | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>zing<br>FM P | 70<br>70<br>0.19<br>4x10<br>ress. R | 70<br>70<br>0.19<br>4x10<br>ound<br>15.5<br>15.5 | 70<br>70<br>0.19<br>4x10<br>Rect.<br>24x10<br>28x8 | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Si<br>Ti<br>A<br>B<br>C<br>C<br>D<br>E<br>F      | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing<br>CFM P | 70<br>70<br>0.19<br>4x10<br>ress. F | 70<br>70<br>0.19<br>4x10<br>Round | 70<br>70<br>0.19<br>4x10<br>Rect. \$ | 70<br>70<br>0.19<br>4x10<br>Size<br>14x10<br>127 | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk  Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Inlet Size Round Inlet Size | MAST 1705 29 41 0.13 49 140 189 0.07 5 3x10 B  1R 155 0.12 9 110 119 0.10 7.0  | MAST 1705 29 41 0.13 61 120 181 0.07 5 3x10 B  2R 414 0.12 17 125 142 0.08 10.5 8   | BED 2 1748 30 28 0.13 54 150 204 0.06 4 3x10 B Grill Press 3R 105 0.12 36 180 216 0.05 6.0                                              | BATH 1675 28 24 0.13 42 160 202 0.06 4 3x10 C  sure Loss 4R 105 0.12 41 195 236 0.05 6.0 8   | BED 3 1907 32 46 0.13 43 150 193 0.07 5 3x10 C  5R 150 0.12 40 155 195 0.06 8.0 8 | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C 0.02 6R 0.12 50 50               | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C 7R 0.12 50 50                       | 18 BED 4 1361 23 34 0.13 34 150 184 0.07 4 3x10 A  8R  0.12 50 50                     | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3×10<br>A | 70<br>70<br>0.19<br>4x10<br>11R<br>0.12<br>50 | 70 70 0.19 4x10  Ree Tru  Dru  Z  Y  X  W  V  U  T  S | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>zing<br>FM P | 70<br>70<br>0.19<br>4x10<br>ress. R | 70<br>70<br>0.19<br>4x10<br>ound<br>15.5<br>15.5 | 70<br>70<br>0.19<br>4x10<br>Rect.<br>24x10<br>28x8 | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Si<br>Ti<br>A<br>B<br>C<br>C<br>D<br>E<br>F<br>G | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing<br>CFM P | 70<br>70<br>0.19<br>4x10<br>ress. F | 70<br>70<br>0.19<br>4x10<br>Round | 70<br>70<br>0.19<br>4x10<br>Rect. \$ | 70<br>70<br>0.19<br>4x10<br>Size<br>14x10<br>127 | 70<br>70<br>0.19 |
| Room Use Btu/Outlet Heating Airflow Rate CFM Cooling Airflow Rate CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Outlet Size Trunk  Return Branch And Grill Sizing R/A Inlet No. Inlet Air Volume CFM Duct Design Pressure Actual Duct Length Equivalent Length Total Effective Length Adjusted Pressure Duct Size Round Inlet Size " "              | MAST 1705 29 41 0.13 49 140 189 0.07 5 3x10 B  1R 155 0.12 9 110 119 0.10 7.0  | MAST 1705 29 41 0.13 61 120 181 0.07 5 3x10 B  2R 414 0.12 17 125 142 0.08 10.5 8 x | BED 2 1748 30 28 0.13 54 150 204 0.06 4 3x10 B Grill Press 3R 105 0.12 36 180 216 0.05 6.0 8 x                                          | BATH 1675 28 24 0.13 42 160 202 0.06 4 3x10 C  sure Loss 4R 105 0.12 41 195 236 0.05 6.0 8 x | BED 3 1907 32 46 0.13 43 150 193 0.07 5 3x10 C                                    | BED 3 1907 32 46 0.13 39 140 179 0.07 5 3x10 C 0.02 6R 0.12 50 50               | 17 LOFT 3247 55 70 0.13 36 120 156 0.08 6 4x10 C 7R 0.12 50 50                       | 18 BED 4 1361 23 34 0.13 34 150 184 0.07 4 3x10 A  8R  0.12 50 50                     | ENS 2<br>638<br>11<br>11<br>0.13<br>24<br>120<br>144<br>0.09<br>3<br>3x10<br>A | ENS<br>1777<br>30<br>27<br>0.13<br>29<br>140<br>169<br>0.08<br>4<br>3×10<br>A | 70<br>70<br>0.19<br>4x10<br>11R<br>0.12<br>50 | 70 70 0.19 4x10  Ree Tru  Dru  Z  Y  X  W  V  U  T    | 70<br>70<br>0.19<br>4x10<br>turn Trunk | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>zing<br>FM P | 70<br>70<br>0.19<br>4x10<br>ress. R | 70<br>70<br>0.19<br>4x10<br>ound<br>15.5<br>15.5 | 70<br>70<br>0.19<br>4x10<br>Rect.<br>24x10<br>28x8 | 70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Si<br>Ti<br>A<br>B<br>C<br>C<br>D<br>E<br>F<br>G | 0.13<br>70<br>70<br>0.19<br>4x10<br>upply Trur | 0.13<br>70<br>70<br>0.19<br>4x10 | 70<br>70<br>0.19<br>4x10<br>Sizing<br>CFM P | 70<br>70<br>0.19<br>4x10<br>ress. F | 70<br>70<br>0.19<br>4x10<br>Round | 70<br>70<br>0.19<br>4x10<br>Rect. \$ | 70<br>70<br>0.19<br>4x10<br>Size<br>14x10<br>127 | 70<br>70<br>0.19 |



Total Heat Loss

Total Heat Gain

55,002 btu/h

28,387 btu/h

#### Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800

e-mail hvac@gtadesigns.ca

|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Builder:                                                                                               | Bayv                                                                                                                          | iew Welli                                                                                                                                                                                                                                           | lington                                                |                                                      |                                          | Date:                               |                                    | Jı                                                          | uly 21, 202                                    | :1                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                   |                                                                      |                         | Weath                             | er Data   | Bradford                          | 44                                 | -9.4 | 86 22                              | 48.2   |              |                            |           | Pa                              | age 4          |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|------------------------------------------|-------------------------------------|------------------------------------|-------------------------------------------------------------|------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------|-------------------------|-----------------------------------|-----------|-----------------------------------|------------------------------------|------|------------------------------------|--------|--------------|----------------------------|-----------|---------------------------------|----------------|
| 2012 OBC                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project:                                                                                               | Gre                                                                                                                           | en Valley                                                                                                                                                                                                                                           | , Fast                                                 |                                                      |                                          | Model:                              |                                    |                                                             | Barossa 3<br>S38-3                             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | System                                                               | 1                       | Heat                              | Loss ^T 8 | 14 dea F                          | Ht gain ^T                         | 11   | deg. F                             | GTA:   | 2544         |                            | Project : | # PJ-0                          | 00041<br>07351 |
| 2012 050                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rioject.                                                                                               | GIE                                                                                                                           | en vaney                                                                                                                                                                                                                                            | Last                                                   |                                                      | . "                                      | ilouei.                             |                                    |                                                             | 000-0                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | •                                                                    |                         | ricat                             | L033 1 0  | 1.4 ucg. 1                        | rit gain i                         |      | ucy. i                             | OIA.   | 2044         |                            | Layout    | 7 05-0                          |                |
|                                                                                       | Level 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        | BASE                                                 |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | nft. exposed wall A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 153 A                                                  |                                                      |                                          | Α                                   |                                    |                                                             | Α                                              |                                              | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | Α                                                                    |                         | Α                                 |           | Α                                 | Α                                  |      | Α                                  |        |              | A                          |           | Α                               |                |
| Run                                                                                   | ft. exposed wall B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        | В                                                    |                                          | В                                   |                                    |                                                             | В                                              |                                              | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | В                                                                    |                         | В                                 |           | В                                 | В                                  |      | В                                  |        |              | В                          |           | В                               |                |
|                                                                                       | Ceiling height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 6.0 A                                                  |                                                      |                                          | 6.0 A                               |                                    | 6.0                                                         | AG                                             |                                              | 6.0 AG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | 6.0 AG                                                               | •                       | 6.0 AG                            |           | 6.0 AG                            | 6.0 AG                             |      | 6.0 AG                             |        | 6.0          |                            | 6.0       | 0 AG                            |                |
|                                                                                       | Floor area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 1027 A                                                 |                                                      |                                          |                                     | rea                                |                                                             | Area                                           |                                              | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | Area                                                                 |                         | Area                              |           | Area                              | Area                               |      | Area                               | a      |              | Area                       |           | Area                            |                |
|                                                                                       | Exposed Ceilings A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        | Α                                                    |                                          | А                                   |                                    |                                                             | Α                                              |                                              | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | Α                                                                    |                         | Α                                 |           | Α                                 | Α                                  |      | Α                                  |        |              | A                          |           | Α                               |                |
| E                                                                                     | Exposed Ceilings B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        | В                                                    |                                          | В                                   |                                    |                                                             | В                                              |                                              | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | В                                                                    |                         | В                                 |           | В                                 | В                                  |      | В                                  |        |              | В                          |           | В                               |                |
|                                                                                       | Exposed Floors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        | Fir                                                  |                                          | F                                   | Ir                                 |                                                             | Fir                                            |                                              | Flr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | Flr                                                                  |                         | Flr                               |           | Flr                               | Flr                                |      | Flr                                |        |              | Flr                        |           | Fir                             |                |
|                                                                                       | Gross Exp Wall A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 918                                                    |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | Gross Exp Wall B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        | _                                                    |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                               | ain                                                                                                                                                                                                                                                 |                                                        | Loss                                                 | Gain                                     | , <u>L</u>                          | oss Gai                            | n                                                           | Loss (                                         | Gain                                         | Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gain                                | Loss G                                                               | ain                     | Loss                              | Gain      | Loss Gain                         | Loss                               | Gain | Los                                | s Gain | _            | Loss Ga                    | iin       | Loss Ga                         | ain            |
|                                                                                       | North Shaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.55                                                                                                   | 22.93                                                                                                                         | 11.62                                                                                                                                                                                                                                               |                                                        |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | East/West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.55                                                                                                   | 22.93                                                                                                                         | 29.56                                                                                                                                                                                                                                               | 23                                                     | 527<br>138                                           | 680<br>135                               |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.55                                                                                                   | 22.93                                                                                                                         | 22.50                                                                                                                                                                                                                                               | 6                                                      | 138                                                  | 135                                      |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | WOB Windows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.55                                                                                                   | 22.93                                                                                                                         | 27.86                                                                                                                                                                                                                                               |                                                        |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | Skylight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.03                                                                                                   | 40.10                                                                                                                         | 88.23                                                                                                                                                                                                                                               | 04                                                     | 407                                                  |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | Doors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.00                                                                                                   | 20.35                                                                                                                         | 2.75                                                                                                                                                                                                                                                |                                                        | 427                                                  |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | et exposed walls A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.12                                                                                                  | 3.85                                                                                                                          | 0.52                                                                                                                                                                                                                                                | 868                                                    |                                                      | 452                                      |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | et exposed walls B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.03                                                                                                  | 4.78                                                                                                                          | 0.65                                                                                                                                                                                                                                                |                                                        |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | Exposed Ceilings A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59.22                                                                                                  | 1.37                                                                                                                          | 0.64<br>1.37                                                                                                                                                                                                                                        |                                                        |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| E                                                                                     | Exposed Ceilings B<br>Exposed Floors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.65<br>29.80                                                                                         | 2.94                                                                                                                          | 0.17                                                                                                                                                                                                                                                |                                                        |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| Foundation Cond                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.80                                                                                                  | 2.13                                                                                                                          | 0.17                                                                                                                                                                                                                                                |                                                        | 7515                                                 |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        | 8607                                                 |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| Total Conductive                                                                      | Heat Loss<br>Heat Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        | 0007                                                 | 1325                                     |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| Air Leakage                                                                           | Heat Loss/Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                        | 1.1036                                                                                                                        | 0.0432                                                                                                                                                                                                                                              |                                                        | 9499                                                 | 57                                       |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| All Leakage                                                                           | Case 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        | 0.07                                                                                                                          | 0.0432                                                                                                                                                                                                                                              |                                                        | 9499                                                 | 3/                                       |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| Ventilation                                                                           | Case 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        | 14.95                                                                                                                         | 11.88                                                                                                                                                                                                                                               |                                                        |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| T Gridianion                                                                          | Case 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x                                                                                                      | 0.03                                                                                                                          | 0.06                                                                                                                                                                                                                                                |                                                        | 298                                                  | 86                                       |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | Heat Gain People                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ^                                                                                                      | 0.00                                                                                                                          | 239                                                                                                                                                                                                                                                 |                                                        | 230                                                  | - 00                                     |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | Appliances Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 =.25 pe                                                                                              | rcent                                                                                                                         | 4229                                                                                                                                                                                                                                                |                                                        |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | Duct and Pipe loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120 pc                                                                                                 | JOGIN                                                                                                                         | 10%                                                                                                                                                                                                                                                 |                                                        |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| Level HL Total                                                                        | 18,405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tot                                                                                                    | tal HL for po                                                                                                                 |                                                                                                                                                                                                                                                     |                                                        | 18405                                                |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| Level HG Total                                                                        | 1,908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                        | HG per roo                                                                                                                    |                                                                                                                                                                                                                                                     |                                                        | .0.00                                                | 1908                                     |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| LCVCI IIO IOtal                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| Level 110 Total                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                               | !                                                                                                                                                                                                                                                   | _                                                      |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| LEVEL 110 Total                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                               | -                                                                                                                                                                                                                                                   |                                                        |                                                      |                                          |                                     |                                    | <u>,</u>                                                    |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| Level Ho Total                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        |                                                      |                                          |                                     |                                    |                                                             |                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                      |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
|                                                                                       | Level 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     |                                                        | КІТ                                                  |                                          |                                     | GRT                                |                                                             | LAUND                                          |                                              | FOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | DIN                                                                  |                         |                                   |           |                                   |                                    |      |                                    |        |              |                            |           |                                 |                |
| Run                                                                                   | Level 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 31 /                                                   | Α                                                    |                                          | 32 A                                |                                    | 18                                                          | Α                                              |                                              | 26 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | 45 A                                                                 |                         | A                                 |           | A                                 | A                                  |      | A                                  |        |              | <b>A</b>                   |           | A                               |                |
| Run                                                                                   | Level 2  of t. exposed wall A  of t. exposed wall B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 31 A                                                   | Α                                                    |                                          | В                                   |                                    |                                                             | В                                              |                                              | 26 A<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | 45 A<br>B                                                            |                         | В                                 |           | В                                 | В                                  |      | В                                  |        |              | A<br>B                     |           | В                               |                |
| Run                                                                                   | Level 2  of t. exposed wall A  of t. exposed wall B  Ceiling height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 31 A<br>E<br>11.0                                      | A<br>B                                               |                                          | 11.0                                |                                    | 13.0                                                        | A<br>B                                         | 1                                            | 26 A<br>B<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 45 A<br>B<br>1.0                                                     | 11                      | B<br>1.0                          | 1         | В<br>1.0                          | B<br>11.0                          |      | B<br>11.0                          |        | 11.0         | В                          | 11.0      | В<br>0                          |                |
| Run<br>Run                                                                            | Level 2  oft. exposed wall A  oft. exposed wall B  Ceiling height  Floor area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 31 A<br>E<br>11.0<br>233 A                             | A<br>B<br>Area                                       |                                          | 11.0<br>216 A                       | rea                                | 13.0                                                        | A<br>B<br>Area                                 | 1                                            | 26 A<br>B<br>12.0<br>76 Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     | 45 A<br>B<br>1.0<br>121 Area                                         | 11                      | B<br>1.0<br>Area                  | 1         | B<br>1.0<br>Area                  | B<br>11.0<br>Area                  |      | 11.0<br>Area                       | a      | 11.0         | B<br>Area                  | 11.0      | B<br>D<br>Area                  |                |
| Run<br>Run                                                                            | Level 2  Ift. exposed wall A  Ift. exposed wall B  Ceiling height Floor area  Exposed Ceilings A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 31 A<br>E<br>11.0<br>233 A                             | A<br>B<br>Area<br>A                                  |                                          | 11.0<br>216 A                       | rea                                | 13.0<br>68                                                  | A<br>B<br>Area<br>A                            | 1                                            | 26 A<br>B<br>12.0<br>76 Area<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 45 A<br>B<br>1.0<br>121 Area<br>A                                    | 11                      | B<br>1.0<br>Area<br>A             | 1         | B<br>1.0<br>Area<br>A             | B<br>11.0<br>Area<br>A             |      | B<br>11.0<br>Area<br>A             | a      | 11.0         | B<br>Area<br>A             | 11.       | B<br>D<br>Area<br>A             |                |
| Run<br>Run                                                                            | Level 2  If t. exposed wall A  If t. exposed wall B  Ceiling height Floor area  Exposed Ceilings A  Exposed Ceilings B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 31 A<br>E<br>11.0<br>233 A                             | A<br>B<br>Area<br>A<br>B                             |                                          | 11.0<br>216 A<br>A<br>B             | rea                                | 13.0<br>68                                                  | A<br>B<br>Area<br>A<br>B                       | 1                                            | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | 45 A<br>B<br>1.0<br>421 Area<br>A<br>B                               | 11                      | B<br>1.0<br>Area<br>A<br>B        | 1         | B<br>1.0<br>Area<br>A<br>B        | B<br>11.0<br>Area<br>A<br>B        |      | B<br>11.0<br>Area<br>A<br>B        | a      | 11.0<br>11.0 | B<br>Area<br>A<br>B        | 11.0      | B<br>O<br>Area<br>A<br>B        |                |
| Run<br>Run<br>E<br>E                                                                  | Level 2 Ift. exposed wall A Celling height Floor area Exposed Ceilings A Exposed Floors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 31 /<br>E<br>11.0<br>233 /<br>E                        | A<br>B<br>Area<br>A                                  |                                          | 11.0<br>216 A<br>B<br>F             | rea                                | 13.0<br>68                                                  | A<br>B<br>Area<br>A<br>B                       |                                              | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B<br>FIr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                   | 45 A<br>B<br>1.0<br>421 Area<br>A<br>B<br>FIr                        | 11                      | B<br>1.0<br>Area<br>A             | 1         | B<br>1.0<br>Area<br>A             | B<br>11.0<br>Area<br>A             |      | B<br>11.0<br>Area<br>A             | a      | 11.0<br>11.0 | B<br>Area<br>A             | 11.0      | B<br>D<br>Area<br>A             |                |
| Run<br>Run<br>E<br>E                                                                  | Level 2  Ift. exposed wall A  Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Ceilings B Exposed Floors Gross Exp Wall A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 31 A<br>E<br>11.0<br>233 A                             | A<br>B<br>Area<br>A<br>B                             |                                          | 11.0<br>216 A<br>A<br>B             | rea                                | 13.0<br>68                                                  | A<br>B<br>Area<br>A<br>B                       |                                              | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                   | 45 A<br>B<br>1.0<br>421 Area<br>A<br>B                               | 11                      | B<br>1.0<br>Area<br>A<br>B        | 1         | B<br>1.0<br>Area<br>A<br>B        | B<br>11.0<br>Area<br>A<br>B        |      | B<br>11.0<br>Area<br>A<br>B        | a      | 11.0<br>11.0 | B<br>Area<br>A<br>B        | 11.       | B<br>O<br>Area<br>A<br>B        |                |
| Run<br>Run<br>E<br>E                                                                  | Level 2  1ft. exposed wall A Ceiling height Floor area Exposed Ceilings A Exposed Floors Gross Exp Wall A Gross Exp Wall B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                     | 31 /<br>E<br>11.0<br>233 /<br>E<br>F                   | A<br>B<br>Area<br>A<br>B<br>Fir                      | Ocio                                     | 11.0<br>216 A<br>A<br>B<br>F<br>352 | rea<br>Ir                          | 13.0<br>68<br>234                                           | A<br>B<br>Area<br>A<br>B<br>Fir                | :                                            | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B<br>Fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                   | 45 A<br>B<br>1.0<br>421 Area<br>A<br>B<br>FIr                        |                         | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Colo | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir |                |
| Run<br>Run<br>E<br>E                                                                  | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Ceilings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R-Values L                                                                                             | oss G                                                                                                                         | ain                                                                                                                                                                                                                                                 | 31 /<br>E<br>11.0<br>233 /<br>E<br>F                   | A<br>B<br>Area<br>A<br>B<br>Fir                      | Gain                                     | 11.0<br>216 A<br>A<br>B<br>F<br>352 | rea                                | 13.0<br>68<br>234<br>n                                      | A<br>B<br>Area<br>A<br>B<br>Fir                | ;<br>Gain                                    | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B<br>Fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                   | 45 A<br>B<br>1.0<br>421 Area<br>A<br>B<br>FIr                        | 11                      | B<br>1.0<br>Area<br>A<br>B<br>Fir | 1<br>Gain | B<br>1.0<br>Area<br>A<br>B        | B<br>11.0<br>Area<br>A<br>B        | Gain | B<br>11.0<br>Area<br>A<br>B        |        | 11.0<br>11.0 | B<br>Area<br>A<br>B        |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>Run<br>E<br>E                                                                  | Level 2  Ift. exposed wall A  Ift. exposed wall B  Ceiling height Floor area  Exposed Ceilings A  Exposed Floors  Gross Exp Wall B  Components  North Shaded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R-Values L<br>3.55                                                                                     | oss G<br>22.93                                                                                                                | ain<br>11.62                                                                                                                                                                                                                                        | 31 /4<br>E<br>11.0<br>233 /4<br>E<br>F<br>341          | A<br>B<br>Area<br>A<br>B<br>Fir                      |                                          | 11.0<br>216 A<br>A<br>B<br>F<br>352 | rea<br>Ir<br>oss Gai               | 13.0<br>68<br>234<br>n 11                                   | A<br>B<br>Area<br>A<br>B<br>Fir                | :                                            | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B<br>Fir<br>312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gain                                | 45 A<br>B<br>1.0<br>421 Area<br>A<br>B<br>FIr                        |                         | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>Run<br>E<br>E                                                                  | Level 2  Ift. exposed wall A  Ift. exposed wall B  Ceiling height Floor area  Exposed Ceilings A  Exposed Floors  Gross Exp Wall A  Gross Exp Wall B  Components  North Shaded  East/West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R-Values L<br>3.55<br>3.55                                                                             | .0ss G<br>22.93<br>22.93                                                                                                      | ain<br>11.62<br>29.56                                                                                                                                                                                                                               | 31 /<br>E<br>11.0<br>233 /<br>E<br>F                   | A<br>B<br>Area<br>A<br>B<br>Fir                      |                                          | 11.0<br>216 A<br>A<br>B<br>F<br>352 | rea<br>Ir<br>oss Gai               | 13.0<br>68<br>234<br>n                                      | A<br>B<br>Area<br>A<br>B<br>Fir                | ;<br>Gain                                    | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B<br>Fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gain 1389                           | 45 A B 1.0 121 Area A B Fir 195                                      | ain                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>E<br>E                                                                         | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Ceilings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R-Values L<br>3.55<br>3.55<br>3.55                                                                     | .oss G<br>22.93<br>22.93<br>22.93                                                                                             | ain<br>11.62<br>29.56<br>22.50                                                                                                                                                                                                                      | 31 /4<br>E<br>11.0<br>233 /4<br>E<br>F<br>341          | A<br>B<br>Area<br>A<br>B<br>Fir                      |                                          | 11.0<br>216 A<br>A<br>B<br>F<br>352 | rea<br>Ir<br>oss Gai               | 13.0<br>68<br>234<br>n 11                                   | A<br>B<br>Area<br>A<br>B<br>Fir                | ;<br>Gain                                    | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B<br>Fir<br>312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gain 1389                           | 45 A<br>B<br>1.0<br>421 Area<br>A<br>B<br>FIr                        |                         | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>E<br>E                                                                         | Level 2  Ift. exposed wall A  Ift. exposed wall B  Ceiling height Floor area  Exposed Ceilings A  Exposed Floors  Gross Exp Wall B  Components  North Shaded  East/West  South  Existing Windows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99                                                             | .oss G<br>22.93<br>22.93<br>22.93<br>40.90                                                                                    | ain<br>11.62<br>29.56<br>22.50<br>23.66                                                                                                                                                                                                             | 31 /4<br>E<br>11.0<br>233 /4<br>E<br>F<br>341          | A<br>B<br>Area<br>A<br>B<br>Fir                      |                                          | 11.0<br>216 A<br>A<br>B<br>F<br>352 | rea<br>Ir<br>oss Gai               | 13.0<br>68<br>234<br>n 11                                   | A<br>B<br>Area<br>A<br>B<br>Fir                | ;<br>Gain                                    | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B<br>Fir<br>312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gain 1389                           | 45 A B 1.0 121 Area A B Fir 195                                      | ain                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>E<br>E                                                                         | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R-Values L<br>3.55<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03                                             | .05S G<br>22.93<br>22.93<br>22.93<br>40.90<br>40.10                                                                           | ain<br>11.62<br>29.56<br>22.56<br>23.66<br>88.23                                                                                                                                                                                                    | 31 /4<br>E<br>11.0<br>233 /4<br>E<br>F<br>341          | A<br>B<br>Area<br>A<br>B<br>Fir                      |                                          | 11.0<br>216 A<br>A<br>B<br>F<br>352 | rea<br>Ir<br>oss Gai               | 13.0<br>68<br>234<br>n<br>11                                | A B Area A B Fir C 252                         | Sain<br>128                                  | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B<br>Fir<br>312<br>Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gain<br>1389                        | 45 A B 1.0 121 Area A B Fir 195                                      | ain                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>E<br>E                                                                         | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99<br>2.33<br>4.00                                             | 22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35                                                                            | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75                                                                                                                                                                                            | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A B Area A B B Fir Loss                              | 2099                                     | 11.0<br>216 A<br>B<br>F<br>352<br>L | oss Gai                            | 13.0<br>68<br>234<br>n<br>11<br>360                         | A B Area A B Fir Loss ( 252 427                | Sain 128                                     | 26 A B 12.0 76 Area A B Fir 312 Loss 47 1078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gain<br>1389                        | 45 A B 1.0 1.1 1.21 Area A B Fir 1.95 Loss G                         | 675                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>Run                                                                            | Level 2  Ift. exposed wall A  Ift. exposed wall B  Ceiling height Floor area  Exposed Ceilings A  Exposed Floors Gross Exp Wall B  Components North Shaded  East/West South Existing Windows Skylight Doors et exposed walls A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.703                                            | 22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78                                                                    | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.65                                                                                                                                                                                    | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A<br>B<br>Area<br>A<br>B<br>Fir                      |                                          | 11.0<br>216 A<br>B<br>F<br>352<br>L | oss Gai                            | 13.0<br>68<br>234<br>n<br>11                                | A B Area A B Fir Loss ( 252 427                | Sain 128                                     | 26 A<br>B<br>12.0<br>76 Area<br>A<br>B<br>Fir<br>312<br>Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gain<br>1389                        | 45 A B 1.0 121 Area A B Fir 195                                      | ain                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>Run                                                                            | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R-Values L<br>3.55<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50                    | .0ss G<br>22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58                                                  | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.65<br>1.29                                                                                                                                                                            | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A B Area A B B Fir Loss                              | 2099                                     | 11.0<br>216 A<br>B<br>F<br>352<br>L | oss Gai                            | 13.0<br>68<br>234<br>n<br>11<br>360                         | A B Area A B Fir Loss ( 252 427                | Sain 128                                     | 26 A B 12.0 76 Area A B Fir 312 Loss 47 1078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gain<br>1389                        | 45 A B 1.0 1.1 1.21 Area A B Fir 1.95 Loss G                         | 675                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>Run<br>E<br>E                                                                  | Level 2  Ift. exposed wall A  Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A et exposed walls A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.703                                            | .0SS G<br>22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37                                          | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.65<br>1.29                                                                                                                                                                            | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A B Area A B B Fir Loss                              | 2099                                     | 11.0<br>216 A<br>B<br>F<br>352<br>L | oss Gai                            | 13.0<br>68<br>234<br>n<br>11<br>360                         | A B Area A B Fir Loss ( 252 427                | Sain 128                                     | 26 A B 12.0 76 Area A B Fir 312 Loss 47 1078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gain<br>1389                        | 45 A B 1.0 1.1 1.21 Area A B Fir 1.95 Loss G                         | 675                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>Run<br>E<br>E                                                                  | Level 2  Ift. exposed wall A  Ift. exposed wall B  Ceiling height Floor area  Exposed Ceilings B  Exposed Floors Gross Exp Wall B  Components North Shaded  East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A et exposed Ceilings B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R-Values L<br>3.55<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65  | 22.93<br>22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37                                           | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.65<br>1.29<br>0.64                                                                                                                                                                    | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A B Area A B B Fir Loss                              | 2099                                     | 11.0<br>216 A<br>B<br>F<br>352<br>L | oss Gai                            | 13.0<br>68<br>234<br>n<br>11<br>360                         | A B Area A B Fir Loss ( 252 427                | Sain 128                                     | 26 A B 12.0 76 Area A B Fir 312 Loss 47 1078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gain<br>1389                        | 45 A B 1.0 1.1 1.21 Area A B Fir 1.95 Loss G                         | 675                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>Run                                                                            | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A Exposed Ceilings A Exposed Ceilings B Exposed Floors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22                   | .0SS G<br>22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37                                          | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.64<br>1.29<br>0.64<br>1.37                                                                                                                                                            | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A B Area A B B Fir Loss                              | 2099                                     | 11.0<br>216 A<br>B<br>F<br>352<br>L | oss Gai                            | 13.0<br>68<br>234<br>n<br>11<br>360                         | A B Area A B Fir Loss ( 252 427                | Sain 128                                     | 26 A B 12.0 76 Area A B Fir 312 Loss 47 1078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gain<br>1389                        | 45 A B 1.0 1.1 1.21 Area A B Fir 1.95 Loss G                         | 675                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run Run  E E E Foundation Cond                                                        | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Exposed Ceilings A et exposed walls A Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Floors Level Corrections Level Correctio | R-Values L<br>3.55<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65  | 22.93<br>22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37                                           | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.65<br>1.29<br>0.64                                                                                                                                                                    | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A<br>B<br>Area<br>A<br>B<br>B<br>Fir<br>Loss<br>1628 | 2099                                     | 11.0<br>216 A<br>B<br>F<br>352<br>L | oss Gai                            | 13.0<br>68<br>234<br>n<br>11<br>360                         | A B Area A B Fir Loss ( 252 427 966            | Sain 128                                     | 26 A B B 12.0 76 Area A B Fir 312 Loss 47 1078 29 590 236 1128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gain<br>1389                        | 45 A B 1.0 121 Area A B Fir 195 Loss C 30 688                        | 675                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run<br>Run<br>E<br>E                                                                  | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A Exposed Ceilings A Exposed Ceilings B Exposed Floors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R-Values L<br>3.55<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65  | 22.93<br>22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37                                           | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.64<br>1.29<br>0.64<br>1.37                                                                                                                                                            | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A B Area A B B Fir Loss                              | 2099                                     | 11.0<br>216 A<br>B<br>F<br>352<br>L | rea                                | 13.0<br>68<br>234<br>11<br>360<br>11<br>21<br>198 202       | A B Area A B Fir Loss ( 252 427                | 58 130                                       | 26 A B 12.0 76 Area A B Fir 312 Loss 47 1078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gain<br>1389                        | 45 A B 1.0 1.1 1.21 Area A B Fir 1.95 Loss G                         | 675                     | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run Run  E E E Foundation Cond                                                        | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A et exposed walls A Exposed Ceilings B Exposed Floors functive Heatloss Heat Loss Heat Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R-Values L<br>3.55<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65  | 22.93<br>22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37                                           | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.65<br>1.29<br>0.64<br>1.37<br>0.17                                                                                                                                                    | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A B B Area A B B Fir Loss 1628                       | 2099                                     | 11.0<br>216 A<br>B<br>F<br>352<br>L | oss Gai                            | 13.0<br>68<br>234<br>n<br>11<br>360<br>21<br>198 202        | A B Area A B Fir Loss ( 252                    | Sain 128                                     | 26 A B B 12.0 76 Area A B Fir 312 Loss   47 1078   29 590 1128   2796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gain 1389 80 152                    | 45 A B B 1.1.0 121 Area A B Fir 1995  Loss G 688 165 2223            | 675<br>300              | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run Run  E E  Ni Ne E E  Foundation Cond Total Conductive                             | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Existing Windows Skylight Exposed Ceilings A et exposed walls A et exposed walls B Exposed Ceilings A Exposed Ceilings A Exposed Floors Suctive Heatloss Heat Loss Heat Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R-Values L<br>3.55<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65  | .0SS G<br>22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37<br>2.94<br>2.73                          | ain<br>11.62<br>29.56<br>23.66<br>88.23<br>2.50<br>0.65<br>1.29<br>0.17<br>x                                                                                                                                                                        | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A<br>B<br>Area<br>A<br>B<br>B<br>Fir<br>Loss<br>1628 | 2099<br>174<br>2273                      | 11.0<br>216 A<br>B<br>F<br>352<br>L | rea                                | 13.0<br>68<br>234<br>11<br>360<br>11<br>21<br>198 202       | A B Area A B Fir Loss ( 252 427 966            | 58 130 :                                     | 26 A B B 12.0 76 Area A B Fir 312 Loss 47 1078 29 590 236 1128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gain 1389 80 152                    | 45 A B 1.0 121 Area A B Fir 195 Loss C 30 688                        | 675<br>300              | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run Run  E E  Ni Ne E E  Foundation Cond Total Conductive                             | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A et exposed walls A Exposed Ceilings B Exposed Floors functive Heatloss Heat Loss Heat Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R-Values L<br>3.55<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65  | .0ss G<br>22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37<br>2.94<br>2.73                          | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.65<br>1.29<br>0.64<br>1.37<br>0.17                                                                                                                                                    | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A B B Area A B B Fir Loss 1628                       | 2099<br>174<br>2273                      | 11.0<br>216 A<br>B<br>F<br>352<br>L | oss Gai                            | 13.0<br>68<br>234<br>n<br>11<br>360<br>21<br>198 202        | A B Area A B Fir Loss ( 252                    | 58 130 :                                     | 26 A B B 12.0 76 Area A B Fir 312 Loss   47 1078   29 590 1128   2796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gain 1389 80 152                    | 45 A B B 1.1.0 121 Area A B Fir 1995  Loss G 688 165 2223            | 675<br>300              | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run Run  E E  Note Note Note E E  Foundation Cond Total Conductive Air Leakage        | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls B Exposed Floors Juctive Heatloss Heat Loss Heat Gain Heat Loss/Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R-Values L<br>3.55<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65  | 22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37<br>2.94<br>2.73                                    | 11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.65<br>1.29<br>0.64<br>1.37<br>0.17<br>x                                                                                                                                                      | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A B Area A B B Fir Loss 1628                         | 2099<br>174<br>2273                      | 11.0<br>216 A<br>B<br>F<br>352<br>L | rea                                | 13.0<br>68<br>234<br>n<br>11<br>360<br>21<br>198 202        | A B Area A B Fir Loss ( 252                    | 58 130 :                                     | 26 A B B 12.0 76 Area A B Fir 312 Loss   47 1078   29 590 1128   2796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gain 1389 80 152                    | 45 A B B 1.1.0 121 Area A B Fir 1995  Loss G 688 165 2223            | 675<br>300              | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run Run  E E  Note Note Note E E  Foundation Cond Total Conductive Air Leakage        | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows. Skylight Doors et exposed walls A exposed Ceilings B Exposed Ceilings B Exposed Ceilings B Exposed Floors ductive Heatloss Heat Loss Heat Loss Heat Casi Heat Loss/Gain Lase 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65<br>29.80 | .0ss G<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37<br>2.94<br>2.73<br>0.4457<br>0.4457               | 11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.65<br>1.29<br>0.64<br>1.37<br>0.0432<br>0.0432                                                                                                                                               | 31 / E<br>11.0<br>233 / E<br>F<br>341                  | A B B Area A B B Fir Loss 1628 2919 1301             | 2099<br>174<br>2273<br>98                | 11.0<br>216 A<br>B<br>F<br>352<br>L | rea                                | 13.0 68  234  11  360  21  198  202                         | A B Area A B Fir Loss ( 252                    | 58<br>130<br>316                             | 26 A B B 12.0 76 Area A B Fir 312 Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gain  1389  80 152 4  1621 70       | 45 A B B 1.0 121 Area A B Fir 195 Loss C 2223 2910 1297              | 675<br>300<br>975<br>42 | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run Run  E E  Note Note Note Note Note Note Note Not                                  | Level 2 Ift. exposed wall A Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings A Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed walls A Exposed Ceilings B Exposed Floors Exposed Floors Exposed Floors Exposed Floors Letter Berther Exposed Floors Le | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65<br>29.80 | 22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37<br>2.94<br>2.73<br>0.4457<br>0.03<br>14.95         | ain<br>11.62<br>29.56<br>23.66<br>88.23<br>2.50<br>0.65<br>1.29<br>0.17<br>x<br>0.0432<br>0.0432<br>0.06<br>11.88                                                                                                                                   | 31 / E<br>11.0<br>233 / E<br>4<br>341<br>1<br>1<br>270 | A B B Area A B B Fir Loss 1628 2919 1301             | 2099<br>174<br>2273<br>98                | 11.0<br>216 A<br>B<br>F<br>352<br>L | 1055 1 1463 2517 1 1122 87         | 13.0 68  234  11  360  21  198  202                         | A B Area A B Fir Loss C 252 427 966 1645 733   | 58<br>130<br>316                             | 26 A B B 12.0 76 Area A B Fir 312 Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gain  1389  80 152  1621 70  105    | 45 A B B 1.0 121 Area A B Fir 195 Loss C 2223 2910 1297              | 675<br>300<br>975<br>42 | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run                                               | Level 2 Ift. exposed wall A Ift. exposed wall A Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall A Gross Exp Wall B Components North Shaded East/West South Existing Windows. Skylight Doors et exposed walls A Exposed Ceilings B Exposed Ceilings B Exposed Ceilings A Exposed Ceilings A Exposed Floors Suctive Heat Loss Heat Loss Heat Loss Heat Loss Heat Gain Case 2 Case 3 Less 2 Less 2 Less 3 Leat Gain People Appliances Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65<br>29.80 | 22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37<br>2.94<br>2.73<br>0.4457<br>0.03<br>14.95         | 11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>0.65<br>1.29<br>0.64<br>1.37<br>0.17<br>x                                                                                                                                                      | 31 / E<br>11.0<br>233 / E<br>4<br>341<br>1<br>1<br>270 | A B B Area A B B Fir Loss 1628 2919 1301             | 2099<br>174<br>2273<br>98                | 11.0<br>216 A A B B F S 352<br>L 46 | 1055 1 1463 2517 1 1122 87         | 13.0 68  234  n  11  360  21  198  202                      | A B Area A B Fir Loss C 252 427 966 1645 733   | 58 130 : : : : : : : : : : : : : : : : : : : | 26 A B B 12.0 76 Area A B Fir 312 Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gain  1389  80 152  1621 70  105    | 45 A B B 1.1.0 121 Area A B Fir 1995  Loss 6 30 688  2223  2910 1297 | 675<br>300<br>975<br>42 | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run                                               | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B Exposed Ceilings A et exposed Walls B Exposed Ceilings A Exposed Ceilings B Exposed Floors Juctive Heatloss Heat Loss Heat Gain Heat Loss/Gain Case 1 Case 2 Case 3 Heat Gain People                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65<br>29.80 | 22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37<br>2.94<br>2.73<br>0.4457<br>0.03<br>14.95         | ain<br>11.62<br>29.56<br>22.50<br>23.66<br>88.23<br>2.75<br>1.29<br>0.64<br>1.37<br>0.17<br>x<br>0.0432<br>0.06<br>11.88<br>0.06<br>11.88<br>2.94<br>2.94<br>2.94<br>2.94<br>2.94<br>2.94<br>2.94<br>2.94                                           | 31 / E<br>11.0<br>233 / E<br>4<br>341<br>1<br>1<br>270 | A B B Area A B B Fir Loss 1628 2919 1301             | 2099<br>174<br>2273<br>98<br>147<br>1586 | 11.0<br>216 A A B B F S 352<br>L 46 | 1055 1 1463 2517 1 1122 87         | 13.0 68  234  n  11  360  21  198  202                      | A B Area A B Fir Loss C 252 427 966 1645 733   | 58 130 : : : : : : : : : : : : : : : : : : : | 26 A B B 12.0 76 Area A B Fir 312 Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gain  1389  80 152  1621 70  105    | 45 A B B 1.1.0 121 Area A B Fir 1995  Loss 6 30 688  2223  2910 1297 | 675<br>300<br>975<br>42 | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run                                               | Level 2 Ift. exposed wall A Ift. exposed wall A Ceiling height Floor area Exposed Ceilings A Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls A et exposed Walls A Exposed Floors Exposed Floors Exposed Floors Exposed Floors Heat Loss Heat Loss Heat Loss Heat Loss Heat Gain Heat Loss/Gain Case 1 Case 2 Case 3 Het Gain People Appliances Loads Duct and Pipe loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65<br>29.80 | 22.93<br>22.93<br>22.93<br>40.90<br>40.10<br>20.35<br>4.78<br>9.58<br>1.37<br>2.94<br>2.73<br>0.4457<br>0.03<br>14.95<br>0.03 | 11.62<br>22.50<br>22.50<br>22.60<br>68.23<br>2.75<br>0.64<br>1.37<br>0.043<br>0.06<br>11.88<br>0.06<br>11.88<br>0.06<br>239<br>4229<br>109<br>427<br>109<br>427<br>427<br>428<br>429<br>429<br>429<br>429<br>429<br>429<br>429<br>429<br>429<br>429 | 31 / E<br>11.0<br>233 / E<br>4<br>341<br>1<br>1<br>270 | A B B Area A B B Fir Loss 1628 1291 1301 101         | 2099<br>174<br>2273<br>98<br>147<br>1586 | 306 0.5                             | oss Gai 1055 1 1463 2517 1 1122 87 | 13.0 68  234  11  360  21  198  202  557  67  101  529  1.0 | A B Area A B Fir Loss (252 427 966 1645 733 57 | 3ain 128 58 130 316 14 20 1057               | 26 A B B 12.0 P | Gain  1389  80 152  4  1621 70  105 | 45 A B 1.0 121 Area A B Fir 195 Loss C 2010 1297 1101                | 975<br>42<br>63<br>1057 | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |
| Run Run  E E  Note Note E E  Foundation Cond Total Conductive Air Leakage Ventilation | Level 2 Ift. exposed wall A Ift. exposed wall B Ceiling height Floor area Exposed Ceilings B Exposed Floors Gross Exp Wall B Components North Shaded East/West South Existing Windows Skylight Doors et exposed walls B Exposed Ceilings A Exposed Ceilings A Exposed Ceilings A Exposed Ceilings B Exposed Ceilings B Exposed Floors Juctive Heatloss Heat Loss Heat Gain Heat Loss/Gain Case 1 Case 2 Case 3 Heat Gain People Appliances Loads Duct and Pipe loss 18,930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R-Values L<br>3.55<br>3.55<br>3.55<br>1.99<br>2.03<br>4.00<br>17.03<br>8.50<br>59.22<br>27.65<br>29.80 | 22.93<br>22.93<br>22.93<br>40.00<br>20.35<br>4.78<br>9.58<br>1.37<br>2.94<br>2.73<br>0.4457<br>0.03<br>14.95<br>0.03          | 11.62<br>22.50<br>22.50<br>22.60<br>68.23<br>2.75<br>0.64<br>1.37<br>0.043<br>0.06<br>11.88<br>0.06<br>11.88<br>0.06<br>239<br>4229<br>109<br>427<br>109<br>427<br>427<br>428<br>429<br>429<br>429<br>429<br>429<br>429<br>429<br>429<br>429<br>429 | 31 / E<br>11.0<br>233 / E<br>4<br>341<br>1<br>1<br>270 | A B B Area A B B Fir Loss 1628 1291 1301 101         | 2099<br>174<br>2273<br>98<br>147<br>1586 | 306 0.5                             | oss Gai 1055 1 1463 2517 1 1122 87 | 13.0 68  234  n  11  360  21  198  202                      | A B Area A B Fir Loss (252 427 966 1645 733 57 | 58 130 : : : : : : : : : : : : : : : : : : : | 26 A B B 12.0 P | Gain  1389  80 152  1621 70  105    | 45 A B 1.0 121 Area A B Fir 195 Loss C 2010 1297 1101                | 675<br>300<br>975<br>42 | B<br>1.0<br>Area<br>A<br>B<br>Fir |           | B<br>1.0<br>Area<br>A<br>B<br>Fir | B<br>11.0<br>Area<br>A<br>B<br>Fir | Gain | B<br>11.0<br>Area<br>A<br>B<br>Fir |        | 11.0<br>11.0 | B<br>Area<br>A<br>B<br>Fir |           | B<br>O<br>Area<br>A<br>B<br>Fir | ain            |

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under

Division C subsection 3.2.5. of the Building Code. Individual BCIN:

Mane Alex

David DaCosta

SB-12 Package
Package A1



55,002

28,387

btu/h

Total Heat Loss

Total Heat Gain

#### Heatloss/Gain Calculations CSA-F280-12

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800

e-mail hvac@gtadesigns.ca

Name Met

David DaCosta

Package A1

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Duitden Dendem                                                                                                                                                                                                                                      | Malliantan F                                                                       | N=4=.                                                          | lulu 04 0004                                                     |                       |                                                                      | Washan Data               | B#                                                                                         | 44 04                                                                 | 00 00 40.0                     |                                | P 5                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|--------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Builder: Bayview                                                                                                                                                                                                                                    | Wellington [                                                                       | Date:                                                          | July 21, 2021<br>Barossa 3                                       |                       |                                                                      | Weather Data              | Bradford                                                                                   | 44 -9.4                                                               | 86 22 48.2                     |                                | Page 5 Project # PJ-00041 |
| 2012 OBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project: Green V                                                                                                                                                                                                                                    | alley East Mo                                                                      | odel:                                                          | S38-3                                                            |                       | System 1                                                             | Heat Loss ^T              | 81.4 deg. F                                                                                | Ht gain ^T 1                                                          | 1 deg. F GTA:                  | 2544                           | Layout # JB-07351         |
| Run ft. exposed wall Run ft. exposed wall Ceiling height Floor are Exposed Ceilings Exposed Ceilings Exposed Ceilings Exposed Ceilings Exposed Floor Gross Exp Wall Gross Exp Wall Gross Exp Wall Exposed Floor South Floor Gross Exp Wall Existing Window Skyligh Door Net exposed walls Net exposed Walls Exposed Ceilings Exposed Ceilings Exposed Ceilings Exposed Ceilings Floor Foundation Conductive Heatloss | 8 R-Values Loss Gain<br>1 3.55 22.93 11<br>1 3.55 22.93 22<br>3 3.55 22.93 22<br>3 1.99 40.90 22<br>4 1.99 40.90 23<br>4 1.93 40.10 88<br>5 4.00 20.35 2<br>4 17.03 4.78 (6<br>8 8.50 9.58 1<br>8 8.50 9.58 1<br>8 59.22 1.37 (6<br>8 29.80 2.73 (6 | MAST 30 A B 11.0 297 Area 297 A B Fir 330  Loss Gain                               | BED 2  18 A B 9.0 165 Area 165 A B 9 Fir 162  Loss Gain 16 367 | BATH 15 A B 9.0 74 Area 74 A B 74 FIr                            | 175 241 11            | LOFT 31 A B 9.0 269 Area 269 A B 12 Fir 279 Loss Gain 01 39 894 1153 | Heat Loss ^T  BED 4  13 A | 81.4 deg. F  ENS 2 6 A B 9.0 69 Area 69 A B Fir 54  Loss Gain  7 161 156 47 225 36 69 95 4 | ENS  22 A  B  9.0  113 Area  113 A  B  Fir  198  Loss Gain  13 298 38 | A B 9.0 Area A B Fir Loss Gain | A B B 9.0 Area A B Fir Loss Ga | A B B 9.0 Area A B Fir    |
| Total Conductive                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2938 0.0 0.2938 0.0 1 0.02 ( 14.95 11 3 x 0.03 ( 3 1 = 25 percent 4 5 Total HL for per room x                                                                                                                                                     | 1329<br>432 754 57<br>106<br>.88 89 86<br>239 2 478<br>229<br>0% 0m 3409           | 387<br>46<br>1                                                 | 388 465<br>17 337 20<br>25 40 30<br>239 1 149 47<br>1675 869 730 | 91 10<br>1 23         | 62 1482<br>68 718 64<br>01 85 96<br>39 96                            | 35 33 1 239 1361 1041     | 23:<br>141 1:<br>17 1:<br>638 33:                                                          | 2 57<br>0 393 2<br>5 46 3                                             | 7                              | A<br>B                         | A<br>B                    |
| Edining inely<br>Floor are<br>Exposed Ceilings i<br>Exposed Floor<br>Gross Exp Wall i<br>Gross Exp Wall i                                                                                                                                                                                                                                                                                                                                                                        | 1<br>A<br>3<br>5                                                                                                                                                                                                                                    | Area<br>A<br>B<br>Fir                                                              | Area<br>A<br>B<br>Fir                                          | Area<br>A<br>B<br>FIr                                            | Area<br>A<br>B<br>Fir | Area<br>A<br>B<br>Fir                                                | Area<br>A<br>B<br>Fir     | Area<br>A<br>B<br>Fir                                                                      | Area<br>A<br>B<br>Fir                                                 | Area<br>A<br>B<br>Fir          | Area<br>A<br>B<br>Fir          | Area<br>A<br>B<br>Fir     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R-Values Loss   Gain                                                                                                                                                                                                                                | .62   .56   .55   .55   .50   .66   .123   .75   .65   .29   .64   .37   .17   .17 | Loss Gali                                                      | n Loss Gain                                                      | Loss Gain             | Loss Gain                                                            | Loss Gain                 | Loss Gain                                                                                  | Loss Gain                                                             | Loss Gain                      | Loss Ga                        | Loss Gain                 |

Division C subsection 3.2.5. of the Building Code. Individual BCIN:



2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

> System Design Option Exhaust only / forced air system

HRV WITH DUCTING / forced air system

Part 6 design

HRV simplified connection to forced air system HRV full ducting/not coupled to forced air system

1 2

3 4 Х Project # Layout #

Page 6 PJ-00041 JB-07351

I review and take responsibility for the design work and am qualified in the appropriate category as an "other designer" under

Division C subsection 3.2.5. of the Building Code. Individual BCIN: 32964 Mane State

| Division C su                | bsection 3.2.5. of the Building Code.                                                                                                                                                                     | Individual BCIN: | 32964                                          | Lane                      | ALEX-                    | r               | David DaCosta                  | ì         |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------|---------------------------|--------------------------|-----------------|--------------------------------|-----------|
| Package:<br>Project:         | Package A1<br>Bradford                                                                                                                                                                                    |                  | Model:                                         |                           |                          | S38-3           |                                |           |
|                              | RESIDENTIAL MECH. For systems serving one dwell                                                                                                                                                           | _                | _                                              | _                         |                          |                 |                                |           |
|                              | Location of Installation                                                                                                                                                                                  |                  |                                                | Total Ver                 | ntilation Ca             | pacity 9.32     | 2.3.3(1)                       |           |
| Lot #                        | Plan #                                                                                                                                                                                                    |                  |                                                |                           | _                        |                 |                                |           |
| Township                     | Bradford                                                                                                                                                                                                  | C                | Bsmt & Maste<br>Other Bedroc<br>Bathrooms &    | oms                       | 2<br>3<br>5              | @ 10.6          | cfm 42.4<br>cfm 31.8<br>cfm 53 | cfm       |
| Roll #                       | Permit #                                                                                                                                                                                                  |                  | Other rooms                                    |                           | 5                        |                 | cfm 53<br>180.2                | cfm       |
| Address                      |                                                                                                                                                                                                           |                  |                                                |                           |                          |                 |                                | •         |
|                              |                                                                                                                                                                                                           |                  | F                                              | Principal V               | entilation C             | Capacity 9.     | 32.3.4(1)                      |           |
| Name                         | Builder                                                                                                                                                                                                   | Λ.               | Master bedro                                   | oom                       | 1                        | @ 31.8          | cfm 31.8                       | cfm       |
| Address                      | Bayview Wellington                                                                                                                                                                                        |                  | Other bedroo                                   |                           | 1                        | @ 15.9<br>Total |                                | cfm       |
|                              |                                                                                                                                                                                                           |                  |                                                |                           |                          |                 |                                | 4         |
| City                         |                                                                                                                                                                                                           |                  |                                                | Drinci                    | pal Exhaus               | Fan Cana        | oity                           |           |
| Tel                          | Fax                                                                                                                                                                                                       |                  | Ma                                             |                           |                          | odel            | Location                       |           |
|                              | 2                                                                                                                                                                                                         |                  | Var                                            | nEE                       | V150                     | H75NS           | Base                           |           |
| Name                         | Installing Contractor                                                                                                                                                                                     |                  | 140                                            | cfm                       |                          |                 | Sones                          | or Equiv. |
|                              |                                                                                                                                                                                                           |                  |                                                |                           |                          |                 |                                |           |
| Address                      |                                                                                                                                                                                                           |                  | * 4 - 1 -                                      | Hea                       | at Recovery              |                 | r                              |           |
| City                         |                                                                                                                                                                                                           |                  | Make<br>Model                                  |                           |                          | anEE<br>0H75NS  |                                | -         |
|                              |                                                                                                                                                                                                           |                  | •                                              |                           | 40 cfm high              |                 |                                | cfm low   |
| Tel                          | Fax                                                                                                                                                                                                       | S                | Sensible effic<br>Sensible effic               | ciency @ -2               | 25 deg C                 |                 | 60%<br>75%                     |           |
|                              |                                                                                                                                                                                                           |                  |                                                |                           |                          | ?V to within    | 10 percent of I                |           |
|                              | Combustion Appliances 9.32.3.1(1)                                                                                                                                                                         |                  | 110.0.                                         |                           | nental Vent              |                 |                                |           |
| a) x<br>b)<br>c)<br>d)<br>e) | Direct vent (sealed combustion) only<br>Positive venting induced draft (except fireple<br>Natural draft, B-vent or induced draft firepla<br>Solid fuel (including fireplaces)<br>No combustion Appliances | ces L            | Γotal ventilati<br>∟ess principa<br>REQUIRED s | al exhaust o<br>supplemen | capacity<br>tal vent. Ca | •               | 180.2<br>79.5<br>100.7         | _         |
|                              | Harden Contain                                                                                                                                                                                            |                  |                                                | Supp                      | olemental F              |                 |                                |           |
| x                            | Heating System Forced air                                                                                                                                                                                 |                  | Location<br>Ens                                |                           | cfm<br>50                | Model<br>XB50   |                                |           |
|                              | Non forced air                                                                                                                                                                                            |                  | Ens 2                                          |                           | 50                       | XB50            | 0.3                            | 3         |
|                              | Electric space heat (if over 10% of heat load                                                                                                                                                             | (k               | Bath                                           |                           | 50                       | XB50            | 0.3                            | i         |
| I X                          | House Type 9.32.3.1(2)  Type a) or b) appliances only, no solid fuel  Type I except with solid fuel (including fireple)                                                                                   |                  | all fans HVI li                                | listed                    | Make                     | Broan           | or Equiv.                      |           |
| III 🗀                        | Any type c) appliance                                                                                                                                                                                     |                  |                                                |                           | esigner Ce               |                 |                                | -         |
| IV<br>Other                  | Type I or II either electric space heat Type I, II or IV no forced air                                                                                                                                    |                  | hereby certii<br>n accordance                  |                           |                          |                 | been designed                  | i         |

| , ,       |         | Certification<br>n system has been<br>uilding Code. | ı designed |
|-----------|---------|-----------------------------------------------------|------------|
| Name      | David D | aCosta                                              |            |
| Signature | Hane    | Macon                                               | <b>3</b>   |
| HRAI#     | 5190    | BCIN#                                               | 32964      |
| Date      | July 21 | , 2021                                              |            |

# ♦GTA\DESIGNS

#### **Energy Efficiency Design Summary: Prescriptive Method**

(Building Code Part 9, Residential)

Page 7

Project # PJ-00041 Layout # JB-07351

2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 Fax: 647-494-9643 e-mail dave@gtadesigns.ca

This form is used by a designer to demonstrate that the energy efficiency design of a house complies with the building code using the prescriptive method described in Subsection 3.1.1. of SB-12. This form is applicable where the ratio of gross area of windows/sidelights/skylights/glazing in doors and sliding glass doors to the gross area of peripheral walls is not more than 22%.

|                                                                 |            |                    | For use   | e by Princip | pal Authori | ty                           |                  |                             |              |                    |
|-----------------------------------------------------------------|------------|--------------------|-----------|--------------|-------------|------------------------------|------------------|-----------------------------|--------------|--------------------|
| Application No:                                                 |            |                    |           |              | Model/Cer   | tification Nu                | mber             |                             |              |                    |
|                                                                 |            |                    |           |              |             |                              |                  |                             |              |                    |
| A. Project Information                                          |            |                    |           |              |             |                              |                  |                             |              |                    |
| Building number, street name                                    |            |                    | Baross    | sa 3         |             |                              | Unit num         | ber                         | Lot/Con      |                    |
|                                                                 |            |                    | S38-      | 3            |             |                              |                  |                             |              |                    |
| Municipality Bradford                                           |            |                    | Postal co | de           | Reg. Plan   | number / otl                 | her descri       | ption                       |              |                    |
|                                                                 |            |                    |           |              |             |                              |                  |                             |              |                    |
| B. Prescriptive Compliance [indica                              | ate the bu | ilding cod         | e complia | ance packa   | ige being e | mployed in                   | the hous         | e design]                   |              |                    |
| SB-12 Prescriptive (input design pa                             | ackage):   |                    |           | <u>Pack</u>  | age A1      |                              |                  | Table                       | 3.1.1.2.     | <u>A</u>           |
| C. Project Design Conditions                                    |            |                    |           |              |             |                              |                  |                             |              |                    |
| Climatic Zone (SB-1):                                           |            | Heat. E            | quip. Et  | fficiency    |             |                              | Spa              | ce Heating F                | uel Sourc    | e                  |
| Zone 1 (< 5000 degree days)                                     |            | ✓ ≥ 92             | % AFUE    |              | 7           | Gas                          |                  | Propane                     |              | Solid Fuel         |
| ☐ Zone 2 (≥ 5000 degree days)                                   |            | □ ≥8               | 4% < 929  | % AFUE       |             | Oil                          |                  | Electric                    |              | Earth Energy       |
| Ratio of Windows, Skylights & Glas                              | ss (W, S   | & G) to \          | Nall Are  | a            |             |                              | Other            | <b>Building Ch</b>          | aracteris    | tics               |
| Area of Walls = 386.19 m <sup>2</sup> or 4156.9                 | ft²        |                    |           |              | ☐ Log/F     | ost&Beam                     |                  | ICF Above                   | Grade        | ☐ ICF Basement     |
| Area or Walls = <u>900.15</u> III or <u>4100.5</u>              |            | W,S &              | G % =     | 9.9%         | ☐ Slab-     | on-ground                    |                  | Walkout Ba                  | sement       |                    |
|                                                                 |            |                    |           |              | ☑ Air C     | onditioning                  |                  | Combo Uni                   | t            |                    |
| Area of W, S & G = <u>38.275</u> m <sup>2</sup> or <u>412.0</u> | ft²        | Utilize V          |           | Yes          | ☐ Air S     | Air Sourced Heat Pump (ASHP) |                  |                             |              |                    |
|                                                                 |            | Avera              | aging     | ✓ No         | ☐ Grou      | nd Source I                  | Heat Pum         | np (GSHP)                   |              |                    |
| D. Building Specifications [provide                             | e values a | nd ratings         | of the er | nergy effici | ency comp   | onents pro                   | posed]           |                             |              | 7                  |
| Energy Efficiency Substitutions                                 |            |                    |           |              |             |                              |                  |                             |              |                    |
| ☐ ICF (3.1.1.2.(5) & (6) / 3.1.1.3.(5))                         |            |                    |           |              |             |                              |                  |                             |              |                    |
| Combined space heating and domestic                             |            |                    |           |              |             |                              |                  |                             |              |                    |
| Airtightness substitution(s)                                    |            | Table 3.1          | .1.4.B    | Required:    |             |                              |                  | Permitted S                 |              |                    |
| Airtightness test required                                      |            | Table 3.1          | .1.4.C    | Required:    |             |                              |                  | Permitted S                 |              |                    |
| (Refer to Design Guide Attached)                                |            |                    |           | Required:    |             |                              |                  | Permitted S                 | Substitution | 1:                 |
| Building Component                                              |            | mum RS<br>//aximun |           |              |             | Buil                         | ding Co          | mponent                     |              | Efficiency Ratings |
| Thermal Insulation                                              | Non        | ninal              | Effe      | ective       | Windov      | /s & Doo                     | <b>rs</b> Provid | de U-Value <sup>(1)</sup> c | r ER rating  |                    |
| Ceiling with Attic Space                                        | 6          | 0                  | 59        | 9.22         | Windows     | s/Sliding G                  | lass Do          | ors                         |              | 1.6                |
| Ceiling without Attic Space                                     | 3          | 1                  | 27        | 7.65         | Skylights   | 1                            |                  |                             |              | 2.8                |
| Exposed Floor                                                   | 3          | 1                  | 29        | 9.80         | Mechar      | icals                        |                  |                             |              |                    |
| Walls Above Grade                                               | 22         |                    | 17        | 7.03         |             | Equip.(AFl                   |                  |                             |              | 96%                |
| Basement Walls                                                  |            | 20.0ci             | 21        | 1.12         | HRV Effi    | ciency (SF                   | RE% at 0°        | (C)                         |              | 75%                |
| Slab (all >600mm below grade)                                   | )          | X                  |           | Х            |             | ater (EF)                    |                  |                             |              | 0.80               |
| Slab (edge only ≤600mm below grade)                             |            | 0                  |           | 1.13         | -           | CSA B55.1                    |                  | efficiency))                |              | #Showers 2         |
| Slab (all ≤600mm below grade, or heated)                        | l          | 0                  |           | 1.13         | Combine     | d Heating                    | System           |                             |              |                    |
| (1) U value to be provided in either W/(m²·K) or Bt             |            |                    |           |              |             |                              |                  |                             |              |                    |
| E. Designer(s) [name(s) & BCIN(s), if                           | applicable | e, of perso        | n(s) prov |              | mation her  |                              |                  | at design mee               | ts building  | code]              |
| Name                                                            |            |                    |           | BCIN         |             | Signature                    |                  | 11                          | 11/          | ,                  |
| David DaCosta                                                   |            |                    |           | 329          | 964         |                              |                  | Mane                        | 14CI         | 76 7               |



2985 Drew Road, Suite 202, Mississauga, Ontario L4T 0A4 Tel: 905-671-9800 e-mail hvac@gtadesigns.ca

Page 8
Project # PJ-00041
Layout # JB-07351

Package: Package A1 System: System 1
Project: Bradford Model: S38-3

| Project: |                                                                                                                                                                                                                                                                                                                                       | Model: S38-                                                                                                              |                                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|          | Air Leakage Ca                                                                                                                                                                                                                                                                                                                        | alculations                                                                                                              |                                                   |
|          | Building Air Leakage Heat Loss           B         LRairh         Vb         HL^T         HLleak           0.018         0.393         33025         81.4         18999                                                                                                                                                               | Building Air Leakage    B                                                                                                | Heat Gain HG^T HG Leak 11 631                     |
| ı,       | Air Leakage Heat Loss/Gain Multiplier Table (Section 11)                                                                                                                                                                                                                                                                              | Levi                                                                                                                     | els 4                                             |
|          | Level   Level   Factor (LF)   Air   Heat Loss   Multiplie                                                                                                                                                                                                                                                                             | eat Loss (LF) (LF)                                                                                                       | (LF) (LF)<br>0.5 0.4<br>0.3 0.3<br>0.2 0.2<br>0.1 |
|          | Air Leakage He   HG LEAK   631   0.0432     BUILDING CONDUCTIVE HEAT GAIN   14610                                                                                                                                                                                                                                                     |                                                                                                                          |                                                   |
| •        | Ventilation Ca                                                                                                                                                                                                                                                                                                                        | lculations                                                                                                               |                                                   |
|          | Ventilation Heat Loss                                                                                                                                                                                                                                                                                                                 | Ventilation Heat Ga                                                                                                      | in                                                |
| Vent     | Ventilation Heat Loss           C         PVC         HL^T         (1-E) HRV         HLbvent           1.08         79.5         81.4         0.17         1188                                                                                                                                                                       | Ventilation Heat Gain           C         PVC         HG^T         HGbv           1.1         79.5         11         94 |                                                   |
|          | Case 1                                                                                                                                                                                                                                                                                                                                | Case 1                                                                                                                   |                                                   |
|          | Ventilation Heat Loss (Exhaust only Systems)                                                                                                                                                                                                                                                                                          | Ventilation Heat Gain (Exhaust (                                                                                         | Only Systems)                                     |
|          | Case 1 - Exhaust Only           Level         LF         HLbvent         LVL Cond. HL         Multiplier           Level 1         0.5         8607         0.07           Level 2         0.3         12787         0.03           Level 3         0.2         12934         0.02           Level 4         0         0         0.00 | Case 1 - Exhaust Only HGbvent 944 Building 14610  Multip                                                                 | Q                                                 |
|          | Case 2                                                                                                                                                                                                                                                                                                                                | Case 2                                                                                                                   |                                                   |
| Case 2   | Ventilation Heat Loss (Direct Ducted Systems)  Multiplier  C HL^T (1-E) HRV 1.08 81.4 0.17 14.95                                                                                                                                                                                                                                      | Ventilation Heat Gain (Direct Du                                                                                         | olier S                                           |
|          | Case 3                                                                                                                                                                                                                                                                                                                                | Case 3                                                                                                                   |                                                   |
| e        | Ventilation Heat Loss (Forced Air Systems)                                                                                                                                                                                                                                                                                            | Ventilation Heat Gain (Forced                                                                                            | <u> </u>                                          |
| Case     | Total Ventilation Load 1188 0.03                                                                                                                                                                                                                                                                                                      | Vent Head     Vent Head                                                                                                  | Ö                                                 |
| Founda   | tion Conductive Heatloss Level 1 Level 1                                                                                                                                                                                                                                                                                              | 2203 Watts 751                                                                                                           | 5 Btu/h                                           |
| Founda   | tion Conductive Heatloss Level 2 Level 2                                                                                                                                                                                                                                                                                              | Watts                                                                                                                    | Btu/h                                             |
| Slab on  | Grade Foundation Conductive Heatloss                                                                                                                                                                                                                                                                                                  | Watts                                                                                                                    | Btu/h                                             |
| Walk Ou  | ut Basement Foundation Conductive Heatloss                                                                                                                                                                                                                                                                                            | Watts                                                                                                                    | Btu/h                                             |
|          | d take responsibility for the design work and am qualified in the appropriate cat                                                                                                                                                                                                                                                     | egory as an "other designer" under                                                                                       |                                                   |

# **Envelope Air Leakage Calculator**

Supplemental tool for CAN/CSA-F280

| Weather Station                   | Description                         |
|-----------------------------------|-------------------------------------|
| Province:                         | Ontario $lacksquare$                |
| Region:                           | Bradford ▼                          |
| Weather Station Location:         | Open flat terrain, grass            |
| Anemometer height (m):            | 10                                  |
| Local Shiel                       | ding                                |
| Building Site:                    | Suburban, forest                    |
| Walls:                            | Heavy ▼                             |
| Flue:                             | Heavy ▼                             |
| Highest Ceiling Height (m):       | 8.53                                |
| Building Confi                    | guration                            |
| Type:                             | Detached                            |
| Number of Stories:                | Two                                 |
| Foundation:                       | Shallow                             |
| House Volume (m <sup>3</sup> ):   | 935.27                              |
| Air Leakage/Ve                    | entilation                          |
| Air Tightness Type:               | Present (1961-) (ACH=3.57)          |
|                                   | ELA @ 10 Pa. 322.44 cm <sup>2</sup> |
| Custom BDT Data:                  | 3.57 ACH @ 50 Pa                    |
| Mechanical Ventilation (L/s):     | Total Supply: Total Exhaust:        |
|                                   | 39.75                               |
|                                   |                                     |
| Flue #:                           | #1 #2 #3 #4                         |
| Diameter (mm):                    | 0 0 0 0                             |
|                                   |                                     |
| Heating Air Leakage Rate (ACH/H): | 0.393                               |
| Cooling Air Leakage Rate (ACH/H): | 0.097                               |

## **Residential Foundation Thermal Load Calculator**

Supplemental tool for CAN/CSA-F280

| Weather Station Description  |        |                               |  |  |  |  |  |  |  |  |
|------------------------------|--------|-------------------------------|--|--|--|--|--|--|--|--|
| Province:                    |        | Ontario                       |  |  |  |  |  |  |  |  |
| Region:                      |        | Bradford ▼                    |  |  |  |  |  |  |  |  |
|                              | Site D | escription                    |  |  |  |  |  |  |  |  |
| Soil Conductivity:           |        | High conductivity: moist soil |  |  |  |  |  |  |  |  |
| Water Table:                 |        | Normal (7-10 m, 23-33 Ft)     |  |  |  |  |  |  |  |  |
| Foundation Dimensions        |        |                               |  |  |  |  |  |  |  |  |
| Floor Length (m):            | 18.02  |                               |  |  |  |  |  |  |  |  |
| Floor Width (m):             | 5.29   |                               |  |  |  |  |  |  |  |  |
| Exposed Perimeter (m):       | 46.63  |                               |  |  |  |  |  |  |  |  |
| Wall Height (m):             | 3.05   |                               |  |  |  |  |  |  |  |  |
| Depth Below Grade (m):       | 1.22   | Insulation Configuration      |  |  |  |  |  |  |  |  |
| Window Area (m²):            | 2.69   |                               |  |  |  |  |  |  |  |  |
| Door Area (m²):              | 1.95   |                               |  |  |  |  |  |  |  |  |
|                              | Radi   | ant Slab                      |  |  |  |  |  |  |  |  |
| Heated Fraction of the Slab: | 0      |                               |  |  |  |  |  |  |  |  |
| Fluid Temperature (°C):      | 33     |                               |  |  |  |  |  |  |  |  |
|                              | Desig  | n Months                      |  |  |  |  |  |  |  |  |
| Heating Month                | 1      |                               |  |  |  |  |  |  |  |  |
|                              | Founda | ation Loads                   |  |  |  |  |  |  |  |  |
| Heating Load (Watts):        |        | 2203                          |  |  |  |  |  |  |  |  |





PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY)

INSULATE DUCTS IN UNCONDITIONED SPACES RIZ UNDERCUT ALL DOORS I\* MIN. CONTRACTOR MUST WORK FROM APPROVED PLANS. ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE

RESPONSIBILITY OF GTA DESIGNS. GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

GTADESIGNS

2985 DREW ROAD SUITE 202, MISSISSAUGA, ONT.

L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA WEB: WWW.GTADESIGNS.CA

**AMANA** OR EQUAL AMEC960603ANA 60,000 BTU/HR 57,600 2.5 FAN SPEED 929

10 3 3 2ND FLOOR IST FLOOR 6 2 **BASEMENT** GROUND FLOOR

DD

JB-07351

2544

M2

DRAWING NO

**BAYVIEW WELLINGTON** MODEL: S38-3 BAROSSA 3 GREEN VALLEY EAST

BRADFORD, ONT. 3/16" = 1'-0"

RETURN AIR GRILLE (SIZE INDICATED ON DRAWING) DUCT CONNECTION TO JOIST LINING SUPPLY AIR LOW/HIGH WALL/KICK SUPPLY DIFFUSER 4 FLEX DUCT R.A RETURN AIR HRV EXHAUST GRILLE RETURN AIR RISER UP TO FLOOR ABOVE RIGID ROUND DUCT al⊶ 1 THERMOSTAT 0 RETURN AIR PIPE RISER SUPPLY AIR PIPE RISER 8 RETURN AIR FROM BASEMENT SECOND FLOOR PRINCIPAL EXHAUST FAN SWITCH SUPPLY DIFFUSER RETURN ROUND DUCT VOLUME DAMPER W/R & PRINCIPAL EXHAUST FAN CANOPY ABOVE 60"x42" GLASS SHOWER \_\_\_\_\_ OPT. RAISED TRAY CEILING 6'-0" OVAL MASTER BEDROOM 20 **ENSUITE** F 5 ENS.2 [F]5" WIC WIC 5R HW ‡ 14X8 BEDROOM 4 BEDROOM 2 13 LINEN 4R HW 14X8 M WIC SHARED **MEDIA** (F 5 LOFT 17-6" BEDROOM 3 **←** 0.T.B. 12" RAISED 15 16 CEILING **-**~-12" RAISED INSULATE ALL DUCTS IN CEILING UNCONDITIONED SPACES MIN. RI2 ALL DUCTWORK LOCATED IN UNCONDITIONED AREAS MUST BE SEALED TO CLASS ROOF BELOW A LEVEL AS PER OBC PART 6-6.2.4.3.(11) ALL DUCTWORK LOCATED IN FLAT ROOF BELOW CONDITIONED AREAS MUST BE SEALED TO CLASS C LEVEL AS PER OBC PART 6-6.2.4.3.(12) THE UNDERSIGNED HAS REVIEWED AND TAKES RESPONSIBILITY FOR THIS DESIGN ON BEHALF OF GTA DESIGNS INC. AND HAS THE QUALIFICATIONS AND MEETS THE REQUIREMENTS SET OUT IN THE BUILDING CODE TO BE A DESIGNER QUALIFICATION INFORMATION REQUIRED UNLESS DESIGN IS EXEMPT UNDER DIVISION C 3.2.5.1 OF THE OBC 2012 ONTARIO BUILDING CODE SECOND FLOOR PLAN 'A' ZONE I COMPLIANCE B.C.I.N. 32964 PACKAGE "AI" REF. TABLE 3.1.1.2.A

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO

BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY) INSULATE DUCTS IN UNCONDITIONED SPACES RIZ UNDERCUT ALL DOORS I\* MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS.
ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE RESPONSIBILITY OF GTA DESIGNS.

GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.

GTADESIGNS

2985 DREW ROAD SUITE 202, MISSISSAUGA, ONT. L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA

WEB: WWW.GTADESIGNS.CA

55,002 UNIT MAKE AMANA OR EQUAL AMEC960603ANA 60,000 BTU/HR 57,600 2.5 FAN SPEED CFM 929

| LA DIA FANO  |      | DUNG     | " 05       |
|--------------|------|----------|------------|
| S/A R/A FANS | S/A  | RUNS     | # 01       |
|              |      | FLOOR    | 3RD F      |
| 10 3 3       | 10   | FLOOR    | 2ND F      |
| 6 I 2        | 6    | LOOR     | IST F      |
| 4 1          | 4    | MENT     | BASE       |
|              |      |          |            |
| LOOR         | FLO  | SECOND   | FLOOR PLAN |
|              | SQFT | CHECKED: | DRAWN BY:  |
| 2544         |      | DD       | JL         |

M3

уо<u>ит но:</u> JB-07351

JULY 21, 2021 CLIENT **BAYVIEW WELLINGTON** MODEL: S38-3 BAROSSA 3

GREEN VALLEY EAST BRADFORD, ONT. 3/16" = 1'-0"



2.5

929

FAN SPEED

WEB: WWW.GTADESIGNS.CA

GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR

WITH IN THE DWELLING.

BRADFORD, ONT.

3/16" = 1'-0"

2544

M4

DD

JB-07351



60,000

57,600

2.5

929

BTU/HR

PARTIAL PLAN(S)

DD

JB-07351

2544

M5

MISSISSAUGA, ONT.

L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA

WEB: WWW.GTADESIGNS.CA

CONTRACTOR MUST WORK FROM APPROVED PLANS. ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE

GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR

RESPONSIBILITY OF GTA DESIGNS.

WITH IN THE DWELLING.

BAROSSA 3

GREEN VALLEY EAST

BRADFORD, ONT.

3/16" = 1'-0"

FLEX DUCT RIGID ROUND DUCT SUPPLY DIFFUSER

LOW/HIGH WALL/KICK SUPPLY DIFFUSER HRV EXHAUST GRILLE **aj**↔ 0 SUPPLY AIR PIPE RISER VOLUME DAMPER



DUCT CONNECTION TO JOIST LINING RETURN AIR PIPE RISER

RETURN ROUND DUCT

RETURN AIR GRILLE (SIZE INDICATED ON DRAWING) 4 RETURN AIR RISER UP TO FLOOR ABOVE RETURN AIR FROM BASEMENT SECOND FLOOR

SUPPLY AIR R.A. 1

RETURN AIR THERMOSTAT PRINCIPAL EXHAUST FAN SWITCH



GROUND FLOOR PLAN 'A' - W.O.D. CONDITION ELEV. 'B' & 'C' SIMILAR



BASEMENT PLAN 'A' - W.O.D. CONDITION ELEV. 'B' & 'C' SIMILAR

THE UNDERSIGNED HAS REVIEWED AND TAKES RESPONSIBILITY FOR THIS DESIGN ON BEHALF OF GTA DESIGNS INC. AND HAS THE QUALIFICATIONS AND MEETS THE REQUIREMENTS SET OUT IN THE BUILDING CODE TO BE A DESIGNER

### QUALIFICATION INFORMATION

Required unless design is exempt under Division C 3.2.5.1 of the ONTARIO BUILDING CODE

B.C.I.N. 32964

OBC 2012

JULY 21, 2021

**BAYVIEW WELLINGTON** 

3/16" = 1'-0"

ZONE I COMPLIANCE PACKAGE "AI" REF. TABLE 3.1.1.2.A

INSTALLATION TO COMPLY WITH THE LATEST ONTARIO BUILDING CODE. ALL SUPPLY OUTLETS TO BE 5" DIA. UNLESS OTHERWISE

PROVIDE BALANCING DAMPERS ON ALL BRANCHES. ALL R/A PARTITIONS 6" (FIRST FLOOR ONLY) INSULATE DUCTS IN UNCONDITIONED SPACES RIZ UNDERCUT ALL DOORS I" MIN.

CONTRACTOR MUST WORK FROM APPROVED PLANS.
ANY ALTERATIONS TO THIS ORIGINAL PLAN ARE NOT THE

RESPONSIBILITY OF GTA DESIGNS. GTA DESIGNS MUST BE CONSULTED IF KITCHEN EXHAUST FAN EXCEEDS 700 CFM DEPRESSURIZATION MAY OCCUR WITH IN THE DWELLING.



2985 DREW ROAD SUITE 202, MISSISSAUGA, ONT.

L4T 0A4 TEL: 905-671-9800 EMAIL: DAVE@GTADESIGNS.CA WEB: WWW.GTADESIGNS.CA

| 55,002               |           |
|----------------------|-----------|
|                      |           |
| UNIT MAKE            | OR EQUAL. |
| AMANA                |           |
| UNIT MODEL           | OR EQUAL. |
| AMEC960603ANA        |           |
| UNIT HEATING INPUT   | BTU/HR.   |
| 60,000               |           |
| UNIT HEATING OUTPUT  | BTU/HR.   |
| 57,600               |           |
| A/C COOLING CAPACITY | TONS.     |
| 2.5                  |           |
| FAN SPEED            | CFM       |
| 929                  |           |

| # OF RUNS                   | S/A  | R/A  | FANS |
|-----------------------------|------|------|------|
| 3RD FLOOR                   |      |      |      |
| 2ND FLOOR                   | 10   | 3    | 3    |
| IST FLOOR                   | 6    | - 1  | 2    |
| BASEMENT                    | 4    |      |      |
|                             |      |      |      |
| FLOOR PLAN: PARTIAL PLAN(S) |      |      |      |
|                             | SOFT | v(3) |      |

DD

JB-07351

| 1 2  | MODEL: \$38-3                      |
|------|------------------------------------|
|      | BAROSSA 3                          |
| (S)  | GREEN VALLEY EAST<br>BRADFORD,ONT. |
| 2544 | BRADFORD,ONT.                      |

CLIENT

М6