ASPHALT SHINGLES 12"FINISH O.H. R.T.M.C **2X6 EXTERIOR WALLS** 2X6 FASCIA BOARD

HARDWARE:

HGUS26-2 -(XX) HGUS28-2 - (SS) LJS26DS -(V) LUS24 - (O)

NOTE:

- STUCCO

H3 -3'-1"-0 HIGHER PLATE

ALL B-2-2X10 (FLUSH)

1'-4"-0 RAISED FASCIA

DESIGN CONFORMS WITH OBC 2012(2019 AMENDMENT) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.9 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psf


BCLL = 0.0 psf

BCDL = 7.4 psf

TOWN OF BRADFORD WEST GWILLIMBURY **BUILDING DEPARTMENT** PLANS EXAMINED ONTARIO BUILDING CODE APPLIES DATE: 2022-07-12

INSPECTOR: SE

TAMARACI

SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'

Job Track: 52917

Plan Log: 206241

Layout ID: 426687

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

Model / Elevation:

S42-17 / C REAR & SIDE UPG. LOT 109

Project: GREEN VALLEY EAST 2022

Designer: ND Rick DiCiano Date: 2022-06-06

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER Mitek ver 8.5.3.233

11-04-00 41-10-00 24-00-00 **ASPHALT SHINGLES** 4-01-00 33-06-00 12"FINISH O.H. 8/12 PITCHES (TYP.) R.T.M.C **UNLESS NOTED** 2X6 EXTERIOR WALLS 2X6 FASCIA BOARD A.P.P 2-00-00 HARDWARE: **FLAT ROOF** PLATE HEIGHT 7:-10"-0 U/S OS SOFFIT® PLATE LEVEL 2-PLY) HGUS26-2 -(XX) HGUS28-2 - (SS) J11 19-02-00 LJS26DS -(V) 5,00,00 +BCX LUS24 - (O) ූදු T33A(3) T 33(6) 3-10-00 9-9 NOTE: 4 - STUCCO P3 P5(4) **T41** H3 -3'-1"-0 HIGHER PLATE 2-08-09 ALL B-2-2X10 (FLUSH) CEILING (2-PLY) 10-07-00 5-8 T55S T34S COFF T32S T34(3) 32-11-0 9-5-0 +TCX 1'-4"-0 RAISED FASCIA ₽LY 1-00-08 **DESIGN CONFORMS WITH OBC** 2012(2019 AMENDMENT) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.9 psf | Sr = 8.4 psf10-10-00 **136**8 7-00-00 1'-6" HIGH CEILING 8 12-02-00 24-01-00 **DESIGN LOADS:** 49-06-00 1'-3"-0 WALL DIFF. TCSL = 32.5 psf53-02-00 TCDL = 6.0 psfBCLL = 0.0 psf4-10-00 6-00-00 All conventional framing to conform with **DENOTES:** BCDL = 7.4 psfPart 9 of O.B.C. 2012. Roof rafters that CONVENTIONAL cross over or meet trusses to be min. 2x4 FRAMING SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

Job Track: **52917**

Plan Log: **206241**

Layout ID: 426688

Builder / Location:

Date:

2022-06-06 Sales:

BAYVIEW WELLINGTON / BRADFORD

Rick DiCiano

Designer: ND

Model / Elevation:

|S42-17 / C REAR & SIDE UPG. + OPT.COF. LOT 109

Project: GREEN VALLEY EAST 2022

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER PURPOSE. Mitek ver 8.5.3.23:

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

Elevation:

GREEN VALLEY EAST 2022

Location:

BRADFORD

Lot #:

Model:

S42-17

C REAR & SIDE UPG. LOT 109

Job Track:

52917

PlanLog: Layout ID: 206241 426687

Ref#

13780 1 of 3

Page: Date:

06-06-2022

Designer:

Sales Rep: Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	6	T25 Monopitch	4 /12	9-05-00	4-03-15	2 x 4	1-03-08	11-03 2-09-14	265.48 186.00		
	1 2-ply	T30 Hip Girder	8 /12	32-11-00	5-03-15	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	383.97 238.33		
	1 2-ply	T30Z Hip Girder	8 /12	32-11-00	5-03-15	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	383.97 238.33		
	1	T31 Hip	8 /12	32-11-00	6-07-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	139.59 88.83		
	1	T31A Hip	8 /12	29-11-00	6-07-13	2 x 4	1-03-08	1-04-13 3-04-13	129.73 82.83		
	1	T32 Hip	8 /12	32-11-00	7-11-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	144.5 90.33		
	1	T32A Hip	8 /12	29-11-00	7-11-13	2 x 4	1-03-08	1-04-13 3-04-13	133.7 83.83		
	6	T33 Hip	8 /12	32-11-00	9-03-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	877.84 544.00		
	3	T33A Piggyback Base	8 /12	29-11-00	9-03-13	2 x 4	1-03-08	1-04-13 3-04-13	439.16 273.00		
	3	T34 Common	8 /12	28-03-00	10-09-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	369.6 226.00		
	1 2-ply	T35S Half Hip Girder	8 /12	15-08-08	7-08-15	2 x 6 2 x 4	1-03-08	1-04-13 4-07-13	175.26 112.00		
	1	T36S Half Hip	8 /12	15-08-08	9-00-13	2 x 4	1-03-08	1-04-13 5-11-13	82.23 53.00		
	1	T37S Hip	8 /12	15-08-08	10-04-13	2 x 4	1-03-08	1-04-13 6-08-02	93 59.33		
	1	T38 Half Hip Girder	8 /12	12-06-08	5-09-02	2 x 4 2 x 6	5-08	1-04-13 5-09-02	68.33 42.83		

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST 2022

Location:

Elevation:

BRADFORD

Model: Lot #:

...

S42-17

C REAR & SIDE UPG. LOT 109

Job Track:

Layout ID:

ck:

PlanLog:

52917 206241 426687

Ref#

13780

Page:

2 of 3

Date:

ale.

Designer:

Sales Rep:

Rick DiCiano

06-06-2022

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T39 Half Hip	8 /12	12-06-08	7-01-02	2 x 4	5-08	1-04-13 7-01-02	60.7 38.17		
	1	T40 Half Hip	8 /12	12-06-08	8-05-02	2 x 4	5-08	1-04-13 8-05-02	68.41 42.33	-	
	1	T41 Roof Special	8 /12	12-06-08	9-09-02	2 x 4	5-08	1-04-13 9-09-02	61.97 38.67		
	1	T42 Hip Girder	8 /12	15-04-00	3-08-02	2 x 4	1-03-08 1-03-08	2-08-13 2-08-13	73.13 48.67		
	1	T43 Hip	8 /12	15-04-00	5-00-02	2 x 4		2-08-13 2-08-13	68.98 44.83		
	1	T44 Hip	8 /12	15-04-00	6-02-02	2 x 4		2-08-13 2-08-13	66.78 43.33		
	1 2-ply	T50 Piggyback Base Girder	8 /12	32-11-00	9-03-13	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	371.99 231.67		
	1 2-ply	T51 Hip Girder	8 /12	32-11-00	6-02-02	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	342.69 210.67		
	1 2-ply	T52 Hip Girder	8 /12	9-08-00	4-07-08	2 x 4 2 x 6		2-08-03 2-08-03	106.99 70.00		
	1 2-ply	T54 Half Hip Girder	8 /12	5-10-08	4-04-02	2 x 4 2 x 6		1-04-13 4-04-02	66.87 43.00		
	2 2-ply	T55 Jack-Open Girder	8 /12	5-10-08	5-03-13	2 x 4 2 x 6		1-04-13 5-03-13	129.04 82.67		
	3	T57 Monopitch	8 /12	2-09-00	4-07-08	2 x 4	1-03-08	1-03-08 3-01-08	48.88 34.50		
	2	P3 Piggyback	8 /12	9-02-00	1-04-00	2 x 4			49.97 33.67		-
	2	P4 Piggyback	8 /12	9-02-00	2-08-00	2 x 4			51.89 33.67		
											-

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST 2022

Location:

BRADFORD

Model:

Lot #:

Elevation:

S42-17

C REAR & SIDE UPG. LOT 109

Job Track:

52917

PlanLog: Layout ID: 206241 426687

Ref# Page: 13780 3 of 3

Date:

06-06-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK				1	OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	4	P5 Piggyback	8 /12	9-02-00	3-00-11	2 x 4			92.72 59.33		
	6	J7 Jack-Open	8 /12	5-10-08	5-03-13	2 x 4	1-03-08	1-04-13 5-03-13	141.47 88.00		
	2	J8 Jack-Open	8 /12	1-10-08	3-11-02	2 x 4	1-03-08 1-10-15	1-04-13 2-07-13	23.82 15.33		
	3	J9 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01	1-04-13 2-07-02	27.51 17.00		
	2	J10 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 4-01-01	1-04-13 2-07-02	27.34 16.67		
	2	J11 Jack-Open	8 /12	3-09-07	3-11-02	2 x 4	1-03-08 2-01-01	1-04-13 3-11-02	32.99 20.67		
	6	J12 Jack-Open	8 /12	4-10-08	4-07-13	2 x 4	1-03-08	1-04-13 4-07-13	101.08 62.00		
	1	J13 Jack-Open	8 /12	3-10-08	3-11-13	2 x 4	1-03-08	1-04-13 3-11-13	14.34 9.00		
	1	J14 Jack-Open Girder	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 2-01-01	1-04-13 2-07-02	11.39 7.00		
	7	J15 Jack-Open	8 /12	1-05-00	3-08-02	2 x 4	1-03-08	2-08-13 3-08-02	71.7 52.50		

TOTAL #TRUSS= 90

TOTAL BFT OF ALL TRUSSES= 3661.99

BFT.

TOTAL WEIGHT OF ALL TRSSES 5799.04 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	LUS24	
14	Hardware	LJS26DS	
4	Hardware	HGUS26-2	
1	Hardware	HGUS28-2	

TOTAL NUMBER OF ITEMS= 22

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location: **GREEN VALLEY EAST 2022**

Model:

Elevation:

BRADFORD

Lot #:

S42-17

C REAR & SIDE UPG. + OPT.COF.

Job Track:

52917 206241

PlanLog: Layout ID:

426688

Ref#

13780

Page:

1 of 4

06-06-2022

Date: Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	6	T25 Monopitch	4 /12	9-05-00	4-03-15	2 x 4	1-03-08	11-03 2-09-14	265.48 186.00		
	1 2-ply	T30 Hip Girder	8 /12	32-11-00	5-03-15	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	378.71 235.00		
	1 2-ply	T30S Hip Girder	8 /12	32-11-00	5-03-15	2 x 6 2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	382.19 237.33		
	1 2-ply	T30Z Hip Girder	8 /12	32-11-00	5-03-15	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	378.71 235.00		
	1	T31A Hip	8 /12	29-11-00	6-07-13	2 x 4	1-03-08	1-04-13 3-04-13	129.73 82.83		
	1	T31S Hip	8 /12	32-11-00	6-07-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	155.32 100.83		
	1	T32A Hip	8 /12	29-11-00	7-11-13	2 x 4	1-03-08	1-04-13 3-04-13	133.7 83.83		
	1	T32S Hip	8 /12	32-11-00	7-11-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	161.71 103.33		
	6	T33 Hip	8 /12	32-11-00	9-03-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	877.84 544.00		
	3	T33A Piggyback Base	8 /12	29-11-00	9-03-13	2 x 4	1-03-08	1-04-13 3-04-13	439.16 273.00		
	3	T34 Common	8 /12	28-03-00	10-09-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	369.6 226.00		
	1 2-ply	T35S Half Hip Girder	8 /12	15-08-08	7-08-13	2 x 4	1-03-08	1-04-13 4-07-13	152.29 99.33		
	1	T36S Half Hip	8 /12	15-08-08	9-00-13	2 x 4	1-03-08	1-04-13 5-11-13	82.23 53.00		
	1	T37S Hip	8 /12	15-08-08	10-04-13	2 x 4	1-03-08	1-04-13 6-08-02	93 59.33		

DELIVERY SHIPLIST

Lumber Yard:

Builder:

TAMARACK LUMBER

BAYVIEW WELLINGTON

Project: Location:

Model:

Lot #:

Elevation:

GREEN VALLEY EAST 2022

BRADFORD

S42-17

C REAR & SIDE UPG. + OPT.COF.

Job Track:

52917 206241

PlanLog: Layout ID:

426688

Ref#

13780

Page: Date:

2 of 4 06-06-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T38 Half Hip Girder	8 /12	12-06-08	5-09-02	2 x 4 2 x 6	5-08	1-04-13 5-09-02	64.73 42.00		
	1	T39 Half Hip	8 /12	12-06-08	7-01-02	2 x 4	5-08	1-04-13 7-01-02	60.7 38.17		
	1	T40 Half Hip	8 /12	12-06-08	8-05-02	2 x 4	5-08	1-04-13 8-05-02	68.41 42.33		
	1	T41 Roof Special	8 /12	12-06-08	9-09-02	2 x 4	5-08	1-04-13 9-09-02	61.97 38.67		
	1	T42 Hip Girder	8 /12	15-04-00	3-08-02	2 x 4	1-03-08 1-03-08	2-08-13 2-08-13	73.13 48.67		
	. 1	T43S Hip	8 /12	15-04-00	5-00-02	2 x 4		2-08-13 1-08-13	73.09 49.17		
	1	T44S Hip	8 /12	15-04-00	6-02-02	2 x 4		2-08-13 1-08-13	74.58 48.50		
	1 2-ply	T50 Piggyback Base Girder	8 /12	32-11-00	9-03-13	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	371.99 231.67		
	1 2-ply	T51 Hip Girder	8 /12	32-11-00	6-02-02	2 x 4 2 x 8	1-03-08 1-03-08	1-04-13 1-04-13	376.11 233.33		
	1 2-ply	T52 Hip Girder	8 /12	9-08-00	4-07-08	2 x 4 2 x 6		2-08-03 2-08-03	106.99 70.00		
	1 2-ply	T54 Half Hip Girder	8 /12	5-10-08	4-04-02	2 x 4 2 x 6		1-04-13 4-04-02	66.87 43.00		
	1 2-ply	T55 Jack-Open Girder	8 /12	5-10-08	5-03-13	2 x 4 2 x 6		1-04-13 5-03-13	64.52 41.33		
	1 2-ply	T55S Monopitch Girder	8 /12	5-10-08	5-03-13	2 x 4		1-04-13 4-03-13	61.75 41.33		
	1	T56 Half Hip Girder	8 /12	5-10-08	2-02-13	2 x 4	1-03-08	1-04-13 2-02-13	24.71 16.50		

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST 2022

Location:

BRADFORD

Model:

Lot #: Elevation: S42-17

C REAR & SIDE UPG. + OPT.COF.

Job Track:

52917 206241

PlanLog: Layout ID:

426688

Ref#

13780

Page:

3 of 4

Date:

06-06-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	3	T57 Monopitch	8 /12	2-09-00	4-07-08	2 x 4	1-03-08	1-03-08 3-01-08	48.88 34.50		
	3	J7 Jack-Open	8 /12	5-10-08	5-03-13	2 x 4	1-03-08	1-04-13 5-03-13	70.74 44.00		
	4	J7S Jack-Open	8 /12	5-10-08	5-03-13	2 x 4	1-03-08	1-04-13 4-03-13	89.72 58.67		
	1	J8 Jack-Open	8 /12	1-10-08	3-11-02	2 x 4	1-03-08 1-10-15	1-04-13 2-07-13	11.91 7.67		
	2	J9 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-01	1-04-13 2-07-02	18.34 11.33		·
	1	J10 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 4-01-01	1-04-13 2-07-02	13.67 8.33		
	1	J11 Jack-Open	8 /12	3-09-07	3-11-02	2 x 4	1-03-08 2-01-01	1-04-13 3-11-02	16.5 10.33		
	6	J12 Jack-Open	8 /12	4-10-08	4-07-13	2 x 4	1-03-08	1-04-13 4-07-13	101.08 62.00		
	1	J13 Jack-Open	8 /12	3-10-08	3-11-13	2 x 4	1-03-08	1-04-13 3-11-13	14.34 9.00		
	1	J14 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 2-01-01	1-04-13 2-07-02	11.39 7.00		
	7	J15 Jack-Open	8 /12	1-05-00	3-08-02	2 x 4	1-03-08	2-08-13 3-08-02	71.7 52.50		
	3	J16 Jack-Open	8 /12	1-03-00	2-02-13	2 x 4	1-03-08	1-04-13 2-02-13	21.95 17.00		
	2	P3 Piggyback	8 /12	9-02-00	1-04-00	2 x 4			49.97 33.67		
	2	P4 Piggyback	8 /12	9-02-00	2-08-00	2 x 4		,	51.89 33.67		
	-		8 /12	9-02-00	2-08-00	2 x 4		,			

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST 2022

Location:

BRADFORD

Model:

S42-17

Lot #:

Elevation:

C REAR & SIDE UPG. + OPT.COF.

Job Track:

PlanLog:

52917 206241

Layout ID:

426688

Ref#

13780 4 of 4

Page: Date:

06-06-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

PROFILE	QTY PLY	MARK TYPE	РІТСН	SPAN	HEIGHT	LUMBER	OVERHANG LEFT	HEEL HEIGHT LEFT	LBS. BFT.	BUNDLE#	LOAD BY
		2					RIGHT	RIGHT	DF1.	SIACK#	REMARKS
	4	P5 Piggyback	8 /12	9-02-00	3-00-11	2 x 4			92.72 59.33		

TOTAL #TRUSS=

93

TOTAL BFT OF ALL TRUSSES= 3952.48

BFT.

TOTAL WEIGHT OF ALL TRSSES 6234.06 LBS

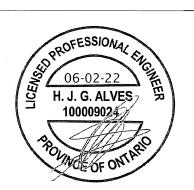
HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	LUS24	
14	Hardware	LJS26DS	
4	Hardware	HGUS26-2	
1	Hardware	HGUS28-2	

TOTAL NUMBER OF ITEMS= 23

JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:10 2022 Page 1 ID:cR3hXPouHfKVtr1GMcM3ucymxZo-jjfdkol9l?ukk3lw7QecoWalAAGsHZ0dGynPw_zANRd 1-3-8 9-4 5×14 -Scale = 1:25.6 4.00 12 RI1 3x4 || D 3-0-15 4x4 = С 3-5-0 B2 4x6 = R F 6x10 = 1-3-0 3x4 || 81 5x8 = 3x4 || 3x4 || 6-3-8 3-1-8 TOTAL WEIGHT = 6 X 44 = 265 lb [M][F] LUMBER N. L. G. A. CHORDS DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** LUMBER SIZE DESCR BEARINGS FACTORED A - E F - E J - B SPF SPF SPF MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLI No.2 No.2 INPUT BRG REQRD BRG DRY SPECIFIED LOADS: 2x4 2x4 DRY LL = DL = LL = DL = AD = **GROSS REACTION** 32.5 PSF CH. No.2 HORZ UPLIFT IN-SX 6.0 0.0 7.4 VERT IN-SX 2x4 DRY No.2 SPF L(E) 577 0 0 ō 3-0 3-0 D 2×4 DRY SPF SPF (** SEE "BEARING NOTE" **) PSF 806 806 5-8 TOTAL LOAD 5-8 45 9 PSF BEARING BLOCKS SPACING = 24.0 IN. C/C DRY SPF UNFACTORED REACTIONS ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE V
0 / 0 0 / 0 THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 1ST LCASE SNOW ALL WEBS 2x3 DRY No.2 SPF COMBINED SOIL EXCEPT 118/0 0/0 9. NBCC 2015 DRY 2x4 No.2 SPF 412 / 0 0/0 0/0 0/0 150 / 0 0/0 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) DRY: SEASONED LÜMBER. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L(E), J BEARING NOTE: GAP BETWEEN INSIDE OF TOP CHORD <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.66 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED. BEARING AND FIRST DIAGONAL OR VERTICAL WEB SHALL NOT EXCEED 0.5 INCHES

PLATES	(table is in inches)
JT TYF	PE PLATES


В	TMVW-t	MT20	4.0	6.0	
С	TMWW-t	MT20	4.0	4.0	
D	TMV+p	MT20	3.0	4.0	
Ε·	TMVWK1-t	MT20	5.0	14.0	
F	BMV+p	MT20	3.0	4.0	
G	BVMWWW-I	MT20	6.0	10.0	Edge 3.50
Н	BMV+p	MT20	3.0	4.0	
l	BMWWW-t	MT20	5.0	8.0	
J	BMV1+p	MT20	3.0	4.0	

I FN Y

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

Structural component only DWG# T-2213203

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E		
MAX	K. FACTORED	FACTOR	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	F) (CSI (LC)	UNBRAC	3	(LBS)	CSI (LC)
FR-TO		FROM	ΤΌ		LENGTH	FR-TO	, ,	, ,
A-B	0 / 24	-112.4	-112.4	0.14(1)	10.00	G-E	0 / 1247	0.28 (1)
B- C	-938 / 0	-112.4	-112.4	0.13(1)	6.25	I- C	-480 / 0	0.07 (1)
C-D	-1175 / 0	-112.4	-112.4	0.11 (1)	5.77	I- G	0 / 931	0.15 (1)
D-E	-1204 / 0	-112.4	-112.4	0.16(1)	5.66	C-G	0/217	0.05 (1)
F-K	0 / 34	0.0	0.0	0.41 (1)	10.00	B- I	0/917	0.21 (1)
K-E	0/34	0.0	0.0	0.41 (1)	10.00	E-L	-941 / 0	0.04 (1)
J-B	-778 / 0	0.0	0.0	0.08 (1)	7.81	K-L	0 / 744	0.00 (1)
J-1	0/0	-18.5	-18.5	0.04 (4)	10.00			
I- H	0 / 39	-18.5	-18.5	0.04 (4)	10.00			
H-G.	0 / 27	0.0	0.0	0.07(1)	10.00			
G-D	-376 / 0	0.0	0.0	0.05(1)	7.81			
G-F	0 / 148	-18.5	-18.5	0.07 (4)	10.00			

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

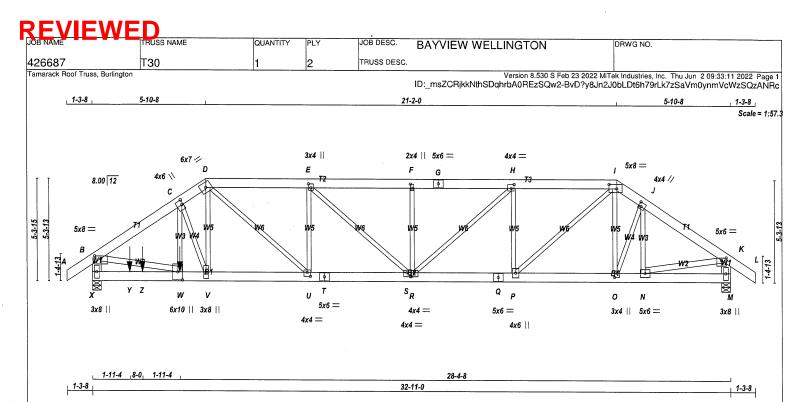
ALLOWABLE DEFL.(LL)= L/360 (0.31")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.31") CALCULATED VERT. DEFL.(TL) = 1/ 999 (0.07")

CSI: TC=0.41/1.00 (F-K:1) , BC=0.07/1.00 (G-H:1) , WB=0.28/1.00 (E-G:1) , SSI=0.20/1.00 (E-K:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

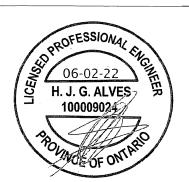
NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.65 (E) (INPUT = 0.90) JSI METAL= 0.25 (E) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			1
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x6	DRY	No.2	SPF
D - G	2x6	DRY	No.2	SPF
G - 1	2x6	DRY	No.2	SPF
1 - L	2x6	DRY	No.2	SPF
Х - В	2x6	DRY	No.2	SPF
м - к	2x6	DRY	No.2	SPF
X - T	2x6	DRY	No.2	SPF
T - Q	2x6	DRY	No.2	SPF
Q - M	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
B - W	2x4	DRY	No.2	SPF
N - K	2x4	DRY	No.2	SPF
1				


DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CH	IOBDS : (0.1	22"X3") SPIRAL NAI	18
A- D	2	12	TOP
D- G	2	12	TOP
G-I	2	12	TOP
I- L	2	12	TOP
X-B	2	12	TOP
M-K	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAI	_ NAILS
X-T	2 .	12	SIDE(183.1)
T-Q	2	12	TOP `
Q-M	2	12	TOP
WEBS :	(0.122"X3")	SPIRAL NAILS	
C-W	1	2	SIDE(901.2)
2x3	1	6	
2x4	1	6	
1			

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

Structural component only DWG# T-2213204

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	
READINGS	

EΑ	RINGS						
	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
Ī	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	6194	0	6194	0	0	5-8	5-8
	2910	0	2910	0	0	5-8	5-8

UNFACTORED REAC	TIONS
1ST L CASE	MAY

	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	4S			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
X	4327	3140 / 0	0/0	0/0	0/0	1187 / 0	0/0	
М	2035	1466 / 0	0/0	0/0	0/0	568 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) X, M

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.17 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

ł									
1	СН	ORDS -				W F	BS		
ı	MAX	. FACTORED	FACTORED				MAX. FACT	ORED	
	MEMB.	FORCE	VERT. LOAD LC1	MAX	MAX.	MEMB	FORCE	MAX	
		(LBS)			UNBRAC		(LBS)	CSI (LC))
ı	FR-TO	, ,	FROM TO	` '	LENGTH				
ı	A-B	0 / 44	-112.4 -112.4	0.04(1)	10.00	W-C	0 / 2659	0.33 (1)	
ı	B- C	-7604 / 0	-112.4 -112.4			C-V	-2431 / 0	0.35 (1)	
ı	C-D	-6515 / 0	-112.4 -112.4	0.14(1)	4.56	V- D	0 / 2781	0.34(1)	
ı	D-E	-5987 / 0	-112.4 -112.4	0.17 (1)	4.72	O- I	0/90	0.01(1)	
ı	E-F	-5696 / 0	-112.4 -112.4	0.16 (1)	4.82	O- J	0 / 77	0.01(1)	
ļ	F-G	-5696 / 0	-112.4 -112.4				-601 / 0	0.08 (1)	
ı	G-H	-5696 / 0	-112.4 -112.4	0.16 (1)	4.82	B- W	0 / 6423	0.57 (1)	
ı	H- I	-4699 / 0	-112.4 -112.4	0.14(1)	5.22	N-K	0/2918	0.26 (1)	
ı	I- J	-3558 / 0	-112.4 -112.4	0.07(1)	5.88	P-1	0 / 2443	0.30 (1)	
Į	J- K	-3424 / 0	-112.4 -112.4	0.10(1)	5.93	D- U	0 / 625	0.08 (1)	
	K-L	0 / 44	-112.4 -112.4	0.04(1)	10.00	P- H	-1570 / 0	0.30 (1)	
	X-B	-5914/0		0.21(1)		U-E	-361 / 0	0.07 (1)	
	M-K	-2859 / 0	0.0 0.0	0.10 (1)	7.81	R- H	0 / 1362	0.17 (1)	
						E-S	-404 / 0	0.19(1)	
	X-Y	0/0		0.21(1)	10.00	R-F	-552 / 0	0.10(1)	
	Y-Z	0/0	-18.5 -18.5	0.21(1)	10.00				
	Z-W	0/0	-18.5 -18.5	0.21(1)	10.00				
	W-V	0 / 6301	-18.5 -18.5						
	V- U	0 / 5525	-18.5 -18.5						
	U- T	0 / 5987	-18.5 -18.5						
	T-S	0 / 5987		0.43 (1)					
	S-R	0 / 5696		0.40 (1)					
	R-Q	0 / 4700		0.33 (1)					
	Q-P	0 / 4700		0.33 (1)					
	P- O	0 / 2891		0.22 (1)					
	O- N	0 / 2863		0.21 (1)					
	N- M	0/0	-18.5 -18.5	0.03 (4)	10.00				
	SPECIF	IED CONCENT	RATED LOADS (L	BS)					
	JT	LOC. LC1	1 MAX- MAX	+ F	ACE [DIR.	TYPE	HEEL C	NO

BACK

BACK BACK

VERT

TOTAL

CONN.

-113 -113 CONNECTION REQUIREMENTS

-2897

4-6-8

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

MAX--2897

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER.

TOTAL WEIGHT = 2 X 192 = 384 II

LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS:

LOADS: LL = 32.5 PSF DL = 6.0 PSF LL = 0.0 PSF DL = 7.4 PSF AD = 45.9 PSF CH. BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.11") ALLOWABLE DEFL.(TL)= L/360 (1.10") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.19")

CSI: TC=0.25/1.00 (B-C:1), BC=0.54/1.00 (V-W:1), WB=0.57/1.00 (B-W:1), SSI=0.13/1.00 (V-W:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

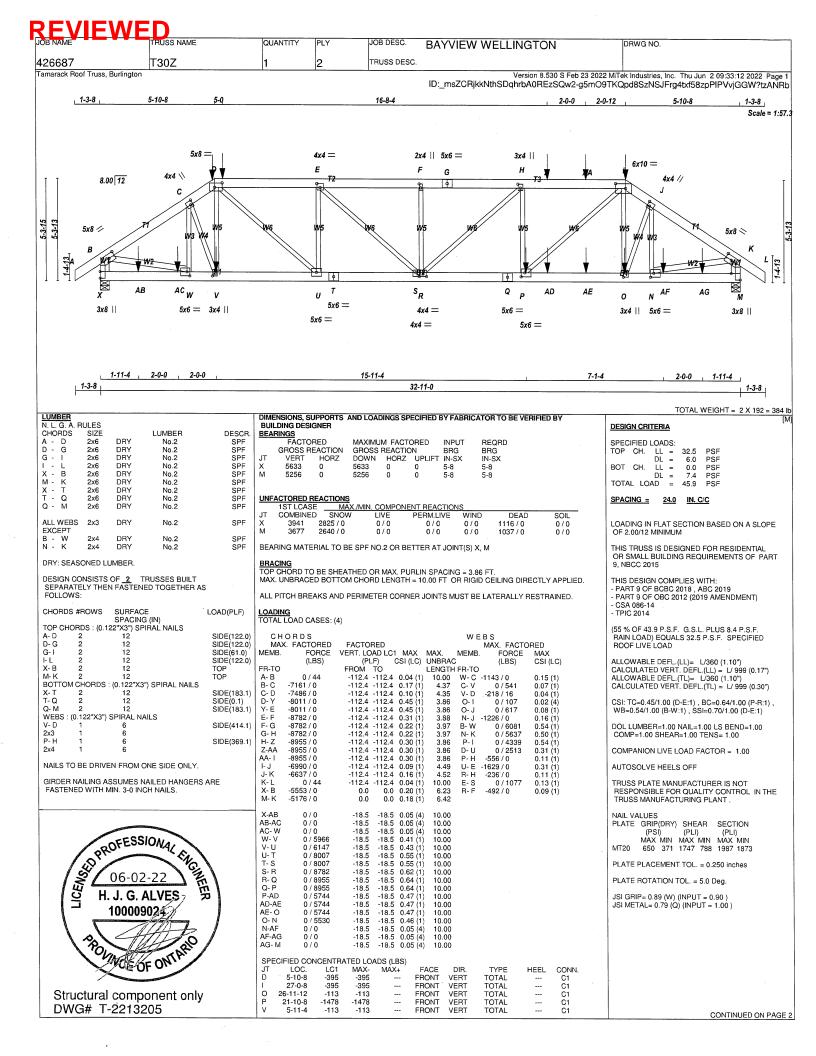

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (O) (INPUT = 0.90) JSI METAL= 0.95 (W) (INPUT = 1.00)

CONTINUED ON PAGE 2

QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T30 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Thu Jun 2 09:33:11 2022 Page 2 ID: msZCRjkkNthSDqhrbA0REzSQw2-BvD?y8Jn2J0bLDt6h79rLk7zSaVm0ynmVcWzSQzANRc W LEN Y X 5.0 8.0 1.50 4.00 6.0 7.0 3.0 4.0 2.50 1.50 5.0 6.0 4.0 4.0 2.50 1.75 5.0 8.0 2.75 4.75 4.0 4.0 2.50 1.50 5.0 6.0 1.50 3.00 5.0 6.0 1.50 3.00 5.0 6.0 2.50 1.50 5.0 6.0 1.50 3.00 5.0 6.0 2.50 1.50 6.0 4.0 2.50 1.50 4.0 4.0 2.50 1.50 4.0 4.0 2.50 1.50 4.0 4.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 5.0 6.0 2.50 2.00 NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF.#2 PROFESSIONAL FING INC. 100009024 POWACE OF ONTARIO Structural component only DWG# T-2213204

JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T30Z TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:12 2022 Page 2 ID: msZCRjkkNthSDqhrbA0REzSQw2-q5mO9TKQpd8SzNSJFrg4txf58zpPIPVvjGGW?tzAŇRb
 SPECIFIED CONCENTRATED LOADS (LBS)

 JT LOC. LC1 MAX- MAX+

 Y
 6-3-8 -1438 -1438 --

 Z
 22-11-12 -53 -53 --

 AA
 24-11-12 -53 -53 --

 AB 1-11-4 -29 -29 -- -29 --

 AC 3-11-4 -29 -29 -- -29 --

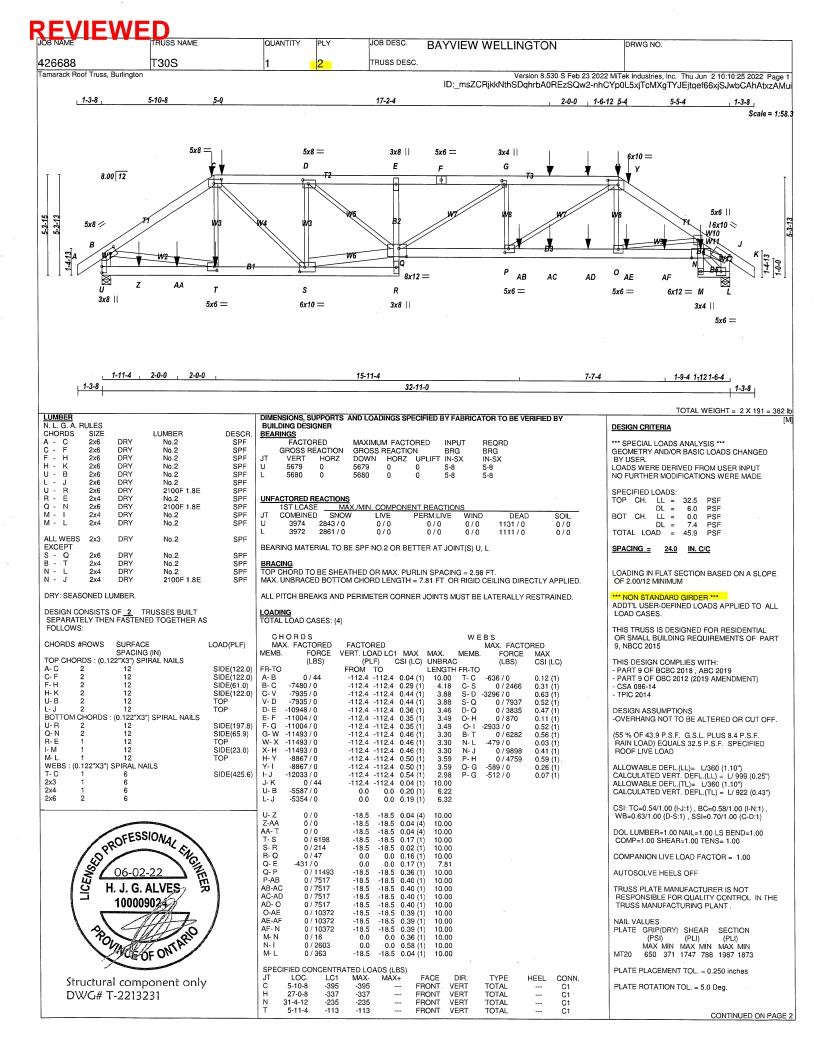
 AD 22-11-12 -113 -113 -- -13 -113 --

 AE 24-11-12 -13 -13 -13 -- -13 -13 --

 AF 28-11-12 -29 -29 -29 -- --

 AG 30-11-12 -29 -29 -29 -- --
 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES


 B
 TMVW-t
 MT20

 C
 TMWW+t
 MT20
 FACE FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT DIR. VERT TYPE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL HEEL CONN. C1 C1 C1 C1 C1 C1 C1 C1 LEN Y X
8.0 2.50 3.75
4.0 2.50 1.50
8.0 2.75 4.75
4.0 2.50 1.00
6.0 2.50 1.50
8.0 2.50 3.75
8.0 4.00 Edge
6.0 2.50 2.00
4.0 2.50 1.50
6.0 2.50 2.00
4.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50
6.0 2.50 2.50 BCDEF VERT VERT VERT VERT TTWW-I TMWW-t TMW+w VERT VERT VERT TMW+W
TS-t
TMWW+t
TTWW-I
TMWW+t
TMVW-t
BMV1+p
BMWV+t CONNECTION REQUIREMENTS 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. BMWW+t BMWW-t BS-t BMWW-t BMW-t BS-t BMWW-t BMWW+t BMWW-t BMV1+p MT20 3.0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. NOTES- (1)

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

Structural component only DWG# T-2213205

QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** 426688 T30S 2 TRUSS DESC

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 10:10:25 2022 Page 2 ID: msZCRikkNthSDqhrbA0REzSQw2-nhCYp0L5xjTcMXqTYJEjtqef66xjSJwbCAhAtxzAMu

DRWG NO.

JSI GRIP= 0.89 (B) (INPUT = 0.90) JSI METAL= 0.87 (J) (INPUT = 1.00)

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

Tamarack Roof Truss, Burlington

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW-t
 MT20

 C
 TTWW-I
 MT20

 D
 TMWW-t
 MT20
 Y X 2.50 3.75 2.75 4.75 2.50 3.50 8.0 8.0 8.0 8.0 2.50 3.50 8.0 6.0 4.0 2.50 1.50 10.0 3.00 6.25 6.0 10.0 3.00 4.50 TMV+p TS-t TMWW+t TTWW-I TTWW-I TMVW-t BMVW1-t BMV+p BVMWW-I BMWW-t BMWW-t 6.0 4.0 12.0 2.50 7.50 6.0 2.50 2.25 12.0 5.25 4.75 8.0 BWWWW-I BMV+p BMWWW-t Q R 10.0 3.00 3.25 6.0 2.50 1.75 S MT20 BMWW-t MT20 BMV1+p

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

SPECIFIED CONCENTRATED LOADS (LBS) JT LOC. LC1 MAX- MAX+ V 6-3-8 -1469 -1469 ---23-5-12 25-5-12 27-5-12 1-11-4 3-11-4 DIR. VERT VERT FACE FRONT JT V W X Y Z AA AB AC AD AE AF TYPE
TOTAL
TOTAL HEEL ----88 -88 -88 -110 -29 -29 -1505 -78 -78 -78 -88 -110 -29 -29 VERT VERT VERT VERT VERT VERT 3-11-4 21-10-8 23-5-12 25-5-12 27-5-12 29-5-12 -29 -1505 -78 -78 -78 -78 VERT VERT VERT

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2213231

REVIEWED QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 426687 T31 TRUSS DESC Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:13 2022 Page 1 Tamarack Roof Truss, Burlington ID:_msZCRjkkNthSDqhrbA0REzSQw2-8lKmNpK2awGJbX1VoYBJQ9CAgNCjUqn3yw?3XJzANRa 1-3-8 7-10-8 17-2-0 1-3-8 Scale = 1:57. 6x7 / 4x4 = 3x8 = 2x4 | 16x7 <> ח E F G Н 8.00 12 5x6 🖊 W5 5x6 <> C 3x4 || 3x4 || R W3 7.4-13 X B1 R2 R1 Q N R 0 AA 5x6 3x8 == 3x8 =4x4 =4×4 = 5x6 = 4x4 = 5x6 =32-11-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 140 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER N. L. G. A. CHORDS A - D D - F F - H **DESIGN CRITERIA** LUMBER BEARINGS FACTORED DESCR SIZE MAXIMUM FACTORED INPUT GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX No.2 No.2 SPF SPF DRY REQRD SPECIFIED LOADS: DRY LL = DL = LL = DL = AD = **GROSS REACTION** BRG 32.5 PSF CH. 2x4 SPF IN-SX No.2 VERT HORZ 6.0 PSF Κ 2x4 DRY No.2 SPF 2309 2309 5-8 5-8 5-8 BOT CH. PSF PSF В 2x4 2x4 DRY No.2 No.2 SPF SPF JQN TOTAL LOAD 45.9 PSF 2x4 DRY No.2 SPF DRY No.2 No.2 SPE UNFACTORED REACTIONS

1ST LCASE MA SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMITVE V SPF COMBINED WIND DEAD SOIL ALL WEBS 2x3 DRY No.2 SPF 1158 / 0 1158 / 0 0/0 0/0 0/0 458 / 0 458 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 0/0 OF 2.00/12 MINIMUM THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART DRY: SEASONED LUMBER. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S. L 9. NBCC 2015 TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.43 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) PLATES (table is in inches)
JT TYPE PLATES LEN Y TYPE TMV+p ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. B MT20 MT20 3.0 TMWW-t TTWW-h 5.0 - TPIC 2014 MT20 1.75 3.50 7.0 TMWW-t MT20 40 40 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED MT20 MT20 3.0 2.0 6.0 5.0 3.0 5.0 4.0 7.0 ROOF LIVE LOAD TTWW-h MT20 1.75 3.50 LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.14")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.25") TMWW-t BMVW1-t MT20 6.0 2.25 2.50 CHORDS WEBS 4.0 3.0 5.0 4.0 FACTORED VERT. LOAD LC1 MAX (PLF) CSI (LC FROM TO MAX. FACTORED BMWW-t MT20 40 MAX. FACTORED BS-t BMWWW-t FORCE MT20 CSI (LC) UNBRAC CSI: TC=0.71/1.00 (D-E:1) , BC=0.51/1.00 (O-P:1) , WB=0.66/1.00 (I-L:1) , SSI=0.30/1.00 (D-E:1) 6.0 2.50 1.50 (LBS) (LBS) CSI (LC) LENGTH FR-TO 10.00 C- R BMWW-t MT20 40 2.00 1.50 FR-TO BS-t BMWW-t -112.4 -112.4 0.15 (1) -112.4 -112.4 0.38 (1) MT20 A- B B- C C- D 0 / 197 R-D D-P P-E 0.04 (4) 0.24 (1) 0.51 (1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 4.0 5.0 4.0 0/62 10.00 0/117 MT20 -112.4 -112.4 0.60 (1) -112.4 -112.4 0.71 (1) -112.4 -112.4 0.71 (1) 0 / 1064 -695 / 0 -3 / 0 BMVW1-t 6.0 2.25 2.50 -2496 / 0 D- E E- F F- G 3.43 3.43 P- E E- O COMPANION LIVE LOAD FACTOR = 1.00 -2765 / 0 0.00(1)NOTES-O- G O- H M- H -2765 / 0 -112.4 -112.4 0.71 (1) 3.43 -694 / 0 0.51 (1 G- H H- I -2765 / 0 -2496 / 0 -112.4 -112.4 -112.4 -112.4 3.44 3.81 0 / 1061 0 / 117 0.24 (1) 0.04 (4) 1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2 TRUSS PLATE MANUFACTURER IS NOT 0.60 (1) 0 / 62 -1124 -1124 038(1) 10.00 M- I 0 / 197 0.04 (1) RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. -112.4 -112.4 0.05 (1) 0.0 0.0 0.02 (1) 0.66 (1) 0.66 (1) 0 / 43 10.00 -2789 / 0 -2789 / 0 L-J -183 / 0 0.0 0.0 0.02 (1) NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) S- R R- Q Q- P P- O O- N N- M -18.5 0.44 (1) -18.5 0.47 (1) -18.5 0.47 (1) -18.5 0.51 (1) -18.5 0.47 (1) 0 / 1874 10.00 MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PROFESSIONAL ENGINEERS H. J. G. ALVES 0 / 2052 -18.5 -18.5 10.00 0 / 2052 10.00 -18.5 -18.5 -18.5 0 / 2767 0 / 2052 PLATE PLACEMENT TOL. = 0.250 inches 10.00 -18.5 0.47 (1) 0 / 2052 10.00 0 / 1874 PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.88 (L) (INPUT = 0.90) JSI METAL= 0.64 (I) (INPUT = 1.00) 100009024

SO NO OF ONT ARIO

Structural component only DWG# T-2213206 REVIEWED JOB DESC. QUANTITY PIY **BAYVIEW WELLINGTON** DRWG NO. 426688 T31S TRUSS DESC. Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:11:57 2022 Page 1
ID: msZCRjkkNthSDqhrbA0REzSQw2-VpENZWuf4tVMVRUG2ZI4i3M9T0hFWkxFXPvYlGzANIW Tamarack Roof Truss, Burlington 1-3-8 7-10-8 7-10-8 1-3-8 Scale = 1:58.6 5x6 =4x6 || 3x4 || 3x8 = 4x4 =6x7 <> D Ε F Н G 8.00 12 4x4 < 5x6 🗸 3x4 || C κ 6x7 =3x4 || W10 W12 L B5 R Q 6x10 =× 4x4 = 4x4 =U 0 4x6 =4x4 =6x10 =3x4 || 3x4 || 31-3-0 1-8-0 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT ≈ 155 lb N. L. G. A. RULES CHORDS SIZE A - D 2x4 D - G 2x4 G - I 2x4 I - M 2x4 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** BEARINGS FACTORED GROSS REACTION LUMBER DESCR No.2 No.2 SPF DRY MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: DRY LL = DL = LL = GROSS REACTION 32.5 BRG BRG IN-SX TOP CH. PSF HORZ UPLIFT IN-SX 6.0 0.0 7.4 PSF PSF No.2 SPF VERT HORZ DOWN DRY No.2 No.2 SPF SPF 5-8 5-8 BOT CH. W -N -2x4 DRY PSF DL 2x4 No.2 SPF TOTAL LOAD 45.9 PSF L F P W -T -S -244 DRY No 2 SPF DRY SPF UNFACTORED REACTIONS SPACING = 24.0 IN. C/C MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMITTER DRY SPF No.2 1ST LCASE K LIVE 0/0 WIND 2x4 DRY No.2 SPF COMBINED PERM.LIVE DEAD SOIL N SPF 457 / 0 458 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 1160 / 0 0/0 0/0 0/0 OF 2 00/12 MINIMUM ALL WEBS DRY SPE 2x3 No.2 EXCEPT BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) W, N THIS TRUSS IS DESIGNED FOR RESIDENTIAL DRY SPF SPF 2x4 OR SMALL BUILDING REQUIREMENTS OF PART BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.30 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED. Ν 2x4 DRY No.2 9. NBCC 2015 2×4 DRY SPF THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019 DRY: SEASONED LUMBER - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-U. TPIC 2014

PLATES (table is in inches)						
JT	TYPE	PLATES	w	LEN	Υ .	X
	F, K					
В	TMV+p	MT20	3.0	4.0		
С	TMWW-t	MT20	5.0	6.0		
D	TTWW-I	MT20	5.0	6.0	2.00	4.00
Ε	TMWW+t	MT20	4.0	6.0		
G	TS-t	MT20	3.0	8.0		
н	TMWW-t	MT20	4.0	4.0		
1	TTWW-h	MT20	6.0	7.0	1.75	3.50
J	TMWW-t	MT20	4.0	4.0		
L	q-WVMT	MT20	6.0	7.0	Edge	•
N	BMVW1-t	MT20	4.0	6.0	•	
0	BMV+p	MT20	3.0	4.0		
P	BVMWWW-I	MT20	6.0	10.0	3.00	3.50
Q	BMWW-t	MT20	4.0	4.0		
R	BMWW-t	MT20	4.0	4.0	2.00	1.50
s	BVMWWW-I	MT20	6.0	10.0	3.00	3.25
T	BMV+p	MT20	3.0	4.0		
lυ	BMWWW-t	MT20	6.0	10.0	2.75	3.00
V	BMWW-t	MT20	4.0	4.0		

Structural component only DWG# T-2213232

BMVW1-t MT20	5.0 6.0 2.25 2.50
PROFESS 06-02 H. J. G. 100009	SIONAL ENGLAND 2-22 ALVES 9024 DE ONTARIO

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS				W E	BS	
MAX	. FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)		CSI (LC)				
FR-TO	, ,	FROM TO		LENGTH			
A-B	0 / 43	-112.4 -112.4	0.15(1)	10.00	C-V	0 / 196	0.04(1)
B- C	0 / 62	-112.4 -112.4			V- D		0.04 (4)
C-D	-2491 / 0	-112.4 -112.4					0.23 (1)
D-E	-2569 / 0	-112.4 -112.4				-1494 / 0	0.42 (1)
E-F	-3298 / 0	-112.4 -112.4				0 / 2604	0.42 (1)
F- G	-3311 / 0	-112.4 -112.4				0 / 1257	0.28 (1)
G-H	-3311 / 0	-112.4 -112.4				0 / 404	0.09 (1)
H-I	-3180 / 0	-112.4 -112.4				-407 / 0	0.14 (1)
I- J	-2921 / 0	-112.4 -112.4			J- P	0 / 42	0.01 (4)
J- K	-3232 / 0	-112.4 -112.4			W-C	-2784 / 0	0.66 (1)
K-L	-3207 / 0	-112.4 -112.4			P-N	-134 / 0	0.01 (1)
L- M	0 / 43	-112.4 -112.4	0.15 (1)	10.00	P-L	0 / 2623	0.42 (1)
W-B	-183 / 0	0.0 0.0	0.02(1)	7.81	R-I	0 / 1143	0.26 (1)
N-L	-2225 / 0		0.23 (1)			0 / 197	0.04 (1)
					R- H	-764 / 0	0.37 (1)
W-V	0 / 1871	-18.5 -18.5	0.44 (1)	10.00			,
V-U	0 / 2047	-18.5 -18.5	0.46 (1)	10.00			
U-T	0 / 66	-18.5 -18.5	0.07 (4)	10.00			
T-S	0 / 37	0.0 0.0	0.10 (1)	10.00			
S-F	-440 / 0	0.0 0.0	0.18 (1)	7.81			
S-R	0 / 3180	-18.5 -18.5	0.57 (1)	10.00			
R-Q	0 / 2413	-18.5 -18.5	0.47 (1)	10.00			
Q-P	0 / 2699	-18.5 -18.5	0.53 (1)	10.00			
O- P	0 / 16	0.0 0.0	0.16 (1)	10.00			
P-K	-156 / 0	0.0 0.0	0.15 (1)	7.81			
0- N	0 / 112	-18.5 -18.5	0.03 (1)	10.00			

NOTES-(1)

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.18")
ALLOWABLE DEFL.(TL) = L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.32")

CSI: TC=0.60/1.00 (C-D:1) , BC=0.57/1.00 (R-S:1) , WB=0.66/1.00 (C-W:1) , SSI=0.26/1.00 (H-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Dea

JSI GRIP= 0.89 (R) (INPUT = 0.90) JSI METAL= 0.64 (C) (INPUT = 1.00)

CONTINUED ON PAGE 2

JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T31A TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:13 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-8IKmNpK2awGJbX1VoYBJQ9CBUNDuUpD3yw?3XJzANRa 1-3-8 7-10-8 4-10-8 Scale = 1:51.8 5x6 =4x4 =3x8 =2x4 || 5x8 = D G 8.00 12 5x6 || 5x6 🖊 C 3x4 || 0 L Q 5x6 Ρ N М κ 3x8 =4x4 =4x4 =5x6 3x8 ||

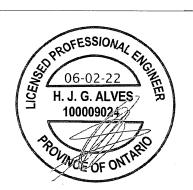
LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR No.2 No.2 2x4 DRY SPF 2x4 2x4 DRY DRY SPF No.2 SPF SPF SPF SPF SPF SPF 2x4 DRY No.2 2x4 2x4 DRY DRY No.2 No.2

No.2

CHORD A - D D - F F - H H - I Q - B J - I Q - L L - J DRY ALL WEBS 2x3 DRY No.2

DRY

DRY: SEASONED LUMBER.


2x4

1-3-8

PLATES (table is in inches)						
JT	TYPE	PLATES	W	LEN	Υ	Χ
В	TMV+p	MT20	3.0	4.0		
С	TMWW-t	MT20	5.0	6.0		
D	TTWW-I	MT20	5.0	6.0	2.00	4.00
Ε	TMWW-t	MT20	4.0	4.0		
F	TS-t	MT20	3.0	8.0		
G	TMW+w	MT20	2.0	4.0		
Н	TTWW-I	MT20	5.0	8.0	2.00	5.75
1	TMVW+p	MT20	5.0	6.0	Edge	
J	BMV1+t	MT20	3.0	8.0	Edge	0.50
K	BMWW-t	MT20	4.0	6.0		
L	BS-t	MT20	3.0	8.0		
M	BMWWW-t	MT20	5.0	6.0	2.00	1.50
Ν	BMWW-t	MT20	4.0	4.0		
0	BS-t	MT20	3.0	8.0		
Ρ	BMWW-t	MT20	4.0	4.0		
Q	BMVW1-t	MT20	5.0	6.0	2.50	2.50

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

Structural component only DWG# T-2213207

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	
BEARINGS	

29-11-0

29-11-0

<u>:Α</u>	RINGS						
	FACTORED		MAXIMUI	M FACTO	INPUT	REQRD	
	GROSS RE	EACTION	GROSS I	REACTIO	BRG	BRG	
•	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2113	0	2113	0	0	5-8	5-8
	1958	0	1958	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J. MINIMUM BEARING LENGTH AT JOINT J = 1-8.

UNFACTORED REACTIONS MAY /MIN COMPONENT REACT

	131 LUMSE		IVIIIA. COIVIFOR	ENT REACTION	45			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
Q	1478	1061 / 0	0/0	0/0	0/0	417 / 0	0/0	
J	1372	972 / 0	0/0	0/0	0/0	401 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q

SPF

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.74 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-M.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					W E	BS	
MAX	C. FACTORED	FACTOR	ED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOA	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF	=) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	ТО		LENGTH	FR-TO		
A-B	0 / 43 0 / 41	-112.4 -	112.4	0.15(1)	10.00	C-P	0 / 76	0.03(4)
B-C	0 / 41	-112.4 -	112.4	0.31(1)	10.00	P- D	0 / 131	0.05 (4)
C-D	-2199 / 0	-112.4 -	112.4	0.44(1)	4.17	D- N	0 / 800	0.18 (1)
D-E	-2346 / 0	-112.4 -	112.4	0.66 (1)	3.74	N-E	-503 / 0	0.37 (1)
	-2172 / 0	-112.4 -	112.4	0.64(1)	3.88	E-M	-262 / 0	0.13(1)
F-G	-2172 / 0	-112.4 -	112.4	0.64 (1)	3.88	M- G	-696 / 0	0.51 (1)
G-H	-2172 / 0	-112.4 -	112.4	0.63(1)	3.89	M- H	0 / 1343	0.30(1)
H-1	-1541 / 0			0.54(1)		K- H	-679 / 0	0.50(1)
Q-B	-249 / 0	0.0	0.0	0.03(1)	7.81	Q-C	-2518 / 0	0.76 (1)
J- I	-1923 / 0	0.0	0.0	0.38 (1)	6.07	K-I	0 / 1505	0.34 (1)
Q-P	0 / 1759	-18.5	-18.5	0.42 (1)	10.00			
P-O	0 / 1808	-18.5	-18.5	0.43(1)	10.00			
O- N	0 / 1808	-18.5	-18.5	0.43 (1)	10.00			
N- M	0 / 2346			0.43 (1)				
M-L	0 / 1269	-18.5	-18.5	0.28 (1)	10.00			
L-K	0 / 1269	-18.5	-18.5	0.28 (1)	10.00			
K-J	0/0	-18.5	-18.5	0.12 (4)	10.00			
K-J	0/0	-18.5	-18.5	0.12 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = 32.5 DL = 6.0 LL = 0.0 DL = 7.4 AD = 45.9 CH PSF PSF PSF PSF TOTAL LOAD PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2 00/12 MINIMUM

TOTAL WEIGHT = 130 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 **TPIC 2014**

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.00")
CALCULATED VERT. DEFL.(LL)= L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (1.00")
CALCULATED VERT. DEFL.(TL)= L/999 (0.19")

CSI: TC=0.66/1.00 (D-E:1) , BC=0.43/1.00 (M-N:1) , WB=0.76/1.00 (C-Q:1) , SSI=0.30/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

 NAIL VALUES

 PLATE
 GRIP(DRY)
 SHEAR
 SECTION

 (PSI)
 (PLI)
 (PLI)

 MAX
 MIN
 MAX
 MIN

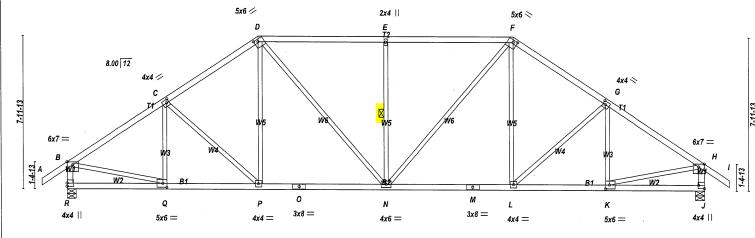

 MT20
 650
 371
 1747
 788
 1987
 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (Q) (INPUT = 0.90) JSI METAL= 0.62 (I) (INPUT = 1.00)

QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T32 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Thu Jun 2 09:33:14 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-cUu8a9LgLEOACgchMGiYyMlL6nYNDKfCBald3lzANRZ Tamarack Roof Truss, Burlington 1-3-8 9-10-8 13-2-0 9-10-8 1-3-8 Scale = 1:57.4 5x6 🖊 2x4 || 5x6 <> D F

CR.
F
F
F
F
F
F
F
F
F

DRY: SEASONED LUMBER.

1-3-8

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	-X					
В	TMVW-p	MT20	6.0	7.0	Edge						
С	TMWW-t	MT20	4.0	4.0	2.00	1.50					
D	TTWW-h	MT20	5.0	6.0	1.50	2.50					
Ε	TMW+w	MT20	2.0	4.0							
F	TTWW-h	MT20	5.0	6.0	1.50	2.50					
G	TMWW-t	MT20	4.0	4.0	2.00	1.50					
Н	TMVW-p	MT20	6.0	7.0	Edge	•					
J	BMV1+p	MT20	4.0	4.0	2.00	Edge					
K	BMWW-t	MT20	5.0	6.0	2.50	2.50					
L	BMWW-t	MT20	4.0	4.0							
M	BS-t	MT20	3.0	8.0							
N	BMWWW-t	MT20	4.0	6.0							
0	BS-t	MT20	3.0	8.0							
Р	BMWW-t	MT20	4.0	4.0							
Q	BMWW-t	MT20	5.0	6.0	2.50	2.50					
R	BMV1+p	MT20	4.0	4.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

Structural component only DWG# T-2213208

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	
BEARINGS	
DEATHINGS	

32-11-0

32-11-0

EΑ	RINGS						
	FACTOR	RED	MAXIMUI	M FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS'I	REACTIC	BRG	BRG	
Τ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2309	0	2309	0	0	5-8	5-8
	2309	0	2309	0	0	5-8	5-8

UNFACTORED REACTIONS										
	1ST LCASE	MAX./N	JIN. COMPON	NENT REACTION	1S					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND					
R	1616	1158 / 0	0/0	0/0	0/0					
J	1616	1158 / 0	0/0	0/0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R. J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.52 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

DEAD

458 / 0

458 / 0

SOIL

0/0

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE		
	. FACTORED	FACTO					MAX. FACTO	
MEMB.		VERT. LO					FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A- B	0 / 43	-112.4	-112.4	0.15(1)	10.00	Q-C	-370 / 0	0.12(1)
.B- C	-2547 / 0	-112.4	-112.4	0.45 (1)	3.91	C-P	-276 / 0	0.22 (1)
C- D	-2376 / 0	-112.4	-112.4	0.43 (1)	4.05	P- D	0 / 296	0.07(1)
D- E	-2390 / 0	-112.4	-112.4	0.73(1)	3.52	D- N	0 / 679	0.15(1)
E-F	-2390 / 0	-112.4	-112.4	0.73 (1)		N-E	-909 / 0	0.37 (1)
F- G	-2376 / 0	-112.4	-112.4	0.43 (1)	4.05	N-F	0 / 679	0.15 (1)
G-H	-2547 / 0	-112.4	-112.4	0.45 (1)	3.91	L-F	0 / 296	0.07 (1)
H- 1	0 / 43	-112.4	-112.4	0.15 (1)	10.00	L-G	-276 / 0	0.22 (1)
R-B	-2267 / 0	0.0	0.0	0.23 (1)	5.66	K-G	-370 / 0	0.12 (1)
J- H	-2267 / 0	0.0		0.23 (1)		B- Q	0 / 2198	0.49 (1)
				٠,		K- H		0.49 (1)
R-Q	0/0	-18.5	-18.5	0.10 (4)	10.00			(-)
Q-P	0 / 2149	-18.5		0.42 (1)				
P- 0	0 / 1948	-18.5	-18.5					
O- N	0 / 1948	-18.5						
N- M	0 / 1948	-18.5		0.39 (1)				
M-L	0 / 1948	-18.5						
L-K	0 / 2149	-18.5		0.42 (1)				
K-J	0/0	-18.5		0.10 (4)				
	2. 0	.0.0	. 0.0	30 (4)	. 5.00			

DESIGN CRITERIA

SPECIFIED LOADS: LU = 32.5 DL = 6.0 LL = 0.0 DL = 7.4 AD = 45.9 PSF PSF TOTAL LOAD PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

1-3-8

TOTAL WEIGHT =

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) **TPIC 2014**

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.11")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.21")

CSI: TC=0.73/1.00 (D-E:1) , BC=0.42/1.00 (K-L:1) , WB=0.49/1.00 (H-K:1) , SSI=0.36/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

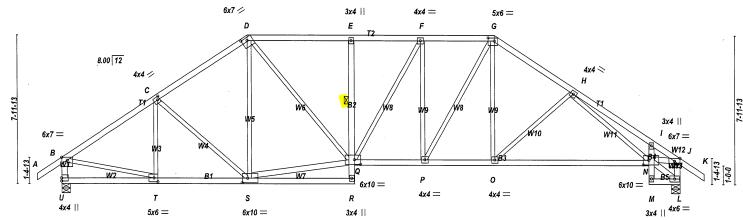

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.84 (K) (INPUT = 0.90) JSI METAL= 0.62 (O) (INPUT = 1.00)

BAYVIEW WELLINGTON QUANTITY PLY JOB DESC. DRWG NO T32S TRUSS DESC. 426688 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:11:57 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-VpENZWuf4tVMVRUG2ZI4i3MBs0g4WnYFXPvYlGzANIW 1-3-8 9-10-8 13-2-0 9-10-8 Scale = 1:59.2 6x7 // 3x4 || 4x4 = 5x6 = D E F G

31-3-0 1-8-0 1-3-8 32-11-0 TOTAL WEIGHT = 162 lb

LILES			
SIZE		LUMBER	DESCR.
2x4	DRY	No.2	SPF
2x4		No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4		No.2	SPF
2x4		No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x3	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
	2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4	SIZE 2x4 DRY	SIZE 2x4 DRY No.2

DRY: SEASONED LUMBER.

PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Χ					
В	TMVW-p	MT20	6.0	7.0	Edge						
С	TMWW-t	MT20	4.0	4.0	2.00	1.50					
D	TTWW-h	MT20	6.0	7.0	1.75	3.50					
E	TMV+p	MT20	3.0	4.0							
F	TMWW-t	MT20	4.0	4.0							
G	TTWW-I	MT20	5.0	6.0	2.00	4.00					
н	TMWW-t	MT20	4.0	4.0							
1	TMV+p	MT20	3.0	4.0							
J	TMVW-p	MT20	6.0	7.0	Edge						
L	BMVW1-t	MT20	4.0	6.0							
M	BMV+p	MT20	3.0	4.0							
N	BVMWWW-I	MT20	6.0	10.0	3.00	3.50					
0	BMWW-t	MT20	4.0	4.0							
P	BMWW-t	MT20	4.0	4.0							
Q	BVMWWW-I	MT20	6.0	10.0	3.00	4.00					
R	BMV+p	MT20	3.0	4.0							
S	BMWWW-t	MT20	6.0	10.0	3.00	3.50					
Т	BMWW-t	MT20	5.0	6.0	2.50	2.50					
U	BMV1+p	MT20	4.0	4.0							

Structural component only	
Structural component only	
DWG# T-2213233	
D V V CIT 1-22 10200	

BUIL	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS								
JT U L	FACTOR GROSS RE VERT 2306 2312		MAXIMUN GROSS F DOWN 2306 2312			INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8		

UNF	JNFACTORED REACTIONS									
	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	NS.					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
U	1614	1156 / 0	0/0	0/0	0/0	457 / 0	0/0			
L	1618	1160/0	0/0	0/0	0/0	458 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, L

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 3.56 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 6.25 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-Q.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS				WEBS				
	C. FACTORED						MAX. FACTO		
MEMB.	FORCE	VERT. LO			MAX.		FORCE	MAX	
	(LBS)			CSI (LC)			(LBS)	CSI (LC)	
FR-TO		FROM			LENGTH	FR-TO			
A-B	0 / 43	-112.4	-112.4	0.15(1)	10.00	T-C	-372 / 0	0.12(1)	
	-2543 / 0				3.91			0.22(1)	
C- D	-2375 / 0	-112.4	-112.4	0.43(1)	4.05	S- D	-43 / 69	0.05(1)	
	-2669 / 0	-112.4	-112.4	0.51 (1)	3.74	S-Q	0 / 1928	0.31 (1)	
E-F	-2676 / 0	-112.4	-112.4	0.39 (1)	3.86	D-Q	0/1136	0.26 (1)	
	-2583 / 0				4.07	0- G	0/515	0.12(1)	
G-H	-2715 / 0	-112.4	-112.4	0.35 (1)	3.91	O- H	-537 / 0	0.31(1)	
H- I	-3276 / 0			0.40(1)		H- N		0.04(1)	
I- J	-3240 / 0	-112.4	-112.4	0.22(1)	3.74	B- T	0/2194	0.49 (1)	
J- K	0 / 43	-112.4	-112.4	0.15(1)	10.00	P- G		0.16 (1)	
U-B	-2263 / 0	0.0	0.0	0.23 (1)	5.66	Q-F	0 / 188	0.04 (1)	
L- J	-2224 / 0	0.0	0.0	0.23 (1)	5.71	P- F	-565 / 0	0.47(1)	
						N- L	-135 / 0	0.01(1)	
U-T	0/0	-18.5	-18.5	0.10 (4)	10.00	N- J	0 / 2665	0.43(1)	
T-S	0 / 2145	-18.5	-18.5	0.42 (1)	10.00				
S-R	0 / 45	-18.5	-18.5	0.13 (4)	10.00				
R-Q	0 / 46	0.0	0.0	0.07 (1)	10.00				
	-618 / 0	0.0		0.08 (1)					
Q-P	0 / 2584	-18.5		0.46 (1)					
P-O	0 / 2238	-18.5	-18.5	0.52 (1)	10.00				
O- N	0 / 2631	-18.5	-18.5	0.58 (1)	10.00				
M-N	0 / 16	0.0	0.0	0.16(1)	10.00				
N-I	-240 / 0	0.0			7.81				
M-L	0/113	-18.5	-18.5	0.03 (1)	10.00				
NOTE	S- (1)								

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DESIGN CRITERIA

SPECIFIED LOADS: LL DL LL DL PSF PSF PSF CH. 32.5 BOT CH. 0.0 7.4 TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

1-3-8

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL) = L/999 (0.14")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/999 (0.29")

CSI: TC=0.51/1.00 (D-E:1) , BC=0.58/1.00 (N-O:1) , WB=0.49/1.00 (B-T:1) , SSI=0.29/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

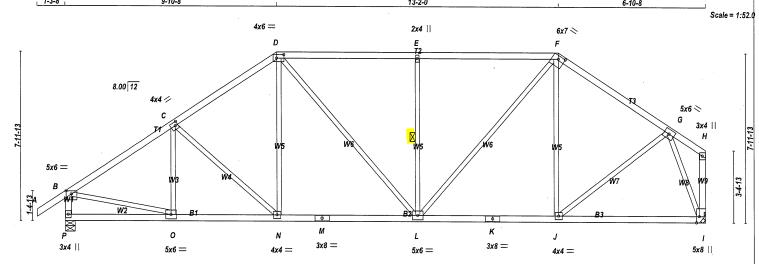
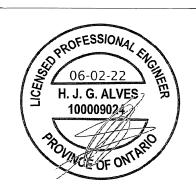

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.89 (G) (INPUT = 0.90) JSI METAL= 0.50 (N) (INPUT = 1.00)

CONTINUED ON PAGE 2

QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 426687 T32A TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MITek Industries, Inc. Thu Jun 2 09:33:15 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-4gSWoVMI6YW1qqBuwzEnVaHXQBu7ykIMPEUAbCzANRY 1-3-8 9-10-8 6-10-8 4x6 =2x4 ||


LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
P - B	2x4	DRY	No.2	SPF
1 - H	2x4	DRY	No.2	SPF
P - M	2x4	DRY	No.2	SPF
M - K	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL.	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Χ					
В	TMVW-p	MT20	5.0	6.0	1.75	3.00					
C	TMWW-t	MT20	4.0	4.0	2.00	1.50					
D	TTWW-I	MT20	4.0	6.0	2.00	4.00					
E	TMW+w	MT20	2.0	4.0							
F	TTWW-h	MT20	6.0	7.0	1.75	3.50					
G	TMWW-t	MT20	5.0	6.0							
H	TMV+p	MT20	3.0	4.0							
1	BMVW1+t	MT20	5.0	8.0	Edge	1.50					
J	BMWW-t	MT20	4.0	4.0	-						
K	BS-t	MT20	3.0	8.0							
L	BMWWW-t	MT20	5.0	6.0							
M	BS-t	MT20	3.0	8.0							
N	BMWW-t	MT20	4.0	4.0							
0	BMWW-t	MT20	5.0	6.0							
Р	BMV1+p	MT20	3.0	4.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

Structural component only DWG# T-2213209

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER
BEARINGS

29-11-0 29-11-0

Α	RINGS						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2113	0	2113	0	0	5-8	5-8
	1958	0	1958	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	1S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ρ	1478	1061 / 0	0/0	0/0	0/0	417 / 0	0/0
1	1372	972 / 0	0/0	0/0	0/0	401 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.88 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-L.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS	FACTO	DED			W E	BS	NDED.	
MEMB.	K. FACTORED FORCE				MAN	NAC NAD	MAX. FACTO		
IVILIVID.	(LBS)				MAX.		. FORCE (LBS)		
FR-TO	(250)				LENGTH			031 (L0)	
A-B	0 / 43			0.15 (1)			-322 / 0	0.11(1)	
B- C	-2280 / 0				4.12			0.26 (1)	
C-D	-2073 / 0	-112.4					0/325	0.07(1)	
D- E	-1968 / 0	-112.4	-112.4	0.70(1)	3.88	D-L	0/419	0.09 (1)	
E-F		-112.4					-911 / 0	0.37(1)	
F- G	-1675 / 0	-112.4	-112.4	0.40(1)	4.71	L- F	0 / 930	0.21(1)	
G-H	0/92	-112.4	-112.4	0.39 (1)	10.00	J-F	-314/3	0.38 (1)	
	-2071 / 0	0.0	0.0	0.21(1)	5.88	J- G	0 / 740	0.17(1)	
I- H	0 / 72	0.0	0.0	0.01(1)	10.00	B-O	0 / 1970	0.44 (1)	
						G-I	-2130 / 0	0.70(1)	
P-O	0/0	-18.5	-18.5	0.10 (4)	10.00				
O- N	0 / 1927	-18.5	-18.5	0.38 (1)	10.00				
N- M	0 / 1695	-18.5		0.35 (1)					
M- L	0 / 1695	-18.5	-18.5	0.35 (1)	10.00				
L- K	0 / 1363	-18.5	-18.5	0.34(1)	10.00				
K- J	0 / 1363	18.5	-18.5	0.34(1)	10.00				
J- I	0 / 787	-18.5	-18.5	0.26 (4)	10.00				

DESIGN CRITERIA

PECIFIED LOADS: LL = DL = LL = DL = AD = 32.5 PSF CH. 6.0 0.0 7.4 PSF PSF PSF TOTAL LOAD 45.9 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

TOTAL WEIGHT = 134 lb [M][F

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9 NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019

- PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.00")
CALCULATED VERT. DEFL.(LL)= L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (1.00")
CALCULATED VERT. DEFL.(TL)= L/999 (0.16")

CSI: TC=0.70/1.00 (E-F:1) , BC=0.38/1.00 (N-O:1) , WB=0.70/1.00 (G-I:1) , SSI=0.36/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (O) (INPUT = 0.90) JSI METAL= 0.55 (M) (INPUT = 1.00)

JOB DESC. QUANTITY **BAYVIEW WELLINGTON** DRWG NO 426687 T33 10 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:15 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-4gSWoVMI6YW1qqBuwzEnVaHXIBsEyIsMPEUAbCzANRY

1-3-8 11-10-8 11-10-8 1-3-8 Scale = 1:60. 4x4 = 8.00 12 4x4 = G 3x8 // 3x8 < Н D 4x4 < С 6x7 = 6x7 =В W2 W2 0 N М 4x4 || 4x4 || 5x6 = 5x6 = 5x6 =5x6 =

LUMBER N. L. G. A. RULES
CHORDS SIZE
A - D 2x4
D - E 2x4
E - G 2x4 LUMBER DESCR. No.2 No.2 SPF SPF DEGIKB DRY DRY SPF No.2 G -H -Q -SPF SPF SPF 2x4 DRY No.2 2x4 2x4 DRY DRY No.2 No.2 LQO JON 2x4 DRY No.2 SPE DRY SPF

No.2

No.2

1-3-8

DRY: SEASONED LUMBER.

2x4

DRY

Ν

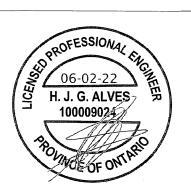
ALL WEBS

EXCEPT

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW-p
 MT20


 C
 TMWW-t
 MT20
 LEN Y 7.0 Ec 4.0 2.0 Х 6.0 Edge 2.00 1.50 8.0 4.0 4.0 TS-t MT20 3.0 4.0 4.0 4.0 3.0 4.0 TTW-I TMWW-t MT20 MT20 TTW-I MT20 4.0 4.0 7.0 4.0 6.0 6.0 6.0 TS-t TMWW-t 2.00 1.50 Edge 2.00 Edge 2.50 2.75 3.00 3.00 q-WVMT MT20 6.0 4.0 5.0 5.0 5.0 5.0 BMV1+p BMWW-t MT20 BSWWW-I MT20 3.00 3.00 2.50 2.75 RSWWW-I MT20 BMWW-t BMV1+p

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

4.0

MT20

NOTES-1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

Structural component only DWG# T-2213210

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

32-11-0

32-11-0

A	HINGS						
	FACTORED		MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS REACTION			BRG	BRG
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2309	0	2309	0	0	5-8	5-8
	2309	0	2309	0	0	5-8	5-8

UNFACTORED REACTIONS

1ST LCASE MAX./MIN. COMPONENT REACTIONS

JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1616	1158 / 0	0/0	0/0	0/0	458 / 0	0/0
L	1616	1158 / 0	0/0	0/0	0/0	458 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, L

E

SPF

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.60 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-O, F-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	C H O R D S W E B S MAX. FACTORED MAX. FACTORED									
MAX	X. FACTORED	FACTORED				MAX. FACTO	RED			
MEMB.							MAX			
	(LBS)	(PLF))	(LBS)	CSI (LC)			
FR-TO		FROM TO		LENGTH						
		-112.4 -112.4					0.11(1)			
B- C	-2584 / 0	-112.4 -112.4	4 0.68 (1)	3.60	- C- O	-496 / 0	0.63(1)			
	-2224 / 0		1 0.62 (1)	3.91	0- E	0 / 763	0.17(1)			
D-E	-2224 / 0	-112.4 -112.4	1 0.62 (1)	3.91	O- F	-348 / 0	0.26(1)			
E-F	-1820 / 0	-112.4 -112.4			F- N	-348 / 0	0.26(1)			
F-G	-1820 / 0	-112.4 -112.4			N- G	0 / 763	0.17(1)			
G-H	-2224 / 0	-112.4 -112.4				-496 / 0	0.63(1)			
H-I	-2224 / 0	-112.4 -112.4	1 0.62 (1)	3.91	M- I	-260 / 41				
I- J	-2584 / 0	-112.4 -112.4	4 0.68 (1)	3.60	B-P	0 / 2222	0.50 (1)			
J- K	0 / 43	-112.4 -112.4	4 0.15 (1)	10.00	M- J	0 / 2222	0.50 (1)			
		0.0 0.0	0.23 (1)	5.66			` '			
L-J	-2264 / 0	0.0 0.0	0.23 (1)	5.66						
ì										
Q-P	0/0	-18.5 -18.5	5 0.18 (4)	10.00						
P- 0		-18.5 -18.5								
0- N		-18.5 -18.5								
N- M		-18.5 -18.5								
M-L		-18.5 -18.5								
1 -			(-)							

DESIGN CRITERIA

SPECIFIED LOADS: LL = 32.5 PSF DL = 6.0 PSF LL = 0.0 PSF DL = 7.4 PSF TOP CH. TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

THIS DESIGN COMPLIES WITH:

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2 00/12 MINIMUM

1-3-8 TOTAL WEIGHT = 10 X 146 = 1463 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

- PART 9 OF BCBC 2018, ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL)= L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL) = L/845 (0.47")

CSI: TC=0.68/1.00 (I-J:1) , BC=0.57/1.00 (N-O:1) , WB=0.63/1.00 (I-N:1) , SSI=0.27/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

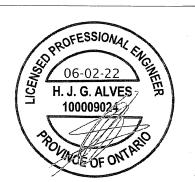
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (E) (INPUT = 0.90) JSI METAL= 0.50 (P) (INPUT = 1.00)

JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T33A TRUSS DESC Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:16 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-Yt0u?rNwtreuS_m4Uhl02nqi0bE6hBOVeuEk8ezANRX Tamarack Roof Truss, Burlington

1-3-8 11-10-8 8-10-8 4x6 = Scale = 1:62. 2x4 || 5x6 < 8.00 12 Ε G 3x8 // 4x4 > 4x4 / 5x6 || 5x6 = 3-4-13 W2 ā 0 N κ 3x4 || 4x6 || 5x6 = 5x6 =4x6 =4x4 =4x6 =3x8 == 29-11-0


LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
G - I	2x4	DRY	No.2	SPF
Q - B	2x4	DRY	No.2	SPF
J - I	2x4	DRY	No.2	SPF
Q - O	2x4	DRY	No.2	SPF
O - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
				i
ALL WEBS	2x3	DRY	No.2	SPF
EVCERT				1

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Х						
В	TMVW-p	MT20	5.0	6.0	1.75	3.00						
С	TMWW-t	MT20	4.0	4.0	2.00	1.50						
D	TS-t	MT20	3.0	8.0								
Ε	TTWW-I	MT20	4.0	6.0	2.00	4.00						
F	TMW+w	MT20	2.0	4.0								
G	TTWW-h	MT20	5.0	6.0	1.50	2.75						
Н	TMWW-t	MT20	4.0	4.0	2.00	1.50						
1	TMVW+p	MT20	5.0	6.0	Edge							
J	BMV1+t	MT20	4.0	6.0	Edge	0.50						
K	BMWW-t	MT20	4.0	6.0								
L	BMWW-t	MT20	4.0	4.0								
M	BS-t	MT20	3.0	8.0								
Ν	BMWWW-t	MT20	4.0	6.0								
0	BSWW-I	MT20	5.0	6.0	3.00	3.00						
Ρ	BMWW-t	MT20	5.0	6.0								
Q	BMV1+p	MT20	3.0	4.0								

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

Structural component only DWG# T-2213211

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER
BEARINGS

29-11-0

:A	RINGS						
FACTORED			MAXIMUN	1 FACTO	INPUT	REQRD	
GROSS REACTION			GROSS REACTION			BRG	BRG
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2113	0	2113	0	0	5-8	5-8
	1958	0	1958	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J. MINIMUM BEARING LENGTH AT JOINT J = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	VENT REACTION	1S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1478	1061 / 0	0/0	0/0	0/0	417 / 0	0/0
J	1372	972 / 0	0/0	0/0	0/0	401 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q

JT Q

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.81 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-N, G-L.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

<u>LOADING</u> TOTAL LOAD CASES: (4)

ORDS				W E	BS	
K. FACTORED	FACTORED				MAX. FACTO	RED
FORCE	VERT. LOAD L	C1 MAX	MAX.	MEMB.	FORCE	MAX
(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
	FROM TO		LENGTH	FR-TO		• /
0 / 43	-112.4 -112	.4 0.15 (1)	10.00	P-C	-218 / 53	0.10(1)
				C-O	-532 / 0	0.67 (1)
-1913 / 0	-112.4 -112	.4 0.59 (1)	4.19	0- E	0 / 426	0.10 (1)
-1913 / 0	-112.4 -112	.4 0.59 (1)	4.19	E- N	0 / 185	0.04 (1)
-1641 / 0	-112.4 -112	.4 0.32 (1)	4.83	N-F	-626 / 0	0.36 (1)
				N- G	0/619	0.14(1)
-1672 / 0	-112.4 -112	.4 0.32 (1)	4.81	L- G	-25 / 52	0.02 (4)
-1511 / 0	-112.4 -112	.4 0.31 (1)	5.01	L- H	0 / 130	0.03 (1)
-2067 / 0	0.0 0	.0 0.21 (1)	5.88	K- H	-780 / 0	0.52 (1)
-1923 / 0	0.0 0	.0 0.38 (1)	6.07	B-P	0 / 1986	0.45 (1)
					0 / 1551	0.35 (1)
0/0	-18.5 -18	.5 0.18 (4)	10.00	100		
0 / 1955	-18.5 -18	.5 0.40 (1)	10.00			
0 / 1557	-18.5 -18	.5 0.29 (1)	10.00			
0 / 1360	-18.5 -18	.5 0.26 (1)	10.00			
0 / 1360	-18.5 -18	.5 0.26 (1)	10.00			
0 / 1284	-18.5 -18	.5 0.25 (1)	10.00			
0/0	-18.5 -18	.5 0.09 (4)	10.00			
	C. FACTORED FORCE (LBS) 0 / 43 -2306 / 0 -1913 / 0 -1913 / 0 -1641 / 0 -1672 / 0 -1511 / 0 -2067 / 0 -1923 / 0 0 / 0 0 / 1955 0 / 1557 0 / 1360 0 / 1360 0 / 1364	(. FACTORED FACTORED (PLF) FORCE (LBS) 0 /43 -112.4 -112 -2306 / 0 -112.4 -112 -1913 / 0 -112.4 -112 -1641 / 0 -112.4 -112 -1672 / 0 -112.4 -112 -1672 / 0 -112.4 -112 -1672 / 0 -112.4 -112 -1672 / 0 -112.4 -112 -1511 / 0 -112.4 -112 -1511 / 0 -112.4 -12 -1511 / 0 -112.4 -112 -1511 / 0 -112.4 -112 -1515 / 0 -112.5 -18 0 / 1360 -18.5 -18 0 / 1360 -18.5 -18 0 / 1360 -18.5 -18 0 / 1380 -18.5 -18	(C. FACTORED FACTORED FACTORED FORCE (LBS) (PLF) CSI (LC) FROM TO CSI (LC) TIL24 -1124 0.59 (1) -1641/0 -1124 -1124 0.32 (1) -1641/0 -1124 -1124 0.32 (1) -1672/0 -1124 -1124 0.32 (1) -1511/0 -1124 -1124 0.32 (1) -1932/0 0.0 0.0 0.21 (1) -1923/0 0.0 0.0 0.21 (1) -1923/0 -18.5 -18.5 0.40 (1) 0/1360 -18.5 -18.5 0.29 (1) 0/1360 -18.5 -18.5 0.26 (1) 0/1360 -18.5 -18.5 0.26 (1) 0/1360 -18.5 -18.5 0.26 (1) 0/1360 -18.5 -18.5 0.26 (1) 0/1360 -18.5 -18.5 0.26 (1) 0/1360 -18.5 -18.5 0.26 (1) 0/1360 -18.5 -18.5 0.26 (1) 0/1360 -18.5 -18.5 0.25 (1) 0/1360 -19.5 (1)	K. FACTORED FORCE (LBS) FACTORED VERT. LOAD LC1 (PLF) MAX CSI (LC) MAX. UNBRAC LENGTP 0 / 43 -112.4 -112.4 0.15 (1) 10.00 -2306 / 0 -112.4 -112.4 0.59 (1) 4.19 -1913 / 0 -112.4 -112.4 0.59 (1) 4.19 -1641 / 0 -112.4 -112.4 0.32 (1) 4.83 -1672 / 0 -112.4 -112.4 0.32 (1) 4.83 -1511 / 0 -112.4 -112.4 0.32 (1) 4.83 -1511 / 0 -112.4 -112.4 0.32 (1) 4.83 -1511 / 0 -112.4 -112.4 0.32 (1) 4.81 -1511 / 0 -112.4 -112.4 0.32 (1) 5.88 -1923 / 0 0.0 0.0 0.21 (1) 5.88 -1923 / 0 0.0 0.0 0.21 (1) 5.88 -1932 / 0 -18.5 -18.5 0.40 (1) 10.00 0 / 1955 -18.5 -18.5 0.29 (1) 10.00 0 / 1360	K. FACTORED FORCE (LBS) FACTORED (PLF) CSI (LC) OSI (LC) MAX. UNBRAC LENGTH FR-TO LENGTH STATE LENGTH STATE LENGT	K. FACTORED FORCE (LBS) FACTORED VERT. LOAD LC1 MAX MAX. MAX MAMB. MAX MAMB. MAMB. (LBS) MAX. FORCE (LBS) 0 / 43 -112.4 - 112.4 0.15 (1) 10.00 P-C -218 / 53 -2306 0 -112.4 - 112.4 0.59 (1) 3.81 C-O -532 / 0 -1913 0 -112.4 - 112.4 0.59 (1) 4.19 E-N 0 / 426 -1913 0 -112.4 - 112.4 0.32 (1) 4.83 N-F -626 / 0 -1641 0 -112.4 - 112.4 0.32 (1) 4.83 N-F -626 / 0 -1641 0 -112.4 - 112.4 0.32 (1) 4.81 L-G -25 / 52 -1511 0 -112.4 - 112.4 0.32 (1) 4.81 L-G -25 / 52 -1511 0 -112.4 - 112.4 0.32 (1) 5.88 K-H -780 / 0 -1923 0 0.0 0.0 0.0 0.21 (1) 5.88 K-H -780 / 0 -1923 0 0.0 0.0 0.0 0.21 (1) 5.88 K-H -0 / 1956 0 / 1955 0 -18.5 -18.5 0.18 (4) 10.00 K-I 0 / 1551 0 / 1955 0 -18.5 -18.5 0.26 (1) 10.00 0 / 1360 -18.5 -18.5 0.26 (1) 10.00 0 / 1360 0 -1

TOTAL WEIGHT = 3 X 146 = 439

DESIGN CRITERIA

SPEC	HED	LOAL	JS:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PSI
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PSI
TOTA	J IO	AΠ	=	45.9	PSI

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.00")
CALCULATED VERT. DEFL.(LL) = L/999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (1.00")
CALCULATED VERT. DEFL.(TL) = L/999 (0.15")

CSI: TC=0.64/1.00 (B-C:1) , BC=0.40/1.00 (O-P:1) , WB=0.67/1.00 (G-O:1) , SSI=0.27/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

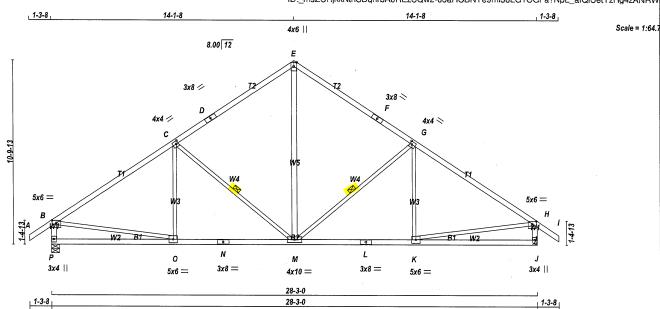
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

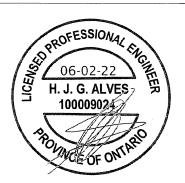

MT20

JSI GRIP= 0.89 (K) (INPUT = 0.90) JSI METAL= 0.61 (I) (INPUT = 1.00)

JOB DESC. QUANTITY PI Y **BAYVIEW WELLINGTON** DRWG NO 426687 T34 3 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:17 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-03aHCBNYe9ml38LG10GFa?NpL_alQiUetYzHg4zANRW


LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER DESCR DEF No.2 No.2 SPF DRY DRY 2x4 No.2 SPF 2x4 2x4 2x4 SPF SPF SPF DRY No.2 . В Н DRY No.2 SPF SPF SPF N 2×4 DRY No 2 2x4 ALL WEBS 2x3 DRY No.2 SPF EXCEPT M - E 2x4 DRY SPE No.2

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Χ				
В	TMVW-p	MT20	5.0	6.0	1.75	3.00				
С	TMWW-t	MT20	4.0	4.0	2.00	1.50				
D	TS-t	MT20	3.0	8.0						
E	TTW+p	MT20	4.0	6.0	Edge					
F	TS-t	MT20	3.0	8.0						
G	TMWW-t	MT20	4.0	4.0	2.00	1.50				
Н	TMVW-p	MT20	5.0	6.0	1.75	3.00				
J	BMV1+p	MT20	3.0	4.0						
K	BMWW-t	MT20	5.0	6.0						
L	BS-t	MT20	3.0	8.0						
М	BMWWW-t	MT20	4.0	10.0						
N	BS-t	MT20	3.0	8.0						
0	BMWW-t	MT20	5.0	6.0						
Р	BMV1+p	MT20	3.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

Structural component only DWG# T-2213212

DIMENSIONS, SUPPORTS	AND LOADINGS	SPECIFIED	BY FABRICATO	R TO BE VERIFIED BY	_
BUILDING DÉSIGNER					
READINGS					

BEA	ARINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
P	2004	0	2004	0	0	5-8	5-8
J	2004	0	2004	0	0	MECHAI	VICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J. MINIMUM BEARING LENGTH AT JOINT J = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	VIN. COMPON	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL
P	1402 1	007 / 0	0/0	0/0	0/0	395 / 0	0/0
J	1402 1	007 / 0	0/0	0/0	0/0	395 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.34 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

WEDS

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF G-M. C-M.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4) CHORDS

υп	UNDS					VV E	85		
MAX	. FACTORED	FACTORE	D				MAX. FACTO	RED	
MEMB.	FORCE						FORCE	MAX	
	(LBS)	(PLF)		CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM TO)		LENGTH	FR-TO			
A-B	0 / 43	-112.4 -1	12.4	0.15(1)	10.00	M- E	0 / 1082	0.17(1)	
B- C	-2134 / 0	-112.4 -1	12.4	0.93 (1)	3.34	M- G	-744 / 0	0.43(1)	
C- D	-1558 / 0	-112.4 -1	12.4	0.82 (1)	4.00	K-G	-130 / 88	0.08(1)	
D- E	-1558 / 0	-112.4 -1	12.4	0.82 (1)	4.00	C- M	-744 / 0	0.43 (1)	
E-F	-1558 / 0	-112.4 -1	12.4	0.82 (1)	4.00	O- C	-130 / 88	0.08(1)	
F- G	-1558 / 0	-112.4 -1	12.4	0.82(1)	4.00	B-O	0 / 1840	0.41(1)	
G- H	-2134 / 0	-112.4 -1	12.4	0.93 (1)	3.34	K- H	0 / 1840	0.41 (1)	
H- I	0 / 43	-112.4 -1	12.4	0.15(1)	10.00				
P-B	-1949 / 0	0.0	0.0	0.20(1)	6.03				
J- H	-1949 / 0	0.0	0.0	0.20(1)	6.03				
P- O	0/0	-18.5 -	18.5	0.22(4)	10.00				
O- N	0 / 1820	-18.5 -	18.5	0.40(1)	10.00				
N-M	0 / 1820	-18.5 -	18.5	0.40(1)	10.00				
M-L	0 / 1820	-18.5 -	18.5	0.40 (1)	10.00				
L-K	0 / 1820	-18.5 -	18.5	0.40(1)	10.00				
K-J	0/0	-18.5 -	18.5	0.22 (4)	10.00				
1									

TOTAL WEIGHT = 3 X 123 = 370 lb [M][F DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = 32.5 PSF CH. 6.0 PSF PSF PSF TOTAL LOAD 45.9 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.94")
CALCULATED VERT. DEFL.(LL) = L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (0.94") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.16")

CSI: TC=0.93/1.00 (G-H:1) , BC=0.40/1.00 (M-O:1) , WB=0.43/1.00 (C-M:1) , SSI=0.32/1.00 (G-H:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.82 (B) (INPUT = 0.90) JSI METAL= 0.59 (N) (INPUT = 1.00)

JOB DESC. QUANTITY PI Y **BAYVIEW WELLINGTON** DRWG NO. 426687 T35S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:17 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-03aHCBNYe9ml38LG1OGFa?Nzu YbQfJetYzHq4zANRW

3-10-8 1-3-8 0-12 5-6-12 9-0 , 1-0-4 2-0-0 3x4 || Scale = 1:45.3 8.00 12 5x6 🖊 С 5x8 / Н s 4x10 = R 3x8 || 1-11-4 2-0-0 1-2-4 , 9-12 8-9-0 1-0-4 15-8-8

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x6	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
G - F	2x4	DRY	No.2	SPF
К - В	2x6	DRY	No.2	SPF
K - J	2x6	DRY	No.2	SPF
J - C	2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
K - I	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE	LOAD(PLF)
TOP CH	HORDS : (0.1	SPACING (IN) 22"X3") SPIRAL I	NAILS
A- D	2	12	SIDE(122.0)
K-B	2	12	TOP `
D-F	1	12	SIDE(61.0)
F-G	1	12	TOP `
BOTTO	M CHORDS	: (0.122"X3") SPII	RAL NAILS
K-J	2	` 12	SIDE(0.0)
J- C	1	12	TOP `
I- G	1	12	SIDE(61.0)
WEBS	: (0.122"X3")	SPIRAL NAILS	, ,
2x3	1 1	6	
2x4	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

PROFESSIONAL FIRE DEPTH OF ONT AND OF ONT AN	
Structural component only	

DWG# T-2213213

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	
BEARINGS	

	FACTOR GROSS RE		MAXIMUI GROSS			INPUT BRG	REQRD BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1958	0	1958	0	0	5-8	5-8
	1793	0	1793	0	0	5-8	5-8

l	UNFACTORED	REACTIONS	
ı	AOTIOA		

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS						
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL		
G	1371	981 / 0	0/0	0/0	0/0	390 / 0	0/0		
K	1253	906 / 0	0/0	0/0	0/0	347 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K

JT

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.69 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4) CHOBDE

C H	IORDS						W I	EBS		
MA	X. FACTOR	RED	FACTO	RED				MAX. FACT	ORED	
мемв.	FOF	RCE V	ERT. LC	AD LC1	MAX	MAX.	MEME			
	(LBS	3)	(PL	_F) (CSI (LC)	UNBR	AC	(LBS)	CSI (LC	2)
FR-TO		,	FROM				TH FR-TC		(,
A-B	0 / 44	L			0.04(1)	10.00		-3232 / 0	0.63 (1)	
B- L	-5477 / 0				0.32 (1)			0/217	0.03 (4)	
L-C	-5477 / 0				0.32 (1)	4.6		-109/0	0.03 (4)	
C-D	-2015 / 0				0.32 (1)	6.2		0 / 4976	0.62 (1)	
D- M	-1694 / 0				0.13 (1)	6.2		0/49/6		
					0.21 (1)				0.12 (1)	
M-N N-E	-1694 / 0					6.2		-1970 / 0	0.47 (1))
	-1694 / 0				0.21 (1)	6.2				
E- 0	0/0				0.20 (1)	10.0				
O- P	0/0				0.20 (1)	10.0				
P-F	0/0				0.20 (1)	10.0				
G-F	-273 / 0		0.0		0.05 (1)	7.8				
K-B	-1676 / 0		0.0	0.0	0.06(1)	7.8	1			
K-Q	0 / 94	1	-18.5	-18.5	0.06 (4)	10.0	0			
Q-R	0 / 94	4	-18.5		0.06 (4)	10.0	0			
R-J	0 / 94	4	-18.5		0.06 (4)	10.0	0			
J-1	0 / 75		0.0		0.22 (1)	10.0				
i-c	0 / 19		0.0		0.39 (1)	10.0				
i- S	0 / 48		-18.5		0.51 (1)	10.0				
S-T	0 / 48		-18.5		0.51 (1)	10.0				
T-H	0 / 48		-18.5		0.51 (1)	10.0				
H- U			-18.5							
U- V	0/1		-18.5		0.20 (4)					
V- W	0/1		-18.5		0.20 (4)					
W-G	0/1	153	-18.5	-18.5	0.20 (4)	10.0	o			
	IFIED CON									
JT	LOC.	LC1	MAX-	MAX	+ F	4CE	DIR.	TYPE	HEEL (CONN.
D	9-6-0	-34	-34	-	FR		VERT	DEAD		C1
D	9-6-0	-180	-180	-	FR	TNO	VERT	SNOW		C1
H	9-11-4	-21	-21	-	FR	TNO	VERT	TOTAL		C1
L	3-10-8	-168	-168	-	FR	ONT	VERT	TOTAL		C1
L	3-11-4	-72	-72	-	FR	ONT	VERT	TOTAL		C1
M	9-11-4	-132	-132				VERT	TOTAL		C1
	11-11-4	-111	-111				VERT	TOTAL		C1
0	13-11-4	-111	-111				VERT	TOTAL		C1
P	14-8-4	-111	-111				VERT	TOTAL		C1
a	1-11-4	-14	-14				VERT	TOTAL		C1
R	3-11-4	-14	-14				VERT	TOTAL		C1
	5-11-4									
S		-22	-22			TNO	VERT	TOTAL		C1
	7-11-4	-21	-21				VERT	TOTAL		C1
U	11-11-4	-21	-21	-	FR	ONT	VERT	TOTAL		C1

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS *** GEOMETRY AND/OR BASIC LOADS CHANGED

TOTAL WEIGHT = 2 X 88 = 175 lb

BY USER.

LOADS WERE DERIVED FROM USER INPUT
NO FURTHER MODIFICATIONS WERE MADE

SPEC	IFIED	LOA	OS:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	ΛD		4E O	DO

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.52")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.14")
ALLOWABLE DEFL.(TL)= L/360 (0.52")
CALCULATED VERT. DEFL.(TL) = L/ 808 (0.23")

CSI: TC=0.32/1.00 (B-C:1) , BC=0.51/1.00 (H-I:1) , WB=0.63/1.00 (C-H:1) , SSI=0.18/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

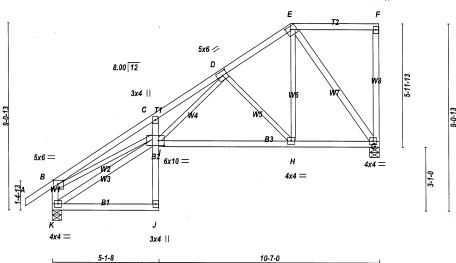
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (I) (INPUT = 0.90) JSI METAL= 0.52 (B) (INPUT = 1.00)

CONTINUED ON PAGE 2


QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T35S TRUSS DESC. Version 8.530 S Feb 23 2022 MiTrek Industries, Inc. Thu Jun 2 09:33:17 2022 Page 2 ID: msZCRjkkNthSDqhrbA0REzSQw2-03aHCBNYe9ml38LG10GFa?Nzu YbQfJetYzHq4zANRW Tamarack Roof Truss, Burlington PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20
C TMVW-t MT20
D TTW-h MT20
E TMWW-t MT20
G TMWW-t MT20
G BMVW1-t MT20
H BMWWW-t MT20
H BMWWW-t MT20
J BMW-p MT20
K BMVW1-t MT20
K BMVW1-t MT20 LEN Y X 5.0 8.0 2.50 3.75 5.0 6.0 4.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0 10.0 3.50 6.25 3.0 8.0 5.0 6.0
 SPECIFIED CONCENTRATED LOADS (LBS)

 JT
 LOC.
 LC1
 MAX MAX+

 V
 13-11-4
 -21
 -21
 --

 W
 14-8-4
 -21
 -21
 -- FACE FRONT FRONT DIR. VERT VERT TYPE TOTAL TOTAL CONN. C1 C1 HEEL CONNECTION REQUIREMENTS 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2 PROFESSIONAL FINGUES TO THE PROPERTY OF THE PR 100009024 POVACE OF ONTARIO Structural component only

JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T36S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.590 S Feb 23 2022 MirTek Industries, Inc. Thu Jun 2 09:33:18 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-UF8fQXOAPTuchlwTb6nU7Cv4vOyL96Ro6CjqCXzANRV 1-3-8 11-6-0 Scale = 1:53.4 5x6 // 3x4 || E 5x6 // D 8.00 12

TOTAL WEIGHT = 82 II

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - E	2x4	DRY	No.2	SPF
E - F	2x4	DRY	No.2	SPF
G - F	2x4	DRY	No.2	SPF
K - B	2x4	DRY	No.2	SPF
K - J	2x4	DRY	No.2	SPF
J - C	2x4	DRY	No.2	SPF
li - G	2x4	DRY	No.2	SPF
	-/.			0
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT			1.0.2	0
E - G	2x4	DRY	No.2	SPF
K - Ĭ	2x4	DRY	No.2	SPF
l '` '		0.11	110.2	511
DDV 05404		***		

DRY: SEASONED LUMBER.

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMVW-p	MT20	5.0	6.0	2.25	2.75
С	TMV+p	MT20	3.0	4.0		
D	TMWW-t	MT20	5.0	6.0	2.50	2.75
E	TTWW-h	MT20	5.0	6.0	1.75	2.75
F	TMV+p	MT20	3.0	4.0		
G	BMVW1-t	MT20	4.0	4.0		
Н	BMWW-t	MT20	4.0	4.0		
1	BVMWWW-I	MT20	6.0	10.0	3.00	3.25
J	BMV+p	MT20	3.0	4.0		
K	BMVW1-t	MT20	4.0	4.0		

NOTES- (1)

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	AND ECADINGS SI ECILIED BY I ABINCATOR TO BE VERIFIED BY
BUILDING DESIGNER	
20.22	
READINGS	

15-8-8

ΑI	11NGS						
FACTORED			MAXIMUI	M FACTO	INPUT	REQRE	
GROSS REACTION			GROSS I	REACTIC	BRG	BRG	
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1028	0	1028	0	0	5-8	5-8
	1183	0	1183	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	<u> IIN. COMPO</u>	NENT REACTION	NS.			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
3	721	510 / 0	0/0-	0/0	0/0	210 / 0	0/0	
<	826	599 / 0	0/0	0/0	0/0	227 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K

1-3-8

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.44 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

<u>LOADING</u> TOTAL LOAD CASES: (4)

СН	ORDS					W E	BS	
MA)	K. FACTORED	FACTORE)				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD	LC ₁	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	(CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO			LENGTH	FR-TO	, ,	
	0 / 43	-112.4 -11					0 / 763	0.17 (1)
B- C	-3144 / 0	-112.4 -11	2.4	0.56 (1)	3.44	E-G	-960 / 0	0.61(1)
C-D	-3268 / 0	-112.4 -11	2.4	0.26(1)	3.69	K-I	-63 / 0	0.03(1)
	-694 / 0	-112.4 -11				B- I	0 / 2830	0.64 (1)
E-F	0/0	-112.4 -11				I- D	0 / 2262	0.51 (1)
	-237 / 0				7.81	D- H	-891 / 0	0.35(1)
K-B	-1103 / 0	0.0	0.0	0.11(1)	7.54			
K-J	0 / 54			0.14 (4)				
J-1	0 / 52			0.23 (1)				
1- C	-530 / 0			0.18 (1)				
I- H	0 / 1183			0.29 (1)				
H- G	0 / 572	-18.5 -1	8.5	0.22 (4)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOAD	DS:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	1 10	۸D	_	45.0	DC

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

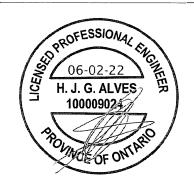
(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.52")
CALCULATED VERT. DEFL.(LL) = L/999 (0.18")
ALLOWABLE DEFL.(TL) = L/360 (0.52")
CALCULATED VERT. DEFL.(TL) = L/608 (0.31")

CSI: TC=0.56/1.00 (B-C:1) , BC=0.29/1.00 (H-I:1) , WB=0.64/1.00 (B-I:1) , SSI=0.19/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

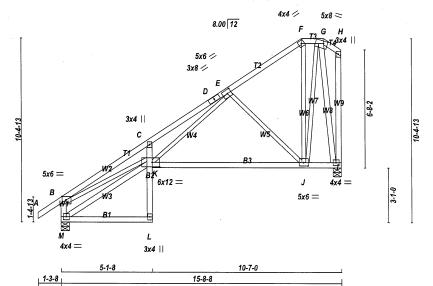
NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (I) (INPUT = 0.90) JSI METAL= 0.62 (I) (INPUT = 1.00)

Structural component only DWG# T-2213214


JOB DESC. QUANTITY PI Y **BAYVIEW WELLINGTON** DRWG NO 426687 T37S TRUSS DESC. Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Thu Jun 2 09:33:19 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-ySh1dtPpAm0SJSUf9pljfQSFeoH6uXVxKsSOlzzANRU

1-3-8 2-2-8

Scale = 1:62.3

TOTAL WEIGHT = 93 lb [M][F

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR A - D - G - M -No.2 No.2 SPF DFGHBH DRY 2x4 No.2 SPF SPF SPF SPF 2x4 2x4 DRY No.2 No.2 DRY DRY 2x4 No.2 . М -2×4 DRY No 2 SPE ō SPF No.2 ALL WEBS 2x3 DRY No.2 SPF EXCEPT DRY SPF 2x4 No.2 2x4 DRY No.2 SPE

DRY: SEASONED LUMBER

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW-p	MT20	5.0	6.0	2.25	2.75				
С	TMV+p	MT20	3.0	4.0						
D	TS-t	MT20	3.0	8.0						
Ε	TMWW-t	MT20	5.0	6.0	2.50	2.75				
F	TTW-h	MT20	4.0	4.0						
G	TTWW-m	MT20	5.0	8.0	1.75	2.50				
Н	TMV+p	MT20	3.0	4.0						
1	BMVW1-t	MT20	4.0	4.0						
J	BMWWW-t	MT20	5.0	6.0	2.25	3.00				
K	BVMWWW-I	MT20	6.0	12.0	3.00	5.00				
L	BMV+p	MT20	3.0	4.0						
м	BMVW1-t	MT20	4.0	4.0						

NOTES-1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	
DEADINGS	

A	RINGS						
	FACTOR GROSS RE		MAXIMUM FACTORED GROSS REACTION			INPUT BBG	REQRD BBG
		ACTION				DNG	BRG
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1028	0	1028	0	0	5-8	5-8
	1183	0	1183	0	0	5-8	5-8

UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS 1ST LCASE SNOW LIVE 0/0 JT COMBINED PERMITVE WIND DEAD SOIL 0/0 210 / 0 227 / 0 0/0 826 599 / 0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I, M

JΤ

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 3.44 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

WEBS MAX. FACTORED MAX. FACTORED FACTORED FACTORED VERT. LOAD LC1 MAX MAX. I (PLF) CSI (LC) UNBRAC FROM TO LENGTH 1-112.4 -12.4 -12 MEMB. FORCE (LBS) MEMB. FORCE (LBS) MAX CSI (LC) FR-TO LENGTH FR-TO 0 / 43 0.60 (1) 0.05 (1) -58 / 30 -64 / 0 -3153 / 0 C- D D- E E- F G- H M- B 3.56 3.56 6.25 6.25 -3264 / 0 0.03 (1) 0 / 2840 -1025 / 0 0 / 904 0 / 2465 0.64 (1) -3264 / 0 -376 / 0 -285 / 0 -112.4 -112.4 0.41 (1) -112.4 -112.4 0.25 (1) -112.4 -112.4 0.02 (1) -112.4 -112.4 0.02 (1) 0.20 (1) 0/0 10.00 0.55 (1) -1103 / 0 -55 / 0 0.0 0.0 7.54 7.81 0.05(1) M- L L- K K- C K- J J- I -18.5 0.14 (4) 0.0 0.23 (1) 0.0 0.18 (1) 0 / 54 -18.5 10.00 10.00 -573 / 0 0.0 0 / 961 0.38 (4)

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 32.5 PSF TOP CH. 6.0 PSF PSF BOT CH. PSF TOTAL LOAD 45.9 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

OR SMALL BUILDING REQUIREMENTS OF PART 9 NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.52") CALCULATED VERT. DEFL.(LL) = L/923 (0.20")
ALLOWABLE DEFL.(TL) = L/360 (0.52")
CALCULATED VERT. DEFL.(TL) = L/478 (0.39")

CSI: TC=0.56/1.00 (B-C:1) , BC=0.38/1.00 (J-K:4) , WB=0.71/1.00 (G-I:1) , SSI=0.19/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

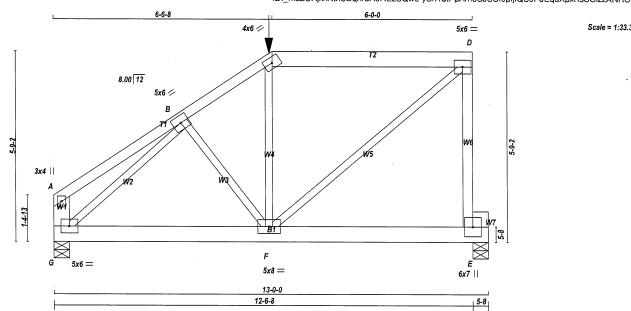
AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.89 (B) (INPUT = 0.90 JSI METAL= 0.61 (K) (INPUT = 1.00)

JOB DESC. QUANTITY PI Y **BAYVIEW WELLINGTON** DRWG NO. 426687 T38 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MITH Industries, Inc. Thu Jun 2 09:33:19 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-ySh1dtPpAm0SJSUf9pljfQS9FoEquXpxKsSOlzzANRU

DEAD

SOIL

0/0

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x6	DRY	No.2	SPF
E - D	2x4	DRY	No.2	SPF
G - A	2x6	DRY	No.2	SPF
G - E	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN Y	Х						
Α	TMV+p	MT20	3.0	4.0							
В	TMWW-t	MT20	5.0	6.0							
С	TTW-h	MT20	4.0	6.0							
D	TMVW-t	MT20	5.0	6.0							
Ε	BMVW1+p	MT20	6.0	7.0							
F	BMWWW-t	MT20	5.0	8.0							
G	BMVW1-t	MT20	5.0	6.0							

NOTES-1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BE

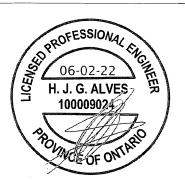
0/0

0/0

ΞAI	RINGS						
	FACTOR	RED	MAXIMUM FACTORED			INPUT	REQRE
	GROSS RE	ACTION	GROSS REACTION			BRG	BRG
•	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1966	0	1966	0	0	5-8	5-8
	1724	0	1724	0	0	5-8	5-8

UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMINATIONS LIVE 0/0 COMBINED WIND 1376 1211 984 / 0 844 / 0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, G


BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.92 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

JT

СН	CHORDS WEBS									
MAX	(. FACTO	RED	FACTO	RED				MAX. FACT	ORED	
MEMB.	FOI (LB		VERT. LC		MAX		MEMB C	. FORCE (LBS)		
FR-TO	•	•	FROM	ΤΌ	` '	LENGT	H FR-TO			
A-B	0/2	1	-112.4	-112.4	0.21(1)	10.00	F- C	-219 / 91	0.10	(1)
	-1594 / 0							0 / 1739	0.43	(1)
	-1313 / 0							-72 / 29	0.02	(1)
	-1698 / 0		0.0				G-B	-1847 / 0	0.76	(1)
G- A	-175 / 0		0.0	0.0	0.01 (1)	7.81				
G-F	0 / 1	352	-113.4	-113.4	0.53 (1)	10.00				
F-E	0/0		-113.4	-113.4	0.35 (1)	10.00				
SPECIF	FIED CON	CENTF	ATED LC	ADS (L	BS)					
JT	LOC.	LC1	MAX-	MAX	+ F	ACE	DIR.	TYPE	HEEL	CONN.
C	6-6-8	-294	-294		FR	V TNC	ERT	TOTAL		C1
CONNE	CONNECTION REQUIREMENTS									

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2213216

DESIGN CRITERIA

SPEC	IFIED	LOAD	os:		
TOP	CH.	LL	=	32.5	PSI
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

TOTAL WEIGHT = 68 lb [M]

START DISTANCE = 0-0 START SPAN CARRIED = 5-0-0 END DISTANCE = 13-0-0 END SPAN CARRIED = 5-0-0 END WALL WIDTH = 5-8
APPLIED TO FRONT SIDE OF BOTTOM CHORD.
- ADDT'L LOADS BASED ON 55 % OF GSL.

GIRDER TYPE: CPrimeHip LEFT SETBACK = 6-6-8 RIGHT SETBACK = 0-0 END SETBACK = 5-0-0 END WALL WIDTH = 5-8 CORNER FRAMING TYPE: CONVENTIONAL END JACK TYPE: CONVENTIONAL APPLIED TO FRONT SIDE - ADDT'L LOADS BASED ON 55 % OF GSL.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.42")
CALCULATED VERT. DEFL.(LL) = L/999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (0.42")
CALCULATED VERT. DEFL.(TL) = L/999 (0.09")

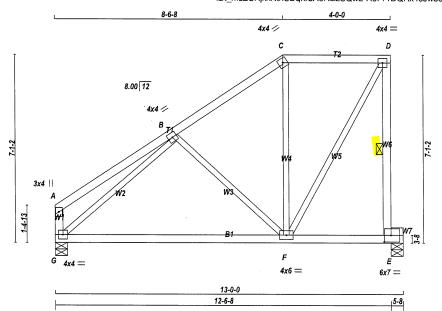
CSI: TC=0.90/1.00 (D-E:1) , BC=0.53/1.00 (F-G:1) , WB=0.76/1.00 (B-G:1) , SSI=0.37/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.


PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

CONTINUED ON PAGE 2

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON		DRWG NO.
126687	T38	1	1	TRUSS DESC.			
amarack Roof Truss, Burlington					Version 8.530 S Feb 2: ID: msZCRjkkNthSDqhrbA0REzSQw2-y	3 2022 MiT Sh1dtPp	Fek Industries, Inc. Thu Jun 2 09:33:19 2022 Par Am0SJSUf9pljfQS9FoEquXpxKsSOlzzAN
						PL	ATE PLACEMENT TOL. = 0.250 inches
							ATE ROTATION TOL. = 5.0 Deg.
						JSI JSI	I GRIP= 0.88 (F) (INPUT = 0.90) I METAL= 0.41 (B) (INPUT = 1.00)
							•
1							
ROFESS	101/4/						•
ED PIL	TEE!						
PROFESS 06-02 H. J. G. A 100009	22 []						
H. J. G. A	ALVES > >						
100009	1024						
12/4/	HIJO!				•		
Pounces	ONTARI						
CEO	100						
Structural comp	onent only						
Structural comp DWG# T-22132	216				,		

QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC. 426687 T39 Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:20 2022 Page 1

N. L. G. A. RULES LUMBER DESCR. SPF SPF CHORDS SIZE DRY DRY DRY - C No.2 2x4 SPF SPF SPF 2x4 No.2 G - A G - E DRY DRY 2x4 No.2 ALL WEBS EXCEPT 2x3 DRY SPF

DRY: SEASONED LUMBER.

RMV/W1-t

PLATES (table is in inches) TYPE TMV+p TMWW-t PLATES MT20 MT20 I FN Y 4.0 4.0 4.0 3.0 4.0 TTW-h MT20 4.0 4.0 DEFG TMVW-t MT20 BMVW1-t BMWWW-t 3.00 3.00 MT20 4.0

4.0

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

MT20

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

:A	RINGS						
	FACTOR	ED	MAXIMUN	/ FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTION	N	BRG	BRG
•	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	821	0	821	0	0	5-8	5-8
	821	0	821	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LUASE	MAX./N	<u>/IIN. COMPO</u>	NENT REACTION	4S			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
E	575	407 / 0	0/0	0/0	0/0	168 / 0	0/0	
G	575	407 / 0	0/0	0/0	0/0	168 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, G

JТ

EG

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-E.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHC	DRDS					W E	BS	
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A- B	0/31	-112.4	-112.4	0.34 (1)	10.00	B-F	-380 / 0	0.22(1)
B- C	-444 / 0	-112.4	-112.4	0.26(1)	6.25	F-C	-173 / 15	0.15(1)
C- D	-339 / 0	-112.4	-112.4	0.23 (1)	6.25	F- D	0 / 682	0.15(1)
E- D	-816 / 0	0.0	0.0	0.19(1)	6.25	G-B	-839 / 0	0.49(1)
G- A	-189 / 0	0.0	0.0	0.02 (1)	7.81			
G-F	0/619			0.33 (4)				
F-E	0/0	-18.5	-18.5	0.30 (4)	10.00			

SPECIFIED LOADS: PSF PSF PSF LL DL LL CH. 32.5 6.0 0.0 7.4 BOT CH. DΙ PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

TOTAL WEIGHT = 61

Scale = 1:41.6

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.42")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.42")
CALCULATED VERT. DEFL.(TL) = L/943 (0.16")

CSI: TC=0.34/1.00 (A-B:1) , BC=0.33/1.00 (F-G:4) , WB=0.49/1.00 (B-G:1) , SSI=0.20/1.00 (A-B:1)

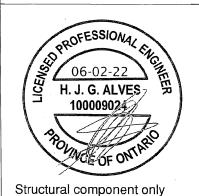
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)


MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.83 (F) (INPUT = 0.90) JSI METAL= 0.25 (B) (INPUT = 1.00)

QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO T40 TRUSS DESC 426687 Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:21 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-vqpn2YR3iOGAYle1GEKBlrXdNc?IMSuEoAxVprzANRS

10-6-8 4x4 🗸 С D 8.00 12 4x4 / 4x4 || W2 G 3x4 || 6x7 =4x4 = 5x6 =13-0-0 12-6-8 5-8

N. L. G. A. RULES DESCR. SPF SPF SPF CHORDS LUMBER - C No.2 No.2 2x4 DRY 2x4 No.2 H - A H - E SPF 2x4 DRY No.2 ALL WEBS EXCEPT 2x3 DRY SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches) TYPE TMVW+p TMWW-t PLATES. LEN 4.0 4.0 4.0 4.0 1.25 2.00 2.00 1.50 TTW-h MT20 4.0 TMVW+p BMVW1-t BMWWW-t MT20 MT20 DEFGH 4.0 6.0 5.0 4.0 3.0 6.0 MT20 4.0 RMWW-t MT20 BMV1+p

NOTES- (1)

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

EΑ	RINGS						
	FACTO	RED	MAXIMUI	M FACTO	ORED	INPUT	REQRD
	GROSS RE	EACTION	GROSS I	REACTIC	N	BRG	BRG
Т	, VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	821	0	821	0	0	5-8	5-8
	821	0	821	0	0	5-8	5-8

UNFACTORED REACTIONS

1ST LCASE MAX./MIN. COMPONENT REACTIONS

JT [COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL
E	575	407 / 0	0/0	0/0	0/0	168 / 0	0/0
Н	575	407 / 0	0/0	0/0	0/0	168 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, H

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-E, C-F.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	R D S FACTORED	FACTO	RED			WE	BS MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	_F) 1	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A- B	-723 / 0	-112.4	-112.4	0.41(1)	6.25	G-B	-11 / 93	0.03(4)
B- C	-240 / 0	-112.4	-112.4	0.40(1)	6.25	B-F	-627 / 0	0.59(1)
C- D	-162 / 0	-112.4	-112.4	0.06(1)	6.25	F-C	-219 / 0	0.10 (1)
E- D	-808 / 0	0.0	0.0	0.26(1)	6.25	F- D	0 / 716	0.16(1)
H- A	-781 / 0	0.0	0.0	0.08 (1)	7.81	A- G	0 / 647	0.15 (1)
H- G	0/0	-18.5	-18.5	0.13 (4)	10.00			
G-F	0 / 635	-18.5	-18.5	0.18 (4)	10.00			
F-E	0/0	-18.5	-18.5	0.05 (4)	10.00			

SPECIFIED LOADS: LL = DL = LL = DL = AD = 32.5 PSE 6.0 0.0 7.4 PSF PSF BOT CH. PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

Scale = 1:49.7

TOTAL WEIGHT = 68 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.42")
CALCULATED VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.42")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04")

CSI: TC=0.41/1.00 (A-B:1) , BC=0.18/1.00 (F-G:4) , WB=0.59/1.00 (B-F:1) , SSI=0.24/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

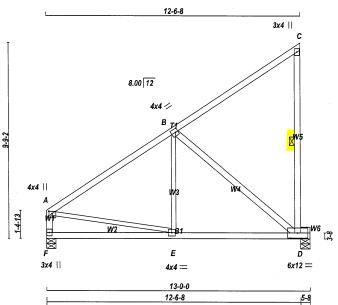
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.83 (F) (INPUT = 0.90) JSI METAL= 0.22 (G) (INPUT = 1.00)

JOB DESC QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 426687 T41

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MITek Industries, Inc. Thu Jun 2 09:33:21 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-vqpn2YR3iOGAYle1GEKBIrXabc_dMP3EoAxVprzANRS

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR CCA 2x4 2x4 DRY DRY SPF No.2 2x4 DRY No.2 SPF Ď SPF ALL WEBS DRY SPF 2x3 No.2 EXCEPT B - D

No.2

2x4 DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 A
 TMVW+p
 MT20

 B
 TMWW-t
 MT20
 LEN Y 1.25 2.00 2.00 1.50 4.0 TMV+p BMVWW1-t 4.0 MT20 3.0 12.0 4.0 MT20 6.0 BMV1+p MT20 4.0 3.0

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

EA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRE
	GROSS RE	EACTION	GROSS	REACTIC	N	BRG	BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	821	0	821	0	0	5-8	5-8
	821	0	821	0	0	5-8	5-8

UNFACTORED REACTIONS

	IST LUASE	IVIAX./I	MIN. COMPO	NENT REACTION	45			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
D	575	407 / 0	0/0	0/0	0/0	168 / 0	0/0	
F	575	407 / 0	0/0	0/0	0/0	168 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D, F

SPF

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.15 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-D.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHORE						WE	BS		
MAX. FA	CTORED	FACTOR	RED				MAX. FACTO	RED	
MEMB.	FORCE VE	RT. LOA	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLI	F) C	SI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO	· · · · F	ROM :	ΤΌ		LENGTH	FR-TO	, ,		
A- B -68	4/0	-112.4 -	112.4	0.59 (1)	6.15	E-B	0 / 131	0.05 (4)	
B- C -4	8/0	-112.4 -	112.4	0.58 (1)	6.25	B- D	-795 / 0	0.77 (1)	
D- C -26	5/0	0.0	0.0	0.12 (1)	6.25	A-E	0/618	0.14 (1)	
F- A -77	6/0	0.0	0.0	0.08 (1)	7.81				
F- E	0/0	-18.5	-18.5	0.21 (4)	10.00				
	0 / 609			0.25 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 32.5 6.0 0.0 7.4 CH. PSF PSF PSF BOT CH. TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

Scale = 1:54.9

TOTAL WEIGHT = 62 lb

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.42")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.42")
CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSI: TC=0.59/1.00 (A-B:1) , BC=0.25/1.00 (D-E:4) , WB=0.77/1.00 (B-D:1) , SSI=0.29/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

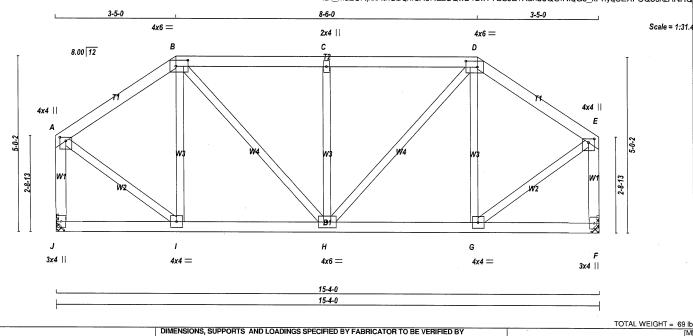

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.68 (A) (INPUT = 0.90) JSI METAL= 0.21 (E) (INPUT = 1.00)


REVIEWED **BAYVIEW WELLINGTON** QUANTITY PLY JOB DESC. DRWG NO TRUSS DESC. 426687 T42 Version 8.530 S Feb 23 2022 MITek Industries, Inc. Thu Jun 2 09:33:22 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-N1NAGuRhThP1AvDEqxsQH24q9?KA5?pO0qh2LIzANRR Tamarack Roof Truss, Burlington 1-3-8 1-5-0 12-1-4 4-12 1-5-0 Scale = 1:28.5 2x4 || 2x4 || 6x7 <> 6x7 / 4×4 = 8.00 12 G 4x4 || 4x4 || W1 s T U 0 N κ 3x4 || 4x4 4x6 =4x6 == 4x4 =3x4 || 1-6-4 13-9-12 15-4-0 1-3-8 TOTAL WEIGHT = 73 lb LUMBER N. L. G. A. RULES DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER** DESIGN CRITERIA BEARINGS CHORDS SIZE LUMBER DESCR A - C - O -C No.2 No.2 SPF FACTORED MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: DRY GROSS REACTION BRG IN-SX BRG IN-SX PSF PSF PSF 2x4 GBOSS REACTION CH. LL DL 32.5 6.0 HORZ 0 HORZ 0 0 2x4 No.2 SPF VERT DOWN UPLIFT В DRY MECHANICAL BOT CH. LL 0.0 SPF J -Н 2x4 No.2 1158 0 1158 0 MECHANICAL DL 2×4 DRY No 2 SPF TOTAL LOAD 45.9 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT O, J. MINIMUM No.2 ALL WEBS SPF 2x3 BEARING LENGTH AT JOINT O = 3-8, JOINT J = 3-8. SPACING = 24.0 IN. C/C **EXCEPT** DRY: SEASONED LUMBER. LOADING IN FLAT SECTION BASED ON A SLOPE UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW OF 2.00/12 MINIMUM (./MIN. COMPONENT REACTIONS LIVE PERM.LIVE V WIND SOIL DEAD THIS TRUSS IS DESIGNED FOR RESIDENTIAL 587 / 0 809 0/0 0/0 0/0 222 / 0 0/0 OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 587 / 0 Y X 1.25 2.00 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) 4.0 7.0 BRACING TOP CHO TTWW-h MT20 6.0 1.75 3.50 CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.69 FT 2.0 4.0 TMW+w MT20 MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. TMWW-t 4.0 CSA 086-14 TMW+w TTWW-h MT20 2.0 4.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED - TPIC 2014 6.0 4.0 7.0 4.0 1.75 3.50 1.25 2.00 MT20 LOADING TOTAL LOAD CASES: (7) TMVW+p DESIGN ASSUMPTIONS BMV1+p MT20 3.0 4.0 -OVERHANG NOT TO BE ALTERED OR CUT OFF. BMWW-t MT20 4.0 L M N BMWWW-t BMWWW-t MT20 MT20 4.0 CHORDS MAX. FACTORED 2.00 1.50 2.00 2.00 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. WEBS FACTORED MAX. FACTORED 6.0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BMWW-t MT20 4.0 4.0 мемв. FORCE VERT. LOAD LC1 MAX MAX. MEMB. FORCE ROOF LIVE LOAD BMV1+p (PLF) FROM TO CSI (LC) UNBRAC CSI (LC) ALLOWABLE DEFL.(LL) = L/360 (0.51")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.03")
ALLOWABLE DEFL.(TL) = L/360 (0.51")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.06") LENGTH FR-TO A- B B- C C- P 0.17 (1) 0.16 (1) 0.28 (1) N- C C- M M- D -527 / 0 0.12 (1) 0.23 (1) 0.11 (1) 10.00 6.25 0 / 43 -112.4 -112.4 B- C C- P P- D -496 / 0 -1077 / 0 -112.4 -112.4 -112.4 -112.4 NOTES: 1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2 480 / 0 5.69 -1077 / 0 -112.4 -112.4 0.28 (1) 5.69 -480 / 0 0 11 (1 D- E E- F F- Q -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.23 (1) 0.12 (1) 0.17 (1) -1078 / 0 -1078 / 0 0.27 0.27 5.69 5.69 L- G K- G 0 / 921 CSI: TC=0.28/1.00 (F-G:1) , BC=0.23/1.00 (L-M:1) , WB=0.23/1.00 (C-M:1) , SSI=0.24/1.00 (F-G:1) 0 / 705 0 / 705 -26 / 4 -1077 / 0 0.28 (1 5.69 B-N Q-R R-G K- H M- E DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 -1077 / 0 -112.4 -112.4 0.28 -112.4 -112.4 -112.4 -112.4 G-H H-I 0.16 (1) 0.17 (1) 0.18 (1) -496 / 0 6.25 E-L -26 / 0 10.00 7.36 7.36 0 / 43 -112.4 -112.4 COMPANION LIVE LOAD FACTOR = 1.00 -1159 / 0 -1159 / 0 0.0 0.0 0.18 (1) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. -18.5 -18.5 -18.5 O- N N- S S- M M- T T- L U- K K- J 0/0 -18.5 0.05 (4) 10.00 -18.5 0.10 (1) -18.5 0.10 (1) 10.00 0/360 10.00 NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 PROFESSIONAL FINGER 0 / 109 0.23 (1) 10.00 (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 0.10 (1) 0 / 360 10.00 0/360 -185 10.00 0/0 -18.5 0.05 (4) SPECIFIED CONCENTRATED LOADS (LBS) PLATE PLACEMENT TOL. = 0.250 inches LOC. 1-5-0 FACE FRONT DIR. VERT JODEFKLMNPQRSTU LC1 TYPE CONN 108 TOTAL PLATE ROTATION TOL. = 5.0 Deg. C1 5-6-4 108 FRONT VERT TOTAL 100009024 7-6-4 9-6-4 108 108 FRONT FRONT VERT VERT TOTAL TOTAL JSI GRIP= 0.89 (L) (INPUT = 0.90) JSI METAL= 0.25 (M) (INPUT = 1.00) 13-6-4 FRONT VERT TOTAL 9-6-4 5-6-4 1-6-4 FRONT FRONT VERT VERT TOTAL TOTAL ROMACE OF ONT ARIO FRONT VERT TOTAL 108 108 89 FRONT FRONT FRONT TOTAL TOTAL TOTAL 3-6-4 VERT VERT 13-6-4 VERT 3-6-4 7-6-4 FRONT FRONT C1 C1 C1 VERT TOTAL Structural component only FRONT VERT TOTAL DWG# T-2213220

CONTINUED ON PAGE 2

JOB DESC QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T43 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MITek Industries, Inc. Thu Jun 2 09:33:23 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-rDxYTESJE?Xun3oQOfNfqGc_xPhyqSEXFUQbukzANRQ

LUMBER

N. L. G. A. RULES
CHORDS SIZE

A - B 2x4

B - D 2x4

D - E 2x4 LUMBER DESCR DRY DRY DRY No.2 No.2 SPF SPF No.2 SPF SPF SPF 2x4 2x4 DRY DRY No.2 No.2 2x4 DRY No.2 ALL WEBS 2x3 DRY SPF No.2 **EXCEPT**

DRY: SEASONED LUMBER.

PLA	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Х						
Α	TMVW+p	MT20	4.0	4.0	1.25	2.00						
В	TTWW-I	MT20	4.0	6.0	2.00	4.00						
С	TMW+w	MT20	2.0	4.0								
D	TTWW-I	MT20	4.0	6.0	2.00	4.00						
Ε	TMVW+p	MT20	4.0	4.0	1.25	2.00						
F	BMV1+p	MT20	3.0	4.0								
G	BMWW-t	MT20	4.0	4.0								
Н	BMWWW-t	MT20	4.0	6.0								
ı	BMWW-t	MT20	4.0	4.0								
.1	BMV1+n	MT20	3.0	4.0								

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

BEA	RINGS						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRE
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
J	1004	0	1004	0	0	MECHAI	VICAL
F	1004	0	1004	0	0	MECHAI	VICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J, F. MINIMUM BEARING LENGTH AT JOINT J = 3-8, JOINT F = 3-8.

UNFACTORED REACTIONS								
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	٧S			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	٧			

JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
J	703	498 / 0	0/0	0/0	0/0	205 / 0	0/0
F	703	498 / 0	0/0	0/0	0/0	205 / 0	0/0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.07 FT MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СНС	RDS	WEBS						
MAX.	FACTORED	FACTOR	ED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOA	D LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF	7) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM 1	0		LENGTH	FR-TO		
A-B	-699 / 0	-112.4 -				I- B	-315 / 0	0.12(1)
B- C	-868 / 0	-112.4 -	112.4	0.34 (1)	6.07	B- H	0 / 440	0.10(1)
C-D	-868 / 0	-112.4 -	112.4	0.34(1)	6.07	H- C	-584 / 0	0.22(1)
D- E	-699 / 0	-112.4 -	112.4	0.23(1)	6.25	H- D	0 / 440	0.10(1)
J- A	-979 / 0	0.0	0.0	0.14(1)	7.81	G-D	-315 / 0	0.12(1)
F-E	-979 / 0	0.0	0.0	0.14(1)	7.81	A- I	0 / 704	0.16(1)
						G-E	0 / 704	0.16(1)
J- l	0/0	-18.5	-18.5	0.06 (4)	10.00			
I- H	0 / 573	-18.5	-18.5	0.13(1)	10.00			
H- G	0 / 573	-18.5	-18.5	0.13(1)	10.00			
G-F	0/0	-18.5	-18.5	0.06 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS:								
TOP	CH.	LL	=	32.5	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LL	=	0.0	PSF			
		DL	=	7.4	PSI			
TOTA	L LO	AD	=	45.9	PSI			

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

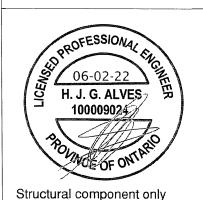
(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.51")
CALCULATED VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.51")
CALCULATED VERT. DEFL.(TL)= L/999 (0.03")

CSI: TC=0.34/1.00 (B-C:1) , BC=0.13/1.00 (G-H:1) , WB=0.22/1.00 (C-H:1) , SSI=0.23/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

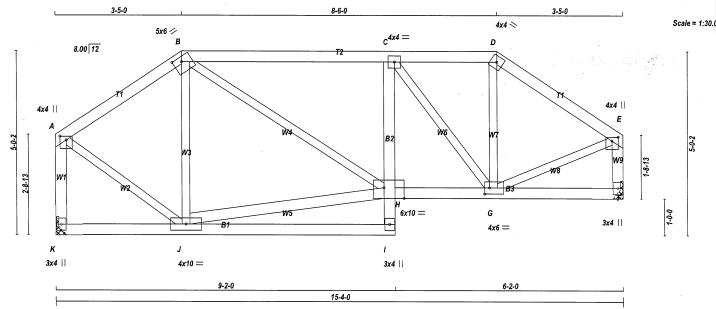

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.68 (G) (INPUT = 0.90) JSI METAL= 0.20 (I) (INPUT = 1.00)

BAYVIEW WELLINGTON QUANTITY PLY JOB DESC. DRWG NO. TRUSS DESC. 426688 T43S Version 8.530 S Feb 23 2022 MTek Industries, Inc. Thu Jun 2 09:11:58 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-z?omnsvHrBdD7a3ScHpJFHuMAQ6GFIJOm3f5HjzANIV Tamarack Roof Truss, Burlington 3-5-0 8-6-0 3-5-0 4x4 <> c^{4x4}= В D 8.00 12

				and an area
LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
K - A	2x4	DRY	No.2	SPF
F - E	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
1 - C	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
J - H	2x4	DRY	No.2	SPF
1				

DRY: SEASONED LUMBER.

PL/	ATES (table i	s in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Χ
Α	TMVW+p	MT20	4.0	4.0	1.25	2.00
В	TTWW-h	MT20	5.0	6.0	1.50	2.75
С	TMVW-t	MT20	4.0	4.0		
D	TTW-h	MT20	4.0	4.0		
E	TMVW+p	MT20	4.0	4.0	1.25	2.00
F	BMV1+p	MT20	3.0	4.0		
G	BMWWW-t	MT20	4.0	6.0	2.00	1.50
Н	BVMWW-I	MT20	6.0	10.0	Edge	6.50
1	BMV+p	MT20	3.0	4.0		
J	BMWWW-t	MT20	4.0	10.0		
K	BMV1+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

BUIL	ENSIONS, SUPPORTS LDING DESIGNER RINGS	AND LOADINGS SPECIFIED	BY FABRIC	CATOR TO BE VERI	FIED
	FACTORED	MAXIMUM FACTORED	INPUT	REQRD	

	FACTORED		MAXIMU	M FACT	INPUT	REQR	
	GROSS REACTION		GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
K	1004	0	1004	0	0	MECHAN	VICAL
F	1004	0	1004	0	0	MECHAN	VICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K, F. MINIMUM BEARING LENGTH AT JOINT K = 3-8, JOINT F = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	AIN. COMPO	VENT REACTION	4S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
K	703	498 / 0	0/0	0/0	0/0	205 / 0	0/0
F	703	498 / 0	0/0	0/0	0/0	205 / 0	0/0

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 5.38 \; \text{FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 7.81 \; \text{FT. OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS				WEBS				
MAX	C. FACTORED	FACTOR	ED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOA	ND LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLi	=) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	го		LENGTH	FR-TO			
	-697 / 0	-112.4 -					-398 / 0	0.15 (1)	
B- C	-1083 / 0					J- H	0 / 556	0.09 (1)	
	-737 / 0	-112.4 -				B- H	0 / 606	0.14(1)	
D- E	-880 / 0	-112.4 -	112.4	0.24(1)	6.22	C-G	-590 / 0	0.20(1)	
K- A	-987 / 0	0.0	0.0	0.14(1)	7.81	G-D	0 / 241	0.05(1)	
F-E	-976 / 0	0.0	0.0	0.11(1)	7.81	A- J		0.16 (1)	
						G-E	0 / 788	0.18 (1)	
K- J	0/0			0.13 (4)					
J- 1	0/31	-18.5	-18.5	0.13 (4)	10.00				
I- H	0 / 47	0.0	0.0	0.05 (1)	10.00				
H- C	-164 / 18			0.04 (1)					
H- G	0 / 1092			0.20 (1)					
G-F	0/0	-18.5	-18.5	0.05 (4)	10.00				

DESIGN CRITERIA

ВУ

SPECIFIED LOADS:									
TOP	CH.	LL	=	32.5	PSI				
		DL	=	6.0	PSI				
BOT	CH.	LL	=	0.0	PSI				
		DL	=	7.4	PSI				
TOTAL	. LO	٩D	=	45.9	PS				

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

TOTAL WEIGHT = 73 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

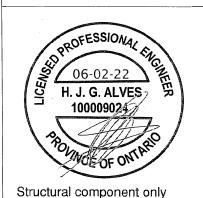
(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.51") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.02") ALLOWABLE DEFL.(TL)= L/360 (0.51") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.06")

CSI: TC=0.48/1.00 (B-C:1) , BC=0.20/1.00 (G-H:1) , WB=0.20/1.00 (C-G:1) , SSI=0.29/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

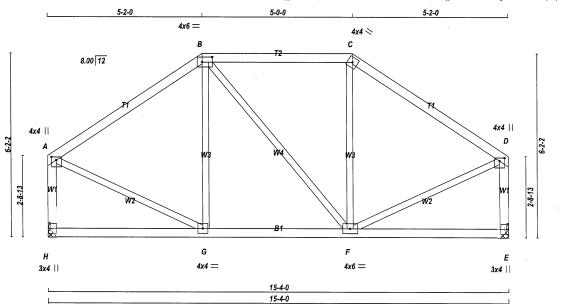
COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.86 (B) (INPUT = 0.90) JSI METAL= 0.25 (G) (INPUT = 1.00)

DWG# T-2213234

QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:24 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-JPVwgaTx?JflPDNcyMuuMT98xp1pZwZgU8A9QAzAŇRP

LUMBER N. L. G. A. RULES CHORDS No.2 No.2 No.2 SPF SPF SPF SPF SPF DRY - B 2x4 ABCHEH 2x4 2x4 2x4 DRY DRY DRY C No.2 - A - D 2x4 DRY No.2 SPF ALL WEBS 2x3 DRY SPF No.2 **EXCEPT**

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
A TMVW+p MT20 Y X 1.25 2.00 4.0 4.0 4.0 4.0 4.0 TTWW-i 2.00 4.00 1.25 2.00 TMVW+p MT20 4.0 BMV1+p BMWWW-t BMWW-t 3.0 4.0 4.0 MT20 MT20 4.0 BMV1+p MT20 3.0

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

BUILDINGS BEARINGS FACTORED MAXIMUM FACTORED INPLIT REORD GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ UPLIFT BRG IN-SX BRG IN-SX 1004 1004 0 MECHANICAL 1004 0 1004 0 0 MECHANICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H, E. MINIMUM BEARING LENGTH AT JOINT H = 3-8, JOINT E = 3-8

UNFACTORED REACTIONS

MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND 1ST LCASE COMBINED SOIL DEAD 703 498 / 0

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS				WEBS				
FACTORED	FACTOR	RED				MAX. FACTO	RED	
FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
(LBS)	(PL	F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
	FROM	TO		LENGTH	FR-TO			
-718 / 0	-112.4	-112.4	0.39(1)	6.25	G-B	-172 / 33	0.10(1)	
-594 / 0	-112.4	-112.4	0.36(1)	6.25	B-F	0/0	0.00(1)	
-718 / 0	-112.4	-112.4	0.39 (1)	6.25	F-C	-172 / 33	0.10(1)	
-963 / 0	0.0	0.0	0.14(1)	7.81	A- G	0 / 656	0.15(1)	
-963 / 0	0.0	0.0	0.14(1)	7.81	F- D	0 / 656	0.15 (1)	
0/0	-18.5	-18.5	0.11 (4)	10.00				
0 / 594	-18.5	-18.5	0.16(1)	10.00				
0/0	-18.5	-18.5	0.11 (4)	10.00				
	FACTORED FORCE (LBS) -718 / 0 -594 / 0 -718 / 0 -963 / 0 -963 / 0 0 / 0 0 / 594	FACTORED FACTOR (LBS) (PL FROM -718 / 0 -112.4 -963 / 0 -0.0 -963 / 0 -0.0 -18.5 0 / 594 -18.5	FACTORED FACTORED FACTORED (LBS) (PLF) 6 (PLF) 6 (PLF) 7 (PLF)	FACTORED FACTORED	FACTORED FACTORED FORCE (LBS) FROM TO CSI (LC) UNBRAC (LBS) FROM TO LENGTH 6.25 - 594 / 0 - 112.4 - 112.4 0.39 (1) 6.25 - 718 / 0 - 112.4 - 112.4 0.39 (1) 6.25 - 718 / 0 - 112.4 - 112.4 0.39 (1) 6.25 - 963 / 0 - 0.0 0.0 0.14 (1) 7.81 - 963 / 0 - 0.0 0.0 0.14 (1) 7.81 - 963 / 0 - 18.5 - 18.5 0.11 (4) 10.00 0 / 594 - 18.5 - 18.5 0.16 (1) 10.00	FACTORED FORCE (LBS) FACTORED VERT. LOAD LC1 MAX MAX. UMBRAC LENGTH FR-TO -718 / 0 -594 / 0 -111.24 -112.4 0.39 (1) 6.25 G-B -594 / 0 -111.24 -112.4 0.39 (1) 6.25 G-B -718 / 0 -112.4 -112.4 0.36 (1) 6.25 B- F -718 / 0 -112.4 -112.4 0.39 (1) 6.25 B- F -963 / 0 0.0 0.0 0.14 (1) 7.81 A-G -963 / 0 0.0 0.0 0.14 (1) 7.81 F-D 0 / 0 -18.5 -18.5 0.11 (4) 10.00 0 / 594 -18.5 -18.5 0.16 (1) 10.00	FACTORED FORCE (LBS) FACTORED VERT. LOAD LC1 MAX (PLF) MAX. UNBRAC LENGTH FR-TO LENGTH FR-TO 1-112.4 -112.4 0.39 (1) MAX. UNBRAC LENGTH FR-TO 6.25 B- F MAX. (LBS) -718 / 0 -594 / 0 -112.4 -112.4 0.39 (1) 6.25 B- F 0.70 / 0.72 / 33 -963 / 0 -963 / 0 0.0 0.0 0.14 (1) 7.81 A- G 0 0/656 0 / 0 -963 / 0 -18.5 -18.5 0.11 (4) 10.00 0 0 / 594 -18.5 -18.5 0.16 (1) 10.00	

DESIGN CRITERIA

SPECIFIED LOADS LL = DL = LL = DL = AD = PSF PSF 6.0 BOT CH. 0.0 7.4 PSF TOTAL LOAD 45.9 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

TOTAL WEIGHT = 67 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

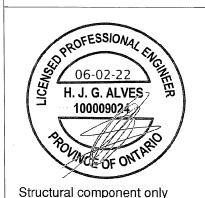
(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.51")
CALCULATEO VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.51")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03")

CSI: TC=0.39/1.00 (A-B:1) , BC=0.16/1.00 (F-G:1) , WB=0.15/1.00 (A-G:1), SSI=0.22/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

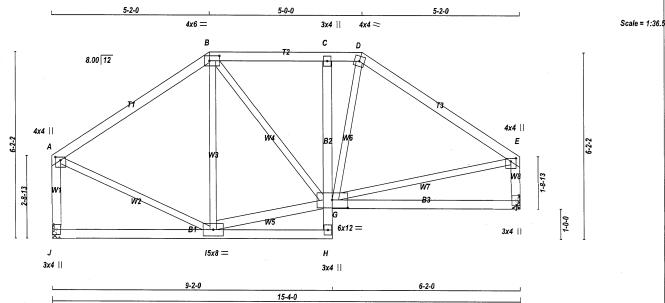
COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.86 (F) (INPUT = 0.90) JSI METAL= 0.20 (G) (INPUT = 1.00)

DWG# T-2213222

JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 426688 TRUSS DESC Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Thu Jun 2 09:11:59 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-RCM8_BwvcVl4lkeeA_KYnURY2qSD_liX?jOfp9zANIU

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
J - A	2x4	DRY	No.2	SPF
F - E	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
H - C	2x4	DRY	No.2	SPF
G - F	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				-
1 - G	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Χ					
Α	TMVW+p	MT20	4.0	4.0	1.25	2.00					
В	TTWW-I	MT20	4.0	6.0	2.00	4.00					
С	TMV+p	MT20	3.0	4.0							
D	TTW-m	MT20	4.0	4.0							
Ε	TMVW+p	MT20	4.0	4.0	1.25	2.00					
F	BMV1+p	MT20	3.0	4.0							
G	BVMWWWW	/*-MT20	6.0	12.0	3.25	6.00					
Н	BMV+p	MT20	3.0	4.0							
1	BMWWW-t	MT20	5.0	8.0							
.1	RMV/1±n	MT20	3.0	4.0							

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

Į	DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED	BY FABRIC	CATOR TO BE	VERIFIED B
	BUILDING DESIGNER				
	BEARINGS				
	FACTORED	MAXIMUM FACTORED	INPLIT	REORD	

FACTORED GROSS REACTION		MAXIMUM FACTORED GROSS REACTION			INPUT BBG	REQRE
VERT	HORZ	DOWN		UPLIFT	IN-SX	IN-SX
1004	0	1004	0	0	MECHANI	CAL
1004	0	1004	0	0	MECHANI	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J, F. MINIMUM BEARING LENGTH AT JOINT J = 3-8, JOINT F = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	<u>/IIN. COMPOI</u>	VENT REACTION	VS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
J	703	498 / 0	0/0	0/0	0/0	205 / 0	0/0
F	703	498 / 0	0/0	0/0	0/0	205 / 0	0/0

JT J

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.99 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	R D S FACTORED	FACTO	RED			W E	B S MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	-714 / 0				6.25		-322 / 0	0.19(1)	
	-788 / 0	-112.4	-112.4	0.19(1)	6.25	I- G	0 / 596	0.10(1)	
	-792 / 0	-112.4	-112.4	0.15(1)	6.25	B- G	0/313	0.07(1)	
D- E	-881 / 0	-112.4	-112.4	0.40(1)	5.99	G-D	0 / 268	0.06(1)	
	-965 / 0	0.0	0.0	0.14(1)	7.81	A- I	0 / 655	0.15(1)	
F-E	-945 / 0	0.0	0.0	0.10(1)	7.81	G-E	0 / 751	0.17 (1)	
J- I	0/0	-18.5	105	0.11 (4)	10.00				
I- H	0/17	-18.5		0.11 (4)					
H- G	0 / 26	0.0		0.03 (1)					
G- C	-440 / 0	0.0		0.03 (1)					
G-F	0/0	-18.5		0.07 (1)					

DESIGN CRITERIA

SPEC	IFIED	LOAE	DS:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	1 10	۸ ا		4E 0	DC

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

TOTAL WEIGHT = 75 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

- THIS DESIGN COMPLIES WITH:
 PART 9 OF BCBC 2018 , ABC 2019
 PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 TPIC 2014

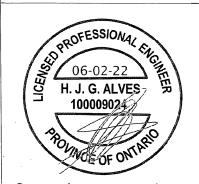
(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.51")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.51")
CALCULATED VERT. DEFL.(TL)= L/999 (0.09")

CSI: TC=0.40/1.00 (D-E:1), BC=0.22/1.00 (F-G:4), WB=0.19/1.00 (B-I:1) , SSI=0.20/1.00 (B-C:1)

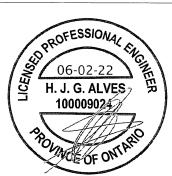
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (E) (INPUT = 0.90) JSI METAL= 0.23 (E) (INPUT = 1.00)

Structural component only DWG# T-2213235

JOB DESC. QUANTIT **BAYVIEW WELLINGTON** DRWG NO 426687 T50 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:25 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-nb3luwUZlcnc1NypV4P7vhiKZDGyIEPqjowiydzANRO _1-3-8 11-10-8 9-2-0 11-10-8 Scale = 1:60.6 4x6 = 2x4 || 8.00 12 4x6 = Н 3x8 / 3x8 < 4x4 // E D 4x6 / 4x6 > С 6x7 =6x7 = В W4 ф u ۵ w ν Τ s R 0 6x10 | 5x6 =5x6 = 6x10 || 8x9 | 5x6 =5x8 || 5x6 = 5x8 || 5x6 = 8x9 || 30-0-8 2-10-8 1-3-8 32-11-0 1-3-8 TOTAL WEIGHT = 2 X 186 = 372 lb LUMBER N. L. G. A DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER BEARINGS FACTORED DESIGN CRITERIA LUMBER A -E -F -DRY E 2x4 No.2 SPF MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS SPF SPF GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ U BRG IN-SX BRG IN-SX DRY No 2 LL = DL = LL = DL = AD = 32.5 CH. DRY UPLIFT 6.0 PSF 2x4 No.2 SPF 2800 0 2800 0 0 5-8 5-8 BOT CH. 0.0 7.4 PSF М 2x4 DRY No.2 SPF ñ SPF SPF SPF В 2x6 2x6 DRY No.2 No.2 TOTAL LOAD PSF 45.9 LUQ UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW 2x6 DRY No.2 24.0 IN. C/C DRY SPE C/MIN. COMPONENT REACTIONS No.2 SPF WIND DEAD PERM.LIVE SOIL 1959 1405 / 0 0/0 0/0 0/0 554 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM ALL WEBS 2x3 DRY No.2 SPF 3735 / 0 EXCEPT W - C O - K B - W No.2 SPF BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) X, N THIS TRUSS IS DESIGNED FOR RESIDENTIAL SPF SPF SPF 2x4 DRY No.2 SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 2x4 OP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.22 FT. No.2 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. DRY: SEASONED LUMBER. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. DESIGN CONSISTS OF 2 TRUSSES BUILT CSA 086-14 SEPARATELY THEN FASTENED TOGETHER AS 2x4 DRY SPF No.2 T-BRACE AT G-S, H-S, J-R **TPIC 2014** FOLLOWS: FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD CHORDS #ROWS SURFACE LOAD(PLF) COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% SPACING (IN) TOP CHORDS : (0.122"X3") SPIRAL NAILS ALLOWABLE DEFL.(LL)= L/360 (1.10")
CALCULATED VERT. DEFL.(LL)= L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (1.10")
CALCULATED VERT. DEFL.(TL)= L/999 (0.14") 12 TOP END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN TOP TOP 12 12 THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW LOADING
TOTAL LOAD CASES: (4) H-I 12 TOP TOP TOP I- M 12 CSI: TC=0.34/1.00 (J-K:1), BC=0.61/1.00 (O-P:1), 12 TOF WB=0.75/1.00 (K-P:1) , SSI=0.14/1.00 (F-G:1) BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS TOP DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 SIDE(183.1) WEBS: (0.122"X3") SPIRAL NAILS COMPANION LIVE LOAD FACTOR = 1.00 2x3 K- O SIDE(1283.3) AUTOSOLVE HEELS OFF TRUSS PLATE MANUFACTURER IS NOT NAILS TO BE DRIVEN FROM ONE SIDE ONLY. RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. NAIL VALUES

Structural component only DWG# T-2213223

TOTAL	LOAD CASES:	(4)						
C F	CHORDS WEBS							
MA	X. FACTORED	FACTORED						
MEMB.		VERT, LOAD L	C1 MAX	MAX.	MEMB			
	(LBS)	(PLF)	CSI (LC)			(LBS)		2)
FR-TO		FROM TO		LENGTH			(-,
A-B	0 / 43	-112.4 -112.	4 0.08 (1)		W-C		0.06 (1)
B-C	-2922 / 0	-112.4 -112.			C-V		0.04 (1	
C-D	-3275 / 0	-112.4 -112.			V- D		0.03 (1	
D-E	-3020 / 0	-112.4 -112.			D-T	-410/0	0.23 (1	
E-F	-3020 / 0	-112.4 -112.	4 0.24 (1)	5.08	T-F	0 / 417	0.05 (1	
F-G	-2922 / 0	-112.4 -112.	4 0.25 (1)	5.11	F-S	0 / 946	0.12 (1)
G- H	-2922 / 0	-112.4 -112.			S-G	-616 / 0	0.26 (1)
H-1	-3605 / 0	-112.4 -112.			S-H	-148 / 0	0.08 (1)
I-J	-3605 / 0	-112.4 -112.			R- H	0 / 1718	0.21 (1	
J-K	-5092 / 0	-112.4 -112			R-J	-2096 / 0	0.57 (1)
K-L	-8246 / 0	-112.4 -112			P-J	0 / 1896		
L-M	0 / 43	-112.4 -112				-3112/0	0.75 (1	
X-B	-2756 / 0		0 0.10 (1)		0- K	0/3044		
N-L	-7258 / 0	0.0	0 0.26 (1)	5.55	B- W	0 / 2594		
					O- L	0 / 7270	0.64 (1)
X-W	0/0		5 0.02 (1)					
W-V	0 / 2451		.5 0.19 (1)					
N- ñ	0 / 2737		5 0.19 (1)					
U-T	0 / 2737		.5 0.19 (1)					
T-S	0 / 2490		.5 0.18 (1)					
S-R	0 / 2989		.5 0.21 (1)					
R-Q Q-P	0 / 4257		.5 0.29 (1)					
P-0	0 / 4257 0 / 6869		.5 0.29 (1)					
0- N	0/0009		.5 0.61 (1)					
0-14	070	-10.5 -18	.5 0.16 (1)	10.00				
SPEC	IEIED CONCENT	TRATED LOADS	(LRS)					
JT LO	LOC. LC			ACE	DIR.	TYPE	HEEL	CONN.
0	30-0-8 -393				ERT	TOTAL		C1
								•
CONIN	ECTION DECLU	CENTRAL						

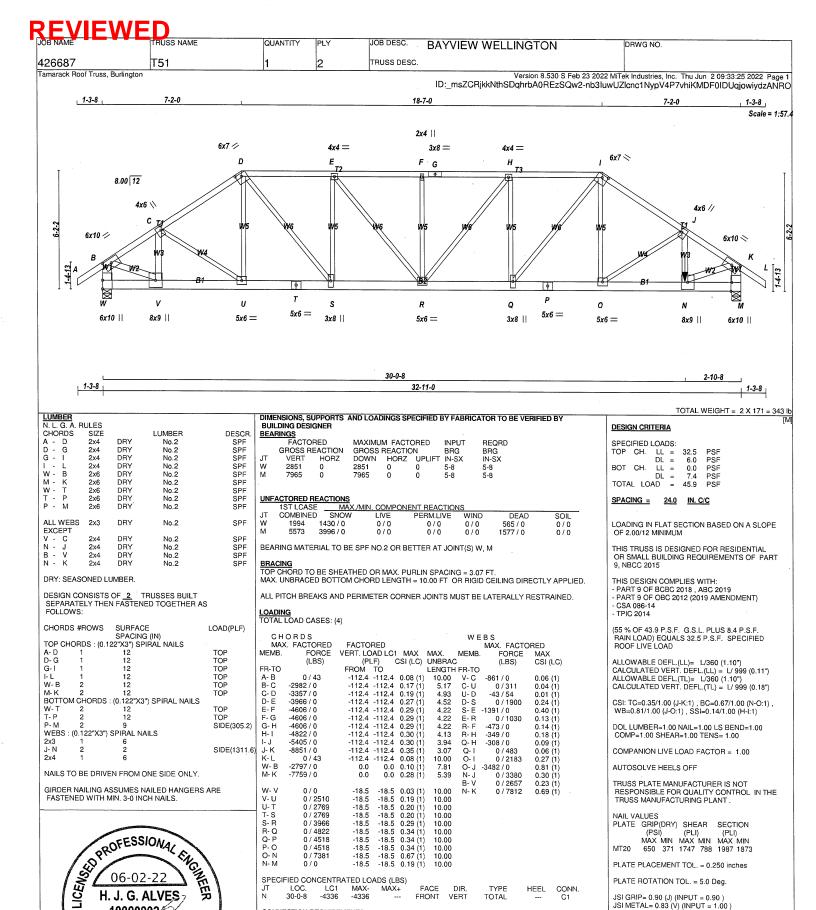
CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 MT20

PLATE PLACEMENT TOL = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg


JSI GRIP= 0.90 (K) (INPUT = 0.90) JSI METAL= 0.77 (W) (INPUT = 1.00)

CONTINUED ON PAGE 2

JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T50 TRUSS DESC Version 8.530 S Feb 23 2022 MiTel Industries, Inc. Thu Jun 2 09:33 25 2022 Page 2 ID: msZCRjkkNthSDqhrbA0REzSQw2-nb3luwUZlcnc1NypV4P7vhiKZDGyIEPqjowiydzANRO Tamarack Roof Truss, Burlington GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS. CONNECTION REQUIREMENTS 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. LEN Y X
7.0 Edge
6.0 2.00 2.25
4.0 2.00 1.00
8.0
6.0 2.00 4.00
8.0
2.00 4.00
8.0
2.00 2.00 2.25
7.0 Edge 0.50
9.0
6.0 8.0
6.0 8.0
6.0 8.0
6.0 8.0
6.0 8.0 W 6.0 4.0 4.0 3.0 4.0 4.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 TMW+w TTWW-I TS-t TMWW-t TMWW-t TMVW-p BMV1+t BMWW+t BMWW-t BS-t BMWW+t BMWWW-t BMWW+t BS-t BMWW-t 6.0 9.0 10.0 5.50 BMWW+t BMV1+t Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. NOTES- (1)

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2 PROFESSIONAL FINGUES TO TOPOGOGO 100009024 POLINGE OF ONTARIO Structural component only

DWG# T-2213223

Structural component only DWG# T-2213224

100009024

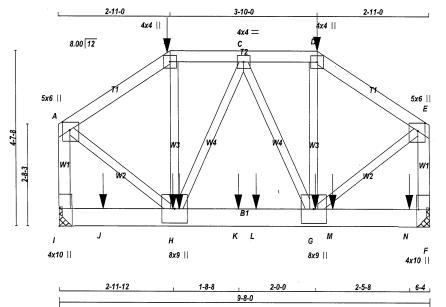
POLYOF ON ARIO

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CONTINUED ON PAGE 2

QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T51 2 TRUSS DESC. Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:25 2022 Page 2 ID: msZCRjkkNthSDqhrbA0REzSQw2-nb3IuwUZlcnc1NypV4P7vhiKMDF0IDUqjowiydzANRO Tamarack Roof Truss, Burlington PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20
C TMWW+t MT20
D TTWW-h MT20
E TMWW-t MT20
F TMW+w MT20
G TS-t MT20
H TMWW-t MT20
J TMWW-t MT20
G TS-t MT20
J TMWW-t MT20
D MWW-t MT20
D MWW-t MT20
R BMVW-t MT20
D BMWW-t MT20
U BMWW-t MT20 W LEN Y X
6.0 10.0 2.75 4.75
4.0 6.0 2.50 1.00
6.0 7.0 1.75 3.50
4.0 4.0 4.0
2.0 4.0
3.0 8.0
4.0 4.0 1.75 3.50
4.0 6.0 7.0 1.75 3.50
6.0 10.0 2.75 4.75
6.0 10.0 Edge 0.50
8.0 9.0
5.0 6.0
3.0 8.0
5.0 6.0
3.0 8.0
5.0 6.0
3.0 8.0
5.0 6.0
6.0 9.0
6.0 10.0 5.50 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. NOTES- (1)


1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2 PROFESSIONAL FINGUES TO THE PROPERTY OF THE PR 100009024 POLINGE OF ONT ARIO Structural component only DWG# T-2213224

REVIEWED

QUANTITY JOB DESC. PI Y **BAYVIEW WELLINGTON** DRWG NO. 426687 T52 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:26 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-Fodg5GUCWwvTeWX?3nwMSuEVQddn1InzxSfGU3zANRN

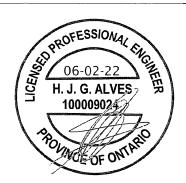
TOTAL WEIGHT = 2 X 53 = 107 lb

Scale = 1:29.0

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
1 - A	2x4	DRY	No.2	SPF
F - E	2x4	DRY	No.2	SPF
1 - F	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:


CHORDS	#ROWS S	SURFACE	LOAD(PLF)
	5	SPACING (IN)	
TOP CHOI	RDS: (0.122	"X3") SPIRAL NAILS	
A-B	1	12	SIDE(61.0)
B- D	1	12	SIDE(61.0)
D-E	1	12	SIDE(61.0)
I- A	1	12	TOP
F-E	1	2	SIDE(385.2)
BOTTOM (CHORDS: (C).122"X3") SPIRAL NAILS	
I- F	2	12	SIDE(183.1)
WEBS: (0	.122"X3") SF	PIRAL NAILS	
H-B	1	6	SIDE(323.0)
2x3	1	6	, ,

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.
REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

Structural component only DWG# T-2213225

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

<u>:A</u>	RINGS						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRE	
GROSS REACTION			GROSS	REACTIO	BRG	BRG	
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	5640	0	5640	0	0	MECHAN	NICAL
	6216	0	6216	٥	0	MECHAN	JICAI

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I, F. MINIMUM BEARING LENGTH AT JOINT I = 4-0, JOINT F = 4-0.

UNFACTORED REACTIONS

131 LOASEWAX./WIIN. COMPONENT REACTIONS		
JT COMBINED SNOW LIVE PERM.LIVE WIND	DEAD SOIL	
1 3947 2823/0 0/0 0/0 0/0 11	124/0 0/0	
F 4351 3110/0 0/0 0/0 0/0 12	241 / 0 0 / 0	

JΤ

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.75 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

MEMB.

LOADING TOTAL LOAD CASES: (4)

IOIAL	OTAL LOAD CASES. (4)											
CHORDS WEBS												
	X. FACTOR		FACTO							MAX. FAC	TORED	
иемв			'ERT. LO	AD LC1	MA	۱X X	MAX.		MEMB.	FORCE	E MAX	
	(LBS	3)	(PL	.F) (CSI (LC)	UNBF	RAC	;	(LBS)	CSI	(LC)
FR-TO			FROM	TO			LENG	HTE	FR-TO			
A-B	-3764 / 0		-112.4	-112.4	0.14	4 (1)	4.	75	H-B	0 / 1639	0.20	(1)
B- C	-3165 / 0		-112.4	-112.4	0.08	3 (1)	5.	16	H- C	-32 / 9	0.01	
C-D	-3127 / 0		-112.4	-112.4	0.08	3 (1)	5.	19	C-G	-129 / 0	0.02	
D- E	-3719 / 0		-112.4	-112.4	0.14	4 (1)	4.	77	G-D	0 / 1614		
I- A	-4617/0		0.0						A- H			
F-E	-4564 / 0		0.0						G-E			
l- J	0/0		-33.5	-33.5	0.41	2 /43	10.0	00				
J- H	0/0		-33.5	-33.5								
H- K	0/0	70	-18.5	-18.5								
K- L		178	-18.5	-18.5			10.					
L- G	0/31		-18.5			7 (1)	10.					
G-M	0/31	170				7 (1) 7 (1)						
M- N	0/0			-33.5								
N- F	0/0		-33.5	-33.5								
14-1	0/0		-33.5	-33.5	0.5	/ (1)	10.	UU				
	IFIED CONC											
JT	LOC.	LC1	MAX-	MAX	+		CE		DIR.	TYPE	HEEL	CONN.
В	2-11-0	-106	-106	-			TNC		RT	TOTAL		C1
D	6-9-0	-106	-106	-		FRC			ERT	TOTAL		C1
G	6-8-4	-111	-111	-		FRC	TNC	VE	ERT	TOTAL		C1
H	2-11-12	-111	-111	-		FRC	TNC	VE	RT	TOTAL		C1
Н		-1358	-1358	-		BAC			RT	TOTAL		C1
J		-1358	-1358	-		BAC	CK	VE	RT	TOTAL		C1
K	4-8-4	-111	-111	-		FRC	TNC	VE	RT	TOTAL		C1
L	5-1-12	-1358	-1358	-		BAC	CK	VE	RT	TOTAL		C1
M	7-1-12	-1358	-1358	-		BAC	CK.	VE	ERT	TOTAL		C1

BACK

VERT

TOTAL

C1

9-1-12 -1361 CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

-1361

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BYUSER LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS:

TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	1 10	ΔD	-	45 9	PS

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES

IIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL)= L/999 (0.05")

CSI: TC=0.33/1.00 (A-I:1) , BC=0.57/1.00 (G-H:1) , WB=0.48/1.00 (A-H:1) , SSI=0.77/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

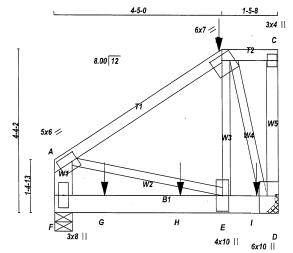
NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (B) (INPUT = 0.90) JSI METAL= 0.71 (A) (INPUT = 1.00)

CONTINUED ON PAGE 2


QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 426687 T52 2 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:26 2022 Page 2 ID: msZCRjkkNthSDqhrbA0REzSQw2-Fodq5GUCWwvTeWX?3nwMSuEVQddn1InzxSfGU3zANRN W LEN Y X 5.0 6.0 2.50 2.25 4.0 4.0 4.0 4.0 5.0 6.0 2.50 2.25 4.0 10.0 Edge 0.50 8.0 9.0 8.0 9.0 4.0 10.0 5.50 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. NOTES- (1)

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2 PROFESSIONAL FINGUES TO THE PROPERTY OF THE PR 100009024 POLYACE OF ONTARIO Structural component only DWG# T-2213225

JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 426687 T54 TRUSS DESC.

Tamarack Roof Truss, Burlington

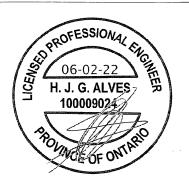
Version 8.530 S Feb 23 2022 MTek Industries, Inc. Thu Jun 2 09:33:27 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-i_A3JcVqHE1KGg6BdVRb_6nim0ujmAl7A6Pp1VzANRM

2-0-0 1-3-12 2-0-0 6-12 5-10-8

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER DESCR SPF SPF SPF ВСС No.2 No.2 2×4 DRY 2x4 2x4 DRY No.2 2x6 DRY No.2 SPF SPF Ď ALL WEBS 2x3 DRY No.2 SPF EXCEPT

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:


CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
	ORDS : (0.1	22"X3") SPIRAL NAILS	
A-B	1	12	SIDE(61.0)
B-C	1	12	SIDE(61.0)
C-D	1	12	TOP
F-A	· 2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
F- D	2	12	SIDE(0.0)
WEBS:	(0.122"X3")	SPIRAL NAILS	
E-B	1	6	SIDE(26.6)
242	4	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

Structural component only DWG# T-2213226

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BUILDING DESIGNER	

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS I	REACTIC	N	BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
)	4175	0	4175	0	0	MECHANIC	CAL
=	3123	0	3123	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	131 LUASE		VIIN. COMPO	VENT REACTION	VO		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	2912	2140 / 0	0/0	0/0	0/0	771 / 0	0/0
F	2181	1589 / 0	0/0	0/0	0/0	592 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E	BS		
MAX	(. FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	. FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	-1682 / 0	-112.4	-112.4	0.23 (1)	6.25	E-B	0 / 4122	0.51(1)	
B- C	0/0	-112.4	-112.4	0.02(1)	10.00	B- D	-4353 / 0	0.63(1)	
	-82 / 0	0.0	0.0	0.01(1)	7.81	A-E	0 / 1431	0.18(1)	
F- A	-1492 / 0	0.0	0.0	0.05 (1)	7.81				
F- G	0/0	-18.5	-18.5	0.78 (1)	10.00				
G- H	0/0			0.78 (1)					
H-E	0/0	-18.5	-18.5	0.78 (1)	10.00				
E-I	0 / 1506	-18.5	-18.5	0.68 (1)	10.00	•			
I- D	0 / 1506	-18.5	-18.5	0.68 (1)	10.00				

SPEC	IFIED CON	ICENTRA	TED LOA	ADS (LBS)					
ΙT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
3	4-5-0	-62	-62		FRONT	VERT	DEAD		C1
3	4-5-0	-328	-328		FRONT	VERT	SNOW		C1
3	1-3-12	-1387	-1387		BACK	VERT	TOTAL		C1
+	3-3-12	-1387	-1387		BACK	VERT	TOTAL		C1
	5-3-12	-1390	-1390		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

TOTAL WEIGHT = 2 X 33 = 67 lb

Scale = 1:29.3

SPECIFIED LOADS:

TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	1 10	AΠ	-	45.9	PS

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018, ABC 2019 PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/603 (0.12")

CSI: TC=0.23/1.00 (A-B:1) , BC=0.78/1.00 (E-F:1) , WB=0.63/1.00 (B-D:1) , SSI=0.80/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

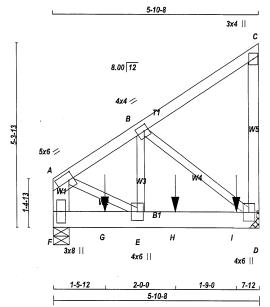
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 MT20

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.76 (B) (INPUT = 0.90) JSI METAL= 0.58 (B) (INPUT = 1.00)


CONTINUED ON PAGE 2

DEVIEV OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
26687	T54	1	2	TRUSS DESC		
amarack Roof Truss, Bur	lington				Version 8.530 S Feb 23 2 ID: msZCRjkkNthSDghrbA0REzSQw2-j A3	2022 MiTek Industries, Inc. Thu Jun 2 09:33:27 2022 Pai JcVqHE1KGg6BdVRb 6nim0ujmAl7A6Pp1VzAN
PLATES (table is in inch	nes)					
JT TYPE PLATE A TMVW-t MT20 B TTWW-h MT20	S W LEN Y X 5.0 6.0 2.50 1.75 6.0 7.0 1.50 3.50					
C TMV+p MT20 D BMVW1+t MT20	3.0 4.0 6.0 10.0 Edge 2.50					
BMWW+t MT20 BMV1+p MT20	4.0 10.0					
Edge - INDICATES REFE	ERENCE CORNER OF PLATE HORD.					
NOTES- (1) NOTE: Lateral braces	to be a minimum of 2x4 SPF #2					
						·
-						
	•	-				
	region					·
PROF	ESSIONALE					
1 4 O	6-02-22					
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6-02-22 G. ALVES 20009024					
10	0009024					
1 -		-				
Pour	OF ON THEO					
	CE OF ON!					
DWG# T-2	omponent only 213226					

QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 T55 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:28 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-CAkRWyWS2X9BuqgOACyqXJKvhQMMVj GPI8MZxzANRL

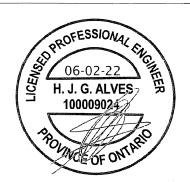
LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER DESCR No.2 No.2 SPF DRY DRY 2x6 No.2 SPF D 2x6 DRY No.2 SPF ALL WEBS DRY SPF 2x3 No.2 EXCEPT

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CH	ORDS : (0.1	22"X3") SPIRAL NAILS	
A-C	1	12	TOP
D-C	1	12	TOP
F- A	2	12	TOP
BOTTO	M CHORD'S	: (0.122"X3") SPIRAL NAILS	
F- D	2	12	SIDE(0.0)
WEBS:	(0.122"X3")	SPIRAL NAILS	
2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.


GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE CORRESPONDING TO THE TOP OF THE TOP SIDE OR ON THE TOP

PLATES (table is in inches)

JΤ	TYPE	PLATES	W	LEN	Υ	Х	
Α	TMVW-t	MT20	5.0	6.0	2.50	1.75	
В	TMWW-t	MT20	4.0	4.0	2.00	1.50	

Structural component only DWG# T-2213227

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	
BEARINGS	

EA	RINGS						
	FACTOR	RED	MAXIMUN	/ FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2135	0	2135	0	0	MECHANIC	AL
	1748	0	1748	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	VENT REACTION	1S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	1493	1077 / 0	0/0	0/0	0/0	416 / 0	0/0
F	1221	888 / 0	0/0	0/0	0/0	333 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

JΤ

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CH	ORDS			WEBS							
MAX	. FACTORED	FACTO	RED		MAX. FACTORED						
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX			
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)			
FR-TO		FROM	TO		LENGTH	FR-TO					
	-1549 / 0						0 / 1497	0.19(1)			
	-17 / 0		-112.4	0.08 (1)	6.25	B- D	-1665 / 0	0.25(1)			
	-159 / 0	0.0	0.0	0.04(1)	7.81	A-E	0 / 1409	0.17(1)			
F- A	-1493 / 0	0.0	0.0	0.05 (1)	7.81						
F- G	0/0	-18.5	-18.5	0.21 (1)	10.00						
G-E	0/0										
	0 / 1309										
H- I	0 / 1309	-18.5	-18.5	0.31 (1)	10.00						
I- D	0 / 1309	-18.5	-18.5	0.31 (1)	10.00						
SPECIFIED CONCENTRATED LOADS (LBS)											

SPEC	DIFIED CON	ICENTRA	TED LOA	NDS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
G	1-5-12	-794	-794		BACK	VERT	TOTAL		C1
Н	3-5-12	-689	-689		BACK	VERT	TOTAL		C1
1	5-2-12	-691	-691		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:										
TOP	CH.	LL	=	32.5	PSF					
		DL	=	6.0	PSF					
BOT	CH.	LL	=	0.0	PSF					
		DL	=	7.4	PSF					
	TOTAL									

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9 NBCC 2015

TOTAL WEIGHT = 4 X 32 = 129 lb

Scale: 3/8"=1

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.01")
ALLOWABLE DEFL.(TL) = L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.09/1.00 (A-B:1) , BC=0.31/1.00 (D-E:1) , WB=0.25/1.00 (B-D:1) , SSI=0.36/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

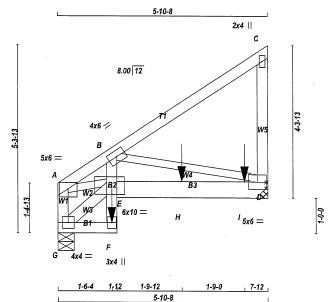
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (B) (INPUT = 0.90) JSI METAL= 0.29 (D) (INPUT = 1.00)


CONTINUED ON PAGE 2

JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. T55 426687 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:28 2022 Page 2 ID: msZCRjkkNthSDqhrbA0REzSQw2-CAkRWyWS2X9BuqqOACyqXJKvhQMMVj GPI8MZxzANRL | PLATES | (table is in inches) |
JT	TYPE	PLATES
C	TMV+p	MT20
D	BMVW1+p	MT20
E	BMWW+t	MT20
F	BMV1+p	MT20
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2 PROFESSIONAL ENGINEERS OF THE STATE OF THE S 100009024 POLINGE OF ONT ARE Structural component only DWG# T-2213227

JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 426688 T55S TRUSS DESC

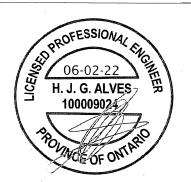
Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:12:00 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-vOvWCXwXNotxMuDrkisnKi_mcDgWj8ohEN8CMbźANIT

N. L. G. A. RULES
CHORDS SIZE
G - A 2x4
A - C 2x4
G - F 2x4 LUMBER DESCR SPF SPF SPF No.2 No.2 DRY DRY No.2 2x4 DRY No.2 SPF Ď SPF ALL WEBS DRY 2x4 No.2 SPE EXCEPT 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:


CHORE	DS #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	• •
TOP C	HORDS: (0.1	22"X3") SPIŘAĹ NAILS	
G- A	1	12	TOP
A- C	1	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
G-F	1	12	SIDE(61.0)
F- B	1	3	SIDE(238.6)
E- D	2	12	SIDE(0.0)
WEBS	: (0.122"X3")	SPIRAL NAILS	, ,
2x3	1 1	6	
244		^	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

Structural component only DWG# T-2213237

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	

EAI	RINGS						
	FACTOR	MAXIMUN	1 FACTO	INPUT	REQRD		
	GROSS RE	GROSS F	EACTIO	BRG	BRG		
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
ì	1692	0	1692	0	0	5-8	5-8
)	2173	0	2173	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	1S .		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL
G	1182	856 / 0	0/0	0/0	0/0	326 / 0	0/0
D	1519	1094 / 0	0/0	0/0	0/0	426 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.19 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CH	ORDS				WEBS					
MAX	. FACTORED	FACTO	RED		MAX. FACTORED					
иЕМВ.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PI	_F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
R-TO		FROM	TO		LENGTH	FR-TO				
G- A	-1571 / 0	0.0	0.0	0.09(1)	7.81	D- C	-216/0	0.02(1)		
	-3125 / 0	-112.4	-112.4	0.07(1)	5.19	B- D	-2876 / 0	0.46(1)		
B- C	-13 / 0	-112.4	-112.4	0.16(1)	6.25	G-E	-173 / 0	0.01 (1)		
						A-E	0 / 2626	0.33(1)		
G-F	0 / 135	-18.5	-18.5	0.02(1)	10.00					
F-E	0 / 1163	0.0	0.0	0.23(1)	10.00					
E-B	0 / 2046	0.0	0.0	0.30(1)	10.00					
E- H	0 / 2792	-18.5	-18.5	0.66(1)	10.00					
H-I	0 / 2792	-18.5	-18.5	0.66(1)	10.00					
I- D	0 / 2792	-18.5	-18.5	0.66(1)	10.00					

SPE	CIFIED CON	CENTRA	TED LOA	ADS (LBS)					
JΤ	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
=	1-6-4	-801	-801		BACK	VERT	TOTAL		C1
4	3-5-12	-689	-689		BACK	VERT	TOTAL		C1
	5-2-12	-692	-692		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:										
TOP	CH.	LL	=	32.5	PSF					
		DL	=	6.0	PSF					
BOT	CH.	LL	=	0.0	PSF					
		DL	=	7.4	PSF					
TOTA	1 10	ΔD	_	45 9	DOE					

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9 NBCC 2015

TOTAL WEIGHT = 2 X 31 = 62 lb

Scale = 1:31.2

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BOOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/917 (0.07")

CSI: TC=0.16/1.00 (B-C:1) , BC=0.66/1.00 (D-E:1) , WB=0.46/1.00 (B-D:1) , SSI=0.45/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

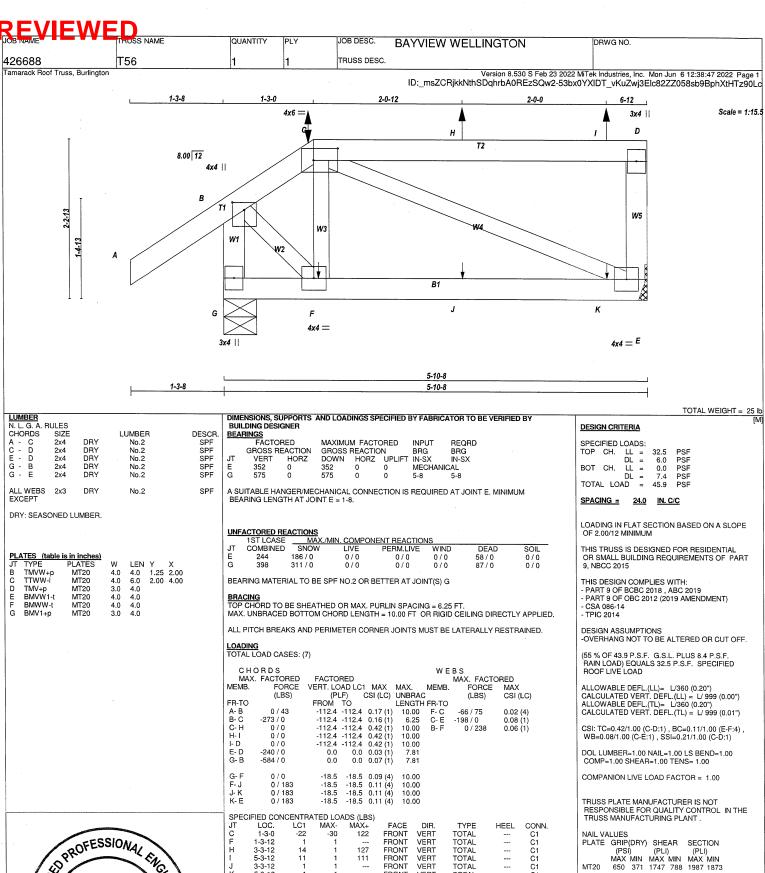

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (B) (INPUT = 0.90) JSI METAL= 0.33 (B) (INPUT = 1.00)

CONTINUED ON PAGE 2

QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 426688 T55S Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:12:00 2022 Page 2 ID: msZCRjkkNthSDqhrbA0REzSQw2-vOvWCXwXNotxMuDrkisnKi mcDgWj8ohEN8CMbzANIT Tamarack Roof Truss, Burlington W LEN Y X 5.0 6.0 Edge 4.0 6.0 5.0 6.0 5.0 6.0 6.0 10.0 4.00 6.00 4.0 4.0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2 PROFESSIONAL FINGUEST TO THE PROPERTY OF THE P 100009024 POLYACE OF ONTARIO Structural component only DWG# T-2213237

Structural component only DWG# T-2213748

SPE	CIFIED CON	CENTRA	TED LOA	ADS (LBS)					
JT	LOC.	LC1	MAX-	MÀX+	FACE	DIR.	TYPE	HEEL	CONN
С	1-3-0	-22	-30	122	FRONT	VERT	TOTAL		C1
F	1-3-12	1	1		FRONT	VERT	TOTAL		C1
Н	3-3-12	14	1	127	FRONT	VERT	TOTAL		C1
1	5-3-12	11	1	111	FRONT	VERT	TOTAL		C1
J	3-3-12	1	1		FRONT	VERT	TOTAL		C1
K	5-3-12	1	1		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.39 (B) (INPUT = 0.90) JSI METAL= 0.12 (B) (INPUT = 1.00)

QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 426687 T57 Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:28 2022 Page 1

1-3-8 3x4 || 8.00 12 3x4 || 4x4 || W3 W2 D 4x6 = 0-9-1 3x4 |

> 2-9-0 2-5-8

LUMBER N. L. G. A. RULES DESCR. SPF SPF CHORDS LUMBER CCB DRY No.2 DRY 2x4 No 2 SPF SPF 2x4 DRY No.2 ALL WERS 2x3 DRY No.2 SPF DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 B
 TP+p
 MT20

 C
 TMV+p
 MT20

 D
 BWMW-I
 MT20

 E
 BMV1+p
 MT20
 LEN 4.0 4.0 4.0 6.0 1 Y X 1.25 2.00 3.50 3.50 4.0 3.0 3.0 4.0

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DÉSIGNER**

BUILDING BEARINGS
FACTORED MAXIMUM FACTORED INPUT REORD GROSS REACTION VERT HORZ 180 0 GROSS REACTION DOWN HORZ U N BRG UPLIFT IN-SX BRG IN-SX HORZ 180 MECHANICAL 0 334 Ω 5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8.

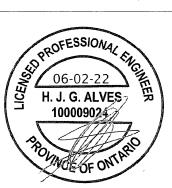
UNFACTORED REACTIONS

	1ST LCASE	MAX./I	<u>MIN. COMPO</u>	4S				
IT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
=	126	89 / 0	0/0	0/0	0/0	37 / 0	0/0	
	232	178 / 0	0/0	0/0	0/0	53 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

Ē

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.


ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

CHC	CHORDS				WEBS						
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED			
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX			
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)			
FR-TO		FROM	TO		LENGTH	FR-TO					
A-B	0 / 43	-112.4	-112.4	0.15(1)	10.00	B- D	0/0	0.00(1)			
B- C	0/0	-112.4	-112.4	0.14(1)	10.00						
F- D	-180 / 0	0.0		0.02 (1)	7.81						
D- C	-155 / 0	0.0		0.03 (1)	7.81						
E-B	-309 / 0	0.0	0.0	0.03 (1)	7.81						
E- D	0/0	-18.5	-18.5	0.04 (4)	10.00						

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

Structural component only DWG# T-2213228

DESIGN CRITERIA

SPECIFIED LOADS DL = DL = DL = DL = AD = 32.5 6.0 0.0 7.4 PSF PSF PSF BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 3 X 16 = 49 lb

Scale = 1:26.

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

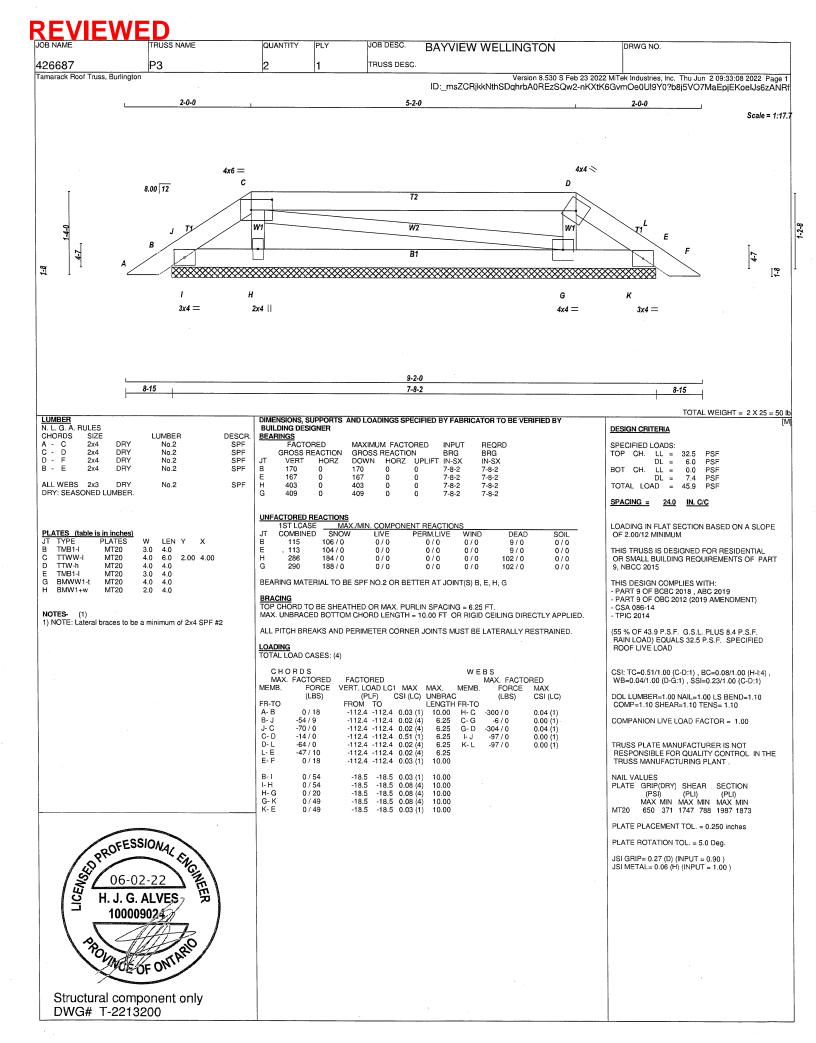
(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

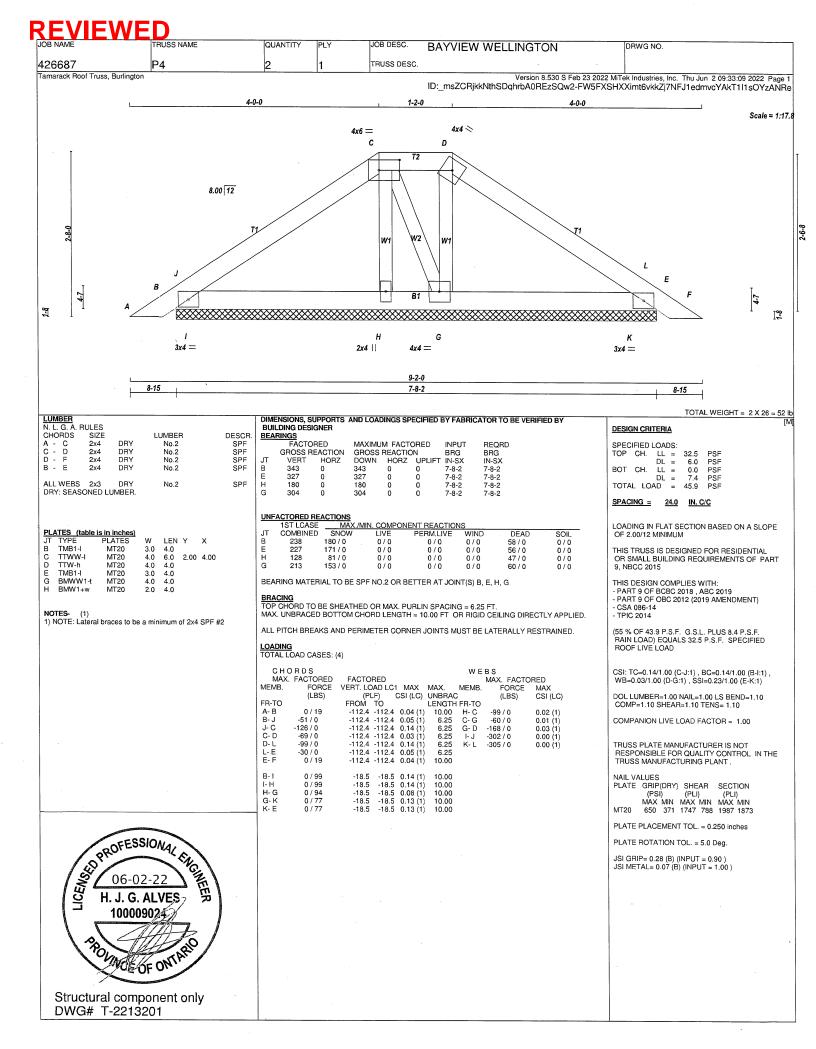
ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

WB=0.00/1.00 (B-D:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.


NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

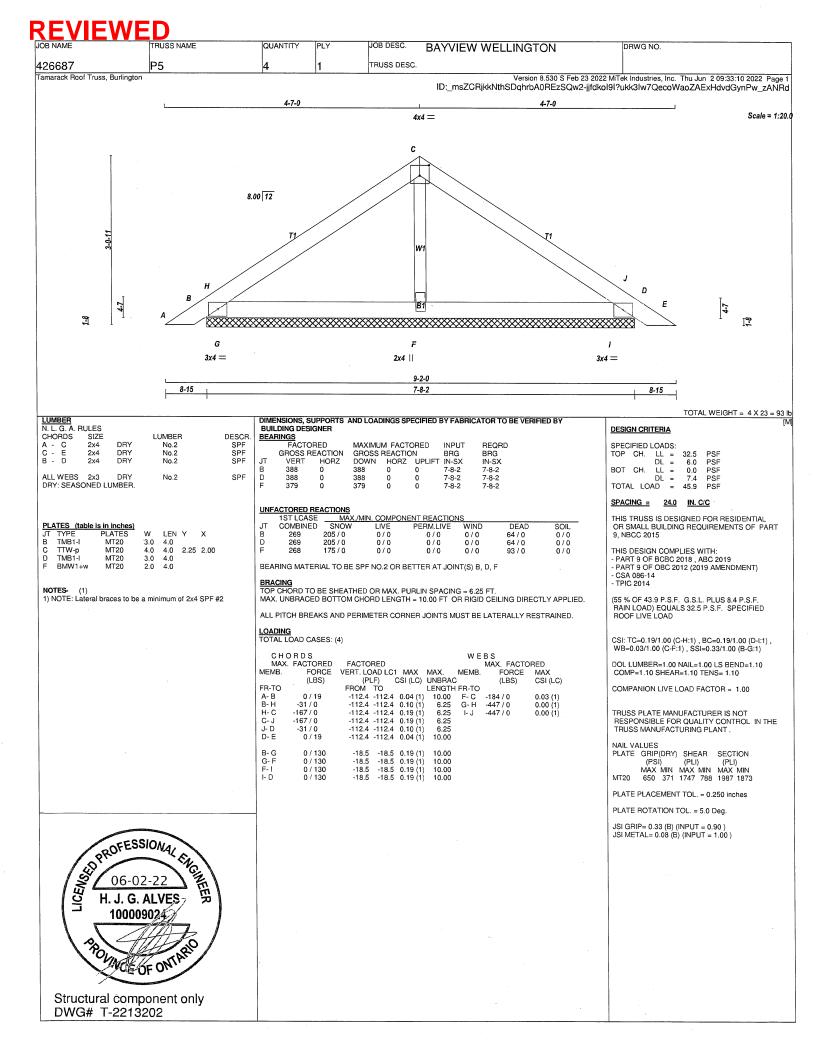

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 426687 Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:02 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-yAAc33C8AYttmqhOflVkTqFQBxW9P_yRQjr_eSzANRI

1-3-8 D 8.00 12 4x4 / C 3x4 || F <u>4</u>44 4x4 = 5-10-8

LUMBER N. L. G. A. RULES DESCR. SPF SPF CHORDS F - B LUMBER DRY No.2 DRY D 2x4 No.2 DRY SPF ALL WEBS 2x3 SPF No.2 DRY: SEASONED LUMBER

BUILDING DESIGNER BEARINGS FACTORED MAXIMUM FACTORED INPUT REQRD GROSS REACTION BRG IN-SX GROSS REACTION BRG VERT 554 HORZ 0 DOWN 554 UPLIFT IN-SX 0 5-8 0 1-8 HORZ 5-8 1-8 190 190

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) D, E

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

PLATES (table is in inches)
JT TYPE PLATES TYPE TMV+p TMWW-t LEN Y MT20 MT20 3.0 4.0 4.0 4.0 2.00 1.75 BMW1-t MT20 4.0 4.0 2.00 Edge BMVW1-t

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

UNFACTORED REACTIONS

COMBINED 385 DEAD SOIL 0/0 0/0 96 / 0 20 / 0 D 130 110 / 0 0/0

5-10-8

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F. D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHO	RDS					WE	BS		
MAX.	FACTORED	FACTOR	RED				MAX. FACT	ORED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRA	С	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTI	H FR-TO			
F-B	-234 / 0	0.0	0.0	0.02 (1)	7.81	F- C	-341 / 0	0.06(1)	
A-B	0 / 43	-112.4	-112.4	0.15 (1)	10.00	C-E	-246 / 0	0.09(1)	
B- C	0 / 13	-112.4	-112.4	0.21(1)	10.00				
C- D	-21 / 0	-112.4	-112.4	0.22 (1)	6.25				
F-E	0 / 212	-18.5	-18.5	0.19 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: PSF PSF PSF LL DL LL CH. 32.5 BOT CH. 0.0 DΙ TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 6 X 24 = 141 lb

Scale = 1:29.5

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.05")

CSI: TC=0.22/1.00 (C-D:1), BC=0.19/1.00 (E-F:4), WB=0.09/1.00 (C-E:1) , SSI=0.17/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

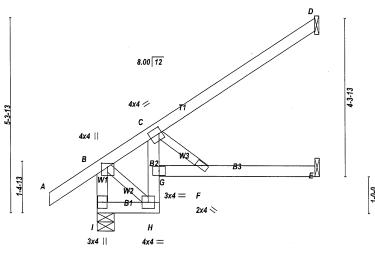
NAIL VALUES

PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.26 (F) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 1.00)

DWG# T-2213191

BAYVIEW WELLINGTON QUANTITY PLY JOB DESC. DRWG NO. TRUSS DESC 426688 Version 8.530 S Feb 23 2022 MITEL Industries, Inc. Thu Jun 2 09:11:54 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-4EYFxUsmoy7nezlhNRIN4RkiBpg9JWSorRhu8yzANIZ Tamarack Roof Truss, Burlington 1-3-8 5-10-8 Scale = 1:30.0

1-8-0 5-10-8

ı	LUMBER				
	N. L. G. A. R	ULES			
	CHORDS	SIZE		LUMBER	DESCR.
ı	I - B	2x4	DRY	No.2	SPF
	A - D	2x4	DRY	No.2	SPF
	1 - H	2x4	DRY	No.2	SPF
	H - C	2x4	DRY	No.2	SPF
	G - E	2x4	DRY	No.2	SPF
	ALL WEBS	2x3	DRY	No.2	SPF

1 - C 3 - E	2x4 2x4	DRY DRY	No.2 No.2	SPF SPF
ALL WEBS DRY: SEASO		DRY MBER.	No.2	SPF

PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMVW+p	MT20	4.0	4.0	1.25	2.00					
С	TMVW-t	MT20	4.0	4.0	2.00	1.00					
F	BMW+w	MT20	2.0	4.0							
G	BVM-I	MT20	3.0	4.0							
H	BMVW-t	MT20	4.0	4.0							
1	BMV1+p	MT20	3.0	4.0							

NOTES- (1)

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

I	DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	BUILDING DESIGNER	
ı	BEARINGS	

EAI	RINGS						
	FACTOR	ED	MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	GROSS REACTION			BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	557	0	557	0	0	5-8	5-8
	240	0	240	0	0	1-8	1-8
	127	0	127	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) D, E

UNE	UNFACTORED REACTIONS											
	1ST LCASE	MAX./I	MAX./MIN. COMPONENT REACTIONS									
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
1	387	290 / 0	0/0	0/0	0/0	97 / 0	0/0					
D	165	134 / 0	0/0	0/0	0/0	31 / 0	0/0					
E	92	46 / 0	0/0	0/0	0/0	46 / 0	0/0					
BEA	BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I, D											

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

JT

CHC	RDS					WE	BS		
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB:	FORCE	MAX	
	(LBS)	(Pl	_F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	ΤΌ		LENGTH	FR-TO	. ,		
I- B	-543 / 0	0.0	0.0	0.06(1)	7.81	B- H	0 / 221	0.05(1)	
A-B	0 / 43	-112.4	-112.4	0.15(1)	10.00	C-F	-451 / 0	0.07(1)	
B- C	-247 / 0	-112.4	-112.4	0.14(1)	6.25				
C-D	-3 / 4	-112.4	-112.4	0.35 (1)	10.00				
I- H	0/0	-18.5	-18.5	0.01 (4)	10.00				
H- G	-114/0	0.0	0.0	0.25 (1)	7.81				
G-C	0 / 129	0.0	0.0	0.27(1)	10.00				
G-F	0 / 345	-18.5	-18.5	0.47 (1)	10.00				
F-E	0/0	-18.5	-18.5	0.41 (1)	10.00				

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

SPECIFIED LOADS: LL = DL = LL = DL = DL = BOT CH. TOTAL LOAD SPACING =

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014 DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/887 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/466 (0.15") CSI: TC=0.35/1.00 (C-D:1) , BC=0.47/1.00 (F-G:1) , WB=0.07/1.00 (C-F:1) , SSI=0.19/1.00 (F-G:1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE RIGHT HEEL ONLY NAIL VALUES

DESIGN CRITERIA

32.5 6.0 0.0 7.4 PSF PSF PSF

24.0 IN. C/C

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

TOTAL WEIGHT = 4 X 22 = 90 lb

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.38 (F) (INPUT = 0.90) JSI METAL= 0.23 (F) (INPUT = 1.00)

Structural component only DWG# T-2213229

BAYVIEW WELLINGTON RUSS NAME QUANTITY JOB DESC. DRWG NO. TRUSS DESC 426687 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:02 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-yAAc33C8AYttmqhOflVkTqFPKxYpP?PRQjr_eSzANRl 1-10-8 1-3-8 Scale = 1:22.9 8.00 12 4x4 || W1 n 4x4 =1-10-8 1-10-8 1-10-15 TOTAL WEIGHT = 2 X 12 = 24 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER N. L. G. A. RULES CHORDS SIZE E - B 2x4 BUILDING BEARINGS
FACTORED **BUILDING DÉSIGNER DESIGN CRITERIA** DESCR. SPF SPF SPF LUMBER DRY No.2 MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS DL = DL = DL = DL = AD = GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ L BRG IN-SX BRG IN-SX 2×4 DRY No 2 PSF PSF ñ DRY 6.0 384 BOT CH. 384 5-8 5-8 0.0 PSF ALL WEBS DRY 2x3 SPF No.2 213 213 1-8 DRY: SEASONED LUMBER Ď TOTAL LOAD

PLATES (table is in inches)
JT TYPE PLATES I FN Y TMVW+p BMW1-t MT20 MT20 4.0 4.0 4.0 4.0 1.25 2.00 2.00 Edge BMV1+p MT20 3.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)

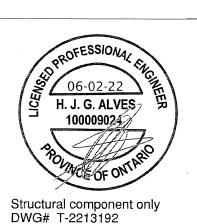
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

./MIN. COMPONENT REACTIONS **UNFACTORED REACTIONS** SNOW COMBINED LIVE 0/0 212/0 0/0 264 0/0 52 / 0 23 / 0 146 123 / 0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.


ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED MEMB. FORCE MEMB. FORCE MAX (PLF) FROM TO 0.0 0 CSI (LC) UNBRAC LENGTH FR-TO 0 0.04 (1) 7.81 B- D (LBS) (LBS) CSI (LC) FR-TO -367 / 0 0.0 0.04 (1) E-B A-B 0/0 0.00(1)-112.4 -112.4 0.15 (1) -112.4 -112.4 0.27 (1) 0 / 43 E-D 0/0 -18.5 -18.5 0.02 (4) 10.00

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS

SPACING = 24.0 IN. C/C

0/0 0/0 0/0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F.

RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.27/1.00 (B-C:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (B-D:1) , SSI=0.14/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT .

NAIL VALUES | PLATE | GRIP(DRY) | SHEAR | SECTION | (PSI) | (PLI) | (PLI) | (PLI) | MAX | MIN | MAX | MIN | MAX | MIN | MT20 | 650 | 371 | 1747 | 788 | 1987 | 1873 |

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.24 (B) (INPUT = 0.90 JSI METAL= 0.07 (B) (INPUT = 1.00)

QUANTITY PLY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 426687 Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:03 2022 Page 1 $ID:_msZCRjkkNthSDqhrbA0REzSQw2-QNk_GPDmxs?kO_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko_GaDS0z02nc0Lu28SfbfNaYAuzANRksQPDmxsRko$

1-3-8

С 8.00 12 4x4 || В W1 1-4-13 W2 B1 D

> 1-10-8 1-9-7

4x4 =

LUMBER N. L. G. A. RULES CHORDS SIZE E - B 2x4 DESCR. SPF SPF LUMBER DRY No.2 2×4 DRY No 2 Ď DRY SPF ALL WEBS 2x3 DRY SPF No.2 DRY: SEASONED LUMBER

PLATES (table is in inches)
JT TYPE PLATES 1 Y X 1.25 2.00 2.00 1.50 I FN Y TMVW+p BMW1-t BMV1+p MT20 MT20 4.0 4.0 4.0

NOTES-1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

ווטכ	LUING DESI	GNER					
EΑ	RINGS						
	FACTO	RED	MAXIMU	MAXIMUM FACTORED			REQRE
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	330	0	330	0	0	5-8	5-8
	41	0	41	0	-50	1-8	1-8
1	16	0	18	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNF	UNFACTORED REACTIONS											
	1ST LCASE	MAX./N	IN. COMPO	NENT REACTION	1S							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
E	228	181 / 0	0/0	0/0	0/0	47 / 0	0/0					
С	28	24 / -34	0/0	0/0	0/0	4/0	0/0					
D	13	0/0	0/0	0/0	0/0	13 / 0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING
TOTAL LOAD CASES: (5)

CHC	CHORDS				WEBS					
MAX. FACTORED		FACTORED			MAX. FACTORED					
MEMB.	FORCE	VERT. LOAD	LC1	I MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PLF)	-	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM TO)		LENGTH	FR-TO				
E-B	-314 / 0	0.0	0.0	0.03(1)	7.81	B- D	0/0	0.00(1)		
A-B	0 / 43	-112.4 -1	12.4	0.15(1)	10.00					
B- C	-33 / 0	-112.4 -1	12.4	0.14(1)	6.25					
E- D	0/0	-18.5 -	18.5	0.02 (4)	10.00					

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = PSF PSF PSF 32.5 6.0 0.0 7.4 BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 3 X 9 = 28 lb

Scale: 3/4"=1

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (B-D:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

Structural component only DWG# T-2213193

BAYVIEW WELLINGTON QUANTITY PLY JOB DESC DRWG NO. TRUSS DESC. 426687 J10Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Thu Jun 2 09:33:04 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-vZHMUkDOi97b?8rmn9XCZFKnWIBLtvvku0K5jKzANRj 1-9-7 1-3-8 Scale: 3/4"=1 8.00 12 444 II W1 R1 3-8 Ε G Н 3x4 📎 1-11-4 2-0-0 1-11-4 1-9-7 4-1-1 TOTAL WEIGHT = 2 X 14 = 27 lb LUMBER N. L. G. A. RULES DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** CHORDS F - B LUMBER DESCR SPF SPF SPF DRY No.2 MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: PSF PSF PSF No.2 No.2 GROSS REACTION BRG IN-SX CH. LL = DL = LL = DRY GROSS REACTION BRG 32.5 Ď HORZ 0 DOWN 368 HORZ 0 6.0 0.0 7.4 DRY VFRT UPLIET IN-SX 368 BOT CH. 5-8 1-8 CD ALL WEBS SPF 2x3 No.2 41 1-8 DΙ DRY: SEASONED LUMBER 61 TOTAL LOAD SPACING = 24.0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Χ
В	TMVW+p	MT20	4.0	4.0	1.25	2.00
Ε	BMW+w	MT20	3.0	4.0	2.00	1.25
F	BMV1+p	MT20	3.0	4.0		

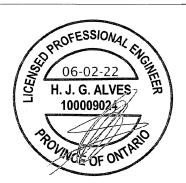
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	4S						
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL				
F	258	181 / 0	0/0	0/0	0/0	77 / 0	0/0				
C.	28	24 / 0	0/0	0/0	0/0	4/0	0/0				
D	43	0/0	0/0	0/0	0/0	43 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F. C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPAGING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.


LOADING TOTAL LOAD CASES: (4)

CHORDS					WEBS					
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED		
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(Pl	_F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO				
F-B	-314/0	0.0	0.0	0.04(1)	7.81	B- E	0/0	0.00(1)		
A-B	0 / 43	-112.4	-112.4	0.17(1)	10.00					
B- C	-33 / 0	-112.4	-112.4	0.16(1)	6.25					
F-E	0/0	-18.5	-18.5	0.16 (4)	10.00					
E-G	0/0	-18.5	-18.5	0.21 (4)	10.00					
G- H	0/0	-18.5	-18.5	0.21 (4)	10.00					
H- D	0/0	-18.5	-18.5	0.21 (4)	10.00					
	• •									
SPECIFI	SPECIFIED CONCENTRATED LOADS (LBS)									

JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN
G	1-11-4	1	1		BACK	VERT	TOTAL		C1
Н	3-11-4	1	1		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2213194

9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

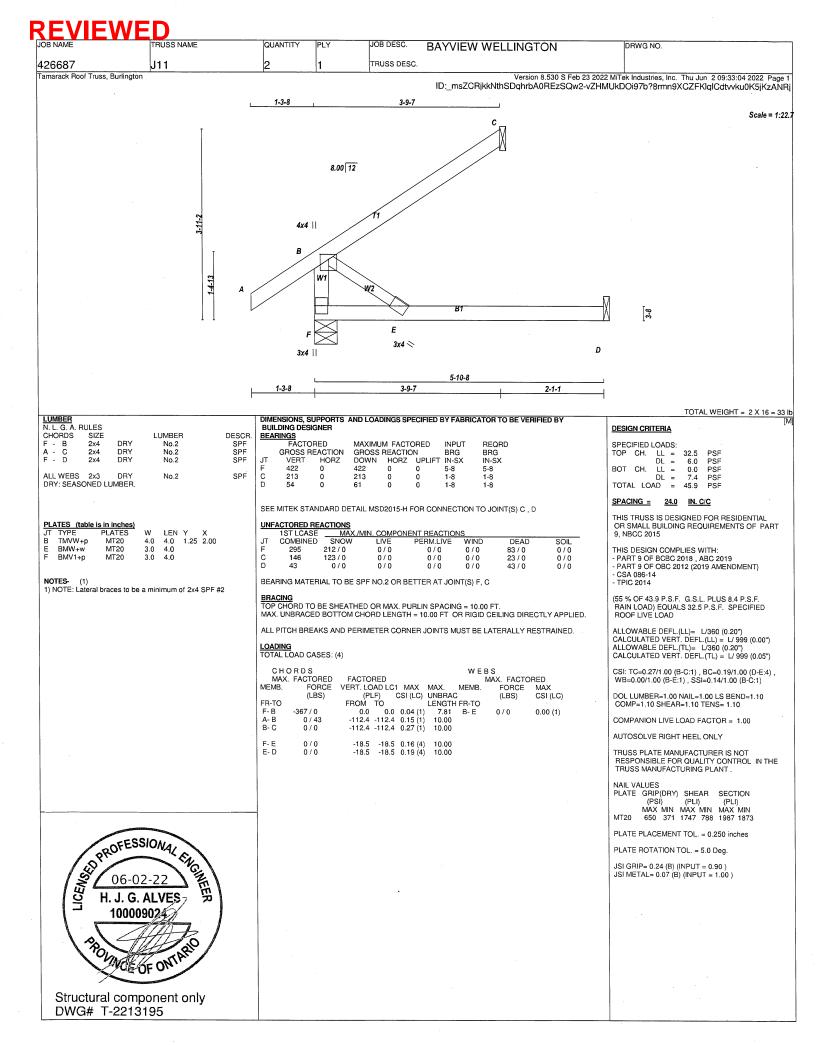
ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.17/1.00 (A-B:1) , BC=0.21/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.11/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 426687 Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:05 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-Nlrkh4E0TTFSdIQzKt2R5Tttm9YncM9t6g3eFnzANRi

1-3-8 4-10-8 8.00 12 4x4 || Ε

> 4-10-8 4-10-8

3x4 <

LUMBER N. L. G. A. RULES CHORDS LUMBER DRY No.2 No.2 No.2 SPF SPF SPF - B 2x4 244 DRY DRY ALL WEBS DRY SPF 2x3 No.2 DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 E
 BMW+w
 MT20
 w LEN Y 4.0 4.0 1.25 2.00

NOTES-1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

BMV1+p

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

	DING DESI	GNER					
BEAL	RINGS						
	FACTO	RED	MAXIMU	M FACT	ORED	INPUT	REQRD
	GROSS RI	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	473	0	473	0	0	5-8	5-8
С	274	0	274	0	0	1-8	1-8
D	45	0	51	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS LIVE PERMLIVE WIND 0 / 0 0 / 0 0 / 0 1ST LCASE COMBINED MAX SOIL 0/0 0/0 0/0 247 / 0 0/0 0/0 0/0 82 / 0 29 / 0 36 / 0 329 158 / 0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

CHC	RDS					W E	BS		
MAX.	FACTORED	FACTORE	D				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD	LC.	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)		CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM TO)		LENGTH	FR-TO			
F-B	-428 / 0	0.0	0.0	0.04(1)	7.81	B-E	0/0	0.00(1)	
A- B	0 / 43	-112.4 -1	12.4	0.15(1)	10.00				
B- C	0/0	-112.4 -1	12.4	0.45 (1)	10.00				
F-E	0/0	-18.5 -			10.00				
E- D	0/0	-18.5 -	18.5	0.13 (4)	10.00				

DESIGN CRITERIA

מ

SPECIFIED LOADS LL = DL = LL = DL = AD = PSF PSF 6.0 0.0 7.4 BOT CH. PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

TOTAL WEIGHT = 6 X 17 = 101 lb

Scale = 1:26.2

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.03")

CSI: TC=0.45/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.18/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

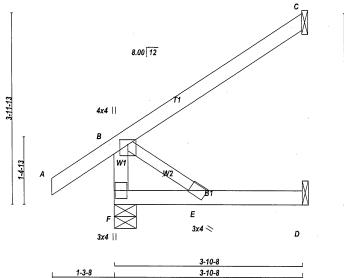
PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.28 (B) (INPUT = 0.90) JSI METAL= 0.09 (B) (INPUT = 1.00)

Structural component only DWG# T-2213196

QUANTITY PLY

JOB DESC. **BAYVIEW WELLINGTON** DRWG NO.


Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:06 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-ryP6vQFfEnNJFS?9uaZgegP56ZvlLpP1LKpCnDzANRh

1-3-8

TRUSS DESC

TOTAL WEIGHT = 14 lb

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE 2x4 LUMBER DRY No.2 No.2 No.2 SPF SPF SPF - B DRY ALL WEBS 2x3 DRY No.2 SPF DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 E
 BMW+w
 MT20
 LEN Y 4.0 1 4.0 w 4.0 1.25 2.00 BMV1+p

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

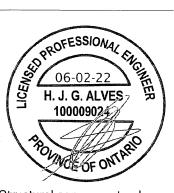
DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BE

BUIL	_DING DESIG	INER					
EA	RINGS						
	FACTOR	ED	MAXIMUN	1 FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	408	0 .	408	0	0	5-8	5-8
	218	0	218	0	0	1-8	1-8
	36	0	40	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
F	283	215/0	0/0	0/0	0/0	68 / 0	0/0			
С	149	126 / 0	0/0	0/0	0/0	23 / 0	0/0			
D	29	0/0	0/0	0/0	0/0	29 / 0	0/0			
BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F										

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.


ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

	R D S FACTORED	FACTOR	W E B S ORED MAX. FACTORED					
MEMB.	FORCE (LBS)	VERT. LO	AD LC1	MAX CSI (LC)	MAX. UNBRAC	MEMB.	FORCE (LBS)	MAX CSI (LC)
FR-TO	. 17	FROM			LENGTH		(220)	00. (20)
F-B	-372 / 0	0.0	0.0	0.04 (1)	7.81	B-E	0/0	0.00(1)
A-B	0 / 43	-112.4	-112.4	0.16 (5)	10.00			• ,
B- C	0/0	-112.4	-112.4	0.29 (1)	10.00			
F- E E- D	0 / 0 0 / 0	-18.5 -18.5		0.08 (4) 0.08 (4)	10.00 10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS

Structural component only DWG# T-2213197

DESIGN CRITERIA									
SPECIF	IED L	OAE	S:						
TOP C	CH.	LL	=	32.5	PSF				
		DL.	=	6.0	PSF				
BOT C	CH.	LL	-	0.0	PSF				
		DL	=	7.4	PSF				
TOTAL	LOA	D	=	45.9	PSF				

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

CSI: TC=0.29/1.00 (B-C:1) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.14/1.00 (B-C:1) $^{\circ}$

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.25 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 426687 J14 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MITek Industries, Inc. Thu Jun 2 09:33:06 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-ryP6vQFfEnNJFS?9uaZgegP7pZvdLpP1LKpCnDzANRh 1-9-7 Scale: 3/4"=1 С 8.00 12 4x4 || 3.8 Ε G 3x4 <

LUM					
N. L.	G. A. F	ULES			ı
CHO	RDS	SIZE		LUMBER	DESCR.
F -	В	2x4	DRY	No.2	SPF
Α -	С	2x4	DRY	No.2	SPF
F -	D	2x4	DRY	No.2	SPF
	WEBS	2x3	DRY	No.2	SPF
DRY	SEAS	DNED L	UMBER.		

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 LEN Y X 4.0 1.25 2.00 4.0 2.00 1.25 4.0 JT B E F 4.0 3.0 BMW+w MT20

NOTES- (1)

1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER В

1-11-4

1-9-7

BEAL	RINGS						
	FACTOR	RED	MAXIMU	M FACTO	INPUT	REQR	
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
=	350	0	350	0	0	5-8	5-8
2	41	0	93	0	-50	1-8	1-8
)	36	0	40	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNF	ACTORED RE	ACHONS					
	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	244	181 / 0	0/0	0/0	0/0	62 / 0	0/0
С	28	58 / -34	0/0	0/0	0/0	4/0	0/0
D	29	0/0	0/0	0/0	0/0	29 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F. C

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (11)

	RDS FACTOR	ED FACTO	RED			WE	B S MAX. FACT	ORED	
MEMB.	FOR				MAX.	MEMB.	FORCE		
	(LBS	i) (P	LF) (CSI (LC)	UNBRAC)	(LBS)	CSI (I	_C)
FR-TO		FROM	TO		LENGTH	FR-TO			
F-B	-314/0	0.0	0.0	0.04(1)	7.81	B- E	0/0	0.00 ((1)
A- B	0 / 43	-112.4	-112.4	0.18 (5)	10.00				
B- C	-33 / 0	-112.4	-112.4	0.17 (5)	6.25				
F-E	0/0	-18.5	-18.5	0.09 (4)	10.00				
E-G	0/0	-18.5	-18.5	0.09 (4)	10.00				
G-D	0/0	-18.5	-18.5	0.09 (4)	10.00				
				. ,					
SPECIFI	ED CONC	ENTRATED LO	ADS (LE	BS)					
JT	LOC.	LC1 MAX-	MÀX	+ F/	ACE [DIR.	TYPE	HEEL	CONN.
G 1	-11-4	1 1	-	BA	CK VE	RT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

DESIGN CRITERIA

D

1-11-4

2-1-1

SPECIFIED LOADS: LL = 32.5 DL = 6.0 LL = 0.0 DL = 7.4 AD = 45.9 CH. PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9 NBCC 2015

TOTAL WEIGHT = 11 lb [M]

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATEO VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.18/1.00 (A-B:5) , BC=0.09/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.12/1.00 (A-B:5)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

Structural component only DWG# T-2213198

QUANTITY PLY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 426687 J15 Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:33:07 2022 Page 1 ID: msZCRjkkNthSDqhrbA0REzSQw2-J8zV6mGH?4W9scaLSl4vAuyl?yG54GeAa_YIJfzANRg

1-3-8

c 8.00 12 4x4 || R Α W1 4x4 = D

> 1-5-0 1-5-0

3x4 ||

LUMBER N. L. G. A. RULES LUMBER CHORDS E - B SIZE DESCR SPF SPF SPF DRY DRY No.2 No.2 No.2 Ď DRY ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF No.2

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 LEN Y X 4.0 4.0 1.25 2.00 4.0 4.0 Edge BMW1-t BMV1+p

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

3.0 4.0

MT20

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BE

EAF	RINGS						
	FACTOR	ED	MAXIMUN	1 FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTION	BRG	BRG	
-	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	321	0 .	321	0	0	5-8	5-8
	5	0	5	0	-67	1-8	1-8
	13	0	14	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

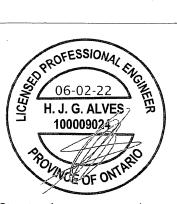
BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

UNFACTORED REACTIONS

1ST L CASE MA MAX SNOW ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND COMBINED LIVE 0/0 SOIL 0/0 178 / 0 43 / 0 1 / 0 10 / 0 221 0/0 0/0 3 / -43 0/0

E C D

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.


ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (5)

	R D S FACTORED	W E B S MAX. FACTORED					
MEMB.	FORCE (LBS)	FACTORED VERT. LOAD LO (PLF)	1 MAX CSI (LC)		мемв.	FORCE (LBS)	MAX CSI (LC)
FR-TO	(220)	FROM TO	001 (20)	LENGTH		(LDO)	001 (20)
E-B	-309 / 0		0.04(1)		B- D	0/0	0.00(1)
A-B	0 / 43	-112.4 -112.4					
B- C	-41 / 0	-112.4 -112.4	0.14 (1)	6.25			
E- D	0/0	-18.5 -18.5	0.01 (4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

Structural component only DWG# T-2213199

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = 32.5 PSF 6.0 0.0 7.4 PSF PSF BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 7 X 10 = 72 lb

Scale = 1:21.7

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.01/1.00 (D-E:4) , WB=0.00/1.00 (B-D:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

| NAIL VALUES | FRANCE | SHEAR | SECTION | (PSI) | (PLI) | (PL

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

REVIEWED

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. BAYVIEW WELLINGTON DRWG NO.


426688 J16 3 1 TRUSS DESC.

Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:11:55 2022 Page

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Jun 2 09:11:55 2022 Page 1 ID:_msZCRjkkNthSDqhrbA0REzSQw2-YQ6d8qtOYGFeG7Ktx9GcdeGw0C7Y2_ly45QRgOzANN

1-3-8

Scale = 1:14.2

1-3-8

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
E - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
E - D	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED L	IMRER		

 PLATES (table is in inches)

 JT
 TYPE
 PLATES
 W
 LEN
 Y
 X

 B
 TMVW+p
 MT20
 4.0
 4.0
 1.25
 2.00

 D
 BMW1+p
 MT20
 4.0
 4.0
 Edge

 E
 BMV1+p
 MT20
 3.0
 4.0
 --

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) NOTE: Lateral braces to be a minimum of 2x4 SPF #2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

	RINGS	CINEI					
	FACTO		MAXIMUM FACTORED GROSS REACTION			INPUT	REQRD
	GROSS R	EACTION				BRG	BRG
1	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	320	0	320	0	0	5-8	5-8
	-14	0	0	0	-78	1-8	1-8
	11	0	12	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C, D

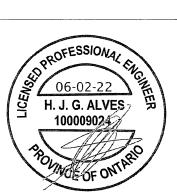
PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNF	ACTORED RE	<u>ACTIONS</u>					
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Е	220	179 / 0	0/0	0/0	0/0	42 / 0	0/0
С	-10	0 / -49	0/0	0/0	0/0	0 / -2	0/0
D	9	0/0	0/0	0/0	0/0	9/0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6,25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.


LOADING TOTAL LOAD CASES: (5)

JECD

	DRDS FACTORED	FACTORED			W E	BS MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD L	C1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
E-B	-309 / 0	0.0 0.	0 0.03 (1)	7.81	B- D	0/0	0.00(1)
A-B	0 / 43	-112.4 -112.	4 0.15 (1)	10.00			
B- C	-47 / 0	-112.4 -112.	4 0.14 (1)	6.25			
	0.40	10 5 10	- 001 (A)	40.00			
E-D	0/0	-18.5 -18.	5 0.01 (4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

Structural component only DWG# T-2213230

DESIGN CRITERIA

 SPECIFIED LOADS:

 TOP
 CH.
 LL
 =
 32.5
 PSF

 BOT
 CH.
 LL
 =
 6.0
 PSF

 BOT
 CH.
 LL
 =
 0.0
 PSF

 TOTAL
 LOAD
 =
 45.9
 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 3 X 7 = 22 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF DBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.01/1.00 (D-E:4) , WB=0.00/1.00 (B-D:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components

2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.

3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.

4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.

5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.

- 2- Lumber is to be the sizes and grade specified on the truss drawing.
- 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6- The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)
- 7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals.

8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols, numbering tem and General Safety notes.

T-1300218 Feb 09, 2018

STANDARD DETAIL MSD2015-H

Issued: SEPTEMBER 22, 2020

Expiry:

APRIL 30, 2022

TOE-NAIL CAPACITY DETAILS

LATERAL AND WITHDRAWAL RESISTANCE OF BEARING ANCHORAGE BY TOE-NAILS

			SPF	D. FIR	CDF	
COMMON	3.00	0.144	122	139	SPF 30	D. FIR 42
COMMON WIRE	3.25	0.144	127	144	32	45
	3.50	0.160	152	173	38	52
COMMON	3.00	0.122	96	108	26	36
SPIRAL	3.25	0.122	97	108	28	40
	3.50	0.152	142	161	36	50
3.25" Gun nail	3.25	0.120	94	105	28	39

Note: If using truss with D. Fir lumber and SPF bearing plate, use tabulated SPF values in table.

Nail type:		Common wire	Common spiral	Common wire	Common spiral	Gun Nail
Diameter	(in.)	0.160	0.152	0.144	0.122	0.120
Length	(in.)	3.50	3.50	3.00	3.00	3.25
				Navia viria de la fe	EWAIISTEES	
2x4 SPF		2	2 .	3	3	3
2x6 SPF		4	4	4	5	5
2x4 D. FI	R	2	2	2	2	2
2x6 D. FI	R	3	3	3	4	4

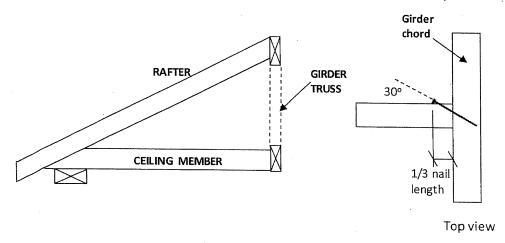
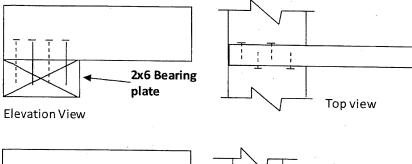
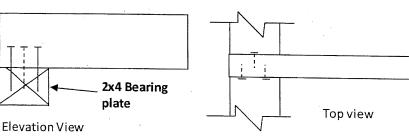


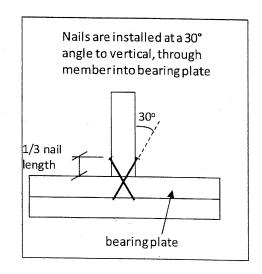
Figure 1: Toe-Nailing Rafter / Ceiling Member to Girder Truss

December 21, 2020

REVIEWED


STANDARD DETAIL MSD2015-H


Issued: SEPTEMBER 22, 2020 **APRIL 30, 2022**


Expiry:

TOE-NAIL CAPACITY DETAILS

Figure 2: Toe-Nail Anchorage to Bearing Plate for Uplift

NOTES:

- Rafter and ceiling members may be connected to top and bottom chords of girder truss by toe-nailing the members into the girder chords (see fig. 1), provided the factored vertical reactions of the supported members do not exceed the lateral resistance of the toe-nails. Mechanical connectors (hangers) are required if factored vertical reactions exceed the toe-nail capacity, or if the connection must resist horizontal loads (loads perpendicular to the face of girder or rafter).
- 2. Trusses, rafters or ceiling members may be anchored to the bearing plate with toe-nails (see fig. 2), provided that the factored uplift reactions due to wind or earthquake loads do not exceed the withdrawal resistance of the toe-nails. Mechanical anchors (tie-downs) are required for reactions that exceed the toe-nail withdrawal capacity. Toe-nail anchorage to bearing plates is **NOT** permitted if uplift reactions are generated from gravity loads (snow, floor live, dead).
- 3. Tabulated toe-nail resistances on page 1 are for **one** toe-nail. Multiply unit values by the number of nails used in the connection. Maximum number of nails in a connection shall not exceed the tabulated limits shown on page 1 for a given lumber size /species.
- Nail values are based on specific gravity of G = 0.42 (SPF) and G = 0.49 (D. Fir).
- Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member.
- 6. For wind / earthquake loads, tabulated lateral resistances may be multiplied by 1.15 (K_D factor). No increases are permitted for tabulated withdrawal resistances.
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA O86-19, Clause 12.9.

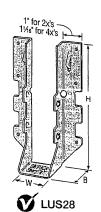
This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

Most hangers in this series have double-shear nailing — an innovation that distributes the load through two points on each joist nail for greater strength. This allows for fewer nails, faster installation, and the use of all common nails for the same connection. (Do not bend or remove tabs)

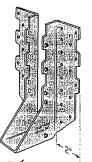
Double-shear hangers range from the light capacity LUS hangers to the highest capacity HGUS hangers. For medium load truss applications, the HUS offers a lower cost alternative and easier installation than the HGUS hangers, while providing greater load capacity and bearing than the LUS.

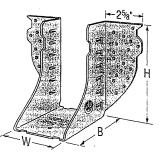
Material: See table on pp. 217-218.

Finish: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, pp. 18–20.


nstallation:

Plated Truss Connectors

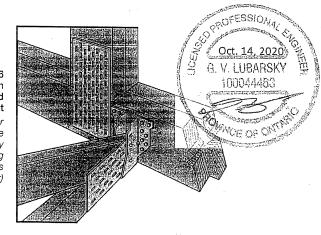

- Use all specified fasteners; see General Notes.
- Nails must be driven at an angle through the joist or truss into the header to achieve the tabulated resistances (except LUL).
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated factored resistance.
- Not designed for welded or nailer applications.
- With single ply 2x carrying members, use 10d x 1½" nails into the header and 10d commons into the joist, and reduce the resistance to 0.64 of the table value where 16d nails are specified and 0.77 where 10d nails are specified.

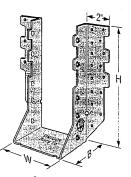

Options:

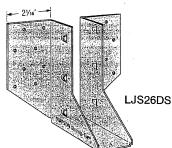
- · LUS, LJS, LUL and HUS hangers cannot be modified.
- Other sizes available; consult your Simpson Strong-Tie representative.
- See Hanger Options information on pp. 105-107.

W HGUS28-2

Double-Shear Nailing Top View




Double-Shear Nailing Side View; Do not hend tab


Dome Double-Shear Nailing Side View (available on some models)

Typical HUS26 Installation with Reduced Heel Height (Truss Designer to provide fastener quantity for connecting multiple members together)

TECHNICAL BULLETIN

LUS - Double Shear Joist Hangers

SIMPSON Strong-Tie

LUS28

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

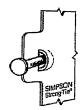
Design:

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

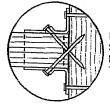
- Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 3½" long common wire,
 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

Options:


These hangers cannot be modified

Typical LUS installation

Timical I Lie	


Model No.	Ga.	Dimensions (in.)				Fasteners		Factored Resistance (lb.)			
								D.Fir-L		S-P-F	
		W	H	В	d _e ¹	Face	Joist	Uplift	Normal	Uplift	Normal
								(K ₀ =1.15)	(K ₀ =1.00)	$(K_0=1.15)$	(K ₀ =1.00)
	18	19/16	31/8	134	1 15/16	(4) 10d	(2) 10d	710	1630	645	1155
LUS24-2	18	31/6	31/8	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	
LUS26	18	1%	43/4	13/4	3%	(4) 10d	(4) 10d	1420	2170		1435
LUS26-2	18	31/8	47/6	2	4	(4) 16d	(4) 16d			1290	1630
LUS26-3	18	45%	43/16	2	31/4	(4) 16d		1720	2595	1545	1920
LUS28	18	1%6	6%				(4) 16d	1720	2595	1545	2340
LUS28-2				13/4	3¾	(6) 10d	(6) 10d	1420	2520	1290	1790
	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575
LUS28-3	18	4%	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	
LUS210	18	1%	7 13/16	13/4	37/8	(8) 10d	(4) 10d	1420	2785		2375
ШS210-2	18	31/8	9	2	6	(8) 16d	·			1290	2210
LUS210-3	18	4%	83/16	2		··-	(6) 16d	2580	4500	2320	3195
. de is the dis					51/4	(8) 16d	(6) 16d	2580	3345	2320	2375

 $^{1.\,}d_{\rm e}$ is the distance from the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Top View.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022: Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tia Company Inc.

T-SPECLUS20 3/20 exp. 6/22

(800) 999-5099 strongtie.com

TECHNICAL BULLETIN

HUS/LJS - Double Shear Joist Hangers

SIMPSON Strong-Tie

HUS210

(HUS26, HUS28, similar)

Typical HUS

Installation

All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: See table Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA O86-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Dimensions (în.)

d,

Face

(16) 16d 45/8

315/16 (14) 16d

63/32 (22) 16d

731/32 (30) 16d

Joist

(6) 16d

(6) 16d

(8) 16d

(10) 16d

н R

Model

No.

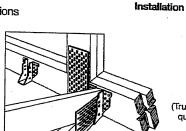
LJS26DS

HUS26

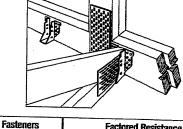
HUS28

HUS210

Ga.


18 1% 5 31/2

16 1% 53/8 3


16 1% 73/32 3

16 1% 93/32

See current catalogue for options

D.Fir-I

Normal

 $(K_0=1.00)$

4265

4940

5365

5795

6450

Uplift

 $(K_0=1.15)$

lb.

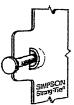
2055

2705

3605

4505

Factored Resistance (lb.) Uplift $(K_0 = 1.15)$ $(K_n=1.00)$ lb. lb. 1460 4115 2065 3875 2675 4345

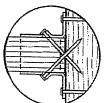

LJS26DS

0

Typical LJS26DS

O

3 HUS1.81/10 16 1 13/16 9 3 8 (30) 16d (10) 16d 4505 1. de is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models). U.S. Patent

5,603,580

Double Shear Nailing Side View. Do not bend tah back.

4010

4010

Double Shear Nailing Top View.

4740

5200

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHUS20 3/20 exp. 6/22

(800) 999-5099 strongtie.com

TECHNICAL BULLETIN

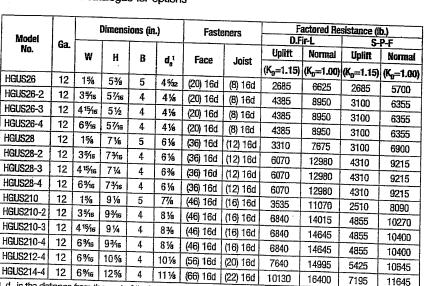
HGUS - Double Shear Joist Hangers

SIMPSON Strong-Tie

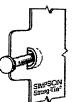
All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

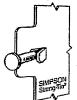
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%.
 No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

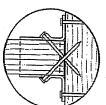
Installation:


- Use all specified fasteners
- Nails: 16d = 0.162" dia x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

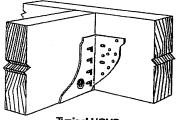
See current catalogue for options

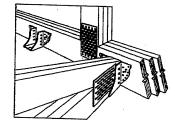


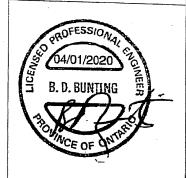
1. de is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models)


U.S. Patent 5,603,580


Double Shear Nailing Side View. Do not bend tab back.


Double Shear Nailing Top View. HGUS28-2

Typical HGUS Installation

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

This technical bulletin is effective until June 30; 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relled upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongite.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHGUS20 3/20 exp. 6/22

(800) 999-5099 strongtie.com

TECH-NOTES

TN 15-001 Piggyback Bracing

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

Disclalmer:

OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technote are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to the information provided but has developed this technote to offer guidance where it is not currently readily available.

C-CANZOZO @ 2020 SIMPSON STRONG-TIE COMPANY INC.

HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI

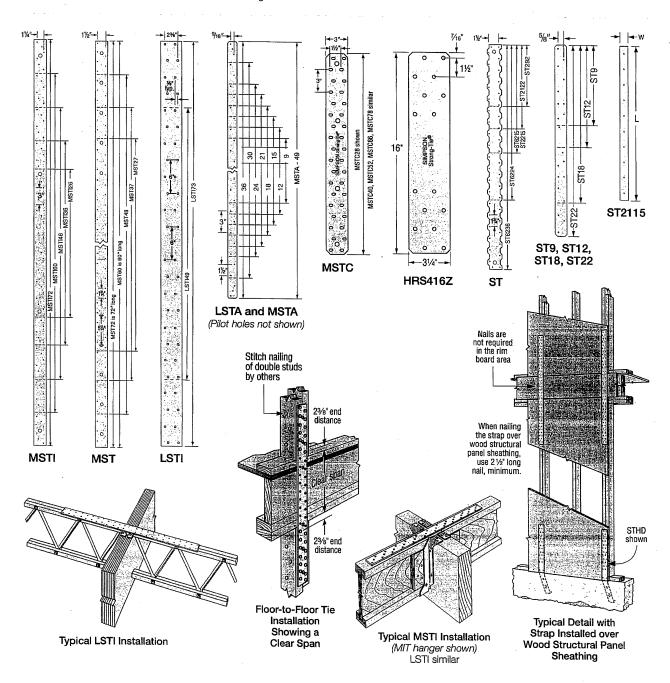
Strap Ties

Straps are designed to transfer tension loads in a wide variety of applications.

HRS — Heavy strap designed for installation on the edge of 2x members. The HRS416Z installs with Strong-Drive® SDS Heavy-Duty Connector screws.

LSTA and MSTA — Designed for use on the edge of 2x members, with a nailing pattern that reduces the potential for splitting.

LSTI and MSTI — Light and medium straps that are suitable where pneumatic-nailing is necessary through diaphragm decking and wood chord open-web trusses.

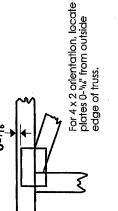

MST — High-capacity strap that can be installed with either nails or bolts. Suitable for double 2x member connections or greater.

MSTC — High-capacity strap that utilizes a staggered nail pattern to help minimize wood splitting. Nail slots have been countersunk to provide a lower nail head profile.

Finish: Galvanized. Some products are available in stainless steel, ZMAX® coating or black powder coat (add PC to sku); contact Simpson Strong-Tie. See Corrosion Information, pp. 18–20.

Installation: Use all specified fasteners; see General Notes

Options: Special sizes can be made to order; contact Simpson Strong-Tie for longer lengths



Symbols

PLATE LOCATION AND ORIENTATION

Dimensions are in fi-in-sixteenths or mm. Apply plates to both sides of truss Center plate on joint unless x, y and fully embed teeth. offsets are indicated.

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request

PLATE SIZE

4 × 4

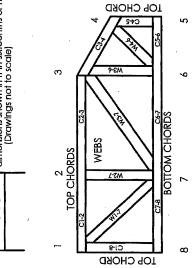
width measured perpendicular The first dimension is the plate to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.


Industry Standards:

Truss Design Procedures and Specifications for Light Metal Plate Connected Wood Trusses TPIC:

Design Standard for Bracing. Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses. DSB-89: BCSI:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MITek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473C rev. 10-'08 POWER TO PERFORM."

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide fruss spacing, individual trieral braces themselves may require bracing, or alternative T, t, or Eliminator bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses. mi
- designer, erection supervisor, property owner and all other interested parties. Provide copies of this truss design to the building
- Cut members to bear tightly against each other.

က်

- ioint and embed fully. Knots and wane at joint locations are regulated by TPIC. Place plates on each face of truss at each
- Design assumes trusses will be suitably protected from the environment in accord with TPIC 7
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. ထံ
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. ۶.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
 - 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all partions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- . Design assumes manufacture in accordance with TPIC Quality Criteria.