BEAMS:

B1 = 2 - 2x10 SPF #2

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psf BCLL = 0.0 psf BCDL = 7.4 psf

HARDWARE: LUS24 - (O) LJS26DS - (V)

HGUS26-2 - (XX)

DENOTES: CONVENTIONAL **FRAMING**

Job Track: 50465

Layout ID: 423532

Plan Log: 205562

BAYVIEW WELLINGTON / BRADFORD Project: GREEN VALLEY EAST

2022-06-27

Builder / Location:

Rick DiCiano

Designer: JG

Model / Elevation:

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER PURPOSE

BEAMS:

B1 = 2 - 2x10 SPF #2

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: **RESIDENTIAL I PART: 9** Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psf

BCLL = 0.0 psf BCDL = 7.4 psf

HARDWARE: LUS24 - (O) LJS26DS - (V) HGUS26-2 - (XX)

DENOTES:

CONVENTIONAL FRAMING

Job Track: 50465

Builder / Location:

Date:

BAYVIEW WELLINGTON / BRADFORD

Model / Elevation:

Plan Log: 205562 Lavout ID: 423531

Project: GREEN VALLEY EAST

2022-06-27 Sales: Rick DiCiano Designer: JG

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER Mitek ver 8.5.3.233 PURPOSE.

BEAMS:

B1 = 2 - 2x10 SPF #2

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psf BCLL = 0.0 psf BCDL = 7.4 psf

HARDWARE: LUS24 - (O) LJS26DS - (V) HGUS26-2 - (XX) VTCR-(R)

DENOTES: CONVENTIONAL **FRAMING**

Job Track: 50465

Plan Log: 205562

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

Model / Elevation:

Project: GREEN VALLEY EAST

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODU OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER Mitek ver 8.5.3.233 PURPOSE.

Layout ID: 423533

2022-06-27 Sales: Date:

Rick DiCiano

Designer: JG

BEAMS:

B1 = 2 - 2x10 SPF #2

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psfBCLL = 0.0 psf

BCDL = 7.4 psf

HARDWARE: LUS24 - (O) LJS26DS - (V) HGUS26-2 - (XX) HUC26-2- (CC) LUS26-2- (VV)

7-10-0 T.O.P FROM FIN.GROUND FLOOR

Job Track: 50465

Layout ID: 423535

Plan Log: 205562

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

Model / Elevation:

Project: GREEN VALLEY EAST

Date:

2022-06-27 Sales:

Rick DiCiano

Designer: JG

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER Mitek ver 8.5.3.233 PURPOSE.

BEAMS:

B1 = 2 - 2x10 SPF #2

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: **RESIDENTIAL | PART: 9** Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psf TCDL = 6.0 psf BCLL = 0.0 psf BCDL = 7.4 psf

LUS24 - (O) LJS26DS - (V) HGUS26-2 - (XX) HUC26-2- (CC)

HARDWARE:

7-10-0 T.O.P FROM FIN.GROUND FLOOR

Job Track: 50465 Plan Log: 205562

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

Model / Elevation:

Project: GREEN VALLEY EAST

Lavout ID: 423535 Designer: JG 2022-06-27 Sales: Rick DiCiano

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER Mitek ver 8.5.3.233 PURPOSE.

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: **RESIDENTIAL | PART: 9** Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psfBCLL = 0.0 psf

BCDL = 7.4 psf

HARDWARE:

LUS24 - (O) LJS26DS - (V) HGUS26-2 - (XX) HUC26-2- (CC)

LUC26-2- (VV)

7-10-0 T.O.P FROM FIN.GROUND FLOOR

Job Track: 50465

Plan Log: 205562

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

Designer: JG

Project: GREEN VALLEY EAST

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER PURPOSE.

Layout ID: 423534

2022-06-27 Sales:

Rick DiCiano

BEAMS:

B1 = 2 - 2x10 SPF #2

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psfBCLL = 0.0 psf BCDL = 7.4 psf

7-10-0 T.O.P FROM FIN.GROUND FLOOR

HARDWARE:

LJS26DS - (V)

HGUS26-2 - (XX)

LUS24 - (**O**)

DENOTES: 5-04-00 3-10-00 52-08-00 CONVENTIONAL **FRAMING** 14/12 8/12 ROOF PITCH UNLESS NOTED 6/12 4/12 8-08-08 BCX 00-00 J3 J2 T6(7) 2-PLY 8 12-06-5-10-08 28-11-00 6/12 6/12 1-6-0 RAISED PLATE AND CEILING 4-02-08 2-8-0 RAISED FASCIA **C**dFF 2-P F49(3) FLAT 21 ନ T17S 6/12 T16S **5**-10-08 J7(3) 1-05-08 6/12 18-06-00 Ş 55-10-00 REVIEWED 58-00-00

Job Track: 50465

Plan Log: 205562

Layout ID: 423537

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

S38-19 / C-OPT.WITH COFF.

Model / Elevation:

Project: GREEN VALLEY EAST

Designer: JG 2022-06-27 Date: Sales:

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER Mitek ver 8.5.3.233 PURPOSE

BEAMS:

B1 = 2 - 2x10 SPF #2

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: **RESIDENTIAL | PART: 9** Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psfTCDL = 6.0 psfBCLL = 0.0 psf

BCDL = 7.4 psf

7-10-0 T.O.P FROM FIN.GROUND FLOOR

HARDWARE:

LJS26DS - (V)

HGUS26-2 - (XX)

LUS24 - (O)

Job Track: 50465

Plan Log: 205562

Layout ID: 423538

Builder / Location:

BAYVIEW WELLINGTON / BRADFORD

Rick DiCiano

Designer: JG

S38-19 / C

Model / Elevation:

Project: GREEN VALLEY EAST

2022-06-27 Sales:

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER **PURPOSE**

BEAMS:

B1 = 2 - 2x10 SPF #2

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 43.8 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 32.5 psf TCDL = 6.0 psf BCLL = 0.0 psf BCDL = 7.4 psf LJS26DS - (V) HGUS26-2 - (XX) HUC26-2- (CC)

HARDWARE:

LUS24 - (O)

7-10-0 T.O.P FROM FIN.GROUND FLOOR

Job Track: 50465

Plan Log: 205562

Layout ID: 423538

Builder / Location:

Date:

BAYVIEW WELLINGTON / BRADFORD

Rick DiCiano

Designer: JG

Model / Elevation:

S38-19 / C-REAR UPGRADE

Project: GREEN VALLEY EAST

2022-06-27 Sales:

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER PURPOSE. Mitek ver 8.5.3.233

Lumber Yard:

Builder:

TAMARACK LUMBER

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

S38-19

Α

Model: Lot #:

Elevation:

Job Track:

PlanLog:

205562 423532

50465

Layout ID: Ref#

Page: Date:

1 of 3 06-27-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LB\$.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	28-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	255.24 161.00		
	1	T2 Hip	6 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	114.66 72.17		
	1	T3 Hip	6 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	120.64 75.67		
	1	T4 Hip	6 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	117.75 73.17		
	1	T5 Hip	6 /12	28-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	118.15 75.00		
	8	T6 Common	6 /12	28-11-00	8-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	942.69 581.33		
	1 2-ply	T7 Roof Special Girder	10 /12	28-11-00	9-02-02	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	367.79 228.00		
	2	T8 Hip	10 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	245.33 156.33		
	2	T9 Hip	10 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	245.61 153.33		
	3	T10 Hip	10 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	404.3 254.50		
	1 2-ply	T11 Hip Girder	10 /12	24-11-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	251.62 159.67		
	1	T12 Hip	10 /12	24-11-00	6-06-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	119.53 76.00	÷	
	1	T13 Hip	10 /12	24-11-00	8-02-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	124.52 78.33		
	4	T14S Roof Special	10 /12 10 /12	13-00-00	7-00-11	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	261.87 168.67		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

S38-19

Model: Lot #:

Elevation: Α Job Track:

PlanLog:

50465 205562

Layout ID:

423532

Ref# Page:

2 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

KOOI II	QTY	MARK		. [· · · · · · · · · · · · · · · · · · ·		OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T18 Roof Special Girder	10 /12	6-00-08	4-10-07	2 x 4 2 x 6		1-05-03 4-10-07	59.56 39.67		
	1 2-ply	T19 Jack-Closed Girder	.6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	3	T20 Common	10 /12	8-08-00	5-04-04	2 x 4	1-03-08	1-07-11 1-10-03	116.41 76.50		
	1	G21 GABLE	10 /12	8-11-00	5-04-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	43.33 28.83	. •	
	3	T22 Monopitch	4 /12	8-08-08	3-10-00	2 x 4	1-03-08	11-03 3-10-00	133.04 90.00		
	11	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	184.74 117.33		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
	6	J6 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	90.83 58.00		
	7	J8 Jack-Open	4 /12	4-02-08	2-04-00	2 x 4	1-03-08	11-03 2-04-00	84.08 56.00		
TOTAL #TE	NICC-	74									

TOTAL #TRUSS= 74

TOTAL BFT OF ALL TRUSSES= 2869.83

BFT.

TOTAL WEIGHT OF ALL TRSSES 4543.94 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	HGUS26-2	
5	Hardware	LJS26DS	

Lumber Yard: TAMARACK LUMBER

Builder: **BAYVIEW WELLINGTON** Project: **GREEN VALLEY EAST**

S38-19

Location: **BRADFORD**

Model:

Elevation:

Lot #: Α Job Track: PlanLog:

50465 205562 Layout ID: 423532

Ref#

3 of 3

Page: Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

HARDWARE

QTY	TYPE	MODEL	LENGTH

TOTAL NUMBER OF ITEMS= 8

Lumber Yard:

TAMARACK LUMBER

Builder:

Project:

BAYVIEW WELLINGTON GREEN VALLEY EAST

Location:

BRADFORD

Model: Lot #:

Elevation:

S38-19

A-OPT.WITH COFF.

Job Track:

PlanLog:

50465 205562

Layout ID:

423531

Ref# Page:

1 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1S Hip Girder	6 /12	28-11-00	4-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	303.43 191.67		
	1	T2S Hip	6 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	125.24 81.50		
	1	T3S Hip	6 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	127.12 81.83		
	1	T4S Hip	6 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	129.95 82.83		
	1	T5 Hip	6 /12	28-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	118.15 75.00		
	8	T6 Common	6 /12	28-11-00	8-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	942.69 581.33		
	1 2-ply	T7 Roof Special Girder	10 /12	28-11-00	9-02-02	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	367.79 228.00		
	2	T8 Hip	10 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	245.33 156.33		
	2	T9 Hip	10 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	245.61 153.33		-
	3	T10 Hip	10 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	404.3 254.50		
	1 2-ply	T11 Hip Girder	10 /12	24-11-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	251.62 159.67		
	1	T12. Hip	10 /12	24-11-00	6-06-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	119.53 76.00		
	1	T13 Hip	10 /12	24-11-00	8-02-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	124.52 78.33		
	4	T14S Roof Special	10 /12 10 /12		7-00-11	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	26 1 .87 168.67	VIE	NED

ROOF TRUSSES INC. ALPA LUMBER GROUP -

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

S38-19

Lot #:

Elevation:

A-OPT.WITH COFF.

Page:

Layout ID:

Job Track:

PlanLog:

205562 423531

50465

Ref#

2 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T15 Half Hip Girder	6 /12	5-10-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	23.24 16.50		
	1	T16S Half Hip	6 /12	5-10-08	2-10-12	2 x 4	1-03-08	1-02-00 1-10-12	25.02 18.50		
	1	T17S Half Hip	6 /12	5-10-08	3-10-12	2 x 4	1-03-08	1-02-00 2-10-12	25.33 17.67		
	1 2-ply	T18 Roof Special Girder	10 /12	6-00-08	4-10-07	2 x 4 2 x 6		1-05-03 4-10-07	59.56 39.67		
	1 2-ply	T19. Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	3	T20 Common	10 /12	8-08-00	5-04-04	2 x 4	1-03-08	1-07-11 1-10-03	116.41 76.50	·	
	1	G21 GABLE	10 /12	8-11-00	5-04-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	43.33 28.83		
	3	T22 Monopitch	4 /12	8-08-08	3-10-00	2 x 4	1-03-08	11-03 3-10-00	133.04 90.00		
	6	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	100.77 64.00		
	4	J1S Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 3-01-04	81.56 58.67		
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	14.13 8.67		
	1	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33		
	1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		
	1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	R ₀₂ E 4.67	VIE۱	VED
			1		1	1	_L		l .		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

S38-19

Lot #:

Elevation: A-OPT.WITH COFF. Job Track:

PlanLog:

50465 205562

Layout ID:

423531

Ref# Page:

3 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	6	J6 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	90.83 58.00		
	3	J7 Jack-Open	6 /12	1-05-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	18.38 14.00		
217000000000000000000000000000000000000	7	J8 Jack-Open	4 /12	4-02-08	2-04-00	2 x 4	1-03-08	11-03 2-04-00	84.08 56.00		-

TOTAL #TRUSS= 75

TOTAL BFT OF ALL TRUSSES= 2971

BFT.

TOTAL WEIGHT OF ALL TRSSES 4668.64 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	HGUS26-2	
5	Hardware	LJS26DS	

TOTAL NUMBER OF ITEMS= 8

LUS24.

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

A-COFF. WITH REAR UPGRADE

Project:

GREEN VALLEY EAST BRADFORD

Location:

S38-19

Model: Lot #:

Elevation:

Job Track: PlanLog:

50465 205562

Layout ID:

423533

Ref# Page:

1 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

- · · · · · · · · · · · · · · · · · · ·	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1S Hip Girder	6 /12	28-11-00	4-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	303.35 191.67		
	1	T2S Hip	6 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	125.02 81.50		
	1.	T3S Hip	6 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	127.09 81.67		
	1	T4S Hip	6 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	130.01 82.83		
	1	T5 Hip	6 /12	28-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	118.15 75.00		
	8	T6 Common	6 /12	28-11-00	8-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	971.43 597.33		
	1 2-ply	T7 Roof Special Girder	10 /12	28-11-00	9-02-02	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	367.79 228.00	·	
	2	T8 Hip	10 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	245.33 156.33		
	2	T9 Hip	10 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	245.61 153.33		
	3	T10 Hip	10 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	404.3 254.50		
	1 2-ply	T11 Hip Girder	10 /12	24-11-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	251.62 159.67	y	
	1	T12 Hip	10 /12	24-11-00	6-06-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	119.53 76.00		
	1	T13 Hip	10 /12	24-11-00	8-02-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	124.52 78.33		
	4	T14S Roof Special	10 /12 10 /12	13-00-00	7-00-11	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	26\87 168.67	VIE	WEL

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project: Location:

GREEN VALLEY EAST

BRADFORD

Model: Lot #:

Elevation:

S38-19

A-COFF. WITH REAR UPGRADE

Job Track:

PlanLog:

50465 205562

Layout ID:

423533

Ref# Page:

2 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T15 Half Hip Girder	6 /12	5-10-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	23.24 16.50		
	1	T16S Half Hip	6 /12	5-10-08	2-10-12	2 x 4	1-03-08	1-02-00 1-10-12	26.14 19.50		·
	1	T17S Half Hip	6 /12	5-10-08	3-10-12	2 x 4	1-03-08	1-02-00 2-10-12	26.41 18.67		
	1 2-ply	T18 Roof Special Girder	10 /12	6-00-08	4-10-07	2 x 4 2 x 6		1-05-03 4-10-07	59.56 39.67		
	1 2-ply	T19 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	3	T20 Common	10 /12	8-08-00	5-04-04	2 x 4	1-03-08	1-07-11 1-10-03	116.41 76.50		
	1	G21 GABLE	10 /12	8-11-00	5-04-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	43.33 28.83		
	3	T22 Monopitch	4 /12	8-08-08	3-10-00	2 x 4	1-03-08	11-03 3-10-00	133.04 90.00		
	1	V1 Valley	6 /12	16-09-00	4-02-04	2 x 4			48.6 30.33		
	1	V2 Valley	6 /12	12-09-00	3-02-04	2 x 4			33.04 21.50		
	1	V3 Valley	6 /12	8-09-00	2-02-04	2 x 4	·.		20.73 13.67		
	6	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	100.77 64.00		
	4	J1S Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 3-01-04	81.56 58.67		
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	R12 8.67	VIE	NED
<u> </u>		1			1	1			l		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location: Model:

BRADFORD

Lot #:

Elevation:

S38-19

A-COFF. WITH REAR UPGRADE

Job Track: PlanLog:

50465 205562

Layout ID:

423533

3 of 3

Ref#

Page: Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
1	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33		
1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		
1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	7.02 4.67		
6	J6 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	90.83 58.00		
3	J7 Jack-Open	6 /12	1-05-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	18.38 14.00		
7	J8 Jack-Open	4 /12	4-02-08	2-04-00	2 x 4	1-03-08	11-03 2-04-00	84.08 56.00		
	1 1 6 3	PLY TYPE 1 J3 Jack-Open 1 J4 Jack-Open 1 J5 Jack-Open 6 J6 Jack-Open 3 J7 Jack-Open 7 J8	PLY TYPE PITCH 1 J3 Jack-Open 6 /12 1 J4 Jack-Open 6 /12 1 J5 Jack-Open 6 /12 6 J6 Jack-Open 10 /12 3 J7 Jack-Open 6 /12 7 J8 4 /13	PLY TYPE PITCH SPAN 1 J3 Jack-Open 6 /12 1-09-07 1 J4 Jack-Open 6 /12 1-10-08 1 J5 Jack-Open 6 /12 1-09-07 6 J6 Jack-Open 10 /12 3-10-08 3 J7 Jack-Open 6 /12 1-05-08 7 J8 4 /12 4 02 08	PLY TYPE PITCH SPAN HEIGHT 1 J3 Jack-Open 6 /12 1-09-07 2-00-12 1 J4 Jack-Open 6 /12 1-10-08 3-00-12 1 J5 Jack-Open 6 /12 1-09-07 2-00-12 6 J6 Jack-Open 10 /12 3-10-08 4-10-07 3 J7 Jack-Open 6 /12 1-05-08 1-10-12 7 J8 4 /12 4 03 08 3 04 00	PLY TYPE PITCH SPAN HEIGHT LUMBER 1 J3 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 1 J4 Jack-Open 6 /12 1-10-08 3-00-12 2 x 4 1 J5 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 6 J6 Jack-Open 10 /12 3-10-08 4-10-07 2 x 4 3 J7 Jack-Open 6 /12 1-05-08 1-10-12 2 x 4 7 J8 4 /12 4.03.08 3.04.00 3 x 4	PLY TYPE PITCH SPAN HEIGHT LUMBER LEFT RIGHT 1 J3 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 1-03-08 4-01-01 1 J4 Jack-Open 6 /12 1-10-08 3-00-12 2 x 4 1-03-08 1-10-15 1 J5 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 1-03-08 1-01 6 J6 Jack-Open 10 /12 3-10-08 4-10-07 2 x 4 1-03-08 3 J7 Jack-Open 6 /12 1-05-08 1-10-12 2 x 4 1-03-08 7 J8 4 /12 4 03 08 2 04 00 2 x 4 1 03 08	PLY TYPE PITCH SPAN HEIGHT LUMBER LEFT RIGHT LEFT RIGHT 1 J3 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 1-03-08 4-01-01 1-02-00 2-00-12 1 J4 Jack-Open 6 /12 1-10-08 3-00-12 2 x 4 1-03-08 1-02-00 2-01-04 1 J5 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 1-03-08 1-02-00 2-00-12 6 J6 Jack-Open 10 /12 3-10-08 4-10-07 2 x 4 1-03-08 1-07-11 4-10-07 3 J7 Jack-Open 6 /12 1-05-08 1-10-12 2 x 4 1-03-08 1-02-00 1-10-12 7 J8 J	PLY TYPE PITCH SPAN HEIGHT LUMBER LEFT RIGHT LEFT RIGHT BFT. 1 J3 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 1-03-08 4-01-01 1-02-00 2-00-12 11.58 7.33 1 J4 Jack-Open 6 /12 1-10-08 3-00-12 2 x 4 1-03-08 1-02-00 2-01-04 9.57 6.00 1 J5 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 1-03-08 1-02-00 2-00-12 7.02 2-00-12 6 J6 Jack-Open 10 /12 3-10-08 4-10-07 2 x 4 1-03-08 1-07-11 4-10-07 90.83 58.00 3 J7 Jack-Open 6 /12 1-05-08 1-10-12 2 x 4 1-03-08 1-02-00 1-10-12 18.38 14.00 7 J8 J	PLY TYPE PITCH SPAN HEIGHT LUMBER LEFT RIGHT LEFT RIGHT BFT. STACK# 1 J3 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 1-03-08 4-01-01 1-02-00 2-00-12 11.58 7.33 1 J4 Jack-Open 6 /12 1-10-08 3-00-12 2 x 4 1-03-08 1-02-00 2-01-04 9.57 6.00 1 J5 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 1-03-08 1-02-00 2-00-12 7.02 4.67 6 J6 Jack-Open 10 /12 3-10-08 4-10-07 2 x 4 1-03-08 1-07-11 4-10-07 90.83 58.00 3 J7 Jack-Open 6 /12 1-05-08 1-10-12 2 x 4 1-03-08 1-02-00 1-10-12 18.38 14.00 7 J8 J

TOTAL #TRUSS= 78

TOTAL BFT OF ALL TRUSSES= 3054.34

BFT.

TOTAL WEIGHT OF ALL TRSSES 4801.68 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	HGUS26-2	
5	Hardware	LJS26DS	
3	Hardware	LUS24	

TOTAL NUMBER OF ITEMS= 11

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

S38-19

В

Model: Lot #:

Elevation:

Job Track:

PlanLog:

50465 205562

Layout ID:

423535

Ref# Page:

1 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK			70-70		OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	6 /12	28-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	263.62 168.00	·	
	1	T2 Hip	6 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	114.66 72.17		
	1	T3 Hip	6 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	120.64 75.67		
	1	T4 Hip	6 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	117.75 73.17		
	1	T5 Hip	6 /12	28-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	118.15 75.00		
	8	T6 Common	6 /12	28-11-00	8-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	942.69 581.33		
	1 2-ply	T7 Roof Special Girder	10 /12	28-11-00	9-02-02	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	367.79 228.00		1
	2	T8 Hip	10 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	245.33 156.33		
	2	T9 Hip	10 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	245.61 153.33		
	3	T10 Hip	10 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	404.3 254.50		
	1 2-ply	T11Z Hip Girder	10 /12	24-11-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	251.62 159.67		
	1	T12 Hip	10 /12	24-11-00	6-06-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	119.53 76.00		
	1	T13 Hip	10 /12	24-11-00	8-02-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	124.52 78.33		
	1 2-ply	T19 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

S38-19

В

Model: Lot #:

Elevation:

PlanLog:

50465 205562

Layout ID:

Job Track:

423535

Ref# Page:

2 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	3	T22 Monopitch	4 /12	8-08-08	3-10-00	2 x 4	1-03-08	11-03 3-10-00	133.04 90.00		
	1	T30S Hip Girder	10 /12	13-00-00	5-11-12	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	76.93 53.17		
	1	T31S Roof Special	10 /12	13-00-00	7-00-11	2 x 4		1-07-11 1-07-11	63.17 42.17		
	2 2-ply	T32 Flat	0 /12	2-02-08	1-08-00	2 x 4		1-08-00 1-08-00	36.39 30.67		
	1 2-ply	T33 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	11	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	184.74 117.33		
	2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
	2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2×4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
	6	J6 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	90.83 58.00		
Control Document Control	2	J8 Jack-Open	4 /12	4-02-08	2-04-00	2 x 4	1-03-08	11-03 2-04-00	24.02 16.00		
	3	J30 Jack-Open	10 /12	3-05-08	4-03-12	2 x 4	1-00-08	1-05-03 4-03-12	40.97 29.00		
	2	J31 Jack-Open	10 /12	1-09-07	2-11-01	2 x 4	1-00-08 1-08-01	1-05-03 2-11-01	21.47 15.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model:

S38-19

В

Lot #:

Elevation:

Job Track:

PlanLog:

50465 205562

Layout ID:

423535

Ref# Page:

3 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	J32 Jack-Open	10 /12	1-10-08	2-11-01	2 x 4		1-05-03 2-11-15	14.87 11.33	70	

TOTAL #TRUSS= 74

TOTAL BFT OF ALL TRUSSES= 2734.16

BFT.

TOTAL WEIGHT OF ALL TRSSES 4308.06 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
2		HUC26-2	
3	Hardware	LJS26DS	
1	Hardware	LUS26-2	

TOTAL NUMBER OF ITEMS= 8

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location: Model:

BRADFORD

Lot #:

Elevation:

S38-19

B-OPT.WITH COFF.

Job Track: PlanLog:

50465 205562

Layout ID:

423534

Ref# Page:

1 of 3

Date:

06-27-2022

Designer:

Sales Rep: Rick DiCiano

	QTY	MARK		1			OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1S Hip Girder	6 /12	28-11-00	4-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	303.43 191.67		
	1	T2S Hip	6 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	125.02 81.50		
	1	T3S Hip	6 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.63 81.33	-	
	1	T4S Hip	6 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	129.86 82.83		
	1	T5 Hip	6 /12	28-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	118.15 75.00		
	8	T6 Common	6 /12	28-11-00	8-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	942.69 581.33		
	1 2-ply	T7 Roof Special Girder	10 /12	28-11-00	9-02-02	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	367.79 228.00		
	2	T8 Hip	10 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	245.33 156.33		
	2	T9 Hip	10 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	245.61 153.33		
	3	T10 Hip	10 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	404.3 254.50		
	1 2-ply	T11Z Hip Girder	10 /12	24-11-00	4-10-07	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	251.62 159.67		
	1.	T12 Hip	10 /12	24-11-00	6-06-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	119.53 76.00		
	1	T13 Hip	10 /12	24-11-00	8-02-07	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	124.52 78.33		
	1	T15 Half Hip Girder	6 /12	5-10-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	23.24 16.50		

Lumber Yard:

TAMARACK LUMBER

Builder: Project:

BAYVIEW WELLINGTON GREEN VALLEY EAST

Location:

BRADFORD

Model:

Lot #: Elevation:

S38-19

B-OPT.WITH COFF.

Job Track: PlanLog:

50465 205562

Layout ID:

423534

Ref# Page:

2 of 3

Date:

06-27-2022

Designer:

Sales Rep.

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T16S Half Hip	6 /12	5-10-08	2-10-12	2 x 4	1-03-08	1-02-00 1-10-12	25.02 18.50		
	1	T17S Half Hip	6 /12	5-10-08	3-10-12	2 x 4	1-03-08	1-02-00 2-10-12	25.33 17.67		
	1 2-ply	T19 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	3	T22 Monopitch	4 /12	8-08-08	3-10-00	2 x 4	1-03-08	11-03 3-10-00	133.04 90.00		
	. 1	T30S Hip Girder	10 /12	13-00-00	5-11-12	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	76.93 53.17		
	1	T31S Roof Special	10 /12	13-00-00	7-00-11	2 x 4		1-07-11 1-07-11	61.38 41.17		
	2 2-ply	T32 Flat	0 /12	2-02-08	1-08-00	2 x 4		1-08-00 1-08-00	36.39 30.67		
	1 2-ply	T33 Jack-Closed Girder	10 /12	3-10-08	4-10-07	2 x 4 2 x 6		1-07-11 4-10-07	43.15 29.33		
	6	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	100.77 64.00		
	4	J1S Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 3-01-04	81.56 58.67		
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	14.13 8.67		
	1	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33	,	
	1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		
	1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	7.02 4.67		

Lumber Yard:

TAMARACK LUMBER

Builder: Project: **BAYVIEW WELLINGTON**

GREEN VALLEY EAST

Location:

BRADFORD

Model:

S38-19

Lot #:

Elevation:

B-OPT.WITH COFF.

Job Track:

PlanLog:

50465 205562

Layout ID:

423534

Ref# Page:

3 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	6	J6 Jack-Open	10 /12	3-10-08	4-10-07	2 x 4	1-03-08	1-07-11 4-10-07	90.83 58.00		
	3	J7 Jack-Open	6 /12	1-05-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	18.38 14.00		
	2	J8 Jack-Open	4 /12	4-02-08	2-04-00	2 x 4	1-03-08	11-03 2-04-00	24.02 16.00		
	3	J30 Jack-Open	10 /12	3-05-08	4-03-12	2 x 4	1-00-08	1-05-03 4-03-12	40.97 29.00		
	2	J31 Jack-Open	10 /12	1-09-07	2-11-01	2 x 4	1-00-08 1-08-01	1-05-03 2-11-01	21.47 15.33		
	2	J32 Jack-Open	10 /12	1-10-08	2-11-01	2 x 4		1-05-03 2-11-15	14.87 11.33		

TOTAL #TRUSS= 75

TOTAL BFT OF ALL TRUSSES= 2826.83

BFT.

TOTAL WEIGHT OF ALL TRSSES 4421.78 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
3	Hardware	LJS26DS	
2		H .ÚC26-2	
11	Hardware	LUS26-2	

TOTAL NUMBER OF ITEMS= 8

ROOF TRUSSES INC.

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

S38-19

С

Model: Lot #:

Elevation:

Job Track:

PlanLog:

50465 205562

Layout ID:

423538

Ref# Page:

1 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

Poof Truosoo

Roof Tr	usse	S									
PROFILE	QTY PLY	MARK TYPE	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT RIGHT	HEEL HEIGHT LEFT RIGHT	LBS. BFT.	BUNDLE# STACK#	LOAD BY REMARKS
	1 2-ply	T1 Hip Girder	6 /12	28-11-00	4-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	263.62 168.00		
	1	T2 Hip	6 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	114.91 71.83		
	1	T3 Hip	6 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	120.64 75.67	-	
	1	T4 Hip	6 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	117.75 73.17		
	1	T5 Hip	6 /12	28-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	118.15 75.00	·	
	7	T6 Common	6 /12	28-11-00	8-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	824.85 508.67		
	3	T22 Monopitch	4 /12	8-08-08	3-10-00	2 x 4	1-03-08	11-03 3-10-00	133.04 90.00		
	1 2-ply	T45 Hip Girder	8 /12	28-11-00	5-08-06	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	322.74 199.00		
	2	T46 Hip	8 /12	28-11-00	6-08-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	249.8 159.00		
	2	T47 Hip	8 /12	28-11-00	7-08-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	263.02 169.33		
	2	T48 Hip	8 /12	28-11-00	8-08-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	263.78 164.00		7
	3	T49 Hip	8 /12	28-11-00	9-08-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	394.21 245.00		VIEWEL
	1 2-ply	T50 Half Hip Girder	8 /12	24-08-00	4-01-06	2 x 6	1-03-08	1-04-13 4-01-04	253.37 157.33		
	1	T51 Hip	8 /12	24-08-00	5-01-04	2 x 4	1-03-08	1-04-13 4-02-13	105.49 66.33	,	

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model: Lot #:

Elevation:

С

S38-19

Page: Date:

Ref#

2 of 3

50465

205562

423538

06-27-2022

Designer:

Job Track:

PlanLog:

Layout ID:

Sales Rep:

Rick DiCiano

Roof Trusses

QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
1	T52 Hip Girder	8 /12	13-00-00	5-03-02	2 x 4 2 x 6	1-03-08 1-03-08	2-06-13 2-06-13	70.64 46.17		
1	T53 Hip	8 /12	12-06-00	8-01-02	2 x 4		4-02-13 4-02-13	72.87 47.33		. `
1 2-ply	T54 Flat Girder	0 /12	5-10-08	1-06-00	2 x 6		1-06-00 1-06-00	54.19 33.67		
1 2-ply	T55 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
17	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	285.51 181.33		
2	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
2	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
2	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
2	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	14.04 9.33		
7	J8 Jack-Open	4 /12	4-02-08	2-04-00	2 x 4	1-03-08	11-03 2-04-00	84.08 56.00		
4	J45 Jack-Open	8 /12	4-00-08	5-03-02	2 x 4	1-03-08	2-06-13 5-03-02	67.37 46.00		
2	J46 Jack-Open	8 /12	1-09-07	3-09-02	2 x 4	1-03-08 2-03-01	2-06-13 3-09-02	26.88 19.00		
2	J47 Jack-Open	8 /12	1-09-07	3-09-02	2 x 4	1-03-08 1-01	2-06-13 3-09-02	21.94 15.00		
	1 1 2-ply 17 2 2 2 7 4	PLY TYPE 1 T52 Hip Girder 1 T53 Hip 1-Ply T54 Flat Girder 1-Ply Jack-Closed Girder 17 J1 Jack-Open 2 J2 Jack-Open 2 J3 Jack-Open 2 J4 Jack-Open 2 J5 Jack-Open 7 J8 Jack-Open 4 J45 Jack-Open 2 J46 Jack-Open 2 J47 Jack-Open 2 J47 Jack-Open	PLY TYPE PITCH 1 T52 Hip Girder 8 /12 1 T53 Hip 8 /12 1-Ply T54 Girder 0 /12 1-Ply Jack-Closed Girder 6 /12 17 J1 Jack-Open 6 /12 2 J2 J2 J2 Girder 6 /12 2 Jack-Open 6 /12 2 J3 Jack-Open 6 /12 2 J4 Jack-Open 6 /12 3 Jack-Open 6 /12 4 Jack-Open 8 /12 4 J45 Jack-Open 8 /12 2 J46 Jack-Open 8 /12 2 J47 Jack-Open 8 /12	PLY TYPE PITCH SPAN 1 T52 Hip Girder 8 /12 13-00-00 1 T53 Hip 8 /12 12-06-00 1 T54 Hip Girder 0 /12 5-10-08 1 T55 Jack-Closed Girder 6 /12 5-10-08 1 J1 Jack-Open 6 /12 5-10-08 2 J2 Jack-Open 6 /12 3-09-07 2 J3 Jack-Open 6 /12 1-09-07 2 J4 Jack-Open 6 /12 1-10-08 2 Jack-Open 6 /12 1-09-07 7 J8 Jack-Open 4 /12 4-02-08 4 J45 Jack-Open 8 /12 4-00-08 2 J46 Jack-Open 8 /12 1-09-07 2 J47 Jack-Open 8 /12 1-09-07	PLY TYPE PITCH SPAN HEIGHT 1 T52 Hip Girder 8 /12 13-00-00 5-03-02 1 T53 Hip 8 /12 12-06-00 8-01-02 1 T53 Hip 0 /12 5-10-08 1-06-00 1 Jack-Closed Girder 6 /12 5-10-08 4-01-04 2 J2 Jack-Open 6 /12 3-09-07 3-00-12 2 J3 Jack-Open 6 /12 1-09-07 2-00-12 2 J4 Jack-Open 6 /12 1-10-08 3-00-12 2 Jack-Open 6 /12 1-09-07 2-00-12 7 Jack-Open 6 /12 1-09-07 2-00-12 4 J45 Jack-Open 8 /12 4-02-08 2-04-00 4 Jack-Open 8 /12 1-09-07 3-09-02 2 J46 Jack-Open 8 /12 1-09-07 3-09-02 2 Jack-Open 8 /12 1-09-07 3-09-02	PLY TYPE PITCH SPAN HEIGHT LUMBER 1 T52 Hip Girder 8 /12 13-00-00 5-03-02 2 x 4 2 x 6 1 T53 Hip 8 /12 12-06-00 8-01-02 2 x 4 1-ply T54 Flat Girder 0 /12 5-10-08 1-06-00 2 x 6 17 Jack-Closed Girder 6 /12 5-10-08 4-01-04 2 x 4 2 J2 Jack-Open 6 /12 3-09-07 3-00-12 2 x 4 2 J3 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 2 J4 Jack-Open 6 /12 1-10-08 3-00-12 2 x 4 2 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 2 Jack-Open 6 /12 1-09-07 2-00-12 2 x 4 3 J2 4-02-08 2-04-00 2 x 4 4 J45 Jack-Open 8 /12 4-00-08 5-03-02 2 x 4 2 J46 Jack-Open 8 /12 1-09-07 <th>PLY TYPE PITCH SPAN HEIGHT LUMBER LEFT RIGHT 1 T52 Hip Girder 8 /12 13-00-00 5-03-02 2 x 4 2 x 6 1-03-08 1-03-08 1 T53 Hip 8 /12 12-06-00 8-01-02 2 x 4 </th> <th> PLY TYPE</th> <th> PLY TYPE</th> <th>PIT V TYPE PITCH SPAN HEIGHT LUMBER LEFT LEFT LEFT LEFT LEFT STACK# 1 T52 Hip Girder 8 /12 13-00-00 5-03-02 2 x 4 2 6 1-03-08 2-06-13 2-06-13 46.17 70.84 46.17 1 T53 Hip 8 /12 12-06-00 8-01-02 2 x 4 1-03-08 2-06-13 40.17 72.87 47.33 2-ply F184 Girder Girder 0 /12 5-10-08 1-06-00 2 x 6 1 1-06-00 15.41 40.17 5-10-00 15.84 10.17 1 Jack-Open Girder 6 /12 5-10-08 1-06-00 2x 6 11.00-04 2x 6 11.00-00 15.784 10.10 1-02-00 15.784 10.10 57.84 10.10 2 Jack-Open Girder 6 /12 5-10-08 1-00-04 2x 4 1-03-08 11.00-00 15.784 10.10 1-02-00 15.784 10.10 285.51 11.00-04 11.10 2 Jack-Open Girder 6 /12 3-09-07 13-00-12 2x 4 1-03-08 11.00-00 15.10 1-02-00 15.10 282.66 17.33 10.10 2 Jack-Open Girder 6 /12 1-09-07 12-00-12 2x 4 11.03-08 11.00-00 15.10 1-02-00 12 23.16 11.00-10 14.67 11.00-10 2 Jack-Open Girder 6 /12 1-09-07 2-00-12 2x 4 11.03-08 11.00-10 11.00-10 1-02-00 12 23.16 11.00-10 14.04 11.00-10 2 Jack-Open Girder 6 /12 1-09-07 2-00-12 2x</th>	PLY TYPE PITCH SPAN HEIGHT LUMBER LEFT RIGHT 1 T52 Hip Girder 8 /12 13-00-00 5-03-02 2 x 4 2 x 6 1-03-08 1-03-08 1 T53 Hip 8 /12 12-06-00 8-01-02 2 x 4	PLY TYPE	PLY TYPE	PIT V TYPE PITCH SPAN HEIGHT LUMBER LEFT LEFT LEFT LEFT LEFT STACK# 1 T52 Hip Girder 8 /12 13-00-00 5-03-02 2 x 4 2 6 1-03-08 2-06-13 2-06-13 46.17 70.84 46.17 1 T53 Hip 8 /12 12-06-00 8-01-02 2 x 4 1-03-08 2-06-13 40.17 72.87 47.33 2-ply F184 Girder Girder 0 /12 5-10-08 1-06-00 2 x 6 1 1-06-00 15.41 40.17 5-10-00 15.84 10.17 1 Jack-Open Girder 6 /12 5-10-08 1-06-00 2x 6 11.00-04 2x 6 11.00-00 15.784 10.10 1-02-00 15.784 10.10 57.84 10.10 2 Jack-Open Girder 6 /12 5-10-08 1-00-04 2x 4 1-03-08 11.00-00 15.784 10.10 1-02-00 15.784 10.10 285.51 11.00-04 11.10 2 Jack-Open Girder 6 /12 3-09-07 13-00-12 2x 4 1-03-08 11.00-00 15.10 1-02-00 15.10 282.66 17.33 10.10 2 Jack-Open Girder 6 /12 1-09-07 12-00-12 2x 4 11.03-08 11.00-00 15.10 1-02-00 12 23.16 11.00-10 14.67 11.00-10 2 Jack-Open Girder 6 /12 1-09-07 2-00-12 2x 4 11.03-08 11.00-10 11.00-10 1-02-00 12 23.16 11.00-10 14.04 11.00-10 2 Jack-Open Girder 6 /12 1-09-07 2-00-12 2x

TOTAL #TRUSS= 76

TOTAL BFT OF ALL TRUSSES= 2757.16

BFT.

TOTAL WEIGHT OF ALL TRSSES 4371.15 LBS

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model: Lot #:

Elevation:

S38-19

С

Job Track: PlanLog:

50465 205562

Layout ID:

423538

Ref# Page:

3 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	HGUS26-2	
3	Hardware	LJS26DS	

TOTAL NUMBER OF ITEMS= 6

Lumber Yard:

Builder:

TAMARACK LUMBER

BAYVIEW WELLINGTON Project: **GREEN VALLEY EAST**

Location:

BRADFORD

Model: Lot #:

Elevation:

S38-19

Date:

Designer:

Job Track:

Layout ID:

PlanLog:

Ref#

Page:

Sales Rep: Rick DiCiano

50465

205562

423537

1 of 3

06-27-2022

C-OPT.WITH COFF.

,	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	· LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1S Hip Girder	6 /12	28-11-00	4-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	302.8 191.00		
	1	T2S Hip	6 /12	28-11-00	5-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	125.02 81.50		
	1	T3S Hip	6 /12	28-11-00	6-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	126.63 81.33		
	1	T4S Hip	6 /12	28-11-00	7-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	129.8 82.83		
	1	T5 Hip	6 /12	28-11-00	8-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	118.15 75.00		
	7	T6 Common	6 /12	28-11-00	8-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	850 522.67		
	1	T15 Half Hip Girder	6 /12	5-10-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	23.24 16.50		
	1	T16S Half Hip	6 /12	5-10-08	2-10-12	2 x 4	1-03-08	1-02-00 1-10-12	25.02 18.50		
	1	T17S Half Hip	6 /12	5-10-08	3-10-12	2 x 4	1-03-08	1-02-00 2-10-12	25.33 17.67		•
	3	T22 Monopitch	4 /12	8-08-08	3-10-00	2 x 4	1-03-08	11-03 3-10-00	133.04 90.00	•	
	1 2-ply	T45 Hip Girder	8 /12	28-11-00	5-08-06	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	322.74 199.00		
	2	T46 Hip	8 /12	28-11-00	6-08-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	249.8 159.00		·
	2	T47 Hip	8 /12	28-11-00	7-08-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	263.02 169.33		
	2	T48 Hip	8 /12	28-11-00	8-08-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	263.78 164.00	VIE	WEL

Lumber Yard:

TAMARACK LUMBER

Builder: **BAYVIEW WELLINGTON**

Project: Location:

GREEN VALLEY EAST

C-OPT.WITH COFF.

Model:

BRADFORD

Lot #: Elevation: S38-19

Page:

Ref#

2 of 3

50465

205562

423537

Date:

06-27-2022

Designer:

Job Track:

PlanLog:

Layout ID:

Sales Rep:

Rick DiCiano

NOOI III	QTY	MARK			,	I :	OVERHANG	HEEL HEIGHT	1.00	BUNDLE #	LOAD DV
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT	LEFT	LBS. BFT.	STACK#	LOAD BY REMARKS
	3	T49 Hip	8 /12	28-11-00	9-08-04	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	394.21 245.00	·	KEWARIO
	1 2-ply	T50 Half Hip Girder	8 /12	24-08-00	- 4-01-06	2 x 6	1-03-08	1-04-13 4-01-04	253.37 157.33		
	1	T51 Hip	8 /12	24-08-00	5-01-04	2 x 4	1-03-08	1-04-13 4-02-13	105.49 66.33	·	
	1	T52 Hip Girder	8 /12	13-00-00	5-03-02	2 x 4 2 x 6	1-03-08 1-03-08	2-06-13 2-06-13	70.64 46.17		
	1	T53 Hip	8 /12	12-06-00	8-01-02	2 x 4		4-02-13 4-02-13	72.87 47.33		
	1 2-ply	T54 Flat Girder	0 /12	5-10-08	1-06-00	2 x 6		1-06-00 1-06-00	54.19 33.67		
	1 2-ply	T55 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	12	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	201.53 128.00		
	4	J1S Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 3-01-04	81.56 58.67		
	1	J2 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	14.13 8.67		
	1	J3 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	11.58 7.33		
	1	J4 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	9.57 6.00		
	1	J5 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	7.02 4.67		
	3	J7 Jack-Open	6 /12	1-05-08	1-10-12	2 x 4	1-03-08	1-02-00 1-10-12	18.38 14.00		
							•				

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY EAST

Location:

BRADFORD

Model: Lot #:

Elevation:

S38-19

C-OPT.WITH COFF.

Job Track: PlanLog:

50465 205562

Layout ID:

423537

Ref# Page:

3 of 3

Date:

06-27-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

PROFILE	QTY PLY	MARK TYPE	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT RIGHT	HEEL HEIGHT LEFT RIGHT	LBS. BFT.	BUNDLE #	LOAD BY
	7	J8 Jack-Open	4 /12	4-02-08	2-04-00	2 x 4	1-03-08	11-03 2-04-00	84.08 56.00		
	4	J45 Jack-Open	8 /12	4-00-08	5-03-02	2 x 4	1-03-08	2-06-13 5-03-02	67.37 46.00		
	2	J46 Jack-Open	8 /12	1-09-07	3-09-02	2 x 4	1-03-08 2-03-01	2-06-13 3-09-02	26.88 19.00		
	2	J47 Jack-Open	8 /12	1-09-07	3-09-02	2 x 4	1-03-08 1-01	2-06-13 3-09-02	21.94 15.00		

TOTAL #TRUSS= 77

TOTAL BFT OF ALL TRUSSES= 2864.5

BFT.

TOTAL WEIGHT OF ALL TRSSES 4510.88 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	HGUS26-2	
3	Hardware	LJS26DS	

TOTAL NUMBER OF ITEMS= 6

CONTINUED ON PAGE 2

DWG# T-2215147

OB NAME	TRUSS NAME	QUANTITY	PLY		JOB DESC	· B/	YYVIEV	V WELL	INGTO	N	DRWG NO.
23532	T1	1	2		TRUSS DE	SC.					
amarack Roof Truss, Burli	ington								Version 8	.530 S Feb 23 2022	2 MiTek Industries, Inc. Fri Jun 24 08:14:53 2022 P.
							D:c3jyj23	uDija 8pvF	RKbkZpy	75XW- o4nBCy	0MjupbSileRUn5JwC9pPPwXBOUgQLMUz
PLATES (table is in inch	es)										
JT TYPE PLATES		SPECIFIED CC	NCENTRA	ATED LOA	ADS (LBS)					İ	
B TMVW-p MT20	5.0 6.0 2.00 2.75	JT LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.	
C TTWW-m MT20	5.0 8.0 2.25 3.25	N 11-6-4	-21	-21		BACK	VERT	TOTAL		C1	
D TMWW-t MT20	4.0 4.0	O 5-11-4	-21	-21		BACK	VERT	TOTAL		C1	
E TS-t MT20	3.0 8.0	Q 7-6-4	-93	-93		BACK	VERT	TOTAL		C1	
TMW+w MT20	2.0 4.0	R 9-6-4	-93	-93 -93 -93 -93		BACK	VERT	TOTAL		C1	
G TTWW-m MT20	5.0 8.0 2.25 3.25	S 13-6-4	-93	-93		BACK	VERT	TOTAL		C1	,
H TMVW-p MT20	5.0 6.0 2.00 2.75	T 15-6-4	-93 -93	-93		BACK	VERT	TOTAL	·	C1	
J BMV1+p MT20	3.0 8.0	U 19-6-4	-93	-93		BACK	VERT	TOTAL		C1	
K, N, O		V 21-6-4	-93	-93		BACK	VERT	TOTAL		C1	
K BMWW-t MT20	5.0 6.0	W 1-11-4	-20	-20		BACK	VERT	TOTAL		C1	
BMWWW-t MT20	5.0 8.0	X 3-11-4	-21	-21		BACK	VERT	TOTAL		C1	
M BS-t MT20	5.0 6.0	Y 7-6-4	-21	-21		BACK	VERT	TOTAL		C1	
P BMV1+p MT20	3.0 8.0	Z 9-6-4	-21	-21		BACK	VERT	TOTAL		C1	
		AA 13-6-4	-21	-21		BACK	VERT	TOTAL		C1	
NOTES- (1)		AB 15-6-4	-21	-21		BACK	VERT	TOTAL		C1	
1) Lateral braces to be a r	-i-i	AC 19-6-4	-21	-21		BACK	VERT	TOTAL		C1	
i) Lateral braces to be a r	minimum of 2X4 SPF #2.	AD 21-6-4 AE 24-11-12	-21	-21		BACK	VERT	TOTAL		C1	
		AF 26-11-12	-21 -20	-21		BACK	VERT	TOTAL		C1	
		AF 26-11-12	-20	-20		BACK	VERT	TOTAL		C1	
		CONNECTION	REQUIREM	MENTS							
		1) C1: A SUF	TARLE HA	NGER/M	CHANICA	I CONNE	CTION IS	BEOLIBED			
		1., 5 7.501			-011/11/04	E JOININE	J. 1014 13	ILQUINED.			

Structural component only DWG# T-2215147

REVIEWED

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T1S TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:09:59 2022 Page 1 ID:c3jyj23uDijq 8pvRKbkZpy75XW-bEKeUqObcOrXKGEFQhCrBJlzUI0P1Uu6twCo1Wz38bc Tamarack Roof Truss, Burlington 1-3-8 5-10-8 5-10-8 1-3-8 Scale = 1:51.6 5x8 \\ 4x4 =15x6 == 3x8 | 6x10 // 6.00 12 D Ε 9x16 MT18HS 5x8 < AWA? 1-2-0 R1 0 AA AB AC AD AE7x16 5x6 = 4x6 || ⊠ K AJ R M L 4x4 || 3x4 || 3x8 || 6x10 =3x8 || 1-5-121_T12 1-10-12 | 2-0-0 1,12 2-1-0 2-0-0 2-0-0 1-5-8 2-0-0 2-0-0 1-11-4 1-3-8 28-11-0 1-3-8 TOTAL WEIGHT = 2 X 152 = 303 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES CHORDS SIZE **DESIGN CRITERIA** LUMBER BEARINGS FACTORED SIZE DESCR D F H No.2 No.2 SPF 244 DRY MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: DRY GROSS REACTION GROSS REACTION LL = BRG BRG CH 32.5 PSF UPLIFT IN-SX DL PSF PSF 2x6 No.2 SPF VERT HORZ DOWN HORZ IN-SX 2x4 DRY No.2 SPF 3356 3891 0.0 В DRY DRY SPF 5-8 DL SPF 2x6 No.2 TOTAL LOAD 45.9 DRY No 2 SPE С DRY DRY UNFACTORED REACTIONS SPACING = 24.0 IN. C/C 2x6 SPF MAX./MIN. COMPONENT REACTIONS No.2 SNOW М -G 2x4 DRY No.2 SPF COMBINED LIVE PERMITVE WIND DEAD SOIL SPF 694 / 0 775 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 2723 1948 / 0 0/0 0/0 0/0 0/0 OF 6.00/12 ALL WEBS DRY SPF 2x3 No.2 EXCEPT BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K, S THIS TRUSS IS DESIGNED FOR RESIDENTIAL DRY SPF No.2 OR SMALL BUILDING REQUIREMENTS OF PART Q SPF DRY No:2 TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.23 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT. OR RIGID CEILING DIRECTLY APPLIED. DRY: SEASONED LUMBER. THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED CSA 086-14 FOLLOWS: LOADING TOTAL LOAD CASES: (4) TPIC 2014 CHORDS #ROWS SURFACE SPACING (IN) TOP CHORDS : (0.122"X3") SPIRAL NAILS DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. LOAD(PLF) WEBS MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO A- D H- J 12 12 12 MEMB. MAX. FORCE (LBS) MAX CSI (LC) (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED MEMB (LBS) SIDE(61.0) CSI (LC) FR-TO LENGTH FR-TO TOF ROOF LIVE LOAD -112.4 -112.4 0.08 (1) -112.4 -112.4 0.28 (1) -112.4 -112.4 0.51 (1) D-F 12 SIDE(0.0) A-B B-C 0/34 10.00 -1493 / 0 0.25 (1) 12 SIDE(183.1) TOP -7994 / 0 0/1192 0.15 (1) ALLOWABLE DEFL.(LL)= L/360 (0.96") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.27")

ALLOWABLE DEFL.(TL) = L/360 (0.96")

CALCULATED VERT. DEFL.(TL) = L/ 729 (0.48") 7289 / 0 3.23 D-O 0 / 2970 0.37 (1) BOTTOM CHORDS : (0.122"X3") SPIRAL NAILS D- T -1124 -1124 0- E E- N -1205 / 0 0 / 737 9085 / 0 0.30 3.82 0.11 (1 SIDE(61.0) SIDE(26.3) -112.4 -112.4 -112.4 -112.4 0.30 (1) 0.30 (1) -9085 / 0 0.09 (1) 9085 / 0 N- L 0 / 4187 3.82 0.27 (1) -112.4 -112.4 CSI: TC=0.61/1.00 (G-H:1) , BC=0.67/1.00 (N-O:1) , WB=0.88/1.00 (B-Q:1) , SSI=0.40/1.00 (C-Q:1) G-M Q-N 12 12 -9731 / 0 0.37 3.63 N-H 0 / 5391 0.67 (1) SIDE(183.1) -112.4 -112.4 -112.4 -112.4 -880 / 0 0 / 4526 V-W -9731 / 0 SIDE(183.1) 3.63 0.56 (1) WEBS : (0.122"X3") SPIRAL NAILS -112.4 -112.4 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 F-G -9731 / 0 0.37 3.63 S-Q -755 / 0 0.04 (1) G- X X- Y Y- Z 2x3 -9596 / 0 -112.4 -112.4 0.61 B-Q 0/7107 -9596 / 0 -9596 / 0 -112.4 -112.4 -112.4 -112.4 0.61 COMPANION LIVE LOAD FACTOR = 1.00 7- H -9596 / 0 -1124 -1124 0.61 (1 3 41 -112.4 -112.4 -112.4 -112.4 3.78 10.00 NAILS TO BE DRIVEN FROM ONE SIDE ONLY -5004 / 0 0.60 AUTOSOLVE HEELS OFF 0.08(1)TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. S-B -3468 / 0 0.0 0.0 0.19 (1 3303 / 0 PROFESSIONAL FINGUES H. J. G. ALVES S-R 0 / 634 -18.5 -18.5 0.06 (1) 10.00 R- Q Q- C Q-AA 0.0 0.0 -18.5 0.48 (1) 0.48 (1) 0.65 (1) 0.0 10.00 0/348PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 0 / 8036 -18.5 10.00 AA- P 0 / 8036 -18.5 -18.5 0.65 10.00 0.49 (1) P-AB 0 / 6503 AB-AC 0 / 6503 -18.5 MT18HS 586 403 2455 1382 3163 3004 -18.510.00 AC- O 0 / 6503 -18.5 -18.5 0.49 (1) 10.00 O-AD AD-AE AE- N 0/9084 -18.5 -18.5 PLATE PLACEMENT TOL. = 0.250 inches -18.5 0.67 10.00 100009024 0 / 9084 -18.5 -18.5 0.67 10.00 PLATE ROTATION TOL. = 5.0 Deg. 0.0 0.0 -18.5 0.28 (1) 0.29 (1) 0.12 (4) M- N 0/97 0.0 N- G M-AF JSI GRIP= 0.90 (C) (INPUT = 0.90)

SOUNCE OF ONT ARIO

Structural component only DWG# T-2215123

0 / 359

0 / 359

0 / 359

0/0

0/0

AF-AG

AG-AH AH- L

L-Al

AI-AJ AJ- K

-18.5

-18 5

-18.5-18.5 0.12 (4)

-18.5 -18.5 0 11 (4

-18.5 -18.5 0.11 (4)

-18.5 -18.5 0.12 (4) 10.00

10.00

10.00

10.00

JSI METAL= 0.58 (N) (INPUT = 1.00)

CONTINUED ON PAGE 2

423533 T1S 1 2 TRUSS DESC.	
Tamarack Roof Truss, Burlington Version 8 530 S Fe	
Version 8.530 S Fe	b 23 2022 MiTek Industries, Inc. Fri Jun 24 08:09:59 2022 Page 2
ID:c3jyj23uDijq 8pvRKbkZpy75XW-t	EKeUgObcOrXKGEFQhCrBJlzUI0P1Uu6twCo1Wz38bc

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

PL	ATES (table is	in inches)				
JT		PLATES	W	LEN	Υ	Х
В	TMVW-t	MT20	4.0	10.0	2.00	4.00
С						
С	TMBVWWW*	-tMT18HS	9.0	16.0	2.75	5.00
D	TTWW+m	MT20	5.0	8.0	Edge	
Ε	TMWW-t	MT20	4.0	4.0	2.50	2.00
F	TS-t	MT20	5.0	6.0		
G	TMV+p	MT20	3.0	8.0		
Н	TTWW+m	MT20	6.0	10.0	Edge	2.00
1	TMVW-t	MT20	5.0	8.0		
K	BMV1+p	MT20	3.0	8.0	4.50	Edge
L	BMWWW-t	MT20	6.0	10.0		
М	BMV+p	MT20	3.0	8.0		
Ν	BVMWWW-I	MT20	7.0	16.0	4.50	6.25
0	BMWW-t	MT20	5.0	6.0		
Ρ	BMWW+t	MT20	4.0	6.0		
Q						
R	BMV+p	MT20	3.0	4.0		
S	BMVW1+p	MT20	4.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

ı										
ı		CIFIED CON								
ı	JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
J	G	15-6-4	-93	-93		BACK	VERT	TOTAL		C1
ļ	Н	23-0-8	-308	-308		BACK	VERT	TOTAL		C1
i	L	22-11-12	-21	-21		BACK	VERT	TOTAL		C1
	Ν	15-5-4	-28	-28		BACK	VERT	TOTAL		C1
	Р	5-6-4	-243	-243		BACK	VERT	TOTAL		C1
	R	1-5-12	-235	-235		BACK	VERT	TOTAL		C1
	Т	7-6-4	-94	-94		BACK	VERT	TOTAL		C1
	U	9-6-4	-94	-94		BACK	VERT	TOTAL		C1
	V	11-6-4	-94	-94		BACK	VERT	TOTAL		C1
	W	13-6-4	-94	-94		BACK	VERT	TOTAL		C1
l	Х	17-6-4	-93	-93		BACK	VERT	TOTAL		C1
	Υ	19-6-4	-93	-93		BACK	VERT	TOTAL		C1
	Z	21-6-4	-93	-93		BACK	VERT	TOTAL		C1
	AA	3-6-4	-243	-243		BACK	VERT	TOTAL		C1
	AB	7-6-4	-72	-72		BACK	VERT	TOTAL		C1
	AC	9-6-4	-72	-72		BACK	VERT	TOTAL		C1
	AD	11-6-4	-72	-72		BACK	VERT	TOTAL		C1
	AE	13-6-4	-72	-72		BACK	VERT	TOTAL		C1
	AF	17-6-4	-21	-21		BACK	VERT	TOTAL		C1
	AG	19-6-4	-21	-21		BACK	VERT	TOTAL		C1
	AH	21-6-4	-21	-21		BACK	VERT	TOTAL		C1
	Αl	24-11-12	-21	-21		BACK	VERT	TOTAL		C1
	AJ	26-11-12	-20	-20		BACK	VERT	TOTAL		'C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2215123

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423532 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:14:54 2022 Page 1 ID:c3jyj23uDija_8pvRKbkZpy75XW-S_eAPYze710gDcHxC8?0eWTLGDlxf_DXiK9vvwz38X? 1-3-8 7-10-8 13-2-0 1-3-8 Scale = 1:50.7 5x8 = 2x4 || 5x8 = D F 6.00 12 4x4 🖊 4x4 > С G 5x6 / 5x6 < В \bigotimes Ρ 0 õ 1 κ 3x8 =3x4 || 5x6 =4x4 =4x10 =4x4 =5x6 = 28-11-0 1-3-8 28-11-0 TOTAL WEIGHT = 115 II

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
Q - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
Q - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL	ATES (table i	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMVW-t	MT20	5.0	6.0	2.25	2.75
C	TMWW-t	MT20	4.0	4.0	2.00	1.75
D	TTWW-m	MT20	5.0	8.0	2.25	3.75
E	TMW+w	MT20	2.0	4.0		
F	TTWW-m	MT20	5.0	8.0	2.25	3.75
G	TMWW-t	MT20	4.0	4.0	2.00	1.75
Н	TMVW-t	MT20	5.0	6.0	2.25	2.75
J	BMV1+p	MT20	3.0	4.0		
K	BMWW-t	MT20	5.0	6.0	2.50	2.50
L	BMWW-t	MT20	4.0	4.0		
M	BS-t	MT20	3.0	8.0		
N	BMWWW-t	MT20	4.0	10.0		
0	BMWW-t	MT20	4.0	4.0		
P	BMWW-t	MT20	5.0	6.0	2.50	2.50
Q	BMV1+p	MT20	3.0	4.0		

NOTES- (1).
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215148

DIMENSIONS, SUPPORTS	AND LOADINGS	SPECIFIED	BY FARRICA	TOR TO BE VE	RIFIED BY
BUILDING DÉSIGNER					
BEARINGS					

ı	DEA	RINGS						
ı		FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
ı		GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	Q	2046	0	2046	0	0	5-8	5-8
	J	2046	0	2046	0	0	5-8	5-8

UNE	ACTORED RE	EACTIONS					
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1431	1027 / 0	0/0	0/0	0/0	404 / 0	0/0
J.	1431	1027 / 0	0/0	0/0	0/0	404 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 3.11 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS			WEBS					
MAX	C. FACTORED	FACTORED			MAX. FACTORED				
MEMB.	FORCE	VERT. LOA	AD LC.	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF	=)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	ТО		LENGTH	FR-TO			
	0/34	-112.4 -	112.4	0.15 (1)	10.00	P-C	-443 / 0	0.08(1)	
B- C	-2604 / 0	-112.4 -	112.4	0.28 (1)	4.05	C-O	-100 / 0	0.04 (1)	
C-D	-2558 / 0	-112.4 -	112.4	0.28 (1)	4.09	O- D	0 / 172	0.04 (4)	
	-2975 / 0			0.79 (1)		D- N	0 / 873	0.20 (1)	
	-2975 / 0	-112.4 -	112.4	0.79 (1)	3.11	N-E	-910/0	0.35 (1)	
F-G	-2558 / 0	-112.4 -	112.4	0.28 (1)	4.09	N- F	0 / 873	0.20(1)	
G- H	-2604 / 0		112.4	0.28 (1)	4.05	L-F	0 / 172	0.04 (4)	
H- I	0/34			0.15 (1)		L-G	-100 / 0	0.04 (1)	
		0.0	0.0	0.20 (1)	5.96	K-G	-443 / 0	0.08(1)	
J- H	-2006 / 0	0.0	0.0	0.20(1)	5.96	B-P	0 / 2400	0.54(1)	
						K- H	0 / 2400	0.54(1)	
Q-P	0/0	-18.5							
P- O	0 / 2348			0.45 (1)					
O- N	0 / 2270			0.44 (1)					
N- M	0 / 2270	-18.5	-18.5	0.44 (1)	10.00				
M- L	0 / 2270	-18.5	-18.5	0.44 (1)	10.00				
	0 / 2348	-18.5							
K- J	0/0	-18.5	-18.5	0.07 (4)	10.00				

DESIGN CRITERIA

PECIFIED LOADS: LU = 32.5 DL = 6.0 LL = 0.0 DL = 7.4 AD = 45.9 PSF TOP CH. PSF PSF PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.14")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.25")

CSI: TC=0.79/1.00 (E-F:1) , BC=0.45/1.00 (K-L:1) , WB=0.54/1.00 (H-K:1) , SSI=0.36/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (P) (INPUT = 0.90) JSI METAL= 0.69 (M) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T2S TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:00 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-3Qt0i0PDNizOyQpR_Oj4jWl88iMdmyqG6axLazz38bb Tamarack Roof Truss, Burlington <u>1-3-8</u> 7-10-8 13-2-0 7-10-8 1-3-8 Scale = 1:52.2 5x6 = 3x4 || 4x4 = 5x8 = Ε G Н F 6.00 12 5x6 / 4x4 < D 7x12 =4x10 = WE 5x6 <> 1-2-0 R Q 6x10 = Š 2x4 || 5x6 =0 N 4x4 || 3x4 || 3x4 || 6x10 =5x6 =3x4 || 1-7-8 13-7-8 1-3-8 28-11-0 1-3-8 TOTAL WEIGHT = 125 lb [M][F] DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** BE SPECIFIED LOADS: LL = DL = LL = TOP CH. 32.5 PSF JT PSF PSF Ū DL

LUMBER								
N. L. G. A. R	ULES							
CHORDS	SIZE		LUMBER	DESCR.				
A - E	2x4	DRY	No.2	SPF				
E - H	2x4	DRY	No.2	SPF				
H - K	2x4	DRY	No.2	SPF				
U - B	2x4	DRY	No.2	SPF				
L - J	2x4	DRY	No.2	SPF				
U - T	2x4	DRY	No.2	SPF				
T - C	2x4	DRY	No.2	SPF				
S - P	2x4	DRY	No.2	SPF				
0 - G	2x4	DRY	No.2	SPF				
0 - L	2x4	DRY	No.2	SPF				
ALL WEBS	2x3	DRY	No.2	SPF				
EXCEPT								
P - N	2x4	DRY	No.2	SPF				

DRY: SEASONED LUMBER

PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х			
В	TMVW-t	MT20	4.0	10.0	2.00	4.00			
С									
С	TMBVWWW*	-IMT20	7.0	12.0	Edge	3.75			
D	TMWWW-t	MT20	5.0	6.0	2.50	2.25			
E	TTW-m	MT20	5.0	6.0					
F	TMWW-t	MT20	4.0	4.0					
G	TMV+p	MT20	3.0	4.0					
H	TTWW-m	MT20	5.0	8.0	2.00	2.75			
į i	TMWW-t	MT20	4.0	4.0	2.00	1.75			
J	TMVW-t	MT20	5.0	6.0	2.25	2.75			
L	BMV1+p	MT20	3.0	4.0					
M	BMWW-t	MT20	5.0	6.0	2.50	2.50			
N	BMWWW-t	MT20	6.0	10.0	3.00	3.00			
0	BMV+p	MT20	3.0	4.0					
P	BVMWWW-I	MT20	6.0	10.0	3.00	3.75			
Q	BMWWW-t	MT20	5.0	6.0					
R	BMW+w	MT20	2.0	4.0					
S									
T	BMV+p	MT20	3.0	4.0					
U	BMVW1+p	MT20	4.0	4.0					
l									

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2215124

EA	RINGS						
	FACTOR GROSS RE	MAXIMUM GROSS F		INPUT BRG	REQRD BRG		
-	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2042	0	2042	0	0	5-8	5-8
	2049	0	2049	0	0	5-8	5-8

UNFACTORED REACTIONS									
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	4S				
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
L	1429	1025 / 0	0/0	0/0	0/0	403 / 0	0/0		
U	1433	1029 / 0	0/0	0/0	0/0	404 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L, U

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.89 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS		WEBS					
MAX	(. FACTORED	FACTOR	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOA	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF	F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		. ,
A-B	0 / 34	-112.4 -	112.4	0.15(1)	10.00	R- D	0/30	0.01 (4)
B- C	-3906 / 0	-112.4 -	112.4	0.37 (1)	3.26	D-Q	-664 / 0	0.18 (1)
C-D	-4349 / 0	-112.4 -	112.4	0.55 (1)	2.89	Q-E	0/1112	0.25 (1)
D-E	-3205 / 0	-112.4 -	112.4	0.29 (1)	3.69	Q-F	-822 / 0	0.39 (1)
E-F	-2873 / 0	-112.4 -	-112.4	0.29(1)	3.87	F-P	0 / 270	0.06 (1)
F-G	-3636 / 0	-112.4 -	112.4	0.45 (1)	3.29	P- N	0/2196	0.35 (1)
G-H	-3610 / 0			0.62 (1)		P- H	0 / 1630	0.37 (1)
H- I	-2563 / 0			0.30(1)		N- H	-154 / 22	0.06 (1)
I- J	-2646 / 0	-112.4 -	-112.4	0.39 (1)	3.91	N- I	-176 / 0	0.06(1)
	0 / 34	-112.4	-112.4	0.15(1)	10.00	M- I	-376 / 0	0.08 (1)
U-B	-1825 / 0	0.0	0.0	0.18(1)	6.20	M- J	0 / 2423	0.55 (1)
L-J	-1997 / 0	0.0	0.0	0.20(1)	5.97	U-S	-375 / 0	0.06 (1)
						B-S	0/3422	0.77 (1)
U-T	0/311	-18.5	-18.5	0.06(1)	10.00	S- D	0 / 659	0.15(1)
T-S	0 / 15	0.0	0.0	0.43(1)	10.00			
S-C	-140 / 0			0.33(1)				
S-R	0 / 3389			0.60(1)				
R-Q	0 / 3389	-18.5	-18.5	0.66(1)	10.00			
Q- P	0 / 3446	-18.5	-18.5	0.68(1)	10.00			
O- P	0 / 48	0.0	0.0	0.14(1)	10.00			
P-G	-621 / 0			0.15(1)				
O- N	0/99	-18.5	-18.5	0.12 (4)	10.00			
N- M	0 / 2385	-18.5	-18.5	0.46 (1)	10.00			
N/L-1	0/0	10 E	10 E	0 10 (4)	10.00			

6.0 0.0 7.4 TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6 00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.22")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL) = L/ 782 (0.44")

CSI: TC=0.62/1.00 (G-H:1) , BC=0.68/1.00 (P-Q:1) , WB=0:77/1.00 (B-S:1) , SSI=0.43/1.00 (C-S:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (J) (INPUT = 0.90) JSI METAL= 0.64 (J) (INPUT = 1.00

CONTINUED ON PAGE 2

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
123533	T2S	1	1	TRUSS DESC.		
amarack Roof Truss, Burlin	ngton				Version 8.530 S Feb 23 2022 ID:c3jyj23uDija 8pvRKbkZpy75XW-3Qt0j0	MiTek Industries, Inc. Fri Jun 24 08:10:00 2022 Page 2 PDNizOyQpR 0j4jWI88iMdmyqG6axLazz38bb
NOTES- (1) 1) Lateral braces to be a m	· · · · · · · · · · · · · · · · · · ·					•
Lateral braces to be a m	inimum of 2X4 SPF #2.					
		•				
PROFE	-24-22					
(A) 06	-24-22 TOTAL					
Si H. J.	G. ALVES 男				. *	
100	009024					
Pound	1110					
Short Control	OF ONTARIO					REVIEWED
Structural co	mnonent only					* .
DWG# T-22	mponent only 15124					

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423532 TRUSS DESC. Version 8.590 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:14:55 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-wACYct_GuK8Xrms8mrWFAk0cQc6KOREhx_vSRMz38X_ Tamarack Roof Truss, Burlington __1-3-8 9-10-8 9-10-8 1-3-8 Scale = 1:50.7 5x6 = 2x4 || 5x6 = D F 6.00 12 4x4 🖊 4x4 > С G 5x6 / 5x6 <> Н \boxtimes М P 0 3x4 | 3x8 =5x6 = 4x4 =4x6 = 4x4 = 5x6 = 3x4 || 28-11-0 1-3-8 28-11-0 TOTAL WEIGHT = 121 lb [M][F

LUMBER
N. L. G. A.
CHORDS
A - D
D - F
F - I
Q - B LUMBER DESCR SIZE DRY DRY DRY DRY SPF SPF SPF No.2 No.2 2x4 2x4 2x4 No.2 SPF SPF SPF SPF 2x4 No.2 J - H Q - M M - J DRY DRY No.2 No.2 DRY No.2 ALL WEBS DRY 2x3 No.2 SPF **EXCEPT**

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Х						
В	TMVW-t	MT20	5.0	6.0	2.00	2.75						
C	TMWW-t	MT20	4.0	4.0	2.00	1.75						
D	TTWW-m	MT20	5.0	6.0	2.50	2.25						
E	TMW+w	MT20	2.0	4.0								
F	TTWW-m	MT20	5.0	6.0	2.50	2.25						
G	TMWW-t	MT20	4.0	4.0	2.00	1.75						
H	TMVW-t	MT20	5.0	6.0	2.00	2.75						
J	BMV1+p	MT20	3.0	4.0								
K	BMWW-t	MT20	5.0	6.0	2.50	2.50						
L	BMWW-t	MT20	4.0	4.0								
M	BS-t	MT20	3.0	8.0								
N	BMWWW-t	MT20	4.0	6.0								
0	BMWW-t	MT20	4.0	4.0	-							
P	BMWW-t	MT20	5.0	6.0	2.50	2.50						
Q	BMV1+p	MT20	3.0	4.0								

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215149

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

EA	nings						
	FACTOR GROSS RE		MAXIMUI GROSS I			INPUT BRG	REQRD BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2046	0	2046	0	0	5-8	5-8
	2046	0	2046	0	0	5-8	5-8

UNFACTORED REACTIONS

	ISI LUASE	IVIAA./I	VIIIN. GOIVIPOI	VENT REACTION	45		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1431	1027 / 0	0/0	0/0	0/0	404 / 0	0/0
J	1431	1027 / 0	. 0/0	0/0	0/0	404 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.82 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	EACTOR	=n			WE	B S MAX. FACTO	NRED.
MEMB.	FORCE			MAY	MAY		FORCE	MAX
IVILIVID.	(LBS)	(PLF						
FR-TO	(200)	FROM T					(LDG)	COI (LC)
A-B	0/34						-322 / 0	0.07 (1)
B-C	-2689 / 0	-112.4 -1					-373 / 0	0.07 (1)
C-D	-2404 / 0	-112.4 -1					0/306	0.07 (1)
D-E	-2404 / 0	-112.4 -1					0 / 446	0.10 (1)
E-F	-2404 / 0	-112.4 -1					-626 / 0	0.37 (1)
F-G	-2404 / 0	-112.4 -					0 / 446	
G-H	-2689 / 0	-112.4 -1					0 / 306	
H-1	0/34	-112.4 -	112.4	0.15 (1)	10.00	L-G	-373 / 0	0.23 (1)
Q-B	-2002 / 0	0.0	0.0	0.20(1)	5.97	K-G	-322 / 0	0.07 (1)
J- H	-2002 / 0	0.0	0.0	0.20(1)	5.97	B-P	0 / 2465	
						K- H	0 / 2465	0.55 (1)
Q-P		-18.5						
P- O	0 / 2430			0.44 (1)				
0- N	0 / 2128			0.39 (1)				
N-M	0 / 2128			0.39 (1)				
M-L	0 / 2128			0.39 (1)				
L-K	0 / 2430			0.44 (1)				
K-J	0/0	-18.5	-18.5	0.10 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = 32.5 6.0 0.0 7.4 TOP CH. PSF PSF DL TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.12")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.21")

CSI: TC=0.44/1.00 (G-H:1) , BC=0.44/1.00 (K-L:1) , WB=0.55/1.00 (H-K:1) , SSI=0.25/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (K) (INPUT = 0.90) JSI METAL= 0.66 (B) (INPUT = 1.00)

ı	N. L. G. A. H	ULES			
	CHORDS	SIZE		LUMBER	DESCR.
	A - E	2x4	DRY	No.2	SPF
ı	E - G	2x4	DRY	No.2	SPF
İ	G - J	2x4	DRY	No.2	SPF
ı	T - B	2x4	DRY	No.2	SPF
ı	K - I	2x4	DRY	No.2	SPF
ı	T - S	2x4	DRY	No.2	SPF
ı	S - C	2x4	DRY	No.2	SPF
	R - O	2x4	DRY	No.2	SPF
	N - F	2x4	DRY	No.2	SPF
	N - K	2x4	DRY	No.2	SPF
	ALL WEBS	2x3	DRY	No.2	SPF
	EXCEPT				
	O - M	2x4	DRY	No.2	SPF
	B - R	2x4	DRY	No.2	SPF
	DRY: SEAS	DNED L	UMBER.		

PL/	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Х						
В	TMVW-t	MT20	5.0	6.0	2.00	3.00						
С												
С	TMBVWWW*	-IMT20	7.0	12.0	Edge	4.25						
D	TMWWW-t	MT20	4.0	10.0	-							
Ε	TTWW-m	MT20	5.0	6.0	2.50	2.25						
F	TMV+p	MT20	3.0	4.0								
G	TTWW-m	MT20	5.0	8.0	1.75	3.75						
Н	TMWW-t	MT20	4.0	4.0	2.00	1.75						
1	TMVW-t	MT20	5.0	6.0	2.00	2.75						
K	BMV1+p	MT20	3.0	4.0								
L	BMWW-t	MT20	5.0	6.0	2.50	2.50						
M	BMWWW-t	MT20	5.0	8.0	2.50	2.00						
N	BMV+p	MT20	3.0	4.0								
0	BVMWWW-I	MT20	6.0	10.0	3.00	3.75						
Р	BMWW-t	MT20	4.0	4.0								
Q	BMW+w	MT20	2.0	4.0								
R												
s	BMV+p	MT20	3.0	4.0								

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

BMVW1+p

Structural component only DWG# T-2215125

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.86 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

-645 / 0

0 / 53 0 / 2425 0 / 0

O- F N- M

СН	ORDS				WEBS			
MAX	K. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	_F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		` '
A- B	0 / 34	-112.4	-112.4	0.15(1)	10.00	Q-D	0 / 87	0.03(4)
	-4051 / 0		-112.4	0.33 (1)	3.25	D-P	-850 / 0	0.36 (1)
	-4440 / 0	-112.4	-112.4	0.59 (1)	2.86	P-E	0 / 568	0.13(1)
D- E	-2879 / 0	-112.4	-112.4	0.39(1)	3.76	E-O	0 / 430	0.10 (1)
E-F	-2885 / 0				3.60	O- M	0 / 2146	0.34 (1)
F- G	-2873 / 0			0.42 (1)		0- G	0 / 1254	0.28 (1)
G- H	-2403 / 0	-112.4	-112.4	0.42(1)	4.03	M- G	-269 / 0	0.16(1)
H- I	-2683 / 0		-112.4	0.45 (1)	3.83	M- H	-370 / 0	0.23 (1)
	0 / 34	-112.4	-112.4	0.15(1)	10.00	L- H	-323 / 0	0.07(1)
T-B	-1848 / 0	0.0	0.0	0.19(1)	6.16	L-I	0 / 2460	0.55 (1)
K-I	-1998 / 0	0.0	0.0	0.20(1)	5.97	T-R	-335 / 0	0.05 (1)
						B-R	0 / 3567	0.57 (1)
T-S	0 / 278	-18.5	-18.5	0.05 (1)	10.00	R- D	0/889	0.20 (1)
S-R	0 / 15	0.0	0.0	0.38 (1)	10.00			
R- C	-219 / 0	0.0	0.0	0.29 (1)	7.81			
R-Q	0 / 3262	-18.5	-18.5	0.58 (1)	10.00			
Q-P	0 / 3262	-18.5	-18.5	0.59(1)	10.00			
P-O	0 / 2559	-18.5	-18.5	0.48 (1)	10.00			
N- O	0 / 27	0.0	0.0	0.08 (1)	10.00			

0.0 0.17 (1)

-18.5 0.08 (4) -18.5 0.44 (1) -18.5 0.09 (4)

0.0

-18.5 -18.5 -18.5

7.81

10.00

OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96") CALCULATED VERT. DEFL.(LL) = L/999 (0.17") ALLOWABLE DEFL.(TL)= L/360 (0.96") CALCULATED VERT. DEFL.(TL) = L/999 (0.33")

CSI: TC=0.59/1.00 (C-D:1) , BC=0.59/1.00 (P-Q:1) , WB=0.57/1.00 (B-R:1) , SSI=0.38/1.00 (C-R:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL I) (PL II) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.88 (L) (INPUT = 0.90) JSI METAL= 0.94 (B) (INPUT = 1.00)

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
23533	T3S	1	1	TRUSS DESC.		
amarack Roof Truss, Bu	rlington				Version 8.530 S Feb 23 2022 ID:c3jyj23uDijq 8pvRKbkZpy75XW-XcRPvMC	MiTek Industries, Inc. Fri Jun 24 08:10:01 2022 Page 2 2r7?5FZaOdX6FJGkqJM5jEVT9PKEhu6Pz38ba
NOTES- (1)	minimum of 2X4 SPF #2.					
1) Lateral braces to be a	minimum of 2X4 SPF #2.	·				
	· · · ·					
					•	
		·				
					•	
:						
					5	
						•
					-	
				i.		
						•
PROF	6-24-22 G. ALVES					
\$ 0	6-24-22					
H.J	. G. ALVES					
1						
Poun	OF ONTARIO					REVIEWED
N. S.	OF ONTH					
DWG# T-2	omponent only 215125					

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423532 TRUSS DESC Version 8.530 S Feb 23 2022 MTēk Industries, Inc. Fri Jun 24 08:14:55 2022 Page ID:c3jyj23uDijq_8pvRKbkZpy75XW-wACYct_GuK8Xrms8mrWFAk0Y7c52OQahx_vSRMz38X Tamarack Roof Truss, Burlington 1-3-8 11-10-8 11-10-8 1-3-8 Scale = 1:51.5 4x6 = 4x4 = D Ε 6.00 12 4x4 / С 5x6 / 5x6 ≥ R G _™° L κ 3x4 || 3x8 =5x6 = 4x4 =5x6 = 3x4 || 4x6 =28-11-0 28-11-0 TOTAL WEIGHT = 118 lb

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D-E	2x4	DRY	No.2	SPF
E - H	2x4	DRY	No.2	SPF
O - B	2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF
0 - L	2x4	DRY	No.2	SPF
L - I	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Х						
В	TMVW-t	MT20	5.0	6.0	2.00	2.75						
С	TMWW-t	MT20	4.0	4.0	2.00	1.75						
D	TTWW-m	MT20	4.0	6.0	1.75	2.25						
Ε	TTW-m	MT20	4.0	4.0	2.00	1.75						
F	TMWW-t	MT20	4.0	4.0	2.00	1.75						
G	TMVW-t	MT20	5.0	6.0	2.00	2.75						
1	BMV1+p	MT20	3.0	4.0								
J	BMWW-t	MT20	5.0	6.0	2.50	2.50						
K	BMWWW-t	MT20	4.0	6.0								
L	BS-t	MT20	3.0	8.0								
M	BMWW-t	MT20	4.0	4.0								
Ν	BMWW-t	MT20	5.0	6.0	2.50	2.50						
0	BMV1+p	MT20	3.0	4.0								

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

FACTORED GROSS REACTION		MAXIMU GROSS		INPUT BRG	REQRD BRG	
VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
2046	0	2046	0	0	5-8	5-8
2046	0	2046	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	<u>/IIN. COMPO</u>	VENT REACTION	4S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
0	1431	1027 / 0	0/0	0/0	0/0	404 / 0	0/0
1	1431	1027 / 0	0/0	0/0	0/0	404 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O, I

Ō

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.53 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

C H	ORDS				WE	BS		
MAX	. FACTORED	FACTORE)			MAX. FACTO	RED	
	FORCE					FORCE		
	(LBS)	(PLF)						
FR-TO		FROM TO					(/	
A-B	0/34	-112.4 -11	2.4 0.15	(1) .10.00	N- C	-231 / 41	0.06(1)	
B-C	-2721 / 0	-112.4 -11	2.4 0.66	(1) 3.53	C- M	-618 / 0	0.60 (1)	
	-2214 / 0	-112.4 -11	2.4 0.59	(1) 3.93	M- D	0 / 437		
D-E	-1954 / 0	-112.4 -11	2.4 0.44	(1) 4.35	D-K	0 / 1	0.00 (1)	
E-F	-2215 / 0		2.4 0.59	(1) 3.93	K-E	0 / 439	0.10 (1)	
F-G	-2721 / 0	-112.4 -11	2.4 0.66	(1) 3.53	K-F	-617/0	0.60 (1)	
	0/34			(1) 10.00		-232 / 40	0.06 (1)	
O- B	-1997 / 0					0 / 2490	0.56 (1)	
I-G	-1997 / 0	0.0	0.0 0.20	(1) 5.97	J- G	0 / 2489	0.56(1)	
O- N	0/0							
	0 / 2465							
M-L	0 / 1954			(1) 10.00				
	0 / 1954							
	0 / 2465							
J- I	0/0	-18.5 -1	8.5 0.15	(4) 10.00				

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = 32.5 6.0 0.0 7.4 PSF PSF PSF TOP CH. TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.11")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.21")

CSI: TC=0.66/1.00 (B-C:1) , BC=0.46/1.00 (J-K:1) , WB=0.60/1.00 (C-M:1) , SSI=0.29/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (B) (INPUT = 0.90) JSI METAL= 0.67 (B) (INPUT = 1.00)

Structural component only DWG# T-2215150

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T4S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:02 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-?p?n7hRTuJD5Bkzq5pmYoxNT0V3kErGZZuQSerz38bZ 1-3-8 11-10-8 11-10-8 1-3-8 4x6 =Scale = 1:55.9 5x8 = G 6.00 12 4x4 / 4x4 <> Ε Н 4x4 / D 7x12 =5x8 / 5x6 < **B**3 W12 Q 2x4 || \aleph 4x4 =4x6 =N М 4x4 || 3x4 || 2x4 || 2x4 || 3x4 || 6x10 = **1-7-8** 13-8-0 13-7-8 1-3-8 28-11-0 1-3-8 TOTAL WEIGHT = 130 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS **DESIGN CRITERIA**

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - F	2x4	DRY	No.2	SPF
F - G	2x4	DRY	No.2	SPF
G - J	2x4	DRY	No.2	SPF
T - B	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
T - S	2x4	DRY	No.2	SPF
S - C	2x3	DRY	No.2	SPF
R - O	2x4	DRY	No.2	SPF
N - K	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
M - G	2x4	DRY	No.2	SPF
0 - L	2x4	DRY	No.2	SPF
T - R	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER

l	PLATES (table is in inches)											
			PLATES	W	LEN	Υ	Х					
	В	TMVW-t	MT20	5.0	8.0	2.50	4.00					
	С											
ı	С	TMB/WWW*	-IMT20	7.0	12.0	Edge	4.25					
ı	D, E											
	D	TMWW-t	MT20	4.0	4.0	2.00	1.75					
ı	F	TTW-m	MT20	4.0	6.0							
l	G	TTWW-m	MT20	5.0	8.0	2.25	3.50					
l	1	TMVW-t	MT20	5.0	6.0	2.00	2.75					
ļ	K	BMV1+p	MT20	3.0	4.0							
1	L	BMWWW-t	MT20	6.0								
1	М	BMW+w	MT20	2.0	4.0							
ı	Ν	NP+w	MT20	2.0	4.0							
Ĺ	0	BWMWW*-I		6.0		3.00	6.25					
ı	Ρ	BMWWW-t	MT20	4.0	6.0	2.00	2.00					
ı	Q	BMWW-t	MT20	4.0	4.0							
l	R											
	S	BMV+p	MT20	3.0	4.0	2.00	Edge					
ı	T	BMVW1+p	MT20	4.0	4.0							
	U	NP+w	MT20	2.0	4.0							
1												

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2215126

7	untao						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
	GROSS REACTION		GROSS	REACTIO	BRG	BRG	
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2059	0	2059	0	0	5-8	5-8
	2061	0	2061	0	0	5-8	5-8

ON ACTORED REACTIONS									
۱		1ST LCASE	MAX./	MIN. COMPON	NENT REACTION	NS			
١	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD		
l	K	1442	1025 / 0	0/0	0/0	0/0	417/0		
I	T	1443	1029 / 0	0/0	0/0	0/0	414 / 0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K, T

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.92 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

MAX. UNBRACED INTERIOR CHORD LENGTH = 10.00 FT

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

LINEACTORED REACTIONS

СН	ORDS					WE	BS	
MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC						MAX
	(LBS)	(Pl	_F)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	0/34	-112.4		0.15 (1)			0 / 350	0.08(1)
B-C	-4248 / 0	-112.4	-112.4	0.41 (1)	3.08	E-P	-959 / 0	0.64(1)
C-D	-4344 / 0	-112.4	-112.4	0.51 (1)	2.92	P-F	0 / 620	0.14(1)
D-E	-3448 / 0	-112.4	-112.4	0.38 (1)	3.45	P- G	-20 / 0	0.02 (1)
E-F	-2590 / 0			0.46 (1)		M- O	0/81	0.09 (1)
F-G	-2307 / 0			0.46 (1)		O- G	0 / 629	0.18 (1)
G-H	-2603 / 0			0.63 (1)		L- H	-638 / 0	0.17(1)
H- I	-2749 / 0			0.66(1)		L-I	0 / 2515	0.57 (1)
ıl- J	0/34	-112.4	-112.4	0.15 (1)	10.00	0- L	0 / 2469	0.40 (1)
		0.0		0.20 (1)		O- H	-217/0	0.17(1)
K-I	-2013 / 0	0.0	0.0	0.20 (1)	5.95	T-R	-152 / 0	0.02(1)
						B-R	0 / 3728	0.84(1)
T-S	0 / 127	-18.5	-18.5	0.03 (1)	10.00	D-Q	-453 / 0	0.10(1)
S-R	0 / 16	0.0	0.0	0.34(1)	10.00	R- D	0 / 552	0.12(1)
R-C	0 / 33	0.0	0.0	0.34 (1)	10.00			
R-Q	0 / 3486	-18.5	-18.5	0.63 (1)	10.00			
Q-P	0/3111			0.57 (1)				
P- 0	0 / 2320			0.44 (1)				
N- M		-18.5						
M-L	0 / 56	-18.5	-18.5	0.18 (4)	10.00			
L-K	0/0	-18.5	-18.5	0.18 (4)	10.00			

PECIFIED LOADS: LL = DL = LL = TOP CH. 32.5 PSF 6.0 0.0 7.4 PSF PSF PSF DL TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6 00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2019 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

SOIL 0/0

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.17") ALLOWABLE DEFL.(TL)= L/360 (0.96") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.30")

CSI: TC=0.66/1.00 (H-I:1) , BC=0.63/1.00 (Q-R:1) , WB=0.84/1.00 (B-R:1) , SSI=0.29/1.00 (H-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Dea

JSI GRIP= 0.90 (T) (INPUT = 0.90) JSI METAL= 0.78 (B) (INPUT = 1.00

JOB NAME	TRUSS NAME	OLIANITITY	loi v	LIOR DESC	DANGUELL	LLINGTON	les de la constant de	
423533	TRUSS NAME	QUANTITY	PLY	JOB DESC. TRUSS DESC.	BAYVIEW WE	LLINGTON	DRWG NO.	
423533 Famarack Roof Truss, Burling	T4S	1	1	I HUSS DESC.	ID 0115	Version 8.530 S Feb 23 20	22 MiTek Industries,	Inc. Fri Jun 24 08:10:02 2022 Page nYoxNT0V3kErGZZuQSerz38b
	4.4			1	ID:c3jyj23uDijq	8pvRKbkZpy75XW-?p?n7h	RTuJD5Bkzq5pi	nYoxNT0V3kErGZZuQSerz38b
NOTES- (1) 1) Lateral braces to be a min	imum of 2X4 SPF #2.							
			<i>_</i>					
	•							
	•							
ROFES	SSIONAL							
W.	The state of the s							
<u> </u>	24-22 E							
1000	24-22 6. ALVES 5.09024							
18	OF ONTARIO						BE/	/IEWED
The state of the s	OF ONT IN							
			1 4					
Structural com DWG# T-221	ponent only 5126	-						

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423533 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:03 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-T?Z9K1R6fcLypuY0fXHnL9waXvQpzNtioYA?Alz38bY 1-3-8 13-10-8 1-2-0 13-10-8 1-3-8 4x4 = Scale = 1:55.0 6.00 12 4x4 = 3x8 / 3x8 < D G 4x4 / 4x4 > С 5x6 / 5x6 < ₽ ⊠ K N M a 3x4 || 4x10 = 3x8 =4x6 =4x6 = 3x4 || 28-11-0

ULES			
SIZE		LUMBER	DESCR.
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x3	DRY	No.2	SPF
	2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4	SIZE 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY	SIZE LUMBER 2x4 DRY No.2 2x4 DRY No.2

DRY: SEASONED LUMBER.

PLA	PLATES (table is in inches)										
JT	TYPE F	PLATES	W	LEN	Υ	Х					
В	TMVW-t	MT20	5.0	6.0	2.00	2.75					
С	TMWW-t	MT20	4.0	4.0	2.00	1.75					
D	TS-t	MT20	3.0	8.0							
Е	TTW-m	MT20	4.0	4.0							
F	TTW-m	MT20	4.0	4.0							
G	TS-t	MT20	3.0	8.0							
Н	TMWW-t	MT20	4.0	4.0	2.00	1.75					
1	TMVW-t	MT20	5.0	6.0	2.00	2.75					
K	BMV1+p	MT20	3.0	4.0							
L	BMWW-t	MT20	4.0	6.0	2.00	1.50					
M	BS-t	MT20	3.0	8.0							
Ν	BMWWWW*-	I MT20	4.0	10.0							
0	BMWW-t	MT20	4.0	6.0	2.00	1.50					
Р	RMV1+n	MT20	3.0	40							

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215127

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED	D BY FABRICATOR TO BE VERIFIED B	Y
BUILDING DESIGNER			
READINGS			

EΑ	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRE
	GROSS RE	EACTION	GROSS	REACTIO	N	BRG	BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2046	0	2046	0	0	5-8	5-8
	2046	0	2046	0	0	5-8	5-8

UNFACTORED REACTIONS							
		1ST LCASE	MAX./	MIN. COMPO	VENT REACTION	NS	
	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD
	P	1431	1027 / 0	0/0	0/0	0/0	404 / 0
	ĸ	1431	1027 / 0	0/0	0/0	0/0	404 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P, K

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 3.03 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

SOIL

0/0

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-N, H-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	WE	BS	
ORED		MAX. FACTO	RED
			MAX
		(LBS)	CSI (LC)
		-159 / 81	0.05(1)
4 -112.4 0.93 (1)	3.03 C- N	-865 / 0	0.43(1)
4 -112.4 0.80 (1)	3.69 N- H	-865 / 0	0.43(1)
		-159 / 81	0.05(1)
4 -112.4 0.05 (1)	5.00 B-O	0 / 2487	0.56(1)
		0 / 2487	0.56(1)
		0/512	0.12(1)
4 -112.4 0.93 (1)	3.03 N- F	0/512	0.12(1)
0.0 0.20 (1)	5.98		
5 -18.5 0.22 (4)	10.00		
	OAD LC1 MAX PLF) CSI (LC) TO 4 -112.4 0.15 (1) 4 -112.4 0.80 (1) 4 -112.4 0.80 (1) 4 -112.4 0.80 (1) 4 -112.4 0.80 (1) 4 -112.4 0.80 (1) 4 -112.4 0.80 (1) 4 -112.4 0.80 (1) 4 -112.4 0.93 (1) 4 -112.4 0.93 (1) 4 -112.4 0.15 (1) 0 0.0 0.20 (1) 5 -18.5 0.22 (4) 5 -18.5 0.52 (1) 5 -18.5 0.52 (1) 5 -18.5 0.52 (1) 5 -18.5 0.52 (1)	ORED OAD LOT MAX MAX. MEMB. PLF) CSI (LC) UNBRAC LENGTH FR-TO 4 -1112.4 0.15 (1) 3.69 C N H 4 -112.4 0.80 (1) 3.69 C N H 4 -112.4 0.80 (1) 3.69 C N H 4 -112.4 0.80 (1) 3.69 C N H 4 -112.4 0.80 (1) 3.69 C N H 4 -112.4 0.80 (1) 3.69 C N H 4 -112.4 0.80 (1) 3.69 C N H 4 -112.4 0.80 (1) 3.69 C N N N N N N N N N N N N N N N N N N	OAD LC1 MAX MAX MEMB. FORCE (LBS) I TO LENGTH FR-TO 4 -112.4 0.15 (1) 10.00 O -C -159/81 4 -112.4 0.93 (1) 3.03 C-N -865/0 4 -112.4 0.80 (1) 3.69 N-H -865/0 4 -112.4 0.80 (1) 3.69 N-H -159/81 4 -112.4 0.80 (1) 3.69 L-I 0/2487 4 -112.4 0.80 (1) 3.69 L-I 0/2487 4 -112.4 0.80 (1) 3.69 L-I 0/2487 4 -112.4 0.80 (1) 3.69 L-I 0/512 4 -112.4 0.93 (1) 3.69 E-N 0/512 4 -112.4 0.93 (1) 3.69 E-N 0/512 4 -112.4 0.93 (1) 3.69 E-N 0/512 5 -18.5 0.52 (1) 10.00 5 -18.5 0.52 (1) 10.00 5 -18.5 0.52 (1) 10.00 5 -18.5 0.52 (1) 10.00 5 -18.5 0.52 (1) 10.00

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 32.5 PSF CH. 6.0 0.0 7.4 TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

1-3-8 TOTAL WEIGHT =

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019

- PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.12")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.24")

CSI: TC=0.93/1.00 (H-I:1) , BC=0.52/1.00 (L-N:1) , WB=0.56/1.00 (I-L:1) , SSI=0.34/1.00 (H-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (I) (INPUT = 0.90) JSI METAL= 0.69 (M) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 Т6 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:04 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-yB7XXNSkQwTpQ17CDEo0uMSu8JmHim7r0CvZjkz38bX 1-3-8 14-5-8 1-3-8 4x6 || Scale = 1:56.3 6.00 12 4x4 > 3x8 / G 3x8 < 5x6 🖊 5x6 <> 3x4 || 3x4 || R2 0 6x10 = 3x8 =4x4 = 4x4 =5x6 = 28-11-0 28-11-0

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - K	2x4	DRY	No.2	SPF
Q - B	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
Q - N	2x4	DRY	No.2	SPF
N - L	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
Q - C	2x4	DRY	No.2	SPF
1 - L	2x4	DRY	No.2	SPF

PL/	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Х			
В	TMV+p	MT20	3.0	4.0					
С	TMWW-t	MT20	5.0	6.0	2.50	2.50			
D	TS-t	MT20	3.0	8.0					
E	TMWW-t	MT20	4.0	4.0					
F	TTW+p	MT20	4.0	6.0	Edge				
G	TMWW-t	MT20	4.0	4.0	_				
Н	TS-t	MT20	3.0	8.0					
1	TMWW-t	MT20	5.0	6.0	2.50	2.50			
J	TMV+p	MT20	3.0	4.0					
L	BMVW1-t	MT20	5.0	6.0	2.50	2.50			
M	BMWW-t	MT20	4.0	4.0					
N	BS-t	MT20	3.0	8.0					
0	BMWWW-t	MT20	6.0	10.0					
Ρ	BMWW-t	MT20	4.0	4.0					
Q	BMVW1-t	MT20	5.0	6.0	2.50	2.50			

DRY: SEASONED LUMBER.

BMVW1-t 6.0 2.50 2.50 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215128

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
REARINGS	

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACT	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	2046	0	2046	0	0	5-8	5-8
L	2046	0	2046	0	0	5-8	5-8

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1431	1027 / 0	0/0	0/0	0/0	404 / 0	0/0
L	1431	1027 / 0	0/0	0/0	0/0	404 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.01 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-Q, I-L.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					W E	BS	
MAX	C. FACTORED	FACTOR	ED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOA	D LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF	-) '	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM 7	Ю		LENGTH	FR-TO		
	0/34	-112.4 -	112.4	0.15(1)	10.00	0- F	0 / 1271	0.29(1)
	0 / 22	-112.4 -	112.4	0.33(1)	10.00	0- G	-743 / 0	0.82 (1)
	-2558 / 0	-112.4 -	112.4	0.36(1)	4.01	G- M	0 / 293	0.07 (1)
D- E	-2558 / 0	-112.4 -	112.4	0.36(1)	4.01	M- I	-156 / 27	0.05(1)
E-F	-1925 / 0			0.34(1)		E-O	-743 / 0	0.82 (1)
F- G	-1925 / 0	-112.4 -	112.4	0.34(1)	4.53	P-E	0 / 293	0.07(1)
G- H	-2558 / 0	-112.4 -	112.4	0.36(1)	4.01	C-P	-156 / 27	0.05(1)
H- I	-2558 / 0			0.36(1)		Q-C	-2878 / 0	0.51 (1)
l- J	0 / 22	-112.4 -	112.4	0.33 (1)	10.00	I- L	-2878 / 0	0.51(1)
J- K	0 / 34	-112.4 -	112.4	0.15(1)	10.00			
Q-B	-376 / 0	0.0	0.0	0.04(1)	7.81			
L- J	-376 / 0	0.0	0.0	0.04(1)	7.81			
							- !	
Q-P	0 / 2383	-18.5	-18.5	0.50(1)	10.00			
P- 0	0 / 2176	-18.5	-18.5	0.46(1)	10.00			
O- N	0 / 2176			0.46 (1)				
N- M	0 / 2176	-18.5	-18.5	0.46 (1)	10.00			
M- L	0 / 2383	-18.5	-18.5	0.50 (1)	10.00			

TOTAL WEIGHT = 8 X 121 = 971 **DESIGN CRITERIA**

,	/// ILD				
OP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
COTA	I IO	AΠ		45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.11")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.22")

CSI: TC=0.36/1.00 (G-I:1) , BC=0.50/1.00 (L-M:1) , WB=0.82/1.00 (G-O:1) , SSI=0.22/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.86 (I) (INPUT = 0.90) JSI METAL= 0.64 (I) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 423533 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:05 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-QOhvljTMBEbg2BhPmyJFQa??Tj6KREM?Fsf6FAz38bW 1-3-8 9-0-8 6-10-0 2-11-8 1-3-8 Scale = 1:60.8 5x8 = 4x4 > n Ε 4x6 N 10.00 12 4x6 // С 8x9 // G 5x6 // 5x6 || 5x8 = W2 Ī ⊠ K Ρ R Q 0 L 3x6 || 5x6 =3x6 || 5x6 =5x6 = 5x6 = 5x6 == 8x9 || 1-11-4 1-11-4 28-11-0 1-3-8

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER .	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
G - H	2x4	DRY	No.2	SPF
H - J	2x4	DRY	No.2	SPF
S - B	2x6	DRY	No.2	SPF
K - I	2x6	DRY	No.2	SPF
S - P	2x6	DRY	No.2	SPF
P - K	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS	s #ROWS		LOAD(PLF)
TOD 011	0000 10 1	SPACING (IN)	
	ORDS : (0.1	22"X3") SPIRAL NA	
A-D	1	12	TOP
D-E	1	12	TOP
E-G	1	12	TOP
G- H	1	12	SIDE(61.0)
H-J	1	12	SIDE(61.0)
S-B	2	12	TOP ` ´
K-I	2	12	TOP
BOTTON	A CHORDS	: (0.122"X3") SPIRA	L NAILS
S-P	2	12	TOP
P-K	2	12	SIDE(183.1)
WEBS:	(0.122"X3")	SPIRAL NAILS	, ,
2x4	1	6	
H-M	1	3	SIDE(628.1)

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

DWG# T-2215129

C1 C1 C1 25-11-8 SNOW FRONT VERT 25-0-8 -2170 -2170 FRONT VERT TOTAL 26-11-12

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

	FACTOR GROSS RE		MAXIMUN GROSS F			INPUT BRG	REQRD BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2499	0	2499	0	0	5-8	5-8
	5011	0	5011	0	0	5-8	5-8

UNFACTORED	REACTIONS
10T101	05 144

	1ST LCASE	MAX./I	MIN. COMPO	VENT REACTION	1S		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
S	1747	1260 / 0	0/0	0/0	0/0	487 / 0	0/0
K	3500	2544 / 0	0/0	0/0	0/0	955 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, K

JT

S

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.18 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CH	HORDS			WEBS							
MA	X. FACTORED	FACTO	RED				MAX. FACT	ORED			
ИЕМВ	. FORCE	VERT. LC	DAD LC1	MAX	MAX.	MEMB					
	(LBS)										
R-TO			ΤΌ	/	LENGTH	FR-TC	,,		()		
A-B	0 / 50							0.07	(1)		
B- C	-2447 / 0	-112.4	-112.4	0.25 (1)	5.49			0.05			
C-D	-2397 / 0				5.54		0 / 225				
D- E	-2357 / 0			0.58 (1)			0 / 903	0.08			
E-F	-3071 / 0						0 / 1443				
F- G	-4350 / 0				4.47		-2276 / 0	0.75			
G- H	-4644 / 0				4.23		0 / 2434				
H- I	-5005 / 0						-3038 / 0				
l- J	0 / 50	-112 4	-112.4	0.09(1)	10.00		-738 / 0				
S-B	-2451 / 0	0.0	0.0	0.09 (1)	7.81	B-R	0 / 1974				
K- I	-5048 / 0	0.0				L-I	0/4116				
				٠,			-1030 / 0				
S-R	0/0	-18.5	-18.5	0.03 (4)	10.00	M- H	0 / 3397				
R-Q	0 / 1909			0.14 (1)					. /		
Q-P	0 / 1810			0.15 (1)							
P- 0	0 / 1810	-18.5		0.15 (1)							
0- N	0 / 3371			0.25 (1)							
N-M	0 / 5299			0.45 (1)	10.00						
M-L	0 / 3802	-18.5 -18.5	-18.5	0.35 (1)	10.00						
L- T	0/0	-18.5	-18.5	0.09 (1)	10.00						
T- K	0/0	-18.5	-18.5	0.09 (1)	10.00						
SPEC	IFIED CONCEN	ITRATED LO	ADS (LE	38)							
		C1 MAX-		+ F.	ACE	DIR.	TYPE	HEEL	CONN		
	25-11-8 -		-			ERT	DEAD		C1		

TOTAL WEIGHT = 2 X 184 = 368 lb **DESIGN CRITERIA**

SPECIAL LOADS ANALYSIS *** GEOMETRY AND/OR BASIC LOADS CHANGED BY USER

LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE SPECIFIED I OADS

5 -	SI EGII IED EGADS.									
TOP	CH.	LL	=	32.5	PS					
		DL	=	6.0	PS					
BOT	CH.	· LL	=	0.0	PS					
		DL	=	7.4	PS					
TOTAL LOAD 450 DO										

SPACING = 24.0 IN. C/C

LOADING IN ALL FLAT SECTIONS BASED ON A SLOPE OF 6.00/12

ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL) = L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL) = L/999 (0.15")

CSI: TC=0.58/1.00 (D-E:1) , BC=0.45/1.00 (M-N:1) , WB=0.75/1.00 (F-O:1) , SSI=0.21/1.00 (L-M:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

- TPIC 2014

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (G) (INPUT = 0.90) JSI METAL= 0.43 (L) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
423533	T7	1	2	TRUSS DESC.		
Tamarack Roof Truss, Burlington					Version 8.530 S Feb 23 2022	MiTek Industries, Inc. Fri Jun 24 08:10:05 2022 Page 2 MBEbg2BhPmyJFQa??Tj6KREM?Fsf6FAz38bW
					IB: GOJYJEGUBIJQ GDVI INBIZEDY 75XW-QOTIVIJ TV	IBEDGEDIFINGEQA: ! IJONNEWI : FSIOFAZ380VV
B TMVW+p MT20 5. C TMWW+t MT20 4. D TTWW-m MT20 4. E TTW-m MT20 4. F TMW+t MT20 5. H TTWW+m MT20 5. H TTWW+m MT20 8. I TMVW-p MT20 3. L N.O.R	/ LEN Y X 0 60 2.00 2.25 0 6.0 2.00 2.75 0 8.0 Edge 3.00 0 4.0 0 6.0 2.00 2.50 0 6.0 0 9.0 1.75 2.75 0 8.0 Edge 0 6.0					
S BMV1+p MT20 3.	0 6.0 0 9.0 4.75 3.75 0 8.0 0 6.0 0 6.0					
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE					
NOTES- (1) 1) Lateral braces to be a minimum	n of 2X4 SPF #2.					
	, .					
06-24 H. J. G. A 1000099						REVIEWED

Structural component only DWG# T-2215129

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T8 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.590 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 08:10:06 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-uaFly3U_yXjXgLGbKfqUznYAi6SQAna8UWOfncz38bV 1-3-8 4-1-14 20-7-4 4-1-14 1-3-8 Scale = 1:51. 4x4 = 3x8 =2x4 || 4x4 = 6x7 \\ 6x7 // D F G Н E

28-11-0 1-3-8 28-11-0

| N. L. G. A. RULES | CHORDS | SIZE | A - C | 2x4 | C - E | 2x4 | E - H | 2x4 | LUMBER DESCR DRY DRY DRY No.2 No.2 SPF No.2 SPF DRY DRY DRY SPF SPF SPF 2x4 2x4 No.2 No.2 2x4 No.2 SPF SPF DRY ALL WEBS 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER

PL.	ATES (table i					
JT	TYPE	PLATES	W	LEN	Υ	X
B	TMVW-t	MT20	5.0	6.0	2.50	2.50
C	TTWW+m	MT20	6.0	7.0	2.00	2.00
D	TMWW-t	MT20	4.0	4.0		
E	TS-t	MT20	3.0	8.0		
F	TMW+w	MT20	2.0	4.0		
G	TMWW-t	MT20	4.0	4.0		
Н	TTWW+m	MT20	6.0	7.0	2.00	2.00
1	TMVW-t	MT20	5.0	6.0	2.50	2.50
K	BMV1+p	MT20	3.0	4.0		
L	BMWW-t	MT20	4.0	6.0		
M	BMWW-t	MT20	5.0	6.0		
N	BS-t	MT20	3.0	8.0		
0	BMWWW-t	MT20	4.0	6.0		
P	BMWW-t	MT20	5.0	6.0		
Q	BMWW-t	MT20	4.0	6.0		
R	BMV1+p	MT20	3.0	4.0		

1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215130

	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER										
BEAL	RINGS										
	FACTOR	ED	MAXIMUM FACTORED			INPUT	REQRD				
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG				
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX				
R	2049	0	2049	0	0	5-8	5-8				
K	2049	0	2049	0	0 .	5-8	5-8				

UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS.						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
R	1433	1029 / 0	0/0	0/0	0/0	404 / 0	0/0				
K	1433	1029 / 0	0/0	0/0	0/0	404 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, K

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.48 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS X. FACTORED	EACTORE	n			W E	B S MAX. FACTO	NDCD.	
MEMB.				1.4A.V	8.4A.V	A ACA AD			
IVIEIVIB.									
E0 T0	(LBS)	(PLF)	. (551 (LC)	UNBRAC	,	(LBS)	CSI (LC)	
FR-TO		FROM TO							
	0 / 50								
	-1857 / 0							0.35 (1)	
C-D	-2559 / 0	-112.4 -1	12.4	0.58 (1)	3.70		-960 / 0	0.37 (1)	
D-E	-2888 / 0	-112.4 -1				D-O	0 / 452	0.10(1)	
E-F	-2888 / 0	-112.4 -1	12.4	0.61(1)	3.48	0- F	-528 / 0	0.20(1)	
F- G	-2888 / 0	-112.4 -1	12.4	0.61(1)	3.48	0- G	0 / 451	0.10(1)	
G- H	-2560 / 0	-112.4 -1	12.4	0.58 (1)	3.70	M- G	-960 / 0	0.37 (1)	
H- I	-1858 / 0	-112.4 -1	12.4	0.42(1)	4.47	M- H	0 / 1554	0.35 (1)	
I- J	0 / 50					L- H	-337 / 0	0.13 (1)	
R-B	-2019 / 0							0.33 (1)	
K-I		0.0					0 / 1489	0.34 (1)	
				,				()	
R-Q	0/0	-18.5 -	18.5	0.09 (4)	10.00				
Q-P	0 / 1416								
P- O	0 / 2559								
0- N	0 / 2560								
N- M		-18.5 -							
	0 / 1417								
L-K		-18.5 -							
- "	5 / 0	.0.0		0.00 (+)	. 5.00				

DESIGN CRITERIA

SPECI	FIED I	_OAI	os:		
TOP	CH.	LL	=	32.5	PSF
			=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL		7.4	PSF
TOTAL	L LO	٩D	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 2 X 123 = 245 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8,4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.13")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.23")

CSI: TC=0.61/1.00 (D-F:1) , BC=0.46/1.00 (M-O:1) , WB=0.37/1.00 (D-P:1) , SSI=0.27/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (L) (INPUT = 0.90) JSI METAL= 0.78 (N) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 Т9 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 08:10:06 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-uaFly3U_yXjXgLGbKfqUznY8X6TnAmc8UWOfncz38bV 1-3-8 1-3-8 Scale = 1:51.1 5x8 \\ 4x4 =3x8 = 2x4 ||

28-11-0 1-3-8 28-11-0

LUMBER				
N. L. G. A. R	HIES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
G - 1	2x4	DRY	No.2	SPF
P - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
P - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW-t	MT20	5.0	6.0	2.50	2.50				
С	TTWW+m	MT20	5.0	8.0	Edge	1.25				
D	TMWW-t	MT20	4.0	4.0	•					
Е	TS-t	MT20	3.0	8.0						
F	TMW+w	MT20	2.0	4.0						
G	TTWW+m	MT20	5.0	8.0	Edge	1.25				
Н	TMVW-t	MT20	5.0	6.0	2.50	2.50				
J	BMV1+p	MT20	3.0	4.0						
K	BMWW-t	MT20	5.0	6.0						
L	BMWWW-t	MT20	5.0	6.0	2.25	1.50				
M	BS-t	MT20	3.0	8.0						
N	BMWW-t	MT20	4.0	6.0						
0	BMWW-t	MT20	5.0	6.0						
Р	BMV1+p	MT20	3.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

1) Lateral braces to be a minimum of 2X4 SPF #2

Structural component only DWG# T-2215131

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED	BY FABRIC	ATOR TO BE	VERIFIED BY
BUILDING DESIGNER				
BEARINGS				
EACTORER	MANUALIMA CACTODED	INIDIAT	DE000	

EA	RINGS						
	FACTOR		MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2049	0	2049	0	0	5-8	5-8
	2049	0	2049	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LUASE	MAX./N	<u>/IIN. COMPOI</u>	VENT REACTION	<u> </u>		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
P	1433	1029 / 0	0/0	0/0	0/0	404 / 0	0/0
J	1433	1029 / 0	0/0	0/0	0/0	404 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P, J

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.61 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-L.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					WE	BS	
MAX	. FACTORED	FACTORE)				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD	LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	(CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM TO						
	0 / 50							0.13(1)
B- C	-1881 / 0	-112.4 -11	2.4	0.74(1)	4.02	C- N	0 / 1229	0.28 (1)
C- D	-2330 / 0						-737 / 0	0.43 (1)
D- E	-2328 / 0	-112.4 -11	2.4	0.75 (1)	3.61	D- L	-2 / 0	0.00 (1)
E-F	-2328 / 0	-112.4 -11	2.4	0.75(1)	3.61	L-F	-736 / 0	0.43 (1)
F- G	-2328 / 0	-112.4 -11	2.4	0.75 (1)	3.63	L- G	0 / 1226	0.28 (1)
G- H	-1882 / 0					K- G	-224 / 33	0.13(1)
H- I	0 / 50	-112.4 -11	2.4	0.15(1)	10.00	B-O	0 / 1483	0.33 (1)
P-B	-2009 / 0	0.0	0.0	0.21(1)	5.95	K- H	0 / 1483	0.33(1)
J- H	-2009 / 0	0.0	0.0	0.21 (1)	5.95			
P- 0		-18.5 -1						
O- N	0 / 1438	-18.5 -1						
N- M		-18.5 -1						
M- L	0 / 2330							
		-18.5 -1						
K- J	0/0	-18.5 -1	8.5	0.14 (4)	10.00			

TOTAL WEIGHT = 2 X 123 = 246 lb

DESIGN CRITERIA

SPEC	HED	Loai	DS:		
TOP	CH.	LL	=	32.5	PS
				6.0	PS
BOT	CH.	LL	=	0.0	PSI
		DL	= .	7.4	PSI
TOTA	1 10	ΛD		4E 0	DO

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

- THIS DESIGN COMPLIES WITH:
 PART 9 OF BCBC 2018 , ABC 2019
 PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14
- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL) = L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL) = L/999 (0.19")

CSI: TC=0.75/1.00 (C-D:1) , BC=0.44/1.00 (L-N:1) , WB=0.43/1.00 (D-N:1) , SSI=0.32/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (G) (INPUT = 0.90) JSI METAL= 0.75 (M) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T10 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:07 2022 Page 1 ID:c3jyj23uDija_8pvRKbkZpy75XW-MmogAPVcjrrOHVrnuMLjV?4MwWq2v5wljA8DK3z38bU 1-3-8 6-6-11 15-9-10 6-6-11 1-3-8 Scale = 1:51.4 4x4 = 2x4 || 5x6 // D Ε F G 10.00 12 5x6 // 5x6 📎 Н 3x4 || 3x4 || N 0 L 3x8 = 5x6 =5x6 =4x4 = 4x4 || 4x4 =5x6 =28-11-0 28-11-0 TOTAL WEIGHT = 3 X 135 = 404 lb **DESIGN CRITERIA**

LUMBER								
N. L. G. A. F	ULES							
CHORDS	SIZE		LUMBER	DESCR.				
A - D	2x4	DRY	No.2	SPF				
D - G	2x4	DRY	No.2	SPF				
G - J	2x4	DRY	No.2	SPF				
Q - B	2x4	DRY	No.2	SPF				
K - I	2x4	DRY	No.2	SPF				
Q - N	2x4	DRY	No.2	SPF				
N - K	2x4	DRY	No.2	SPF				
ALL WEBS	2x3	DRY	No.2	SPF				
EXCEPT								
DRY: SEAS	ONED L	JMBER.						

PLATES_(table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х			
В	TMV+p	MT20	3.0	4.0					
С	TMWW-t	MT20	5.0	6.0	2.50	2.75			
D	TTWW+m	MT20	5.0	6.0	2.25	1.50			
Ε	TMWW-t	MT20	4.0	4.0					
F	TMW+w	MT20	2.0	4.0					
G	TTWW+m	MT20	5.0	6.0	2.25	1.50			
Н	TMWW-t	MT20	5.0	6.0	2.50	2.75			
1	TMV+p	MT20	3.0	4.0					
K	BMVW1-t	MT20	5.0	6.0					
L	BMWW-t	MT20	4.0	4.0					
M	BMWWW-t	MT20	5.0	6.0					
N	BS-t	MT20	3.0	8.0					
0	BMWW+t	MT20	4.0	4.0					
P	BMWW-t	MT20	4.0	4.0					
Q	BMVW1-t	MT20	5.0	6.0					

NOTES-							
1) Lateral	braces to	be a	minimum	of	2X4	SPF	#2.

Structural component only DWG# T-2215132

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	THE DOMESTIC OF THE PROPERTY OF THE PER PER PER PER PER PER PER PER PER PE
BEARINGS	

EA	rings						
	FACTOR		MAXIMUN	/ FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2049	0	2049	0	0	5-8	5-8
	2049	0	2049	0	0	5-8	5-8

UN	UNFACTORED REACTIONS										
	1ST LCASE	MAX./	MIN. COMPON	JENT REACTION	NS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
Q	1433 1	029 / 0	070	0/0	0/0	404 / 0	0/0				
K	1433 1	029 / 0	0/0	0/0	0/0	404 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, K

Q

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.19 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-M.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

<u>LOADING</u> TOTAL LOAD CASES: (4)

СН	ORDS				W E	BS	
MAX	C. FACTORED	FACTORED				MAX. FACTO	ORED
MEMB.	FORCE	VERT. LOAD L	C1 MAX	MAX.	MEMB	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC	2	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
	0 / 50	-112.4 -112	4 0.15 (1)	10.00	C-P	0 / 75	0.02(4)
B- C	0 / 25				P- D	0 / 96	0.03(4)
	-1884 / 0				D-O	0 / 923	0.21(1)
D-E	-1992 / 0	-112.4 -112			0- E	-638 / 0	0.56(1)
E-F	-1991 / 0	-112.4 -112			E- M	-3 / 0	0.00(1)
F-G	-1991 / 0	-112.4 -112			M-F	-637 / 0	0.56(1)
G-H	-1884 / 0	-112.4 -112			M- G	0/919	0.21(1)
H-1	0 / 25				L- G	0/96	0.03 (4)
1- J	0 / 50	-112.4 -112			L- H	0 / 74	0.02 (4)
	-299 / 0	0.0			Q-C	-2185 / 0	0.94(1)
K-1	-300 / 0	0.0	.0 0.03 (1)	7.81	H-K	-2186 / 0	0.94 (1)
Q-P	0 / 1375	-18.5 -18					
P- 0	0 / 1425	-18.5 -18					
O- N	0 / 1993	-18.5 -18					
N- M	0 / 1993	-18.5 -18					
M-L	0 / 1425	-18.5 -18					
L- K	0 / 1376	-18.5 -18	.5 0.32 (1)	10.00			

SPECIFIED LOADS: LL = 32.5 PSF DL = 6.0 PSF LL = 0.0 PSF TOP CH. 6.0 0.0 7.4 PSF PSF PSF DL = TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.15")

CSI: TC=0.52/1.00 (D-E:1) , BC=0.37/1.00 (M-O:1) , WB=0.94/1.00 (H-K:1) , SSI=0.28/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (C) (INPUT = 0.90) JSI METAL= 0.60 (N) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC PLY **BAYVIEW WELLINGTON** DRWG NO 423533 TRUSS DESC. T11 Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:09 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-l9wQb5WsFS66Xp?A?nOBbQ9kQKR0N72bAUdJOxz38bS Tamarack Roof Truss, Burlington 1-3-8 3-10-8 16-2-12 3-10-8 1-3-8 Scale = 1:44.3 4x6 3x8 =2x4 || 5x8 \\ 4x6 =5x8 // D F G н Ε 10.00 12 5x8 = 5x8 = 1-10-7 \bigotimes z AA AB AC Ν Q P a М Κ 3x6 || 5x6 =5x6 =5x8 = 5x6 =5x6 =3x6 | 5x6 = 11-9-8 13-1-8 1-3-8 24-11-0 TOTAL WEIGHT = 2 X 126 = 252 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES BUILDING BEARINGS FACTORED **DESIGN CRITERIA** CHORDS SIZE LUMBER DESCR CEH No.2 No.2 SPF DRY MAXIMUM FACTORED INPUT REQRD SPECIAL LOADS ANALYSIS *** DRY GROSS REACTION GROSS REACTION BRG BRG GEOMETRY AND/OR BASIC LOADS CHANGED DRY UPLIFT IN-SX 2x4 No.2 SPF VERT HORZ DOWN HORZ IN-SX 2x4 DRY No.2 No.2 SPF SPF LOADS WERE DERIVED FROM USER INPUT E DRY 3003 MECHANICAL 0 NO FURTHER MODIFICATIONS WERE MADE SPF 2x6 No.2 SPF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K. MINIMUM BEARING LENGTH AT JOINT K = 4-0. 2×6 DRY SPECIFIED LOADS: LL = DL = LL = TOP CH. 32.5 PSF 6.0 ALL WEBS 2x3 DRY No.2 SPE **EXCEPT** DL UNFACTORED REACTIONS TOTAL LOAD 45.9 DRY: SEASONED LUMBER SNOW MIN. COMPONENT REACTIONS COMBINED DEAD SOIL SPACING = 24.0 IN. C/C DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS 1762 / 0 0/0 0/0 0/0 667 / 0 0/0 1526 / 0 0/0 0/0 0/0 FOLLOWS: LOADING IN FLAT SECTION BASED ON A SLOPE BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R OF 6.00/12 CHORDS #ROWS SURFACE LOAD(PLF) BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.72 FT SPACING (IN TOP CHORDS: (0.122"X3") SPIRAL NAILS ADDT'L USER-DEFINED LOADS APPLIED TO ALL A-C C-E SIDE(61.0) MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 12 SIDE(61.0) 12 12 SIDE(0.0) TOP ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED THIS TRUSS IS DESIGNED FOR RESIDENTIAL H-J R-B OR SMALL BUILDING REQUIREMENTS OF PART LOADING TOTAL LOAD CASES: (4) 12 TOP 9, NBCC 2015 BOTTOM CHORDS : (0.122"X3") SPIRAL NAILS THIS DESIGN COMPLIES WITH: SIDE(0.0) CHORDS - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) R-N 12 WEBS FACTORED VERT. LOAD LC1 (PLF) C FROM TO N-K TOP MAX. FACTORED FORCE MAX. FACTORED WEBS: (0.122"X3") SPIRAL NAILS МЕМВ. FORCE MAX CSA 086-14 2x3 (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) - TPIC 2014 FR-TO LENGTH FR-TO -112.4 -112.4 -112.4 -112.4 NAILS TO BE DRIVEN FROM ONE SIDE ONLY. 0 / 50 10.00 -752 / 0 0.13 (1) (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. -3478 / 0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD 0.22(1) 4.82 0/3129 0.39 (1 GIRDER NAILING ASSUMES NAILED HANGERS ARE -1764 / 0 0 / 1319 0.30 (1) 0.16 (1) 4826 / 0 -1124 -1124 0.35 (1) 4 05 P-D -112.4 -112.4 -112.4 -112.4 FASTENED WITH MIN. 3-0 INCH NAILS. 4826 / 0 ALLOWABLE DEFL.(LL)= L/360 (0.83")
CALCULATED VERT. DEFL.(LL)= L/999 (0.11")
ALLOWABLE DEFL.(TL)= L/360 (0.83")
CALCULATED VERT. DEFL.(TL)= L/999 (0.19") 4826 / 0 0.35 4.05 0- F -492 / 0 0.08(1) TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR O- G M- G M- H D- U -5732 / 0-112.4 -112.4 0.39 (1) 3.72 0/2174 0.27 (1) -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.39 -2107 / 0 0 / 2835 U-F -5732 / 0 THE LOAD TO BE TRANSFERRED TO EACH PLY. 0.35 (1) -560 / 0 -5732 / 0 0.39 3.72 0.09 (1) -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 F- G -5732 / 0 0.29 3.84 B- Q 0 / 2787 0 / 2383 CSI: TC=0.39/1.00 (D-F:1) , BC=0.66/1.00 (O-P:1) , WB=0.39/1.00 (C-P:1) , SSI=0.63/1.00 (O-P:1) G- H H- I -4240 / 0 -2973 / 0 4.43 5.15 0.21 (1) 0 / 50 -112.4 -112.4 0.09 (1 10.00 7.54 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 R-B K-I -3427 -2984 / 0 0.0 COMPANION LIVE LOAD FACTOR = 1.00 PROFESSIONAL ENGINE 06-24-22
H. J. G. ALVES -18.5 0.03 (4) R-W 0/0 -18.5 10.00 W- X X- Q Q- Y Y- Z -18.5 -18.5 -18.5 -18.5 0.03 (4) 10.00 AUTOSOLVE HEELS OFF 0/0 10.00 0.25 0.25 0 / 2647 -18.5 TRUSS PLATE MANUFACTURER IS NOT 0 / 2647 0 / 2647 RESPONSIBLE FOR QUALITY CONTROL IN THE -18.5-18.50.25(1) 10.00 TRUSS MANUFACTURING PLANT. P-AA 0 / 4827 -18.5 -18.5 0.66 10.00 AA-AB AB-AC 0 / 4827 PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 0 / 4827 -18.5 -18.5 0.66(1) 10.00 100009024 AC- O 0 / 4827 -18.5 -18.5 0.66 10.00 0 / 4240 0 / 4240 0 / 2265 -18.5 -18.5 -18.5 O- N N- M 0.40 -18.5 -18.5 0.40 (1) 10.00 POLINCE OF ONT ARIO M-L 0.19 (1) 10.00 PLATE PLACEMENT TOL. = 0.250 inches SPECIFIED CONCENTRATED LOADS (LBS) PLATE ROTATION TOL. = 5.0 Deg. LC1 -23 MAX--23 DIR. VERT CONN. C1 C1 JT. 100 MAX+ TYPE FACE FRONT DEAD JSI GRIP= 0.88 (C) (INPUT = 0.90) 3-10-8 -121 -121 VERT JSI METAL= 0.43 (N) (INPUT = 1.00) 4-9-12 6-9-12 8-9-12 -75 -72 -72 -75 -72 -72 C1 C1 C1 FRONT VERT TOTAL Structural component only FRONT DWG# T-2215133 **VERT** TOTAL CONTINUED ON PAGE 2

NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEV	V WELL	INGTO	N	DRWG NO.		
3533	T11	1	2	TRUSS DESC							
arack Roof Truss, Burlingt				1			Version 8.5	530 S Feb 23 2022	MiTek Industries, Inc.	Fri Jun 24 08:10:09 20	022 P
					ID:c3jyj23u	Dija 8pvRk	(bkZpy75)	XW-I9wQb5WsF	S66Xp?A?nOBbQ	9kQKR0N72bAUd	JOxz:
TES	W LEN Y X 5.0 8.0 Edge 5.0 8.0 Edge 1.25 4.0 6.0 3.0 8.0 2.0 4.0 4.0 6.0 5.0 8.0 Edge 1.25 5.0 8.0 Edge 3.0 6.0	SPECIFIED CO JT LOC. V 10-9-12 W 1-9-12 X 2-9-12 Y 4-9-12 Z 6-9-12 AA 8-9-12 AB 10-9-12 AC 11-9-8	LC1 MA -721414141414 -	X- MAX+ 72 F 14 F 14 F 14 F 14 F 14 F	FACE DIR. FRONT VERT FRONT VERT FRONT VERT FRONT VERT FRONT VERT FRONT VERT FRONT VERT FRONT VERT	TYPE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL	HEEL 	CONN. C1 C1 C1 C1 C1 C1 C1			
1, P, Q BMWW-t MT20 BS-t MT20 BMWWW-t MT20 BMV1+p MT20	5.0 6.0 5.0 6.0 5.0 8.0 3.0 6.0	1) C1: A SUIT		<u>s</u>	CONNECTION IS I						
e - INDICATES REFERE UCHES EDGE OF CHOP	NCE CORNER OF PLATE RD.										
TES- (1) ateral braces to be a mini	imum of 2X4 SPF #2.										
		-									
										•	

Structural component only DWG# T-2215133

REVIEWED

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
E - H ·	2x4	DRY	No.2	SPF
H - J	2x4	DRY	No.2	SPF
R - B	2x6	DRY	No.2	SPF
K - I	2x6	DRY	No.2	SPF
R - N	2x6	DRY	No.2	SPF
N - K	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	ORDS: (0.1	22"X3") SPIRAL NAILS	
A-C	1	12	SIDE(61.0)
C-E	1	12	SIDE(61.0)
E- H	1	12	SIDE(0.0)
H- J	1	12	TOP
R-B	2	12	TOP
K-1	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NA	ILS
R-N	2	12	SIDE(0.0)
N-K	2	12	TOP
WEBS:	(0.122"X3")	SPIRAL NAILS	
2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

DWG# T-2215154

EΑ	<u>RINGS</u>						
	FACTOR	RED	MAXIMUI	M FACTO	ORED	INPUT	REQRD
	GROSS RE	ACTION	GROSS I	REACTIO	N	BRG	BRG
Τ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2698	0	2698	0	0	5-8	5-8
	2303	0	2303	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K. MINIMUM BEARING LENGTH AT JOINT K = 4-0.

UNFACTORED REACTIONS 10T 10ACC MAY /MIN COMPONENT BEA

	IST LUASE		VIII V. COIVIF OI	VEIVI NEACTION	NO			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
R	1887	1357 / 0	0/0	0/0	0/0	530 / 0	0/0	
K	1610	1163 / 0	0/0	0/0	0/0	447 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.55 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

6-9-12 8-9-12

-72 -72

-72 -72

	ORDS					W E	BS		
	K. FACTOREI						MAX. FACT		
MEMB.	FORCE				MAX.	MEMB			
	(LBS)			CSI (LC)	UNBRA		(LBS)	CSI (LC)
FR-TO		FROM			LENGTH				
A-B	0 / 50			0.09 (1)		Q-C	-495 / 0	0.08	
B- C	-2598 / 0	-112.4	-112.4	0.20(1)	5.43	C-P	0 / 1995	0.25	(1)
C-S	-3368 / 0		-112.4	0.30(1)	4.76	P-D	-1202 / 0	0.20	(1)
S-T	-3368 / 0			0.30(1)	4.76	D-O	0 / 539	0.07	(1)
T- D	-3368 / 0			0.30(1)	4.76	0- F	-500 / 0	0.08	(1)
D- U	-3739 / 0			0.31(1)	4.55	0- G	0/1109	0.14	(1)
U-E	-3739 / 0	-112.4	-112.4	0.31(1)	4.55	M- G	-1335 / 0	0.23	(1)
E-V	-3739 / 0	-112.4	-112.4	0.31(1)	4.55	M- H	0 / 1903	0.24	
V-F	-3739 / 0	-112.4	-112.4	0.31 (1)	4.55	L- H	-402 / 0	0.07	
F- G	-3739 / 0	-112.4	-112.4	0.22 (1)	4.68	B-Q	0 / 2082	0.26	
G-H	-2977 / 0	-112.4	-112.4	0.20 (1)	5.15	L-1	0 / 1738		
H- I	-2169 / 0	-112.4	-112.4	0.19 (1)	5.82				. ,
I- J	0 / 50			0.09 (1)					
R-B	-2655 / 0	0.0	0.0	0.10(1)					
K-I	-2277 / 0	0.0	0.0	0.08 (1)					
				٠,					
R-W	0/0	-18.5	-18.5	0.03 (4)	10.00				
W-X	0/0	-18.5		0.03 (4)					
X-Q	0/0	-18.5		0.03 (4)					
Q-Y	0 / 1979			0.15 (1)					
Y-Z	0 / 1979			0.15 (1)					
Z-P	0 / 1979			0.15 (1)					
P-AA	0 / 3369			0.35 (1)	10.00				
AA-AB	0 / 3369			0.35 (1)					
AB-AC	0 / 3369			0.35 (1)					
AC- O	0 / 3369			0.35 (1)					
O- N	0 / 2978			0.22 (1)					
N- M	0 / 2978			0.22 (1)					
M- L	0 / 1652			0.13 (1)					
L- K	0/0	-18.5		0.02 (4)					
- '`	0,0	-10.5	-10.5	J.UZ (4)	10.00				
SPECII	FIED CONCE	ITRATED I C	ADS /I F	35)					
JT		C1 MAX-			ACE	DIR.	TYPE	HEEL	CONN.
C		23 -23	IVIAX.			ERT :	DEAD	HEEL	CONN.
Č		21 -121	-			ERT	SNOW		C1
1 2	3 . 3 3	-121	-	1,11	U141 V		014044		01

FRONT

FRONT

VERT

TOTAL

TOTAL

BY USER.

LOADS WERE DERIVED FROM USER INPUT
NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS:

TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.4	PSI
TOTA	1 10	AΠ	_	45 9	PSI

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.83")
CALCULATED VERT. DEFL.(LL) = L/999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (0.83")
CALCULATED VERT. DEFL.(TL) = L/999 (0.12")

CSI: TC=0.31/1.00 (D-F:1) , BC=0.35/1.00 (O-P:1) , WB=0.26/1.00 (B-Q:1) , SSI=0.21/1.00 (O-P:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (H) (INPUT = 0.90) JSI METAL= 0.31 (M) (INPUT = 1.00)

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB I	DESC.	BAYVIE	W WELI	LINGTO	NC		DRWG N	O.		
23534	T11Z	1	2	TRUS	S DESC.									
narack Roof Truss, Burling	ton					ID:c3jyj2	23uDija 8p	Version 8	3.530 S Fe v75XW-o	23 2022 f zWU7S9	MiTek Indust	ies, Inc. Fr Xz6Tm4L	i Jun 24 08:28 MEd9Yxs4T	56 2022 Pag
ATEC (Ashle is in inches)														
LATES (table is in inches) TYPE PLATES TMVW+p MT20 TTWW+m MT20 TS+t MT20 TS+t MT20 TMW-w MT20 TMW+w MT20 TMW+w MT20 TMW+w MT20 TMW+m MT20 TMW+p MT20 TMW+p MT20 BMV1+p MT20 BMWW+t MT20 BMWW+t MT20 BMWW+t MT20 BMWW+t MT20 BMWW+t MT20 BMYW+t MT20 BMYW+t MT20 BMT20	5.0 6.0 2.00 2.25 5.0 6.0 2.25 1.50 4.0 4.0 3.0 8.0 2.0 4.0 4.0 4.0 5.0 6.0 2.25 1.50 5.0 6.0 2.25 2.5 3.0 8.0 5.0 6.0 4.0 4.0 4.0 4.0 4.0 5.0 6.0 2.00 2.25 3.0 8.0 5.0 6.0	SPECIFIED OF JT LOC. V 10-9-12 W 1-9-12 X 2-9-12 Y 4-9-12 Z 6-9-12 AA 8-9-12 AB 10-9-12 AC 11-9-8 CONNECTION	LC1 -72 -14 -14 -14 -14 -14 -14 -479	MAX- MA -72 -14 -14 -14 -14 -14 -14 -17	X+ F FF FF FF FF FF FF	ACE DIR. ONT VERT ONT VERT ONT VERT ONT VERT ONT VERT ONT VERT ONT VERT ONT VERT	TYPE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL	HEEL 	CONN. C1 C1 C1 C1 C1 C1 C1 C1					
BS-t MT20 BMWWW-t MT20 BMWW+t MT20 BMWW-t MT20	5.0 6.0 5.0 6.0 4.0 6.0	1) C1: A SU	ITABLE HAN	GER/MECHA	NICAL CO	NNECTION IS	REQUIRED.							
BMWW-t MT20 BMV1+p MT20	5.0 6.0 3.0 8.0													
)TES- (1)														
Lateral braces to be a mir	IIMUM 01 2X4 SPF #2.													
•														
1	SSIONA													
PROFE	24-22 5. ALVES													
06-	24-22													
일 H.J. 0	S. ALVES													
1000	090247/													

REVIEWED

Structural component only DWG# T-2215154

POWNOE OF ON THE

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T12 TRUSS DESC Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:09 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-I9wQb5WsFS66Xp?A?nOBbQ9lLKXdN3nbAUdJOxz38bS Tamarack Roof Truss, Burlington 1-3-8 5-10-8 13-2-0 5-10-8 1-3-8 Scale = 1:44.7 4x4 =2x4 || 5x6 // 5x6 \\ Ε G 10.00 12 5x6 // 5x6 < Н C 3x4 || 3x4 || М Q 5x6 = P 0 N 3x8 =4x4 =4x4 =4x6 = 5x6 = 4x4 = 24-11-0 1-3-8 24-11-0 TOTAL WEIGHT = 120 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** BE RD

LUMBER				
N. L. G. A. RI	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
G - J	2x4	DRY	No.2	SPF
Q - B	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
Q - M	2x4	DRY	No.2	SPF
M - K	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Χ				
В	TMV+p	MT20	3.0	4.0						
С	TMWW-t	MT20	5.0	6.0						
D	TTWW+m	MT20	5.0	6.0	2.25	1.50				
Е	TMWW-t	MT20	4.0	4.0						
F	TMW+w	MT20	2.0	4.0						
G	TTWW+m	MT20	5.0	6.0	2.25	1.50				
Н	TMWW-t	MT20	5.0	6.0						
1	TMV+p	MT20	3.0	4.0						
K	BMVW1-t	MT20	5.0	6.0						
L, (D, P									
L	BMWW-t	MT20	4.0	4.0						
M	BS-t	MT20	3.0	8.0						
N	BMWWW-t	MT20	4.0	6.0						
Q	BMVW1-t	MT20	5.0	6.0						
1										

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215134

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRI
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	1787	0	1787	0	0	5-8	5-8
K	1787	0	1787	0	0	MECHANI	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K. MINIMUM BEARING LENGTH AT JOINT K = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
Q	1250	899 / 0	.0/0	0/0	0/0	351 / 0	0/0			
K	1250	899 / 0	0/0	0/0	0/0	351 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 4.82 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT. OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4) 0110000

СН	ORDS	S WEBS						
MAX	C. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)				UNBRAC			CSI (LC)
FR-TO					LENGTH	I FR-TO		
A- B	0 / 50			0.15 (1)		C-P	0 / 79	0.02 (4)
B- C	0 / 22	-112.4	-112.4	0.14(1)	10.00	P-D	0/81	0.03(4)
C- D	-1570 / 0	-112.4	-112.4	0.17(1)	5.10	D-O	0 / 739	0.17(1)
D- E	-1614 / 0	-112.4	-112.4	0.33(1)	4.82	O-E	-529 / 0	0.37(1)
E-F	-1612 / 0	-112.4	-112.4	0.33(1)	4.83	E-N	-4 / 0	0.00(1)
F-G	-1612/0	-112.4	-112.4	0.32 (1)	4.84	N-F	-527 / 0	0.37 (1)
G-H	-1571 / 0	-112.4	-112.4	0.17 (1)	5,10	N- G	0 / 734	0.17(1)
H- I	0 / 22	-112.4	-112.4	0.14(1)	10.00	L-G	0/81	0.03(4)
I- J	0 / 50			0.15(1)		L- H	0 / 79	0.02 (4)
Q-B	-285 / 0	0.0	0.0	0.03(1)	7.81	Q-C	-1846 / 0	0.66(1)
K-I	-285 / 0	0.0	0.0	0.03(1)	7.81	H-K	-1846 / 0	0.66 (1)
Q-P	0 / 1135			0.26 (1)				
P- 0	0 / 1187			0.27 (1)				
O- N	0 / 1614			0.30(1)				
N-M	0 / 1187			0.27 (1)				
M- L	0 / 1187	-18.5	-18.5	0.27 (1)	10.00			
L-K	0 / 1135	-18.5	-18.5	0.26 (1)	10.00			

SPECIFIED LOADS:							
TOP	CH.	LL	="	32.5	PSF		
		DL	=	6.0	PSF		
BOT	CH.	LL	=	0.0	PSF		
		DL	=	7.4	PSF		
TOTA	1 10	ΛD	_	45.0	DCI		

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.83")
CALCULATED VERT. DEFL.(LL)= L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.83")
CALCULATED VERT. DEFL.(TL)= L/999 (0.10")

CSI: TC=0.33/1.00 (D-E:1) , BC=0.30/1.00 (N-O:1) , WB=0.66/1.00 (H-K:1) , SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (N) (INPUT = 0.90) JSI METAL= 0.41 (H) (INPUT = 1.00)

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T13 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 08:10:10 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-mLUooRXV0mEz8zaMZVvQ7dixOkrC6UZkP8MtwOz38bR 1-3-8 7-10-8 9-2-0 7-10-8 1-3-8 5x6 \\ 2x4 || 5x6 // Scale = 1:52.7 D 10.00 12 5x6 // 5x6 <> G 3x4 || 3x4 || **⊗** N Μ 3x8 = 4x6 =4x6 = 4x4 =4x6 =4x4 = 24-11-0 24-11-0

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
O - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
0 - L	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
O - C	2x4	DRY	No.2 .	SPF
G - J	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PLATES_ (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Х		
В	TMV+p	MT20	3.0	4.0				
С	TMWW-t	MT20	5.0	6.0				
D	TTWW+m	MT20	5.0	6.0	2.25	1.50		
Ε	TMW+w	MT20	2.0	4.0				
F	TTWW+m	MT20	5.0	6.0	2.25	1.50		
G	TMWW-t	MT20	5.0	6.0				
Н	TMV+p	MT20	3.0	4.0				
J	BMVW1-t	MT20	4.0	6.0				
K	BMWW-t	MT20	4.0	4.0				
L	BS-t	MT20	3.0	8.0				
M	BMWWW-t	MT20	4.0	6.0				
Ν	BMWW-t	MT20	4.0	4.0				
0	BMVW1-t	MT20	4.0	6.0				

NOTES-Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215135

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	THE TOTAL THE ST. TABLES AND TO SE VEHILLES BY
DEADNIGO	

DOIL	בטווועם טבט	IGNER					
BEAL	RINGS						
	FACTO	RED	MAXIMUI	M FACTO	ORED	INPUT	REQRD
	GROSS F	REACTION	GROSS I	REACTIC	N	BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
0	1787	0	1787	0	0	5-8	5-8
J	1787	0	1787	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J. MINIMUM BEARING LENGTH AT JOINT J = 3-8.

UN	UNFACTORED REACTIONS									
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS.					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
0	1250	899 / 0	0/0	0/0	0/0	351 / 0	0/0			
J	1250	899 / 0	0/0	0/0	0/0	351 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.11 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

					W E	BS			
MAX	(. FACTORED	FACTO	RED				MAX. FACTO	DRED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB	. FORCE	MAX	
	(LBS)				UNBRAC			CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 50	-112.4	-112.4	0.15 (1)	10.00	C-N	-115 / 19	0.08(1)	
B- C	0 / 33	-112.4	-112.4	0.28 (1)	10.00	N- D	0 / 241	0.06 (4)	
C-D	-1501 / 0	-112.4	-112.4	0.24 (1)	5.11	D- M	0 / 378	0.09 (1)	
D-E	-1318 / 0	-112.4	-112.4	0.31(1)	5.27	M- E	-624 / 0	0.82(1)	
E-F	-1318 / 0	-112.4	-112.4	0.31(1)	5.27	M- F	0 / 378	0.09(1)	
F- G	-1501 / 0	-112.4	-112.4	0.24(1)	5.11	K-F	0 / 241	0.06 (4)	
G-H	0 / 33	-112.4	-112.4	0.28(1)	10.00	K- G	-115 / 19	0.08(1)	
H- I	0 / 50	-112.4	-112.4	0.15(1)	10.00	0- C	-1847 / 0	0.81 (1)	
O- B	-324 / 0	0.0	0.0	0.03(1)	7.81	G-J	-1847 / 0	0.81 (1)	
J- H	-324 / 0	0.0	0.0	0.03 (1)	7.81				
O- N	0 / 1201	-18.5	-185	0.34 (4)	10.00				
N- M	0 / 1128	-18.5		0.34 (4)					
M- L	0 / 1128	-18.5		0.34 (4)					
L- K	0 / 1128			0.34 (4)					
K-J	0 / 1201			0.34 (4)					
	5/1201	10.5	. 0.0	0.04 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS:							
TOP	CH.	LL	=	32.5	PSF		
		DL	=	6.0	PSF		
BOT	CH.	LL	=	0.0	PSF		
		DL	=	7.4	PSF		
TOTA	L LO	AD	=	45.9	PSF		

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 125 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.83")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.83")
CALCULATED VERT. DEFL.(TL)= L/999 (0.14")

CSI: TC=0.31/1.00 (D-E:1) , BC=0.34/1.00 (K-M:4) , WB=0.82/1.00 (E-M:1) , SSI=0.25/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (J) (INPUT = 0.90) JSI METAL= 0.45 (L) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T14S TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 08:10:11 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-EY2B?mY7n4Mqm69Y7CQfgrF8S7D8r35tdo6QTqz38bQ 1-3-8 6-6-0 1-3-8 4x6 || Scale = 1:46.2

TOTAL WEIGHT = 4 X 65 = 262 lb [M][F

ULES			
SIZE		LUMBER	DESCR.
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x6	DRY	No.2	SPF
2x4	DRY	No.2	SPF
2x6	DRY	No.2	SPF
00	D01/	N- O	205
2x3	DRY	No.2	SPF
,			
	SIZE 2x4 2x4 2x4 2x4 2x4 2x6 2x4	SIZE 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x4 DRY 2x6 DRY 2x4 DRY 2x6 DRY 2x6 DRY	SIZE LUMBER 2x4 DRY No.2 2x6 DRY No.2 2x4 DRY No.2 2x6 DRY No.2

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)											
JΤ	TYPE	PLATES	W	LEN	Υ	X-						
В	TMVW-t	MT20	4.0	6.0	2.00	2.75						
С	TMWW-t	MT20	4.0	4.0	2.00	1.25						
D	TTW+p	MT20	4.0	6.0	Edge							
E	TMWW-t	MT20	4.0	4.0	2.00	1.25						
F	TMVW-t	MT20	4.0	6.0	2.00	2.75						
Н	BMV1+p	MT20	3.0	6.0								
1	BBWW+m	MT20	8.0	9.0	3.25	4.00						
J	BMWWW-t	MT20	4.0	10.0								
K	BBWW+m	MT20	8.0	9.0	3.25	4.00						
L	BMV1+p	MT20	3.0	6.0								

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Ī	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	BUILDING DESIGNER
	BEARINGS

	FACTOR	ED	MAXIMUN	/ FACTO	INPUT	REQRE	
	GROSS RE.	ACTION	GROSS F	REACTION	N	BRG	BRG
•	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1007	0	1007	0	0	5-8	5-8
	1007	0	1007	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8.

UNFACTORED REACTIONS

	151 LUASE	MAX./N	<u>/IIN. COMPO</u>	NENT REACTION	4S			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
L	703	512/0	0/0	0/0	0/0	191 / 0	0/0	
Н	703	512/0	0/0	0/0	0/0	191 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

JΤ

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.11 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT. OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	CHORDS MAX. FACTORED FACTORED				W E B S MAX. FACTORED					
MEMB.	FORCE	VERT. LO	AD LC1		MAX.	МЕМВ.	FORCE	MAX		
FR-TO	(LBS)	(PL FROM					(LBS)	CSI (LC)		
	0.750				LENGTH					
A-B	0 / 50			0.15 (1)		J- D	0 / 654	0.15 (1)		
B- C	-1586 / 0	-112.4	-112.4	0.15(1)	5.11	J- E	-695 / 0	0.19(1)		
C- D	-791 / 0	-112.4	-112.4	0.17(1)	6.25	I-E	0 / 413	0.09(1)		
D-E	-791 / 0	-112.4	-112.4	0.17(1)	6.25	C-J	-695 / 0	0.19 (1)		
E-F	-1586 / 0	-112.4	-112.4	0.15(1)	5.11	K-C	0 / 413	0.09(1)		
F- G	0 / 50	-112.4	-112.4	0.15 (1)	10.00	B-K	0 / 1282	0.29 (1)		
L-B	-980 / 0	0.0	0.0	0.11 (1)	7.81	I- F	0 / 1282	0.29 (1)		
H- F	-980 / 0	0.0		0.11 (1)						
L-K	0/0	-18.5	-18.5	0.02 (4)	10.00					
K- J	0 / 1213			0.23 (1)						
J- 1	0 / 1213			0.23 (1)						
i- H	0/12/0	-18.5		0.02 (4)						
	0/0	10.5	10.5	0.02 (4)	10.00					

DESIGN CRITERIA

SPECIFIED LOADS:									
TOP	CH.	LL	=	32.5	PSF				
		DL	=	6.0	PSF				
BOT	CH.	LL	=	0.0	PSF				
		DL	=	7.4	PSF				
TOTA	L LO	AD	=	45.9	PSF				

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.43")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.43")
CALCULATED VERT. DEFL.(TL)= L/999 (0.07")

CSI: TC=0.17/1.00 (C-D:1) , BC=0.23/1.00 (J-K:1) , WB=0.29/1.00 (B-K:1) , SSI=0.14/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (F) (INPUT = 0.90) JSI METAL= 0.44 (K) (INPUT = 1.00)

Structural component only DWG# T-2215136

ALL WEBS EXCEPT DRY 2x3 No.2 SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW-t	MT20	4.0	4.0	2.00	1.25				
С	TTW-m	MT20	4.0	4.0						
D	TMVW-t	MT20	4.0	6.0						
Е	BMV1+p	MT20	3.0	4.0						
F	BMWWW-t	MT20	4.0	10.0						
G	BMV1+p	MT20	3.0	4.0						

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

EΑ	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	BRG	BRG	
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	344	0	344	0	0	MECHANI	CAL
	542	0	542	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

UNFACTORED REACTIONS

	IST LCASE	NAX./I	VIIN. COMPO	NENT REACTION	15			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
Ε	242	165 / 0	0/0	0/0	0/0	77 / 0	0/0	
G	377	280 / 0	0/0	0/0	0/0	97 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

CHC	RDS					WΕ	BS		
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)				UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 34	-112.4	-112.4	0.16(1)	10.00	F-C	-153 / 6	0.02(1)	
B- C	-277 / 0	-112.4	-112.4	0.16(1)	6.25	F- D	0 / 223	0.06(1)	
C- H	-209 / 0	-112.4	-112.4	0.41(1)	6.25	B- F	0 / 250	0.06 (1)	
H- I	-209 / 0	-112.4	-112.4	0.41(1)	6.25			` ,	
I- D	-209 / 0	-112.4	-112.4	0.41(1)	6.25				
E- D	-326 / 0	0.0	0.0	0.04(1)	7.81				
G-B	-536 / 0	0.0	0.0	0.06 (1)	7.81				
G-F	0/0	-18.5	-18.5	0.08 (4)	10.00				
F- J	0/0	-18.5	-18.5	0.08 (4)	10.00				
J- K	0/0	-18.5	-18.5	0.08 (4)	10.00				
K-E	0/0	-18.5	-18.5	0.08 (4)	10.00				

SPEC	CIFIED CON	CENTRA	TED LOA	DS (LBS)					
T	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
)	1-5-8	-2	-2	94	FRONT	VERT	TOTAL		C1
:	1-6-4	9	1	12	FRONT	VERT	TOTAL		C1
1	3-6-4	1	1	94	FRONT	VERT	TOTAL		C1
	5-6-4	1	1	73	FRONT	VERT	TOTAL		C1
1	3-6-4	9	1	12	FRONT	VERT	TOTAL		C1
(5-6-4	9	1	12	FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

SPECIFIED LOADS:									
TOP	CH.	LL	=	32.5	PS				
		DL		6.0	PS				
BOT	CH.	LL	=	0.0	PS				
		DL	=	7.4	PS				
TOTAL LOAD = 45.9 PS									

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.41/1.00 (C-D:1) , BC=0.08/1.00 (F-G:4) . WB=0.06/1.00 (B-F:1) , SSI=0.21/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.36 (B) (INPUT = 0.90) JSI METAL= 0.13 (B) (INPUT = 1.00)

Structural component only DWG# T-2215137

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T16S TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:13 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-BwAxQSZNJhcY?QJxEdS7lGKTFxxNJ0DA56bXXiz38bO 1-3-8 Scale = 1:18.8 4x4 = 4x4 =D Ε 6.00 12 4x4 / W7 С 4x4 / ВЗ 4x10 = 4x6 =1-0-0 3x4 || 13x4 || 4-3-0 1-3-8 5-10-8 TOTAL WEIGHT = 26 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA**

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
F - E	2x4	DRY	No.2	SPF
J - B	2x4	DRY	No.2	SPF
J - I	2x4	DRY	No.2	SPF
1 - C	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMVW-t	MT20	4.0	4.0	2.00	1.25					
С	TMVW-t	MT20	4.0	4.0	2.00	1.25					
D	TTW-m	MT20	4.0	4.0							
E	TMVW-t	MT20	4.0	4.0							
F	BMV1+p	MT20	3.0	4.0							
G	BMWWW-t	MT20	4.0	6.0							
Н	BVMWW-I	MT20	4.0	10.0	2.75	5.50					
1	BMV+p	MT20	3.0	4.0							
J	BMVW1-t	MT20	4.0	4.0							

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

BEA	RINGS						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	367	0	367	0	0	MECHANI	CAL
J	555	0	555	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8.

UNFACTORED REACTIONS

	ISI LUASE	IVIAA./I	WIN. COMPO	NEINT REACTION	<u> </u>			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
F	257	181 / 0	0/0	0/0	0/0	77 / 0	0/0	
J	386	289 / 0	0/0	0/0	0/0	97 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

<u>ERACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS FACTORED	FACTORED			W E	B S MAX. FACTO	ORED	
MEMB.	FORCE	VERT. LOAD LO	1 MAX	MAX.	MEMB.		MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO			
A-B	0/34	-112.4 -112.4	0.15 (1)	10.00	C- G	-364 / 0	0.06(1)	
B- C	-627 / 0	-112.4 -112.4	0.15(1)	6.25	G- D	-110/4	0.02(1)	
C-D	-339 / 0	-112.4 -112.4			G-E	0 / 365	0.08 (1)	
D-E	-296 / 0	-112.4 -112.4	I 0.11 (1)	6.25	B- H	0 / 532	0.12(1)	
F-E	-348 / 0		0.04 (1)		J- H	-73 / 0	0.01(1)	
J- B	-497 / 0	0.0 0.0	0.05 (1)	7.81				
J- I	0 / 58	-18.5 -18.5	0.02 (1)	10.00				
I- H	0 / 15		0.09 (1)					
H- C	0/117	0.0	0.11 (1)	10.00				
H-G	0 / 661	-18.5 -18.5	0.12 (1)	10.00				
G-F	0/0	-18.5 -18.5	0.02 (4)	10.00				

SPEC	IFIED	LOA	OS:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	1 10	A D		45.0	-

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.02")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.12/1.00 (G-H:1) , WB=0.12/1.00 (B-H:1) , SSI=0.12/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL I) (PL I) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.64 (B) (INPUT = 0.90) JSI METAL= 0.25 (B) (INPUT = 1.00)

DWG# T-2215138

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T17S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:14 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-f7kJeoa?4?kOdat7oKzMITtccLF62PkKKmK439z38bN 1-3-8 3x4 || Scale: 1/2"=1 6.00 12 W5 4x4 || W4 4x6 / R3 4x10 = 4x6 =G 4x4 1-7-8 4-3-0

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
E - D	2x4	DRY	No.2	SPF
H - B	2x4	DRY	No.2	SPF
H - G	2x4	DRY	No.2	SPF
G - C	2x4	DRY	No.2	SPF
F - E	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL	ATES (table	<u>is in inches)</u>				
JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMVW-t	MT20	4.0	6.0		
С	TMVW+p	MT20	4.0	4.0	1.50	2.00
D	TMV+p	MT20	3.0	4.0		
Ε	BMVW1-t	MT20	4.0	6.0		
F	BVMWW-I	MT20	4.0	10.0	2.75	5.50
G	BMV+p	MT20	3.0	4.0		
Н	BMVW1-t	MT20	4.0	4.0		

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER В

5-10-8

BEA	RINGS						
FACTORED			MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS REACTION		GROSS REACTION			BRG	BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX .	IN-SX
Ξ	367	0	367	0	0	MECHAN	IICAL
1	555	0	555	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

UNFACTORED REACTIONS

	ISTLUASE	MAX./	MIN. COMPO	NENT REACTION	48		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ε	257	181 / 0	0/0	0/0	0/0	77 / 0	0/0
Н	386	289 / 0	0/0	0/0	0/0	97 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H

1-3-8

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.}} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS		. WEBS							
MAX.	FACTORED	FACTOR	RED				MAX. FACTO	RED		
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PL	F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO		. ,		
A-B	0 / 34	-112.4	-112.4	0.15(1)	10.00	C-E	-964 / 0	0.29(1)		
B- C	-856 / 0	-112.4	-112.4	0.16(1)	6.25	H- F	-101 / 0	0.01(1)		
C- D	-11 / 0	-112.4	-112.4	0.30(1)	6.25	B- F	0 / 779	0.18 (1)		
E- D	-222 / 0	0.0	0.0	0.03(1)	7.81			. ,		
H- B	-480 / 0	0.0	0.0	0.05(1)	7.81					
H- G	0 / 80	-18.5	-18.5	0.02(1)	10.00					
G-F	0 / 15	0.0	0.0	0.12(1)	10.00					
F- C	0 / 155	0.0	0.0	0.15(1)	10.00					
F-E	0 / 956	-18.5	-18.5	0.21 (1)	10.00					

DESIGN CRITERIA

SPEC	IFIED	LOAD	S:		
TOP	CH.	LL.	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	ΔD	_	45.0	PSE

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 26 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.05")

CSI: TC=0.30/1.00 (C-D:1) , BC=0.21/1.00 (E-F:1) , WB=0.29/1.00 (C-E:1) , SSI=0.19/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.73 (C) (INPUT = 0.90) JSI METAL= 0.32 (C) (INPUT = 1.00)

Structural component only DWG# T-2215139

JOB NAME TRUSS NAME QUANTITY JOB DESC PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 T18 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MITek Industries, Inc. Fri Jun 24 08:10:15 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-7JHhr8bdqIsFFkSKM2VbqhPpFITYnqcTYQ4ecbz38bM

LUMBER N. L. G. A. RULES CHORDS F - A SIZE LUMBER DESCR DRY DRY DRY No.2 No.2 SPF ABCCD 2x4 No.2 SPF DRY SPF SPF ALL WERS 2x3 DRY No.2 SPF DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS	#ROWS	SURFACE	LOAD(PLF)						
		SPACING (IN)							
TOP CHORDS : (0.122"X3") SPIRAL NAILS									
F- A	1	12	TOP						
A-B	1	12	TOP						
B- C	1	12	TOP						
C-D	1	12	TOP						
BOTTOM	CHORDS:	0.122"X3") SPIRAL	NAILS						
F- D	2	11	SIDE(244.1						
WEBS: (0).122"X3") S	PIRAL NAILS	•						
E-B	1	4	SIDE(13.7)						
2x3	1	6							

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)
JT TYPE PLATES

W LEN Y 5.0 6.0 ۱۸/

Structural component only DWG# T-2215140

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	AND LOADINGS OF LOWIED BY TABINGATOR TO BE VEHILLED BY
BUILDING DESIGNER	· ·
DEADIMOS	

		CINET					
BEA	RINGS						
	FACTO	MAXIMU	MAXIMUM FACTORED			REQRD	
	GROSS R	EACTION	GROSS	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	1571	0	1571	0	0	5-8	5-8
D	2185	0	2185	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	151 LUASE	MAX./N	MAX./MIN. COMPONENT REACTIONS								
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
F	1096	805 / 0	0/0	0/0	0/0	290 / 0	0/0				
D	1523	1123 / 0	0/0	0/0	0/0	400 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.40 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTO	FACTORED WEBS MAX. FACT					ORED		
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.				
	(LBS)	(PI	_F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO	, ,	, ,		
F- A	-1734 / 0	0.0	0.0	0.10(1)	7.81	A-E	0 / 3292	0.41(1)		
A-B	-2844 / 0	-112.4	-112.4	0.06(1)	5.40	E-B	0 / 335	0.04 (1)		
	0/0	-112.4	-112.4	0.18(1)	10.00	B- D	-2897 / 0	0.45 (1)		
D- C	-232 / 0	0.0	0.0	0.04 (1)	7.81					
F- E E- G	0/0 0/2810	-18.5	-18.5	0.12 (1) 0.71 (1)	10.00					
G- H H- D	0 / 2810			0.71 (1)						
π - υ	0 / 2810	-18.5	-18.5	0.71 (1)	10.00					
SPECIE	SPECIFIED CONCENTRATED LOADS (LBS)									

PE	CIFIED CON	ICENTRA	TED LOA	ADS (LBS)					
Т	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
	2-0-12	-688	-688		FRONT	VERT	TOTAL		C1
i	4-0-12	-688	-688		FRONT	VERT	TOTAL		C1
	5-0-12	-688	-688		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

TOTAL WEIGHT = 2 X 30 = 60 lb

Scale = 1:29.6

SPECIFIED LOADS: LL = DL = LL = PSF PSF PSF CH. 32.5 BOT CH. 0.0 7.4 ÐΙ TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN ALL FLAT SECTIONS BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.05") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL)= L/ 928 (0.08")

CSI: TC=0.18/1.00 (B-C:1) , BC=0.71/1.00 (D-E:1) , WB=0.45/1.00 (B-D:1) , SSI=0.41/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (E) (INPUT = 0.90) JSI METAL= 0.51 (E) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW W	/ELLINGTON	DRWG NO.
423533 Tamarack Roof Truss, Burlington	T18	1	2	TRUSS DESC		Version 8 530 S Feb 23 202	2 MiTek Industries, Inc. Fri. lun 24 08:10:15 2022 Page
		1			ID:c3jyj23ul	Dijq 8pvRKbkZpy75XW-7JHhr	2 MiTek Industries, Inc. Fri Jun 24 08:10:15 2022 Page BbdqlsFFkSKM2VbqhPpFITYnqcTYQ4ecbz38b
PLATES (table is in inches)	V LEN Y X						
B TTWW+m MT20 5 C TMV+p MT20 5	5.0 6.0 3.0 4.0						
D BMVW1-t MT20 5 E BMWW+t MT20 5 F BMV1+p MT20 3	5.0 6.0 5.0 6.0 3.50 2.00 3.0 6.0						
NOTES- (1) 1) Lateral braces to be a minimu	m of 2X4 SPF #2.			. •			
OFESS	IONA						
(DPRU	The last						-
06-24	1-22] [[]						
PROFESS 06-24 H. J. G. A 100009	ALVES 55						
100009	11/2						
Pounde	11/20						DEV/IEVA/ED
JANA EZ	E ONTA						REVIEWED

Structural component only DWG# T-2215140

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 423533 T19 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MITek Industries, Inc. Fri Jun 24 08:10:15 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-7JHhr8bdqIsFFkSKM2VbqhPq8IVMnqGTYQ4ecbz38bM

<u>LUMBER</u> N. L. G. A. RULES CHORDS F - A SIZE LUMBER DESCR. SPF A C C DRY A -DRY No.2 2x4 DRY No.2 SPF n SPF ALL WEBS 2x3 DRY No.2 SPF DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS

CHORDS #ROV	WS SURFACE SPACING (IN)	LOAD(PLF)							
TOP CHORDS : (0.122"X3") SPIRAL NAILS									
F- A 1	12	TOP							
A- C 1	12	TOP							
C- D 1	12	TOP							
BOTTOM CHOP	RDS: (0.122"X3") SPIRA	AL NAILS							
F- D 2	12	SIDE(183.1)							
WEBS: (0.122"	X3") SPIRAL NAILS	` ′							
B-E 1	3	SIDE(278.2)							
0.0	•	. , ,							

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PL/	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	X
Α	TMVW-t	MT20	4.0	6.0		Edge
В	TMWW+t	MT20	4.0	6.0	3.00	1.25
C	TMV+p	MT20	3.0	4.0		

DWG# T-2215141

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

BUIL	BUILDING DESIGNER										
BEAF	RINGS										
	FACTO	RED	NAXIMU	M FACTO	INPUT F	REQRD					
	GROSS R	EACTION	GROSS F	REACTIO	BRG	BRG					
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX				
F	4163	0	4163	0	0	5-8	5-8				
D	3128	0	3128	0	0	MECHANIC	CAL				

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNF	INFACTORED REACTIONS									
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	4S					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
F	2907	2119 / 0	0/0	0/0	0/0	788 / 0	0/0			
D	2185	1587 / 0	0/0	0/0	0/0	598 / 0	0/0			
RFA	RING MATER	RIAL TO BE SE	F NO 2 OR	RETTER AT ION	JT/S/ E					

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.24 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	ORDS	WEBS							
MAX	K. FACTORED	FACTO	RED				MAX. FACTO	DRED	
MEMB.	FORCE	VERT. LC	AD LC1	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PI	_F) '	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO	/	(-/	
F- A	-2205 / 0	0.0	0.0	0.12(1)	7.51	A-E	0 / 2790	0.35 (1)	
A-B	-3007 / 0	-112.4	-112.4	0.10(1)	5.24	E-B	0 / 3039	0.38 (1)	
B- C	-9 / 0	-112.4	-112.4	0.07(1)	10.00	B- D	-3394 / 0	0.40 (1)	
D- C	-146 / 0	0.0	0.0	0.02 (1)	7.81			,	
F-G	0/0	-18.5	-18.5	0.60 (1)	10.00				
G-E	0/0	-18.5	-18.5	0.60(1)	10.00				
E- H	0 / 2697	-18.5	-18.5	0.55 (1)	10.00				
H- D	0 / 2697	-18.5	-18.5	0.55 (1)	10.00				

SPEC	IFIED CO	NCENTRA	TED LOA	ADS (LBS)					
T	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
=	2-9-4	-1235	-1235		BACK	VERT	TOTAL		C1
a .	10-0	-2083	-2083		BACK	VERT	TOTAL		C1
H	4-9-4	-1235	-1235		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 29 = 58 lb **DESIGN CRITERIA**

Scale = 1:25.

SPEC	IFIED	LOA	os:	
TOP	CH.	LL	=	32.5
		DI	_	6.0

PSF PSF PSF LL = 0.0 BOT CH. DΙ TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATEO VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04")

CSI: TC=0.12/1.00 (A-F:1) , BC=0.60/1.00 (E-F:1) , WB=0.40/1.00 (B-D:1) , SSI=0.65/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.84 (B) (INPUT = 0.90) JSI METAL= 0.63 (B) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC. BAYVIEW WELLINGTON	DRWG NO.
423533	T19	1 2	TRUSS DESC.	
Tamarack Roof Truss, Burlington		the state of the s	Version 8.530 S Feb 23 2022 ID:c3ivi23uDiig. 8pvRKbkZpv75XW-7.IHbr8b	MiTek Industries, Inc. Fri Jun 24 08:10:15 2022 Page 2 dqlsFFkSKM2VbqhPq8IVMnqGTYQ4ecbz38bM
PLATES (table is in inches)	LEN Y X) 6.0) 8.0 4.25 2.50) 6.0 CORNER OF PLATE		ie.cojjjeodojig opriikokepyrokiv-roi iiilou	agisi F KSIKWIZ VOQIIF QSIVIVIIIQG I TQ46C0Z380W
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.		•	
				.*
06-24- H. J. G. A 1000090	ONAL ENGINE			
POLINCE OF	ONTARIO			REVIEWED

Structural component only DWG# T-2215141

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO 423533 T20 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 08:10:16 2022 Page 1

4x6 ||

ID:c3jyj23uDijq_8pvRKbkZpy75XW-bVr43UbFbc_6su1Wwl0qNuyyJ8yOWNucn4pB81z38bL 1-3-8 4-5-8

Scale = 1:34.6

LUMBER N. L. G. A. RULES
CHORDS SIZE
A - C 2x4
C - D 2x4
G - B 2x4
E - D 2x4 LUMBER DESCR SPF DRY No.2 DRY DRY DRY SPF SPF SPF No.2 E - D G - E 2x4 DRY No.2 SPF ALL WEBS 2x3 EXCEPT No.2 SPF

DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 C
 TTW+p
 MT20
 LEN Y X 1.00 2.00 Edge 1.00 2.00 4.0 4.0 4.0 TMVW+p MT20 BMV1+p BMWWW-t 10.0 4.0 BMV1+p MT20 3.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES-(1)

1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

<u>EA</u>	HINGS						
	FACTOR GROSS RE		MAXIMUM FACTORED GROSS REACTION			INPUT BRG	REQRE BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT		IN-SX
i	723	0	723	0	0	5-8	5-8
	567	0	567	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8

UNFACTORED REACTIONS

	131 LUMSE	IVIAA./IV	IIIN. COMPO	NENT REACTION	NO.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G	504	371 / 0	0/0	0/0	0/0	133 / 0	0/0
Е	398	281 / 0	0/0	0/0	0/0	116/0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS				WE	BS		
MAX.	FACTORED	FACTORED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD L	.C1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC) UNBRAG	3	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO	, ,	. ,	
A-B	0 / 50	-112.4 -112	.4 0.15 (1	10.00	F- C	-67 / 60	0.03(1)	
B- C	-329 / 0	-112.4 -112	.4 0.29 (1	1) 6.25	B- F	0 / 263	0.06(1)	
C- D	-329 / 0	-112.4 -112	.4 0.26 (1	1) 6.25	F- D	0 / 268	0.06 (1)	
G-B	-691 / 0	0.0 0	.0 0.07 (1) 7.81			• • •	
E- D	-538 / 0	0.0	.0 0.06 (*	7.81				
۰.	0.40	40 = 40						
G-F	0/0	-18.5 -18						
F-E	0/0	-18.5 -18	.5 0.10 (4	10.00				

TOTAL WEIGHT = 3 X 39 = 116 lb [M][F]

DESIGN CRITERIA

1-10-3

SPECIFIED LOADS: LL = DL = LL = DL = AD = TOP CH. 32.5 PSF 6.0 0.0 7.4 PSF TOTAL LOAD 45.9 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.29")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.29")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

CSI: TC=0.29/1.00 (B-C:1) , BC=0.10/1.00 (F-G:4) , WB=0.06/1.00 (D-F:1) , SSI=0.15/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.55 (B) (INPUT = 0.90.) JSI METAL= 0.15 (B) (INPUT = 1.00)

Structural component only DWG# T-2215142

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423533 G21 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 08:09:51 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-qhrdpxlaUxqfN2diy?3zsdQjg3Rf93cx1hGNl z38bk

4-5-8

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR SPF SPF SPF B D G F No.2 No.2 2x4 DRY DRY DRY DRY No.2 2x4 No.2 SPF н SPF ALL WEBS 2x3 ALL GABLE WEBS SPF DRY No.2 2x3 DRY DRY: SEASONED LUMBER. No.2

GABLE STUDS SPACED AT 2-0-0 OC.

PL/	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Х			
В	TMVW+p	MT20	4.0	4.0	1.00	2.00			
С	TMW+w	MT20	2.0	4.0					
D	TTW+p	MT20	4.0	6.0	Edge				
Ε	TMW+w	MT20	2.0	4.0	-				
F	TMVW+p	MT20	4.0	4.0	1.00	2.00			
Н	BMV1+p	MT20	3.0	4.0					
1	BMWW1-t	MT20	4.0	4.0					
J	BMW1+w	MT20	2.0	4.0					
K	BMWW1-t	MT20	4.0	4.0					
L	BMV1+p	MT20	3.0	4.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BEARINGS**

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

1-3-8

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

<u>LOADING</u> TOTAL LOAD CASES: (4)

CHORDS

ı	l CHC	7402				VV E	8.5		
ĺ	MAX.	FACTORED	FACTORED				MAX. FACTO	RED	
	MEMB.	FORCE	VERT. LOAD I	_C1 MAX	MAX.	MEMB.	FORCE	MAX	
	1	(LBS)	(PLF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
	FR-TO		FROM TO		LENGTH	FR-TO			
	L-B	-292 / 0	0.0	0.03 (1)	7.81	J- D	-146 / 0	0.06 (1)	
	A-B	0 / 50	-112.4 -112	2.4 0.15 (1)	10.00	K-C	-305 / 0	0.07 (1)	
	B- C	-12 / 0	-112.4 -112	2.4 0.09 (1)	6.25	I-E	-305 / 0	0.07(1)	
	C-D	-40 / 0	-112.4 -112	2.4 0.09 (1)	6.25	B-K	0 / 26	0.01 (1)	
	D-E	-40 / 0	-112.4 -112	2.4 0.09 (1)	6.25	I- F	0 / 26	0.01 (1)	
	E-F	-12 / 0	-112.4 -112					. ,	
	F-G	0 / 50	-112.4 -112	2.4 0.15 (1)	10.00				
	H-F	-292 / 0	0.0	0.03 (1)	7.81				
	L-K	0/0	-18.5 -18	3.5 0.03 (4)	10.00				
	K-J	0 / 15		3.5 0.03 (4)					
	J-I	0 / 15	-18.5 -18	3.5 0.03 (4)	10.00				
	I- H	0/0	-18.5 -18	3.5 0.03 (4)	10.00				

DESIGN CRITERIA

1-3-8

SPECIFIED LOADS: 32.5 PSF CH. LL = DL = 6.0 0.0 7.4 PSF LL PSF PSF TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 43 lb

Scale = 1:34.6

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.15/1.00 (F-G:1) , BC=0.03/1.00 (J-K:4) , WB=0.07/1.00 (C-K:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.22 (E) (INPUT = 0.90) JSI METAL= 0.16 (C) (INPUT = 1.00)

Structural component only DWG# T-2215113

TMWW-i MT20 4.0 4.0 6.0 2.50 2.75 16.0 3.00 4.25 4.0 MT20 MT20 TMW+w 2.0 2.0 5.0 6.0 2.0 2.0 TMVW-t MT20 BMVWW-t MT20 BMW+w BMW+w MT20 4.0 4.0 3.0 4.0 10.0 4.0 10.0 3.75 1.75 BMWWW-t MT20 L M N BMV1+p WMWWW+t MT20 MT20 WMWWW+t MT20 40 10.0 4.50 1.25

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

	ORDS K. FACTORED	FACTORED			W E	B S MAX. FACTO	DRED
MEMB.	FORCE	VERT. LOAD LO	C1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAG)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
A-B	0 / 24	-112.4 -112.	4 0.14 (1)	10.00	J- N	0 / 25	0.18(1)
B- C	-753 / 0	-112.4 -112.	4 0.14 (1)	6.25	N- D	0 / 559	0.27 (1)
C-D	-1482 / 0	-112.4 -112.	4 0.60 (1)	4.41	I- M	0 / 146	0.26(1)
D-E	-1550 / 0	-112.4 -112.			M- E	-792 / 0	0.25 (1)
E-F	-1499 / 0	-112.4 -112.			N- M	0 / 1620	0.26(1)
	-525 / 0	0.0 0.	0 0.12 (1)	7.81	M- H	-153 / 0	0.03(1)
L-B	-743 / 0	0.0 0.	0 0.07 (1)	7.81	M-F	0 / 1630	0.37(1)
					K-C	-674 / 0	0.10(1)
L-K	0/0		5 0.02 (1)		K- N	0/716	0.16(1)
K-J	0 / 104		5 0.04 (1)		C-N	0 / 640	0.14(1)
I- H	0 / 147		5 0.61 (1)		B-K	0 / 755	0.17(1)
H- G	0/0	-18.5 -18.	5 0.25 (1)	10.00			

Structural component only DWG# T-2215143

RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD
ALLOWABLE DEFL.(LL)= L/360 (0.32") CALCULATED VERT. DEFL.(LL)= L/817 (0.14") ALLOWABLE DEFL.(TL)= L/360 (0.32") CALCULATED VERT. DEFL.(TL)= L/443 (0.26")
CSI: TC=0.60/1.00 (D-E:1) , BC=0.61/1.00 (H-I:1) , WB=0.37/1.00 (F-M:1) , SSI=0.42/1.00 (D-E:1)
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10
COMPANION LIVE LOAD FACTOR = 1.00
AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (F) (INPUT = 0.90) JSI METAL= 0.40 (M) (INPUT = 1.00)

LUMBER N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
E - H	2x4	DRY	No.2	SPF
P - B	2x4	DRY	No.2	SPF
I - G	2x4	DRY	No.2	SPF
P - O	2x6	DRY	No.2	SPF
O - C	2x4	DRY	No.2	SPF
N - K	2x6	DRY	No.2	SPF
J - F	2x4	DRY	No.2	SPF
J - I	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
P - N	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER

PLA	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW-t	MT20	4.0	10.0	2.00	4.50				
С	TMVW+p	MT20	4.0	4.0	1.00	2.00				
D	TTWW+m	MT20	5.0	6.0	2.25	1.50				
Ε	TTW-m	MT20	4.0	4.0						
F	TMVW+p	MT20	4.0	4.0	1.00	2.00				
G	TMVW-t	MT20	4.0	10.0	2.00	4.50				
1	BMVW1+p	MT20	4.0	6.0						
J	BMV+p	MT20	3.0	8.0						
K	BVMWW-I	MT20	7.0	12.0	4.25	7.00				
L	BMWWW-t	MT20	5.0	8.0						
М	BMWW-t	MT20	5.0	6.0						
N	BVMWW-I	MT20	7.0	12.0	4.25	7.00				
0	BMV+p	MT20	3.0	8.0						
Р	BMVW1+p	MT20	4.0	6.0						

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215155

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	
BEARINGS	
DEAL HITCO	

FACTOR GROSS RE		MAXIMUN GROSS F		INPUT BRG	REQRD BRG	
VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
1454	0	1454	0	0	5-8	5-8
1451	0	1451	0	0	5-8	5-8

UNF	ACTORED	REAC	TIONS
	10T101	00	

	ISI LUASE	IVIAX./IV	MIN. COMPO	VENT REACTION	45		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL
Ρ	1019	722 / 0	0/0	0/0	0/0	297 / 0	0/0
i	1017	721 / 0	0/0	0/0	0/0	296 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P, I

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.17 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					W E	BS		
MAX	(. FACTORED	FACTOR	D				MAX. FACT	ORED	
MEMB.	FORCE	VERT. LOA	D LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF) (CSI (LC)	UNBRAC	3	(LBS)	CSI (LC)
FR-TO		FROM T		` '	LENGTH				/
A-B	0 / 50	-112.4 -1	12.4	0.17(1)	10.00	C- M	-1014/0	0.24	(1)
B- C	-2559 / 0	-112.4 -1	12.4	0.15 (1)	4.17	M- D	0/381	0.09	
C-D	-1469 / 0	-112.4 -1				D- L	0/5	0.00	
D-Q	-1131 / 0	-112.4 -1				L-E	0 / 401	0.10	
Q-E	-1131 / 0	-112.4 -1	12.4	0.23 (1)	5.65	L-F	-1006 / 0	0.24	
E-F	-1471 / 0	-112.4 -1	12.4	0.22 (1)	5.13	P-N	-76 / 0	0.01	
F- G	-2552 / 0	-112.4 -1				B- N	0 / 2041	0.51	
G-H	0 / 50	-112.4 -1				K-I	-76 / 0	0.01	
P-B	-1386 / 0	0.0	0.0	0.16(1)	6.87	K-G	0 / 2035	0.50	
I- G	-1383 / 0	0.0	0.0	0.16 (1)	6.88				
P-O	0 / 58	-18.5	-185	0.02 (4)	10.00				
0- N	0 / 192			0.19 (1)					
N- C	0 / 750	0.0		0.29 (1)					
N- R	0 / 2063			0.30 (1)					
R- M	0 / 2063			0.30 (1)					
M-S	0 / 1128			0.16 (1)					
S-L	0 / 1128			0.16 (1)					
L- T	0 / 2057	-18.5		0.29 (1)					
T- K	0 / 2057			0.29 (1)					
J- K	0/21	0.0		0.16 (1)					
K-F	0 / 741	0.0		0.28 (1)					
J- I	0 / 58			0.02 (4)					
SPECIE	FIED CONCENT	BATED I OA	25 (1.6						
JT	LOC. LC		MAX		ACE I	DIR.	TYPE	HEEL	COI

CILIED CON	1CENTRA	TED LOP	(D2 (FR2)					
LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
5-2-8	-136	-136		BACK	VERT	TOTAL		C1
7-9-8	-136	-136		BACK	VERT	TOTAL		C1
10-11-4	-124	-124		BACK	VERT	TOTAL		C1
7-8-12	-11	-11		BACK	VERT	TOTAL		C1
5-3-4	-11	-11		BACK	VERT	TOTAL		C1
2-0-12	-124	-124		BACK	VERT	TOTAL		C1
6-3-4	-56	-56		BACK	VERT	TOTAL		C1
3-8-4	-11	-11		BACK	VERT	TOTAL		C1
6-3-4	-11	-11		BACK	VERT	TOTAL		C1
9-3-12	-11	· -11		BACK	VERT	TOTAL		C1
	LOC. 5-2-8 7-9-8 10-11-4 7-8-12 5-3-4 2-0-12 6-3-4 3-8-4 6-3-4	LOC. LC1 5-2-8 - 136 7-9-8 - 136 10-11-4 - 124 7-8-12 - 11 5-3-4 - 11 2-0-12 - 124 6-3-4 - 56 3-8-4 - 11 6-3-4 - 11	LOC. LC1 MAX- 5-2-8 -136 -136 7-9-8 -136 -136 10-11-4 -124 -124 7-8-12 -11 -11 5-3-4 -11 -11 20-12 -124 -124 6-3-4 -56 -56 3-8-4 -11 -11 6-3-4 -11 -11	5-2-8 -13-6 -13-6 7-9-8 -13-6 -13-6 10-11-4 -12-4 -12-4 -12-4 7-8-12 -11 -11 5-3-4 -11 -11 2-0-12 -12-4 -12-4 6-3-4 -5-6 -5-6 3-8-4 -11 -11 6-3-4 -11 -11	LOC. LC1 MAX- MÂX+ FACE 5-2-8 -136 -136	LOC. LC1 MAX- MAX+ FACE DIR. 5-2-8 -136 -136 BACK VERT 7-9-8 -136 -136 BACK VERT 10-11-4 -124 -124 BACK VERT 5-3-4 -11 -11 BACK VERT 6-3-4 -56 -56 BACK VERT 3-8-4 -11 -11 BACK VERT 6-3-4 -56 -56 BACK VERT 6-3-4 -11 -11 BACK VERT	LOC. LC1 MAX- MÂX+ FACE DIR. TYPE 5-2-8 -136 -136 BACK VERT TOTAL 7-9-8 -136 -136 BACK VERT TOTAL 10-11-4 -124 -124 BACK VERT TOTAL 7-8-12 -111 -11 BACK VERT TOTAL 5-3-4 -111 -11 BACK VERT TOTAL 2-0-12 -124 -124 BACK VERT TOTAL 6-3-4 -56 -56 BACK VERT TOTAL 3-8-4 -11 -11 BACK VERT TOTAL 6-3-4 -11 -11 BACK VERT TOTAL 6-3-4 -11 -11 BACK VERT TOTAL	LOC. LC1 MAX- MÂX+ FACE DIR. TYPE HEEL 5-2-8 -136 -136 BACK VERT TOTAL 7-9-8 -136 -136 BACK VERT TOTAL 10-11-4 -124 -124 BACK VERT TOTAL 7-8-12 -11 -11 BACK VERT TOTAL 5-3-4 -11 -11 BACK VERT TOTAL 6-3-4 -56 -56 -56 BACK VERT TOTAL 3-8-4 -11 -11 BACK VERT TOTAL 6-3-4 -56 -56 -56 WERT TOTAL 8-8-4 -11 -11 BACK VERT TOTAL 8-3-4 -15 BACK VERT

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	Loai	DS:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	1 10	ΔD	_	45.0	PC

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

- THIS DESIGN COMPLIES WITH:
 PART 9 OF BCBC 2018 , ABC 2019
 PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 - TPIC 2014
- (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.43")
CALCULATED VERT. DEFL.(LL) = L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.43")
CALCULATED VERT. DEFL.(TL) = L/999 (0.08")

CSI: TC=0.23/1.00 (D-E:1) , BC=0.30/1.00 (M-N:1) , WB=0.51/1.00 (B-N:1) , SSI=0.17/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.85 (C) (INPUT = 0.90) JSI METAL= 0.42 (C) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
423534	T30S	1	1	TRUSS DESC.		
Tamarack Roof Truss, Bur	rlington				Version 8.530 S Feb 23 202 ID:c3ivi23uDiig 8pvRKbkZpv75XW-GA4sk	22 MiTek Industries, Inc. Fri Jun 24 08:28:57 2022 Page 2 0AQc1D3s9Ez4hdiJItYG1WYgGSdZ s0zZz38Jq
		CONNECTION F	EOI IIDEMENT	e		
				24	CONNECTION IS REQUIRED.	
						·
						·
		4.5				
	•					
					• •	
						·
	-FCC1011					
PROF	ESSIONALE					
1 1 0 O	5-24-22	,				
JE HI	ESSIONAL FIRE 6-24-22 G. ALVES 50009024					
10	0009024					
1 [
B	The same of the sa					REVIEWED
	OF ONTARIO					
						*
DIVICTURAL CO	omponent only 215155	•				

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423534 T31S TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:28:58 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-IMeEY8B2NLLwTJp9eO8xrVQiHRr7PmxmndcZW?z38Jp

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
L - A	2x4	DRY	No.2	SPF
F - E	2x4	DRY	No.2	SPF
L - K	2x4	DRY	No.2	SPF
K - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
G - D	2x4	DRY	No.2	SPF
G - F	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
Α	TMVW-p	MT20	5.0	6.0	Edge						
В	TMVW+p	MT20	4.0	4.0	1.00	2.00					
С	TTW+p	MT20	4.0	6.0	Edge						
D	TMVW+p	MT20	4.0	4.0	1.00	2.00					
Е	TMVW-p	MT20	5.0	6.0	Edge						
F	BMVW1-t	MT20	4.0	4.0							
G	BMV+p	MT20	3.0	4.0							
Н	BVMWW-I	MT20	6.0	10.0	Edge	6.50					
1	BMWWW-t	MT20	4.0	6.0	_						
J	BVMWW-I	MT20	6.0	10.0	Edge	6.50					
K	BMV+p	MT20	3.0	4.0							
L	BMVW1-t	MT20	4.0	4.0							

Edge - INDICATES REFERENCE CORNER OF PLATE

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215156

DIMENSIONS, SUPPORTS	AND LOADINGS	SPECIFIED	BY FABRICATO	OR TO BE VERIE	FD BY
BUILDING DESIGNER					
READINGS					

BEAF	RINGS						
	FACTOR	RED	MAXIMUN	/ FACTO	DRED	INPUT	REQRD
	GROSS RE	GROSS REACTION			BRG	BRG	
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
-	851	0	851	0	0	5-8	5-8
=	851	0	851	0	0	MECHANIC	:AI

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM

UNFACTORED REACT	IONS	
4OT LOADE	1111	

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS.		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
L	596	422 / 0	0/0	0/0	0/0	174 / 0	0/0
F	596	422 / 0	0/0	0/0	0/0	174 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4) 0110000

	ORDS					W E	BS		
MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	_F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A- B	-1629 / 0			0.20(1)		I- C	0 / 501	0.11(1)	
B- C	-747 / 0			0.28 (1)		I- D	-820 / 0	0.29 (1)	
C- D	-747 / 0	-112.4	-112.4	0.28(1)	6.25	B- I	-820 / 0	0.29(1)	
D- E	-1629 / 0	-112.4	-112.4	0.20(1)	5.00	L- J	-45 / 0	0.01(1)	
L- A	-803 / 0	0.0		0.09 (1)		A-J	0 / 1327	0.30(1)	
F-E	-803 / 0	0.0	0.0	0.09 (1)	7.81	H- F	-45 / 0	0.01(1)	
						H- E	0 / 1327	0.30(1)	
L-K	0/34	-18.5	-18.5	0.03 (4)	10.00				
K- J	0 / 21	0.0	0.0	0.09(1)	10.00				
J- B	0/371	0.0		0.14(1)					
J- I	0 / 1340	-18.5		0.27 (1)					
I- H	0 / 1340	-18.5	-18.5	0.27 (1)	10.00				
G- H	0 / 21	0.0	0.0	0.09(1)	10.00				
H- D	0 / 371	0.0	0.0	0.14(1)	10.00				
G-F	0/34	-18.5	-18.5	0.03 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS:								
TOP	CH.	LL	=	32.5	PS			
		DL	=	6.0	PS			
BOT	CH.	LL	==	0.0	PS			
		DL	=	7.4	PS			
TOTA		A D		45.0	-			

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

Scale = 1:43.3

TOTAL WEIGHT = 61 Ib

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.43")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.43")
CALCULATED VERT. DEFL.(TL)= L/999 (0.06")

CSI: TC=0.28/1.00 (C-D:1) , BC=0.27/1.00 (H-I:1) , WB=0.30/1.00 (E-H:1) , SSI=0.17/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(201) (211) (211) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.66 (I) (INPUT = 0.90) JSI METAL= 0.31 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 423534 T32 2 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:28:59 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-DYCclTBg7fTn5TOLC6fAOjzxQqF68Hrv0HL72Rz38Jo

LUMBER N. L. G. A. RULES CHORDS SIZE D - A 2x4 LUMBER SIZE DESCR. No.2 No.2 SPF A B DRY DRY SPF No.2 D - C 2x4 DRY No.2 SPF No.2 SPF DRY: SEASONED LUMBER

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE LOAD(PLF) SPACING (IN) TOP CHORDS : (0.122"X3") SPIRAL NAILS D- A A- B 12 TOF BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(14.0) WEBS: (0.122"X3") SPIRAL NAILS

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PLATES (table is in inches)

TYPE	PLATES	W	LEN Y	Х
TMVW-t	MT20	4.0	4.0	
TMV+p	MT20	3.0	4.0	
BMVW1-t	MT20	4.0	4.0	
BMV1+p	MT20	3.0	4.0	
	TMVW-t TMV+p BMVW1-t	TMVW-t MT20 TMV+p MT20 BMVW1-t MT20	TMVW-t MT20 4.0 TMV+p MT20 3.0 BMVW1-t MT20 4.0	TMVW-t MT20 4.0 4.0 TMV+p MT20 3.0 4.0 BMVW1-t MT20 4.0 4.0

NOTES-(1)

Structural component only DWG# T-2215157

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERI	EIED DV
BUILDING DESIGNED	ILDDI

	RINGS	ANEN					
	FACTOR	RED	MAXIMUN	/ FACTO	DRED	INPUT	REQRD
	GROSS RE	EACTION	GROSS F	REACTIO	N	BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
)	198	0	198	0	0	5-8	5-8
2	184	0	184	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	<u> IIN. COMPO</u>	NENT REACTION	4S		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	143	80 / 0	0/0	0/0	0/0	63 / 0	0/0
С	132	75 / 0	0/0	0/0	0/0	57 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

E

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 10.00 FT
OR RIGID CEI MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

<u>LOADING</u> TOTAL LOAD CASES: (4)

	ORDS	FACTO	RED			w	'EBS MAY FA	CTORED	
MEMB.	FORCE (LBS)	VERT. LC	AD LC1	MAX				CE MAX	
FR-TO	,7	FROM				STH FR-T		,, 00.	(20)
D- A	-150 / 0	0.0	0.0	0.01 (1) 7.	81 A-C	0/0	0.00	(1)
A- E	0/0	-112.4	-112.4	0.06 (i) 10.	00			. ,
E-B	0/0	-112.4				00			
C-B	-136 / 0	0.0	0.0	0.01 (l) 7.	81			
D-C	0/0	-43.5	-43.5	0.03 (¥) 10.	00			
SPECIF	IED CONCEN	TRATED LO	ADS (LE	BS)					
JT	LOC. LO		MAX		FACE	DIR.	TYPE	HEEL	CONN.
E	8-4 -2	:8 -28	-	, T	OP	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

TOTAL WEIGHT = 4 X 9 = 36 lb

Scale = 1:11.2

DESIGN CRITERIA

SPECIAL LOADS ANALYSIS *** GEOMETRY AND/OR BASIC LOADS CHANGED BY USER.
LOADS WERE DERIVED FROM USER INPUT
NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS:

TOP	CH.	LL	=	32.5	PS
		DI	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
i		DL	==	7.4	PS
TOTA	1 10	ΔD	_	45 0	DC

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.03/1.00 (C-D:4) , WB=0.00/1.00 (A-C:1) , SSI=0.06/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.04 (A) (INPUT = 0.90) JSI METAL= 0.01 (A) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423534 T33 TRUSS DESC

amarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:29:00 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-hkm_ypCluybdjdzXmpAPwwV4gEX4tk43Fx5gauz38Jn

Scale = 1:27.5

3-10-8

LUMBER N. I N. L. G. A. RULES CHORDS SIZE D - A 2x4 LUMBER SIZE DESCR DRY No.2 DRY DRY SPF С DRY No.2 SPF ALL WEBS No.2 SPF DRY: SEASONED LUMBER

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #		URFACE	LOAD(PLF)
	S	PACING (IN)	
TOP CHOR	DS: (0.122")	X3") SPIRAL NAILS	
D- A 1	· ·	12	TOP
A- B 1		12	TOP
B- C 1		12	TOP
BOTTOM C	HORDS: (0.	122"X3") SPIRAL NAILS	
D- C 2	· ·	12	SIDE(0.0)
WEBS: (0.1	22"X3") SPI	IRAL NAILS	
2v3 1		6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)

J١	TYPE	PLATES	W	LEN	Υ	Х	
Α	TMVW+p	MT20	4.0	4.0	1.00	2.00	
В	TMV+p	MT20	3.0	4.0			
С	BMVW1+p	MT20	4.0	6.0			
D	BMV1+p	MT20	3.0	8.0			
_			0.0	0.0			

Structural component only DWG# T-2215158

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	ALL LOADINGS OF LOWIED BY ABRICATOR TO BE VERN LED BY
BUILDING DESIGNER	
DOILDING DESIGNER	
BEARINGS	
BEARINGS	

BEAL	RINGS						
	FACTO	MAXIMUM FACTORED			INPUT	REQRD	
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
ΙT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
)	634	0	634	0	0	5-8	5-8
3	706	0	706	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 2-0.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS						
JT :	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
D	444	319/0	0/0	0/0	0/0	125 / 0	0/0		
С	494	355 / 0	0/0	0/0	0/0	138 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

C H O	RDS					WE	D.C.	
	FACTORED	FACTO	RED			VV E	MAX. FACTO	RED
MEMB.	FORCE			MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAG	3	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	. ,	
D- A	-218 / 0	0.0	0.0	0.01(1)	7.81	A- C	0/0	0.00(1)
A- B	0/0	-112.4	-112.4	0.16(1)	10.00			
C-B	-218 / 0	0.0	0.0	0.04 (1)	7.81			
D- E	0/0	-18.5	-18.5	0.31 (1)	10.00			
E- C	0/0			0.31 (1)				
SPECIFIED CONCENTRATED LOADS (LBS)								

MAX-MAX+ HEEL CONN. FRONT VERT TOTAL

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

SPEC	ILIED	LOAL	JS:		
TOP	CH.	LL	==	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	۸n	_	45.0	DOE

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 2 X 22 = 43 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.03")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.31/1.00 (C-D:1) , WB=0.00/1.00 (A-C:1) , SSI=0.16/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.08 (A) (INPUT = 0.90) JSI METAL= 0.04 (B) (INPUT = 1.00)

	TOTAL I	<u>G</u> -OAD CASES: ((4)						
	СН	ORDS					W E	BS	
	MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED
	MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
							;	(LBS)	CSI
	FR-TO		FROM	TO		LENGTH			
	A- B	0 / 44	-112.4	-112.4	0.04(1)	10.00	Q-C	-563 / 0	0.07
	B- C	-2867 / 0	-112.4	-112.4	0.08 (1)	6.25	C-P	0 / 96	0.01
	C-D	-2978 / 0	-112.4	-112.4	0.04(1)	6.25	P-D	0/114	0.02
l	D- E	-4134 / 0	-112.4	-112.4	0.35 (1)	5.22	M- G	0 / 2008	0.25
l		-4134 / 0						-2031 / 0	0.31
l		-4133 / 0						0 / 1747	0.22
۱		-4715 / 0						0 / 2452	0.30
l	H- I	-6084 / 0						0 / 5166	0.64
l		0 / 44							0.02
ŀ		-2488 / 0							0.25
ŀ	K- I	-4886 / 0	0.0	0.0	0.17 (1)	6.56	0- F	-1081 / 0	0.24
ı									
١	R-Q		-18.5						
l	Q-P	0 / 2396			0.20 (1)				
Ì	P- O	0 / 2451			0.21 (1)				
l	O- N		-18.5						
l	N- M	0 / 3970			0.31 (1)				
١		0 / 5048							
I	L-S	0/0	-18.5	-18.5	0.13(1)	10.00			

L- 5	0/0	-18.5	-18.5	0.13(1)	10.00					
S-T	0/0	-18.5	-18.5	0.13(1)	10.00					
T- K	0/0	-18.5	-18.5	0.13(1)	10.00					
SPECIFIED CONCENTRATED LOADS (LBS)										

Γ	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.	
	24-9-8	-41	-41		FRONT	VERT	DEAD		C1	
	24-9-8	-217	-217		FRONT	VERT	SNOW		C1	
	24-9-8	-2125	-2125		FRONT	VERT	TOTAL		C1	
	25-11-12	-21	-21		FRONT	VERT	TOTAL		C1	
	26-11-12	-21	-21		FRONT	VERT	TOTAL		C1	

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

12

12

BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

N- K 2 12 WEBS : (0.122"X3") SPIRAL NAILS

SIDE(183.1)

SIDE(183.1)

SIDE(609.4)

TOP

TOP

TOP

G-J

R-B

R-N

H-I

M- G M- H Q- B

O- D O- F

Structural component only DWG# T-2215162

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.12")

CSI: TC=0.35/1.00 (D-F:1) , BC=0.45/1.00 (L-M:1) , WB=0.64/1.00 (I-L:1) , SSI=0.18/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

MAX

CSI (LC)

0.07 (1)

0.02 (4) 0.25 (1)

0.31 (1

0.22 (1) 0.30 (1) 0.64 (1)

0.02 (1

0.24 (1

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (D) (INPUT = 0.90) JSI METAL= 0.76 (Q) (INPUT = 1.00)

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
	T45	1	2	TRUSS DESC.		
Tamarack Roof Truss, Burlington					Version 8.530 S Feb 23 2022 N ID:c3jyj23uDijq 8pvRKbkZpy75XW-4RnhG	######################################
GIRDER NAILING ASSUMES NA	ILED HANGERS ARE					
FASTENED WITH MIN. 3-0 INCH	HNAILS.					
PLATES (table is in inches) JT TYPE PLATES W	LEN Y X					
B TMVW-p MT20 5. C TMWW+t MT20 4.	.0 8.0 1.50 4.00 .0 6.0 3.00 1.00					
D TTWW+m MT20 6. E TS-t MT20 5.	0 7.0 3.50 2.00					
G TTWW+m MT20 6.	.0 4.0 2.50 1.00 .0 7.0 3.50 2.00 .0 6.0 3.00 1.00 .0 8.0 1.50 4.00					
H TMWW+t MT20 4 I TMVW-p MT20 5 K BMV1+p MT20 3 L BMWW+t MT20 6	.0 8.0				·	
M BMWW+t M120 5	.0 7.0 4.25 2.00 .0 8.0					
O BMWWW-t MT20 5	.0 6.0 .0 8.0 .0 8.0					
Q BMWW+t MT20 6 R BMV1+p MT20 3	.0 7.0 4.25 2.00 .0 8.0				·	
NOTES- (1)						
Lateral braces to be a minimur	m of 2X4 SPF #2.					
						*
•						
					·	
	!					
	-					
PROFESS	IONALE					
B. Con						
<u> </u>	11VE					
06-24 H. J. G. A 100009	0247					
					.	
18	1					REVIEWED
Pormoto	FONTA					
Structural compo	onent only 62					

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423537 TRUSS DESC T46 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 09:02:57 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-YdL3ULs2BqEcbfB1b7D5_UN2_MkgeoKufM1yaJz37py 1-3-8 7-11-2 13-0-12 7-11-2 5x6 \\ 2x4 || 5x6 // F 8.00 12 5x6 // 5x6 <> G 3x4 || 3x4 || \aleph κ 3x8 = 5x6 5x6 = 4x4 =4x6 =4x4 = 28-11-0 28-11-0 1-3-8 TOTAL WEIGHT = 2 X 125 = 250 li DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING -BEARINGS FACTORED **BUILDING DÉSIGNER DESIGN CRITERIA** MAXIMUM FACTORED INPLIT REORD SPECIFIED LOADS: GROSS REACTION VERT HORZ 2047 0 GROSS REACTION DOWN HORZ U 2047 0 0 N BRG UPLIFT IN-SX BRG IN-SX CH. LL = DL = LL = DL = PSF PSF 6.0 0.0 7.4 5-8 5-8 BOT CH. PSF 2047 2047 0 TOTAL LOAD 45.9 PSF

LUMBER	LUMBER								
N. L. G. A. R	ULES								
CHORDS	SIZE		LUMBER	DESCR.					
A - D	2x4	DRY	No.2	SPF					
D - F	2x4	DRY	No.2	SPF					
F - I	2x4	DRY	No.2	SPF					
О - В	2x4	DRY	No.2	SPF					
J - H	2x4	DRY	No.2	SPF					
0 - i	2x4	DRY	No.2	SPF					
Ľ - J	2x4	DRY	No.2	SPF					
- "		5111	110.2	011					
ALL WEBS	2x3	DRY	No.2	SPF					
EXCEPT	LAU	Ditt	110.2	011					
0 - C	2x4	DRY	No.2	SPF					
1 5	2x4	DRY		SPF					
G - J .	2X4	DHY	No.2	SPF					
551/ 651 661/55 111/55									
DRY: SEASONED LUMBER.									

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Χ				
В	TMV+p	MT20	3.0	4.0						
С	TMWW-t	MT20	5.0	6.0						
D	TTWW+m	MT20	5.0	6.0	2.50	1.50				
E	TMW+w	MT20	2.0	4.0						
F	TTWW+m	MT20	5.0	6.0	2.50	1.50				
G	TMWW-t	MT20	5.0	6.0						
Н	TMV+p	MT20	3.0	4.0						
J	BMVW1-t	MT20	5.0	6.0						
K	BMWW-t	MT20	4.0	4.0						
L	BS-t	MT20	3.0	8.0						
M	BMWWW-t	MT20	4.0	6.0						
Ν	BMWW-t	MT20	4.0	4.0						
0	BMVW1-t	MT20	5.0	6.0						

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

OIAL	UNFACTORED REACTIONS										
	1ST LCASE	MAX./	MIN. COMPOR	VENT REACTION	NS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
0	1432	1028 / 0	0/0	0/0	0/0	404 / 0	0/0				
J	1432	1028 / 0	0/0	0/0	0/0	404 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O, J

K-J

0 / 1766

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.67 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS		WEBS				
MAX	. FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB	. FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		• /
A-B	0 / 43	-112.4 -112.4				-59 / 42	0.03(1)
B- C	0 / 28	-112.4 -112.4	0.27 (1)	10.00	N- D	0 / 200	0.05 (4)
	-2101 / 0						0.16 (1)
	-2235 / 0	-112.4 -112.4					0.67 (1)
	-2235 / 0	-112.4 -112.4	0.71 (1)	3.67	M- F	0/712	0.16(1)
F-G	-2101 / 0	-112.4 -112.4	0.27 (1)	4.45	K-F	0 / 200	0.05 (4)
G-H	0 / 28		0.27 (1)	10.00	K- G	-59 / 42	0.03(1)
	0 / 43	-112.4 -112.4	0.15 (1)	10.00	O- C	-2423 / 0	0.83 (1)
	-327 / 0	0.0 0.0	0.03 (1)	7.81	G- J	-2423 / 0	0.83 (1)
J- H	-327 / 0	0.0 0.0	0.03 (1)	7.81			
O- N		-18.5 -18.5					
N- M		-18.5 -18.5					
M- L		-18.5 -18.5					
L-K	0 / 1725	-18.5 -18.5	0.43 (1)	10.00			

-18.5 -18.5 0.43 (1) 10.00

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.09")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL)= L/999 (0.17")

CSI: TC=0.71/1.00 (D-E:1) , BC=0.43/1.00 (J-K:1) , WB=0.83/1.00 (G-J:1), SSI=0.36/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

| PLATE | GRIP(DRY) | SHEAR | SECTION (PSI) | (PLI) | (PLI) | (PLI) | MAX | MIN | MAX | MIN | MAX | MIN | MT20 | 650 | 371 | 1747 | 788 | 1987 | 1873 |

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (G) (INPUT = 0.90) JSI METAL= 0.54 (L) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423537 TRUSS DESC T47 Tamarack Roof Truss, Burlingtor Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 09:02:58 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-0pvRhhtgx8MTDpmD9qkKXivITm4INHu1t0nV6mz37px 1-3-8 9-5-2 10-0-12 Scale = 1:53.8 5x6 \\ 2x4 || 5x6 // D F F 8.00 12 4x4 // С 5x6 🗸 5x6 < R W2 Q. М 0 L κ 3x8 = 3x4 || 3x4 || 5x6 = 4x4 = 4x6 =4x4 =5x6 =28-11-0 28-11-0 1-3-8

LUMBER										
N. L. G. A. F	N. L. G. A. RULES									
CHORDS	SIZE		LUMBER	DESCR.						
A - D	2x4	DRY	No.2	SPF						
D - F	2x4	DRY	No.2	SPF						
F - I	2x4	DRY	No.2	SPF						
Q - B	2x4	DRY	No.2	SPF						
J - H	2x4	DRY	No.2	SPF						
Q - M	. 2x4	DRY	No.2	SPF						
M - J	2x4	DRY	No.2	SPF						
ALL WEBS	2x3	DRY	No.2	SPF						
EXCEPT										

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Χ				
В	TMVW-t	MT20	5.0	6.0	2.50	2.75				
С	TMWW-t	MT20	4.0	4.0	2.00	1.50				
D	TTWW+m	MT20	5.0	6.0	Edge	1.75				
E	TMW+w	MT20	2.0	4.0	-					
F	TTWW+m	MT20	5.0	6.0	Edge	1.75				
G	TMWW-t	MT20	4.0	4.0	2.00	1.50				
Н	TMVW-t	MT20	5.0	6.0	2.50	2.75				
J	BMV1+p	MT20	3.0	4.0						
K	BMWW-t	MT20	5.0	6.0						
L	BMWW-t	MT20	4.0	4.0						
M	BS-t	MT20	3.0	8.0						
N	BMWWW-t	MT20	4.0	6.0						
0	BMWW-t	MT20	4.0	4.0						
P	BMWW-t	MT20	5.0	6.0						
Q	BMV1+p	MT20	3.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215164

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED B	·Υ
BUILDING DÉSIGNER		

BEA	RINGS						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	2047	0	2047	0	0	5-8	5-8
J	2047	0	2047	0	0	5-8	5-8

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX.	MIN. COMPO	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL
Q	1432	1028 / 0	0/0	0/0	0/0	404 / 0	0/0
J	1432	1028 / 0	0/0	0/0	0/0	404 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS	FACTORED		WE		
MAX. FACTORED				MAX. FACTO	
MEMB. FORCE					MAX
(LBS)	(PLF) CSI			(LBS)	CSI (LC)
FR-TO	FROM TO				
A- B 0 / 43				-324 / 0	0.10 (1)
B- C -2182 / 0	-112.4 -112.4 0.	39 (1) 4.25	C-O	-288 / 0	0.21 (1)
C-D -1999 / 0	-112.4 -112.4 0.	37 (1) 4.42	O- D	0 / 287	0.06(1)
D-E -1900 / 0	-112.4 -112.4 0.	41 (1) 4.45	D- N	0 / 471	0.11 (1)
E- F -1900 / 0	-112.4 -112.4 0.	41 (1) 4.45	N-E	-689 / 0	0.75 (1)
F- G -1999 / 0	-112.4 -112.4 0.	37 (1) 4.42	N-F	0 / 471	0.11 (1)
G- H -2182 / 0	-112.4 -112.4 0.	39 (1) 4.25	L-F	0 / 287	0.06 (1)
H-1 0 / 43	-112.4 -112.4 0.	15 (1) 10.00	L- G	-288 / 0	0.21 (1)
Q-B -2008 / 0	0.0 0.0 0.		K- G	-324 / 0	0.10 (1)
J- H -2008 / 0	0.0 0.0 0.			0 / 1890	0.43 (1)
		(-/		0 / 1890	0.43 (1)
Q-P 0/0	-18.5 -18.5 0.	09 (4) 10.00			0
P-O 0/1844	-18.5 -18.5 0.				
O-N 0 / 1635	-18.5 -18.5 0.				
N- M 0 / 1635	-18.5 -18.5 0.				
M- L 0 / 1635					
L- K 0 / 1844	-18.5 -18.5 0.				
K-J 0/0	-18.5 -18.5 0				

TOTAL WEIGHT = 2 X 132 = 263 lb DESIGN CRITERIA

DECK	214 011		=		
SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96") CALCULATEO VERT. DEFL.(LL) = L/999 (0.08") ALLOWABLE DEFL.(TL)= L/360 (0.96") CALCULATED VERT. DEFL.(TL) = L/999 (0.14")

CSI: TC=0.41/1.00 (D-E:1) , BC=0.34/1.00 (O-P:1) , WB=0.75/1.00 (E-N:1) , SSI=0.27/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (B) (INPUT = 0.90) JSI METAL= 0.55 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 423537 T48 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 09:02:59 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-U0Tpv0tliRUKqzLQiYFZ3vSQKAQx6osB6gW3eCz37pw 10-11-2 , 1-3-8 7-0-12 10-11-2 1-3-8 Scale = 1:55.0 4x4 = 4x4 = 4x4 =D F 8.00 12 4x4 / 4x4 < С G 5x6 / 5x6 <> W2 W2 0 N L κ 3x4 || 3x8 =5x6 =5x8 = 5x8 = 5x6 =3x4 || 28-11-0 28-11-0

LUMBER				
N. L. G. A. F	KULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
P - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
P - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW-t	MT20	5.0	6.0	2.50	2.75				
С	TMWW-t	MT20	4.0	4.0	2.00	1.50				
D	TTW-m	MT20	4.0	4.0						
E	TMWW-t	MT20	4.0	4.0						
F	TTW-m	MT20	4.0	4.0						
G	TMWW-t	MT20	4.0	4.0	2.00	1.50				
H	TMVW-t	MT20	5.0	6.0	2.50	2.75				
J	BMV1+p	MT20	3.0	4.0						
K	BMWW-t	MT20	5.0	6.0						
L	BMWWW-t	MT20	5.0	8.0						
M	BS-t	MT20	3.0	8.0						
N	BMWWW-t	MT20	5.0	8.0						
0	BMWW-t	MT20	5.0	6.0						
Р	BMV1+p	MT20	3.0	4.0						

NOTES-Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215165

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DEADIMOS	

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Ρ	2047	0	2047	0	0	5-8	5-8
J	2047	0	2047	0	0	5-8	5-8

UNFACTORED REACTIONS	

	1ST LCASE	MAX./N	<u> AIN, COMPON</u>	IENT REACTION	VS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ρ	1432	1028 / 0	0/0	0/0	0/0	404 / 0	0/0
J	1432	1028 / 0	0/0	0/0	0/0	404 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.05 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N, E-L.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS	FACTO	RED			W E	B S MAX. FACTO	RED
MEMB.		VERT. LC	AD LC1		MAX. UNBRAC		FORCE	MAX
FR-TO	. ,				LENGTH		\/	(/
A-B	0 / 43	-112.4	-112.4	0.15 (1)	10.00	O- C	-259 / 19	0.10(1)
		-112.4	-112.4	0.53 (1)	4.05	C-N	-437 / 0	0.45 (1)
	-1893 / 0						0 / 642	0.14(1)
D- E	-1546 / 0			0.19 (1)			-254 / 0	0.15 (1)
E-F	-1546 / 0			0.19 (1)		E-L	-254 / 0	0.15 (1)
F- G	-1893 / 0			0.49 (1)			0 / 642	0.14 (1)
G- H	-2203 / 0			0.53 (1)		L- G	-437 / 0	0.45 (1)
	0 / 43			0.15 (1)			-259 / 19	0.10(1)
		0.0				B- O	0 / 1902	0.43 (1)
J- H	-2002 / 0	0.0	0.0	0.21 (1)	5.97	K- H	0 / 1902	0.43 (1)
P- O	0/0	-18.5	10 5	0.12 (4)	10.00			
O- N	0 / 1867			0.12 (4)				
N- M	0 / 1642	-18.5		0.35 (1)				
M- L	0 / 1642	-18.5		0.35 (1)				
L- K		-18.5						
K- J	0/0	-18.5		0.12 (4)				
					. 5100			

TOTAL WEIGHT = 2 X 132 = 264 lb DESIGN CRITERIA

1-3-8

			_		
SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96") CALCULATED VERT. DEFL.(LL)= L/999 (0.08") ALLOWABLE DEFL.(TL)= L/360 (0.96") CALCULATED VERT. DEFL.(TL)= L/999 (0.17")

CSI: TC=0.53/1.00 (B-C:1) , BC=0.38/1.00 (N-O:1) , WB=0.45/1.00 (C-N:1) , SSI=0.25/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (B) (INPUT = 0.90) JSI METAL= 0.56 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423537 T49 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 09:03:00 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-yC1B6MuwTlcBS7wcGFnoc7?ZLal3rGQKLKGcBez37p\ 1-3-8 12-5-2 4-0-12 1-3-8 Scale = 1:62.8 4x6 =4x4 = 8.00 12 Ε F 3x8 // 3x8 💸 G 4x4 🥢 D 4x4 > 5x6 / 5x6 <> W2 ⊠ K N 0 L 3x4 || 3x8 = 3x4 || 5x6 = 4x4 =5x8 = 5x6 = 28-11-0 1-3-8 28-11-0 1-3-8

LUMBER				
N. L. G. A. F	ULES			i
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
E-F	2x4	DRY	No.2	SPF
F - G	2x4	DRY	No.2	SPF
G - J	2x4	DRY	No.2	SPF
Q - B	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
Q - N	2x4	DRY	No.2	SPF
N - K	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Χ			
В	TMVW-t	MT20	5.0	6.0	2.50	2.75			
С	TMWW-t	MT20	4.0	4.0	2.00	1.50			
D	TS-t	MT20	3.0	8.0					
Е	TTWW-m	MT20	4.0	6.0	1.75	2.50			
F	TTW-m	MT20	4.0	4.0					
G	TS-t	MT20	3.0	8.0					
Н	TMWW-t	MT20	4.0	4.0	2.00	1.50			
1	TMVW-t	MT20	5.0	6.0	2.50	2.75			
K	BMV1+p	MT20	3.0	4.0					
L	BMWW-t	MT20	5.0	6.0					
M	BMWWW-t	MT20	5.0	8.0					
Ν	BS-t	MT20	3.0	8.0					
0	BMWW-t	MT20	4.0	4.0					
Р	BMWW-t	MT20	5.0	6.0					
Q	BMV1+p	MT20	3.0	4.0					
	·								

1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215166

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
D.III.E. 101010, 001 1 01110	AND EGABINGO OF ECH IED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BUILDING DESIGNER	
DEADINGS	

BEAL	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS RE	EACTION	GROSS	REACTIC	N	BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
2	2047	0	2047	0	0	5-8	5-8
<	2047	0	2047	0	0	5-8	5-8

UNF	UNFACTORED REACTIONS							
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS.			
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
Q	1432	1028 / 0	0/0	0/0	0/0	404 / 0	0/0	
K	1432	1028 / 0	0/0	0/0	0/0	404 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, K

<u>BRACING</u> TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.78 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-O, H-M.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS				WE	BS	
MAX	C. FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD L					
	(LBS)	(PLF)	CSI (LC)	UNBRAG)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
	0 / 43					-190 / 59	0.09(1)
	-2210 / 0	-112.4 -112	.4 0.70 (1)	3.78	C- O	-590 / 0	0.27(1)
C- D	-1767 / 0	-112.4 -112	.4 0.63 (1)	4.24	0- E	0 / 468	0.11(1)
D- E	-1767 / 0	-112.4 -112	.4 0.63 (1)	4.24	E- M	0/3	0.00(1)
E-F		-112.4 -112			M- F	0 / 471	0.11(1)
F-G		-112.4 -112			M- H	-588 / 0	0.27(1)
G- H	-1768 / 0	-112.4 -112	.4 0.63 (1)	4.24	L- H	-192 / 58	0.09(1)
H- I		-112.4 -112	.4 0.70 (1)	3.78	B- P	0 / 1905	0.43 (1)
I- J	0 / 43				L- I	0 / 1905	0.43 (1)
Q-B	-1999 / 0	0.0 0	.0 0.21 (1)	5.97			
K-I	-1999 / 0	0.0	.0 0.21 (1)	5.97			
Q-P		-18.5 -18					
P- 0	0 / 1878						
O- N	0 / 1434						
N- M	0 / 1434	-18.5 -18					
	0 / 1877						
L-K	0/0	-18.5 -18	.5 0.18 (4)	10.00			

DESIGN CRITERIA

IFIED	LOAI	os:		
CH.	LL	=	32.5	PSF
	DL	=	6.0	PSF
CH.	LL	=	0.0	PSF
	DL	= .	7.4	PSF
L LO	AD	=	45.9	PSF
	CH.	CH. LL DL CH. LL	DL = CH. LL = DL =	CH. LL = 32.5 DL = 6.0 CH. LL = 0.0 DL = 7.4

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 3 X 131 = 394 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.96")
CALCULATED VERT. DEFL.(LL)= L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (0.96")
CALCULATED VERT. DEFL.(TL) = L/999 (0.15")

CSI: TC=0.70/1.00 (B-C:1) , BC=0.39/1.00 (O-P:1) , WB=0.43/1.00 (B-P:1) , SSI=0.28/1.00 (H-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (B) (INPUT = 0.90) JSI METAL= 0.57 (B) (INPUT = 1.00)

CHORDS A - C C - E DESCR. SPF SPF DRY No 2 2x6 DRY GGB 2x6 2x4 SPF SPF DRY No.2 М -2x6 DRY No.2 SPF М -246 DRY SPE SPF No.2 ALL WEBS 2x3 DRY No.2 SPF EXCEPT

DRY: SEASONED LUMBER

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	5 #HOW5	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CH	IORDS: (0.1	22"X3") SPIRAL NAILS	3
A-C	2	12	SIDE(122.0)
C-E	2	12	SIDE(61.0)
E-G	2	12	TOP ` ´
M-B	2	12	TOP
G- H	1	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL N	IAILS
M- J	2	12	SIDE(183.1)
J- H	2	12	TOP
WEBS :	(0.122"X3")	SPIRAL NAILS	
2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.
REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

DWG# T-2215167

<u>EA</u>	<u>RINGS</u>						
	FACTOR	RED	MAXIMUN	M FACTO	DRED	INPUT	REQRD
	GROSS RE	EACTION	GROSS F	REACTIO	N	BRG	BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	2559	0	2559	0	0	MECHANIC	CAL
ŀ	3311	0	3311	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 4-0.

UNFACTORED REACTIONS
1ST LCASE MA

JT COMBINED SNOW /MIN. COMPONENT REACTIONS SNOW SOIL DEAD 1261 / 0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) M

CHORD TO BE SHEATHED OR MAX, PUBLIN SPACING = 4.43 FT MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

5-11-12 7-11-12

12-0-8

-21 -21

-1002

-21 -21

-1002

CHORDS WEBS MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX. FACTORED MEMB. FORCE MAX MEMB FORCE MAX (PLF) CSI (LC) FROM TO -112.4 -112.4 0.04 (1) CSI (LC) UNBRAC LENGTH FR-TO (LBS) (LBS) CSI (LC) FR-TO A- B B- C C- N N- O O- P 0 / 44 10.00 L- C B- L -604 / 0 0.07(1)5.65 4.43 4.43 0.41 (1) 0.59 (1) 0.40 (1) 0 / 3300 0 / 4739 -3886 / 0 -1124 -1124 0.11 (1) I- G C- K I- F -112.4 -112.4 -112.4 -112.4 0.38 (1) 6100 / 0 -6100 / 0 0/3269 -6100 / 0 -112.4 -112.4 0.38 (1) 4.43 -1835 / 0 -1079 / 0 0.22 (1 4.43 4.56 4.56 -6100 / 0 -6100 / 0 -112.4 -112.4 -112.4 -112.4 0.38 (1) 0.28 (1) K- D K- F P- D 0/2160 0.27(1)E- F F- G H- G M- B -112.4 -112.4 -6100 / 0 0.28 (1) 0.22 5.35 7.12 4199 / 0 -112.4 -112.4 -3253 / 0 0.0 0.0 7.69 M- Q Q- L -18.5 0/0 -18.5 -18.5 -18.5 0.04(4) 10.00 L-R 0 / 3208 -18.5 0.39 (1) 10.00 R- S S- T 0 / 3208 -18.5 -18.5 0.39 S- T T- K K- U U- J 0 / 3208 -18.5 0.39 10.00 -18.5 -18.5 -18.5 0 / 3208 -18.5 0.39 (1) 10.00 -18.5 -18.5 0.62 (1) 0.62 (1) 10.00 10.00 0 / 4199 0/4199 -18.5-18.5 0.62 (1) 10.00 I- H 0/0 -18.5 -18.5 0.09 (1) TED LOADS (LBS) SPECIFIED CONCENTRA JT LOC LC1 MAX-MAX+ FACE DIR TYPE HEEL CONN 4-0-10 4-0-10 FRONT VERT CCCLNOPQR TOTAL C1 4-0-10 3-11-12 5-11-12 -217 -217 FRONT VERT SNOW C1 C1 C1 C1 C1 C1 -21 -93 -21 -93 FRONT FRONT VERT VERT TOTAL TOTAL 7-11-12 -93 -93 FRONT VERT TOTAL 9-11-12 -93 -21 -21 -93 -21 -21 FRONT VERT VERT TOTAL

FRONT

FRONT FRONT

FRONT

VERT

VERT

VERT

TOTAL

TOTAL

TOTAL

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER. LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS: TOP CH. LL DL = 32.5 PSF 6.0 CH. 0.0 LL

PSF TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

ADDT'L USER-DEFINED LOADS APPLIED TO ALL

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14

(55 % OF 43 9 P.S.F. G.S.I. PLUS 8 4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.82")
CALCULATED VERT. DEFL.(LL)= L/999 (0.14")
ALLOWABLE DEFL.(TL)= L/360 (0.82")
CALCULATED VERT. DEFL.(TL) = L/999 (0.25")

CSI: TC=0.38/1.00 (C-D:1), BC=0.62/1.00 (I-K:1), WB=0.59/1.00 (G-I:1) , SSI=0.43/1.00 (I-K:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 MT20

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (K) (INPUT = 0.90) JSI METAL= 0.48 (G) (INPUT = 1.00)

CONTINUED ON PAGE 2

C1 C1 C1

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. BAYVIEW WELLINGTON	DRWG NO.
	T50	1	2	TRUSS DESC.	
Tamarack Roof Truss, Burlington				Version 8.530 S Feb 23 ID:c3ivi23uDiia 8nvRKhk7nv75XW-O	2022 MiTek Industries, Inc. Fri Jun 24 09:03:01 2022 Page 2 ObaJivYE3k14HUoqzI18KXp4 2lagCUa ?Aj5z37pu
				.oooooooooo.	SSSSTEENTHISSIPPLICATE EIGHOUR PAISZS/PU
PLATES (table is in inches) JT TYPE PLATES W	LEN Y X				
B TMVW-p MT20 5.6		CONNECTION R	EQUIREMENTS		
D TMW+w MT20 2.0	0 4.0 2.50 1.00 0 6.0	1) C1: A SUITA	ABLE HANGER/N	ECHANICAL CONNECTION IS REQUIRED.	
F TMWW-t MT20 5.4 G TMVW-t MT20 5.4	0 6.0 0 6.0 2.50 2.25				
H BMV1+p MT20 3.6	0 8.0				
J BS-t MT20 5.6	0 6.0 2.50 2.25 0 6.0				·
L BMWW-t MT20 5.6	0 10.0 2.50 4.50 0 6.0				
M BMV1+p MT20 3.4	0 8.0				
NOTES- (1)	(0)(1005.00				
Lateral braces to be a minimum	101 2X4 SPF #2.				
					·
		·			·
	•				
					·
OFESSI	ONA			E. C.	
06-24- 9 H. J. G. A 1000090	16/				
06-24	22				
H.I.G.A	LVES 7 H				
1000090	0247				
12/1/	1700				
ROUNCEON	ONTAK				REVIEWED
CUEOF	- 1 1/3 - //	1			
	. 0.				
Structural compo	ONTARIO				

JOB NAME JOB DESC. **BAYVIEW WELLINGTON** TRUSS NAME QUANTITY PLY DRWG NO. 423537 T51 TRUSS DESC. Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 09:03:02 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-ub9yX2wA?MtuhQ3?OgpGhY4u0NRLJ9ldoeljFXz37p Tamarack Roof Truss, Burlington 1-3-8 5-6-10 Scale = 1:42.9 5x6 = 4x4 = 3x8 = 2x4 || 6x7 // С D G 4x4 || 8.00 12 5x6 // L N κ o 3x8 =5x6 = 4x4 = 5x8 == 4x6 || 3x4 || 3x4 || 24-8-0 24-8-0

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
E - G	2x4	DRY	No.2	SPF
G - H	2x4	DRY	No.2	SPF
О-В	2x4	DRY	No.2	SPF
1 - H	2x4	DRY	No.2	SPF
0 - L	2x4	DRY	No.2	SPF
L - I	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER

PL	PLATES_(table is in inches)							
JT	TYPE	PLATES	W	LEN	Υ	Х		
В	TMVW-t	MT20	5.0	6.0				
С	TTWW-m	MT20	5.0	6.0	2.25	1.50		
D	TMWW-t	MT20	4.0	4.0				
E	TS-t	MT20	3.0	8.0				
F	TMW+w	MT20	2.0	4.0				
G	TTWW+m	MT20	6.0	7.0	2.25	1.50		
H	TMVW+p	MT20	4.0	4.0	1.00	2.25		
1	BMV1+p	MT20	3.0	4.0				
J	BMWW+t	MT20	4.0	6.0				
K	BMWWW-t	MT20	5.0	8.0				
L	BS-t	MT20	3.0	8.0				
M	BMWW-t	MT20	4.0	4.0				
N	BMWW-t	MT20	5.0	6.0				
0	BMV1+p	MT20	3.0	4.0				
1								

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DWG# T-2215168

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	
75450100	

BEA	RINGS						
	FACTO	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
0	1769	0	1769	0	0	5-8	5-8
l	1615	0	1615	0	0	MECHAN	IICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 3-8.

UNFACTORED REACT	TIONS	
1ST LCASE	MAX /MINI	r

	151 LCASE	IVIAX./I	MAX./MIN. COMPONENT REACTIONS							
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
0	1237	890 / 0	0/0	0/0	0/0	347 / 0	0/0			
1	1132	801 / 0	0/0	0/0	0/0	331 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.83 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS				WEBS					
MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED		
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB	FORCE	MAX		
	(LBS)	(PL	-F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO				
A-B	0 / 43	-112.4	-112.4	0.15 (1)	10.00	N- C	-160 / 52	0.06 (1)		
B- C	-1763 / 0	-112.4	-112.4	0.75 (1)	4.03	C- M	0 / 880	0.20 (1)		
C- D	-2148 / 0	-112.4	-112.4	0.69 (1)	3.83	M- D	-447 / 0	0.17 (1)		
D- E	-1809 / 0	-112.4	-112.4	0.65 (1)	4.15	D-K	-439 / 0	0.50 (1)		
E-F	-1809 / 0	-112.4	-112.4	0.65 (1)	4.15	K-F	-724 / 0	0.28 (1)		
F- G	-1808 / 0	-112.4	-112.4	0.65 (1)	4.16	K- G	0 / 1775	0.40 (1)		
G-H	-544 / 0	-112.4	-112.4	0.04(1)	6.25	J- G	-1156 / 0	0.44 (1)		
O- B	-1727 / 0	0.0	0.0	0.18(1)	6.33	B-N	0 / 1492	0.34 (1)		
I- H	-1631 / 0	0.0	0.0	0.49 (1)	6.48	J- H	0 / 1331	0.30 (1)		
O- N	0/0	-18.5	-18 5	0.15 (4)	10.00					
N- M	0 / 1461	-18.5		0.31 (1)						
M- L	0 / 2148	-18.5		0.40 (1)						
L-K		-18.5		0.40 (1)						
K-J	0 / 425	-18.5		0.16 (4)						
J- 1	0/0			0.10 (4)						

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL		7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

TOTAL WEIGHT = 105 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.82") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.09") ALLOWABLE DEFL.(TL)= L/360 (0.82") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.16")

CSI: TC=0.75/1.00 (B-C:1) , BC=0.40/1.00 (K-M:1) , WB=0.50/1.00 (D-K:1) , SSI=0.31/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (J) (INPUT = 0.90) JSI METAL= 0.70 (L) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			. 1
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
J - B	2x6	DRY	No.2	SPF
G - E	2x6	DRY	No.2	SPF
J - G	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Χ					
В	TMVW-t	MT20	5.0	6.0	2.50	1.75					
С	TTWW-m	MT20	4.0	6.0	1.75	2.50					
D.	TTW-m	MT20	4.0	4.0							
Ε	TMVW-t	MT20	5.0	6.0	2.50	1.75					
G	BMV1+p	MT20	3.0	8.0							
Н	BMWWW-t	MT20	5.0	6.0	2.50	1.50					
1	BMWW-t	MT20	5.0	6.0							
J	BMV1+p	MT20	3.0	8.0							

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

Structural component only DWG# T-2215169

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
REARINGS	

EA	RINGS						
	FACTOR	RED	MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	GROSS	REACTIC	BRG	BRG		
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1444	0	1444	0	0	5-8	5-8
ì	1471	0	1471	0	0	3-0	3-0

UNFACTORED REACTIONS

	ISTLUASE	IVIAX./I	VIIN, COMPO	VENT REACTION	15		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
J	1010	729 / 0	0/0	0/0	0/0	280 / 0	0/0
G	1028	743 / 0	0/0	0/0	0/0	286 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J, G

Ğ

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING}} = 4.74 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.}$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

- CH	ORDS		WEBS							
MAX	. FACTORED	FACTORED			MAX. FACT	ORED				
MEMB.	FORCE						MAX			
	(LBS)	(PLF)	CSI (LC) UNBRA	С	(LBS)	CSI (LC)			
FR-TO		FROM TO		LENGT	H FR-TO	, ,	. ,			
A-B	0 / 43	-112.4 -112	2.4 0.17 (1) 10.00	I- C	-313 / 22	0.12(1)			
B- C	-1032 / 0	-112.4 -112	2.4 0.38 (1) 5.63	C- H	0 / 27	0.01 (1)			
	-870 / 0	-112.4 -112					0.14 (1)			
K-L	-870 / 0	-112.4 -112					0.24 (1)			
L- D	-870 / 0	-112.4 -112	2.4 0.81 (1) 4.74	H- E	0 / 989	0.24 (1)			
D-E	-1056 / 0	-112.4 -112	2.4 0.38 (1) 5.58			. ,			
E-F	0 / 43	-112.4 -112	2.4 0.17 (1) 10.00						
J- B	-1404 / 0	0.0).0 0.13 (1) 7.81						
G-E	-1427 / 0	0.0).0 0.13 (1) 7.81						
J- M	0/0	-18.5 -18	3.5 0.06 (4) 10.00						
M-I	0/0	-18.5 -18	3.5 0.06 (4) 10.00						
I- N	0 / 851	-18.5 -18	3.5 0.15 (1) 10.00						
N-O	0 / 851	-18.5 -18	3.5 0.15 (1) 10.00						
O- H	0 / 851	-18.5 -18	3.5 0.15 (1) 10.00						
H-P	0/0	-18.5 -18	3.5 0.06 (4) 10.00						
P-G	0/0	-18.5 -18	3.5 0.06 (4) 10.00						

SP	ECIFIED CON	CENTRA	TED LOA	NDS (LBS)					
JΤ	LOC.	LC1	MAX-	MÀX+	FACE	DIR.	TYPE	HEEL	CONN.
С	4-0-8	-190	-190		BACK	VERT	TOTAL		C1
D	8-11-8	-190	-190		BACK	VERT	TOTAL		C1
Н	8-10-12	-15	-15		BACK	VERT	TOTAL		C1 ,
1	4-1-3	-15	-15		BACK	VERT	TOTAL		C1
Ķ	6-1-4	-79	-79		BACK	VERT	TOTAL		C1
L	8-1-3	-84	-84		BACK	VERT	TOTAL		C1
M	1-11-4	-15	-15		BACK	VERT	TOTAL		C1
Ν	6-1-4	-15	-15		BACK	VERT	TOTAL		C1
0	8-1-3	-15	-15		BACK	VERT	TOTAL		C1
Ρ	11-0-12	-15	-15		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:									
TOP	CH.	LL	=	32.5	PSF				
			=		PSF				
BOT	CH.	LL	=	0.0	PSF				
		DL		7.4	PSF				
TOTA	L LO	AD	=	45.9	PSF				

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018, ABC 2019
 PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.43") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01") ALLOWABLE DEFL.(TL)= L/360 (0.43") CALCULATED VERT. DEFL.(TL)= L/999 (0.03")

CSI: TC=0.81/1.00 (C-D:1) , BC=0.15/1.00 (H-I:1) , WB=0.24/1.00 (E-H:1) , SSI=0.37/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (H) (INPUT = 0.90) JSI METAL= 0.29 (E) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 423537 T53 Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 09:03:03 2022 Page 1 ID:c3jyj23uDija_8pvRKbkZpy75XW-MniKkOwpmg?lJaeBxNKVEldCCnqH2bPm1IUGnzz37ps

LUMBER N. L. G. A. RULES CHORDS SIZE DESCR. SPF SPF SPF SPF LUMBER 2x4 2x4 2x4 CDF DRY No.2 DRY DRY DRY DRY No.2 No.2 A 2x4 No.2 G -SPE G SPF ALL WEBS 2x3 DRY No.2 SPF EXCEPT

DRY: SEASONED LUMBER.

PLA	TES (table is					
JT	TYPE	PLATES	W	LEN	Υ	Х
Α	TMV+p	MT20	3.0	4.0		
В	TMWW-t	MT20	4.0	4.0		
С	TTW-m	MT20	4.0	4.0		
D	TTW-m	MT20	4.0	4.0		
Ε	TMWW-t	MT20	4.0	4.0		
F	TMV+p	MT20	3.0	4.0		
G	BMVW1-t	MT20	4.0	4.0		
Н	BMWWWW*	-I MT20	4.0	10.0		
1	BMVW1-t	MT20	4.0	4.0		

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

EAF	RINGS						
	FACTOR	ED	MAXIMUN	1 FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	818	0	818	0	0	MECHANIC	AL
à	818	0	818	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I, G. MINIMUM BEARING LENGTH AT JOINT I = 3-8, JOINT G = 3-8.

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
1	573	406 / 0	0/0	0/0	0/0	167 / 0	0/0			
G	573	406 / 0	0/0	0/0	0/0	167 / 0	0/0			
TOP				PURLIN SPACING TH = 10.00 FT O			'LY APPLIED.			

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

<u>LOADING</u> TOTAL LOAD CASES: (4)

UNFACTORED REACTIONS

CHC	RDS					W E	BS	
MAX.	FACTORED	FACTORE	D				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD	LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	(CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM TO)		LENGTH	FR-TO		
A-B	0 / 21	-112.4 -11	12.4	0.15(1)	10.00	B- H	0 / 43	0.01 (4)
B- C	-424 / 0	-112.4 -1	12.4	0.12(1)	6.25	H- E	0 / 43	0.01 (4)
C-D	-338 / 0	-112.4 -1	12.4	0.01(1)	6.25	I-B	-723 / 0	0.54(1)
D- E	-424 / 0	-112.4 -1	12.4	0.12(1)	6.25	E-G	-723 / 0	0.54(1)
E-F	0 / 21	-112.4 -1	12.4	0.15(1)	10.00	C- H	0 / 50	0.02 (4)
I- A	-128 / 0	0.0	0.0	0.04(1)	7.81	H- D	0 / 50	0.02 (4)
G-F	-128 / 0	0.0	0.0	0.04(1)	7.81			
I- H	0 / 323	-18.5 -	18.5	0.23 (4)	10.00			
H- G	0 / 323	-18.5 -	18.5	0.23 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LOADS: LL = 32.5 DL = 6.0 LL = 0.0 DL = 7.4 AD = 45.9 PSF PSF BOT CH. PSF TOTAL LOAD

24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 73 lb

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.42")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.42")
CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSI: TC=0.15/1.00 (E-F:1) , BC=0.23/1.00 (G-H:4) , WB=0.54/1.00 (B-I:1) , SSI=0.13/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.66 (E) (INPUT = 0.90) JSI METAL= 0.21 (E) (INPUT = 1.00)

DWG# T-2215170

LUMBER	LUMBER									
N. L. G. A. RULES										
CHORDS	SIZE		LUMBER	DESCR.						
F - A	2x4	DRY	No.2	SPF						
A - C	2x6	DRY	No.2	SPF						
D - C	2x4	DRY	No.2	SPF						
F - D	2x6	DRY	No.2	SPF						
ALL WEBS	2x3	DRY	No.2	SPF						
DRY: SEASO	J DANC	UMBER.								

DESIGN CONSISTS OF $\underline{2}$ TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)							
		SPACING (IN)								
TOP CH	TOP CHORDS: (0.122"X3") SPIRAL NAILS									
F- A	1	12	TOP							
C-D	1	12	TOP							
A-C	2	12	TOP							
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS								
F- D	2	12	SIDE(14.0)							
WEBS :	WEBS: (0.122"X3") SPIRAL NAILS									
2 v 3	1 1	6								

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE

PL	ATES (table	e is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	X
Α	TMVW-t	MT20	5.0	6.0		
В	TMW+w	MT20	2.0	4.0	2.50	1.00
С	TMVW-t	MT20	5.0	6.0		
D	BMV1+p	MT20	3.0	8.0		

Structural component only DWG# T-2215171

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DEADINGS	

BEA	RINGS						
	FACTO	RED	MAXIMUI	M FACTO	ORED	INPUT	REQRD
	GROSS RI	EACTION	GROSS I	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	1632	0	1632	0	0	5-8	5-8
D	1442	0	1442	0	0	MECHANIC	:Δ1

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNF	UNFACTORED REACTIONS										
	1ST LCASE	MAX./I	MIN. COMPO	VENT REACTION	4S						
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
F	1150	779 / 0	0/0	0/0	0/0	371 / 0	0/0				
D	1017	686 / 0	0/0	0/0	0/0	330 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING

CHORD TO BE SHEATHED OR MAX, PUBLIN SPACING = 6.23 ET. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS						W	EBS		
MA)	K. FACTOF	RED	FACTO	RED				MAX. FAC	TORED	
MEMB.	FOR	CE V	ERT. LC	AD LC1	MAX	MAX.	MEME	FORCE	E MAX	
	(LBS	5)	(PI	_F) (CSI (LC)	UNBF	RAC	(LBS)	CSI	(LC)
R-TO			FROM	TO		LENG	TH FR-TO	o ` ´		. ,
F- A	-1500 / 0		0.0	0.0	0.08 (1	7.8	31 A-E	0 / 2633	0.33	(1)
	-2482 / 0							-1241 / 0	0.10	(1)
	-2482 / 0		-112.4	-112.4	0.37 (1	6.2	23 E-C	0 / 2633	0.33	(1)
B- C	-2482 / 0		-112.4	-112.4	0.05 (1	6.2	25			
D- C	-1038 / 0		0.0	0.0	0.06 (1	7.8	31			
F-E	0/0		-43.5	-43.5	0.07 (1	10.0	00			
E- H			-43.5							
H- D	0/0		-43.5		0.26 (1					
SPECII	FIED CONC	ENTRA	TED LO	ADS (LE	3S)					
	LOC.	LC1			+ F	ACF	DIR.	TYPE	HEEL	CONN
	1-11-4					P	VERT	TOTAL		C1
Н		-559				TNO	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER. LOADS WERE DERIVED FROM USER INPUT

SPECIFIED LOADS:

TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	==	7.4	PSF
TOTA	1 10	ΛD		4E 0	DOD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014

(55~% OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATEO VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04")

CSI: TC=0.37/1.00 (A-B:1), BC=0.26/1.00 (D-E:1), WB=0.33/1.00 (A-E:1), SSI=0.35/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSİ GRIP= 0.64 (F) (INPLIT = 0.90.) JSI METAL= 0.28 (C) (INPUT = 1.00)

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. BAYVIEW WELLINGTON		DRWG NO.	
423537	T54	1	2	TRUSS DESC.			
Tamarack Roof Truss, Burlingtor	1			Version 8.530 ID:c3jyj23uDijq 8pvRKbkZpy7	S Feb 23 2022 N 5XW-rzGiykxF	iTek Industries, Inc. Fri Jun 24 09:03:04 2 X 7cxkDNV5rkmz9KSB82n50wGyI	2022 Page 2 EgKPz37pr
E BMWWW-t MT20	W LEN Y X 5.0 8.0 3.0 8.0						
NOTES- (1) 1) Lateral braces to be a minim	um of 2X4 SPF #2.						
·	**						
OFESS	SIONAL						
STO PRO	THE STATE OF THE S						
PROFESS 106-2- 10000	ALVES,						
Roymon	ONTARIO					REVIEWI	ED
Structural comp DWG# T-2215	oonent only 171						

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423537 TRUSS DESC. T55

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 09:03:05 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-JAq494y3IHFTZuoa3oMzJAiZEbQfWYN3UczNssz37pq

LUMBER N. L. G. A. RULES CHORDS F - A LUMBER No.2 DESCR SPF DRY SPE 2x4 No 2 DRY No.2 SPF ALL WERS 2x3 No.2 SPF

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	, ,
TOP CH	IORDS: (0.1	22"X3") SPIRAL NAILS	
F- A	1	12	TOP
A-C	1	12	TOP
C-D	1	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAIL	S
F- D	2	11	SIDE(244.1)
WEBS:	(0.122"X3")	SPIRAL NAILS	, ,
B- E	1	2	SIDE(418.5)
2x3	1	6	, ,

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL/	ATES_(table	is in inches)			
JT	TYPE	PLATES	W	LEN Y	Χ
Α	TMVW-t	MT20	4.0	6.0	Edge
В	TMWW-t	MT20	5.0	6.0	_
С	TMV+p	MT20	3.0	4.0	

Structural component only DWG# T-2215172

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	

DUIL	BUILDING DESIGNER								
BEAL	RINGS								
	FACTO	RED	MAXIMUI	M FACTO	DRED	INPUT	REQRD		
	GROSS R	EACTION	GROSS I	REACTIO	N	BRG	BRG		
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX		
F	2651	0	2651	0	0	5-8	5-8		
D	3056	0	3056	0	0	MECHANIC	:AI		

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./	IN. COMPO	VENT REACTION	1 S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	1856	1324 / 0	0/0	0/0	0/0	532 / 0	0/0
D	2140	1525 / 0	0/0	0/0	0/0	615 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.36 FT.

10 OF TOR RIGHD CE MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					W E	BS		
MAX	. FACTORED	FACTOR	ED .				MAX. FAC	TORED	
иЕМВ.	FORCE	VERT. LOA	D LC1	MAX	MAX.	мемв.	FORCE	E MAX	
	(LBS)	(PLF) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
R-TO		FROM T	O		LENGTH	FR-TO	. ,	. ,	
F- A	-2089 / 0	0.0	0.0	0.12(1)	7.66	A-E	0 / 2634	0.33 (1)	
A-B	-2838 / 0	-112.4 -	112.4	0.10(1)	5.36	E-B	0 / 2846	0.35 (1)	
B- C	-9 / 0	-112.4 -	112.4	0.07(1)	10.00	B- D	-3204 / 0	0.38 (1)	
D- C	-144 / 0	0.0	0.0	0.02 (1)	7.81			. ,	
F- G	0/0	-18.5	-18 5	0.16 (1)	10.00				
G- E	0/0			0.16 (1)					
E- H	0 / 2547			0.55 (1)					
H- D	0 / 2547			0.55 (1)					

SPE	CIFIED CON	NCENTRA	ATED LOA	ADS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
E	2-10-0	-1780	-1780		BACK	VERT	TOTAL		C1
G	9-4	-560	-560	'	BACK	VERT	TOTAL		C1
Н	4-9-4	-1117	-1117		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 29 = 58 lb

DESIGN CRITERIA

SPEC	IFIED	LOA	OS:		
TOP	CH.	LL	=	32.5	PS
		DL		6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	L LO	AD	=	45.9	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.02") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.03")

CSI: TC=0.12/1.00 (A-F:1) , BC=0.55/1.00 (D-E:1) , WB=0.38/1.00 (B-D:1) , SSI=0.32/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (B) (INPUT = 0.90) JSI METAL= 0.39 (E) (INPUT = 1.00)

CONTINUED ON PAGE 2

OB NAME TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
123537 T55	1	2	TRUSS DESC.		
amarack Roof Truss, Burlington				Version 8.530 S Feb 23 2 ID:c3jyj23uDijq 8pvRKbkZpy75XW-JAq4	022 MTek Industries, Inc. Fri Jun 24 09:03:05 2022 Page 2 94y3IHFTZuoa3oMzJAiZEbQfWYN3UczNssz37pc
DEATES (table is in inches) JT TYPE					· .
NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2.					
				<i>y</i>	
FESSION					
PROFESSIONAL ENGLISH 106-24-22 H. J. G. ALVES 100009024					
100009024					REVIEWED
Structural component only DWG# T-2215172					

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423533 TRUSS DESC. Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:18 2022 Page 1 ID:eW?g6bUL04wPT9FNBNyUkjy71IX-XuzqTAdW7DEq6BBv1A2ISJ1Jzyd3_GmvENIICwz38bJ Tamarack Roof Truss, Burlington Scale = 1:30.0 D 2x4 || 2x4 || 6.00 12 С 2x4 || 2x4 || TJ. R ۵ М L κ JI н 3x4 / 2x4 || 2x4 || 2x4 || 3x8 = 2x4 || 3x4 > 2x4 || 16-9-0 16-8-0 018

LUMBER											
N. L. G. A. F	ULES										
CHORDS	SIZE		LUMBER	DESCR.							
A - D	2x4	DRY	No.2	SPF							
D - G	2x4	DRY	No.2	SPF							
A - J	2x4	DRY	No.2	SPF							
J - G	2x4	DRY	No.2	SPF							
ALL WEBS	2x3	DRY	No.2	SPF							
DRY: SEAS	ONED L	UMBER.	DRY: SEASONED LUMBER.								

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
Α	TBM1-h	MT20	3.0	4.0							
В,	C, E, F										
В	TMW+w	MT20	2.0	4.0							
D	TTW-p	MT20	4.0	4.0							
G	TBM1-h	MT20	3.0	4.0							
Η, Ι	I, K, L, M										
Н	BMW1+w	MT20	2.0	4.0							
J	BS-t	MT20	3.0	8.0	1.50	3.25					

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

Y Y Y	No.2 No.2 No.2 No.2	SPF SPF SPF SPF
Y R.	No.2	SPF

	FACTO	RED	MAXIMU	M FACT	INPUT	REQRD	
	GROSS F	EACTION	GROSS	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Α	161	0	161	0	0	16-8-0 (9-11	-1126)8-0
G	161	0	161	0	0	16-8-0 (9-11	-tt26\8-0
K	453	0	453	0	0	16-8-0 (9-11	- 1126 18-0
M	536	0	536	0	0	16-8-0 (9-11	-tt26\\00a48-0
1	168	0	168	0	0	16-8-0 (9-11	- tt2618-0
Н	536	0	536	0	0	16-8-0 (9-11	
L	168	0	168	0	0	16-8-0 (9-11	-1126)8-0

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

VALUE IN PARENTHESIS INDICATES EFFECTIVE BEARING LENGTH

5		

١.	UNFACTORED REACTIONS									
Г		1ST LCASE	MAX.	MIN. COMPON	ENT REACTION	NS				
١.	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
١.	Α	113	81 / 0	0/0	0/0	0/0	32 / 0	0/0		
	G	113	81 / 0	0/0	0/0	0/0	32 / 0	0/0		
	K	319	220 / 0	0/0	0/0	0/0	99 / 0	0/0		
ı	M	376	264 / 0	0/0	0/0	0/0	112/0	0/0		
ı	ı	117	87 / 0	0/0	0/0	0/0	30 / 0	0/0		
1	Н	376	264 / 0	0/0	0/0	0/0	112/0	0/0		
1	L	117	87 / 0	0/0	0/0	0/0	30 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, G, K, M, I, H, L

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.}}$ MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

BUILDING DÉSIGNER

СНС	RDS	WEBS							
MAX.	FACTORED	FACTORED				MAX. FACTO	ORED		
MEMB.		VERT. LOAD LO	1 MAX	MAX.	MEMB.				
	(LBS)	(PLF)	CSI (LC)	UNBRAC	3 .	(LBS)	CSI (LC)		
FR-TO		FROM TO		LENGTH	FR-TO		` '		
A-O		-112.4 -112.4	0.07 (1)	10.00	K-D	-387 / 0	0.10(1)		
O- B	0 / 206	-112.4 -112.4	0.21(1)	10.00	M- B	-387 / 0	0.06(1)		
B- C	0 / 177	-112.4 -112.4	0.21 (1)	10.00	I- E	-190 / 0	0.04 (1)		
C- D	0 / 199	-112.4 -112.4	0.09 (1)	10.00	H-F	-387 / 0	0.06 (1)		
D- E	0 / 199	-112.4 -112.4	0.09 (1)	10.00	L- C	-190 / 0	0.04(1)		
E-F	0 / 177	-112.4 -112.4	0.21 (1)	10.00	N-O	-145 / 4	0.00 (1)		
F-Q	0 / 206	-112.4 -112.4	0.21 (1)	10.00	P-Q	-145 / 4	0.00 (1)		
Q-G	0 / 168	-112.4 -112.4	0.07 (1)	10.00			` '		
A N:	100 (0	40.5 40.5							
A- N	-182 / 0	-18.5 -18.5							
N- M	-165 / 0		0.15 (1)						
M- L	-179 / 0		0.10 (1)						
L-K	-183 / 0		0.02 (4)						
K- J	-183 / 0		0.02 (4)						
J-I	-183 / 0		0.02 (4)						
I- H	-179 / 0		0.10 (1)						
H- P	-165 / 0		0.15 (1)						
P-G	-182 / 0	-18.5 -18.5	0.15 (1)	6.25					

DESIGN CRITERIA

DEGR	DEGICAL CHITETUR									
SPEC	IFIED	LOAI	DS:							
TOP	CH.	LL	=	32.5	PSF					
		DL	=	6.0	PSF					
BOT	CH.	LL	=	0.0	PSF					
			=	7.4	PSF					
TOTA	L LO	AD	=	45.9	PSF					

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

TOTAL WEIGHT = 49 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.21/1.00 (B-O:1) , BC=0.15/1.00 (M-N:1) , WB=0.10/1.00 (D-K:1) , SSI=0.16/1.00 (B-O:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.22 (F) (INPUT = 0.90) JSI METAL= 0.16 (F) (INPUT = 1.00)

JOB DESC. **BAYVIEW WELLINGTON** QUANTITY PLY DRWG NO. 423533 ۷2 TRUSS DESC. Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:10:19 2022 Page 1 ID:eW?g6bUL04wPT9FNBNyUkjy71IX-?4XChWe8uXMhkLm5buZX?XaVCM_Rjkb3T12rlMz38b Tamarack Roof Truss, Burlington Scale = 1:21.7 С 6.00 12 2x4 || 2x4 || D В G 3x4 = 1 2x4 || 2x4 || 2x4 || 3x4 > 12-9-0 12-8-0 0-8 TOTAL WEIGHT = 33 II

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

0

0

0/0

0/0

0/0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

INPUT

BRG BRG IN-SX IN-SX 12-9-0 (12-8-0)2-9-0

12-9-0 (12-8-012-9-0 12-9-0 (12-8-012-9-0

12-9-0 (12-8-012-9-0

WIND

0/0 0/0 0/0

0/0

REORD

DEAD

28 / 0 28 / 0

85 / 0

99 / 0 99 / 0

0/0 0/0 0/0 0/0 0/0

MAXIMUM FACTORED

0

MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMITIVE

LIVE 0/0 0/0

0/0

0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, E, G, H, F

VALUE IN PARENTHESIS INDICATES EFFECTIVE BEARING LENGTH

GROSS REACTION

DOWN 144 144

367 501 501

BEARINGS FACTORED

VERT

144

367

UNFACTORED REACTIONS
1ST LCASE _____MA

COMBINED

259

351

AEGHF

AEGHE

ME

FR

A-J-B-C-L-

A-I-H-G GROSS BEACTION

HORZ 0

252 / 0

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	
				SPF
A - E	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO				0.1
D OLAGO	J L	OWNER I		

TRUSS NAME

PL/	ATES (table	is in inches)			
JT	TYPE	PLATES	W	LEN '	ΥX
Α	TBM1-h	MT20	3.0	4.0	
В	TMW+w	MT20	2.0	4.0	
С	TTW-p	MT20	4.0	4.0	
D	TMW+w	MT20	2.0	4.0	
Е	TBM1-h	MT20	3.0	4.0	
F, (3, H				
F	BMW1+w	MT20	2.0	4.0	

JOB NAME

DTES- Lateral	to	be	а	minimum	of	2X4	SPF	#2.

ALL WEBS 2 DRY: SEASONI	x3 DRY ED LUMBER.		No.2		SP
PLATES (table) JT TYPE A TBM1-h B TMW+w C TTW-p D TMW+w E TBM1-h F, G, H F BMW1+w	PLATES MT20 MT20 MT20 MT20 MT20 MT20 MT20 MT20	W 3.0 2.0 4.0 2.0 3.0	LEN Y 4.0 4.0 4.0 4.0 4.0	X	

DADING DTAL L	Ì DAD CASES: (4)							
	R D S FACTORED	FACTO				W E		-0050	
EMB.		FACTO VERT. LC		MAN	MANY	NACNAD:	MAX. FACT		
LIVID.									
R-TO	(LBS)	(PL FROM			LENGTH		(LBS)	CSI (LC)	
	0/44						007.40	0.00 (4)	
	0 / 44						-337 / 0	0.06 (1)	
- B	0 / 90						-399 / 0	0.06 (1)	
- C	0 / 62							0.06(1)	
- D	0 / 62	-112.4	-112.4	0.18(1)	10.00	l- J	-72 / 4	0.00(1)	
- L	0 / 90							0.00 (1)	
- E	0 / 44							0.00 (.)	
- I	-60 / 0	-18.5	-18.5	0.08(1)	6.25				
H	-52 / 0	-18.5	-18.5	0.08(1)	6.25				
- G	-72 / 0			0.05 (1)					
i-F		-18.5							
- K		-18.5							
- E									
	-60 / 0	-18.5	-18.5	0.08(1)	6.25				

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 - TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.18/1.00 (B-J:1), BC=0.08/1.00 (H-I:1), WB=0.06/1.00 (C-G:1), SSI=0.15/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.23 (D) (INPUT = 0.90) JSI METAL= 0.17 (B) (INPUT = 1.00)

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 A
 TBM1-h
 MT20

 B
 TTW-p
 MT20

 C
 TBM1-h
 MT20
 IFN Y 3.0 4.0 4.0 A B C D 3.0 RMW1+w

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

 UNFACTORED REACTIONS

 1ST LCASE
 MAX./MIN. COMPONENT REACTIONS

 JT COMBINED
 SNOW
 LIVE
 PERM.LIVE
 V
 WIND DEAD 0/0 0/0 0/0 64 64 45 / 0 45 / 0 0/0 0/0 0/0 CD 668 474 / 0 0/0 0/0 0/0 194 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, C, D

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS								
MAX.	FACTORED	FACTORED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD LC	I MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO			
A-F	0 / 411	-112.4 -112.4	0.10(1)	10.00	D-B	-733 / 0	0.11(1)	
F-B		-112.4 -112.4	0.26 (1)	10.00	E-F	-225 / 0	0.00 (1)	
B- H	0/419	-112.4 -112.4	0.26 (1)	10.00	G- H	-225 / 0	0.00(1)	
H- C	0 / 411	-112.4 -112.4	0.10(1)	10.00				
A-E	-400 / 0	-18.5 -18.5	0.19 (1)	6.25				
E-D	-378 / 0	-18.5 -18.5	0.19 (1)	6.25				
D- G	-378 / 0	-18.5 -18.5	0.19 (1)	6.25				
G-C	-400 / 0	-18.5 , -18.5	0.19 (1)	6.25				

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8 4 P.S.F.

RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.26/1.00 (B-F:1) , BC=0.19/1.00 (D-E:1) , WB=0.11/1.00 (B-D:1) , SSI=0.14/1.00 (B-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

| PLATE | GRIP(DRY) | SHEAR | SECTION | (PSI) | (PLI) | (PLI) | (PLI) | MAX | MIN | MAX | MIN | MAX | MIN | MT20 | 650 | 371 | 1747 | 788 | 1987 | 1873 |

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.39 (B) (INPUT = 0.90) JSI METAL= 0.22 (B) (INPUT = 1.00)

DWG# T-2215146

LUMBER N. L. G. A. I CHORDS E - B A - C E - D	RULES SIZE 2x4 2x4 2x4 2x4	DRY DRY DRY	LUMBER No.2 No.2 No.2	DESCR. SPF SPF SPF
DRY: SEAS	ONED L	JMBER.		

PLATES (table is in inches)
JT TYPE PLATES W

LEN Y TMV+p BMV1+p MT20 3.0 4.0 MT20 3.0 40

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

	RINGS	CIVILIT					
	FACTORED		MAXIMU	M FACTO	INPUT	REQRD	
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Ε	629	0	629	0	0	5-8	5-8
С	248	0	248	0	0	1-8	1-8
D	45	0	50	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNF	UNFACTORED REACTIONS									
	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	NS					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
E	438	327 / 0	0/0	0/0	0/0	111/0	0/0			
С	170	143 / 0	0/0	0/0	0/0	26 / 0	0/0			
D	36	0/0	0/0	0/0	0/0	36 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS FACTORED FORCE	FACTORED VERT. LOAD LC1	MAY	MAX.	W E MEMB.	B S MAX. FACTOI FORCE	RED MAX	
						FURCE	IVIAX	
	(LBS)	(PLF) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM TO	,	LENGTH		(===)	00. (20)	
E-B	-565 / 0	0.0 0.0	0.13 (4)	7.81				
A-B	0/34	-112.4 -112.4						
B- C	-37 / 0	-112.4 -112.4	0.66 (1)	6.25				
E- D	0/0	-18.5 -18.5	0.13 (4)	10.00				

SPECIFIED LOADS:
TOP CH. LL =
DL =
DL =
DL = 32.5 6.0 0.0 7.4 PSF PSF PSF PSF TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 TPIC 2014

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03")

CSI: TC=0.66/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.29/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.23 (E) (INPUT = 0.90) JSI METAL= 0.16 (B) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
I - B	2x4	DRY	No.2	SPF
A - D	2x4	DRY	No.2	SPF
1 - H	2x4	DRY	No.2	SPF
H - C	2x4	DRY	No.2	SPF
G - E	2x4	DRY	No.2	SPF
				- 1
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED L	UMBER.		

PL/	ATES (table	e is in inches)					
JΤ	TYPE	PLATES	W	LEN	Υ	Х	
В	TMVW-t	MT20	4.0	4.0	2.00	1.25	
С	TMVW-t	MT20	4.0	4.0	2.00	1.25	
F	BMW+w	MT20	3.0	6.0			
G	BVM-I	MT20	3.0	4.0			
Н	BMVW-t	MT20	4.0	4.0			

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

	DING DESIG RINGS	INEH					
	FACTORED		MAXIMUN		INPUT	REQRD	
	GROSS REACTION		GROSS F	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	555	0	555	0	0	5-8	5-8
D	248	0	248	0	0	1-8	1-8
Ε	119	0	119	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) D, E

U	NFACTORED RE	ACTIONS					
	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	4S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
1	386	289 / 0	0/0	0/0	0/0	97 / 0	0/0
D	171	138 / 0	0/0	0/0	0/0	33 / 0	0/0
E	86	42 / 0	0/0	0/0	0/0	44 / 0	0/0
I RE	EARING MATER	IAI TO BE S	PE NO 2 OR	RETTER AT ION	JT/Q\ I		

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHO	RDS					WE	R C		
	FACTORED	FACTO	RED			** _	MAX. FACTO	ORED	
ΛΕΜΒ.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
R-TO		FROM	ΤΌ	` '	LENGTH	FR-TO	,		
I- B	-541 / 0	0.0	0.0	0.05(1)	7.81	B- H	0 / 248	0.06(1)	
A- B	0 / 34	-112.4	-112.4	0.15 (1)	10.00	C-F	-657 / 0	0.10(1)	
B- C	-273 / 0	-112.4	-112.4	0.14 (1)	6.25			(-/	
C- D	0/4			0.37 (1)					
I- H	0/0	-18.5	-18.5	0.01 (4)	10.00				
H- G	-111 / 0	0.0	0.0	0.29(1)	7.81				
G-C	0 / 173	0.0	0.0	0.32 (1)	10.00				
G-F	0 / 574	-18.5	-18.5	0.49 (1)	10.00				
F- F	0/0	-18.5		0.40 (1)					

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
			=	7.4	PSF
TOTA	L LO	AD	=	45.9	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/853 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/451 (0.16")

CSI: TC=0.37/1.00 (C-D:1) , BC=0.49/1.00 (F-G:1) , WB=0.10/1.00 (C-F:1) , SSI=0.28/1.00 (C-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.50 (C) (INPUT = 0.90) JSI METAL= 0.21 (G) (INPUT = 1.00)

LUMBER				
N. L. G. A. I	RULES			
CHORDS	SIZE		LUMBER	DESCR.
E - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
E - D	2x4	DRY	No.2	SPF
DDV: CEAC	ONEDIL	INADED		

DRY: SEASONED LUMBER

PL	ATES (table	is in inches)			
JT	TYPE	PLATES	W	LEN Y	Х
В	TMV+p	MT20	3.0	4.0	
F	RMV1n	MT20	3.0	4.0	

NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

BEA	<u>RINGS</u>						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
	GROSS F	GROSS	GROSS REACTION			BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Е	482	0	482	0	0	5-8	5-8
С	160	0	160	0	0	1-8	1-8
D	45	0	50	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS

	1ST LUASE	MAX./N	IIN. COMPO	NENT REACTION	VS		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
E	337	242 / 0	0/0	0/0	0/0	96 / 0	0/0
С	109	92 / 0	0/0	0/0	0/0	17/0	0/0
D	36	0/0	0/0	0/0	0/0	36 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

<u>LOADING</u> TOTAL LOAD CASES: (4)

	RDS FACTORED	FACTORED			WE	BS MAX. FACTO	BED
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		` '
E-B	-418 / 0	0.0 0.0	0.13 (4)	7.81			
A-B	0 / 34	-112.4 -112.4	0.15(1)	10.00			
B- C	-24 / 0	-112.4 -112.4	0.27 (1)	6.25			
E- D	0/0	-18.5 -18.5	0.13 (4)	10.00			

SPEC	IHIED	LOAI	JS:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS
TOTA	L LO	AD	=	45.9	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.03")

CSI: TC=0.27/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.19/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.17 (E) (INPUT = 0.90) JSI METAL= 0.12 (B) (INPUT = 1.00)

DWG# T-2215116

CHORDS MAX. FACTORED FACTORED

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

MAX. FACTORED MEMB. FORCE VERT. LOAD LC1 MAX MAX. MEMB. (PLF) FROM TO 0.0 0 CSI (LC) UNBRAC LENGTH FR-TO (LBS) FR-TO 0.0 0.11 (4) -284 / 0 E-B -112.4 -112.4 0.15 (1) -112.4 -112.4 0.08 (4) A-R 0 / 34 10.00 -18.5 -18.5 0.14 (4) -18.5 -18.5 0.14 (4) -18.5 -18.5 0.14 (4) E-F 0/0 10.00 F-G G-D 10.00 TYPE CONN. HEEL BACK VERT TOTAL BACK TOTAL

PROFESSIONAL FINGUES H. J. G. ALVES

100009024

POLYACE OF ONT ARIO

Structural component only DWG# T-2215117

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

CALCULATED VERT. DEFL.(TL) = L/ 999 (0.04")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.14/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.11/1.00 (A-B:1)

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.11 (E) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 1.00)

SPF SPF SPF DRY DRY: SEASONED LUMBER

PLATES (table is in inches)
JT TYPE PLATES LEN Y R TMV+n MT20 3.0 BMV1+p

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2.

REQRD
BRG
IN-SX
5-8
1-8
1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS
1ST LCASE ___MAX
JT COMBINED SNOW ./MIN. COMPONENT REACTIONS PERM.LIVE WIND DEAD SOIL 242 / 0 0/0 60 / 0 17 / 0 0/0 302 0/0 0/0 109 92/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

TO CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (5)

CHORDS MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBF
FROM TO LENC
0.0 0.0 0.01 (4) 7.8 МЕМВ. FORCE MEMB. FORCE MAX CSI (LC) ERT. LOAD LC1 MAX MAX. MEMB. (PLF) CSI (LC) UNBRAC FROM TO LENGTH FR-TO 0.0 0.0 0.01 (4) 7.81 -112.4 -112.4 0.15 (1) 10.00 -112.4 -112.4 0.27 (1) 6.25 (LBS) (LBS) FR-TO -418/0 E-B A- B E- D 0/0 -18.5 -18.5 0.02 (4) 10.00

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

TOP CH. LL =
DL =
BOT CH. LL =
DL = 32.5 6.0 0.0 7.4 PSF PSF TOTAL LOAD 45.9

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

CSI: TC=0.27/1.00 (B-C:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.19/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.17 (E) (INPUT = 0.90) JSI METAL= 0.12 (B) (INPUT = 1.00)

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	R D S FACTORED	FACTORED	,		WE	BS MAX. FACTO	RED.
MEMB.	FORCE	VERT. LOAD		X MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (L	C) UNBRAC	3	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
E-B	-299 / 0	0.0	0.0 0.05	(5) 7.81			
A-B	0 / 34	-112.4 -11	2.4 0.15	(1) 10.00			
B- C	-21 / 0	-112.4 -11	2.4 0.11	(1) 6.25			
E- D	0/0	-18.5 -1	8.5 0.04	(5) 10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2215119

-OVERHANG NOT TO BE ALTERED OR CUT OF
(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD
ALLOWABLE DEFL.(LL)= L/360 (0.19") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00") ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.04/1.00 (D-E:5) , WB=0.00/1.00 (n/a:0) , SSI=0.11/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

 $\begin{array}{c|ccccc} \text{NAIL Values} & \text{NAIL Version} \\ \text{PLATE} & \text{GRIP}(\text{DRY}) & \text{SHEAT} & \text{SECTION} \\ & (\text{PSI}) & (\text{PLI}) & (\text{PLI}) \\ & \text{MAX} & \text{MIN} & \text{MAX} & \text{MIN} & \text{MAX} & \text{MIN} \\ \text{MT20} & 650 & 371 & 1747 & 788 & 1987 & 1873 \\ \end{array}$

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.12 (E) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 423533 J6 6 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 08:09:56 2022 Page 1 ID:c3jyj23uDija_8pvRKbkZpy75XW-BfeWseMjJTTyTpVglZf8Zg7YL48zqKtgByz7RBz38b

3-10-8

LUMBER N. L. G. A. RULES CHORDS SIZE F - B 2x4 DESCR. SPF SPF SPF SIZE 2x4 LUMBER DRY No.2 No.2 No.2 C DRY DRY ALL WEBS DRY 2x3 No.2 SPF DRY: SEASONED LUMBER

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 E
 BMW+w
 MT20
 W 4.0 2.0 1.00 2.00 BMV1+p

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

	RINGS	ANER					
	FACTOR	RED	MAXIMUI	M FACTO	DRED	INPUT	REQRD
	GROSS RE	EACTION	GROSS I	REACTIO	N	BRG	BRG
Т	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
-	409	0	409	0	0	5-8	5-8
)	218	0	218	0	0	1-8	1-8
)	36	0	40	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS ./MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND
0 / 0 0 / 0 0 / 0 ____MAX SNOW COMBINED 0/0 0/0 0/0 216/0 69 / 0 23 / 0 29 / 0 284 149 126 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS				WEBS			
MAX.	FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
F-B	-374 / 0	0.0 0.0	0.04(1)	7.81	B-E	0/0	0.00(1)
A-B	0 / 50	-112.4 -112.4	0.16 (5)	10.00			
B- C	0/0	-112.4 -112.4	0.29 (1)	10.00			
F-E	0/0	-18.5 -18.5					
E- D	0/0	-18.5 -18.5	0.08 (4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

SPECIFIED LOADS: LL = DL = LL = DL = AD = PSF PSF PSF 32.5 6.0 0.0 7.4 BOT CH. TOTAL LOAD 45.9

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 6 X 15 = 91 lb

Scale = 1:27.5

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.29/1.00 (B-C:1) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.13/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.28 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

LOADING TOTAL LOAD CASES: (5) CHORDS

WEBS MAX. FACTORED FORCE MAX MAX. FACTORED FACTORED FACTORED VERT. LOAD LC1 MAX MAX. (PLF) CSI (LC) UNBRAC FROM TO LENGTH 10.0 0.04 (5) 7.81 -112.4 -112.4 0.15 (1) 10.00 MEMB. МЕМВ. MAX CSI (LC) (LBS) (LBS) FR-TO LENGTH FR-TO E-B A-B -290 / 0 B-C -25 / 0 -112.4 -112.4 0.11 (1) 6.25 E- D -18.5 -18.5 0.04 (5) 10.00

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DWG# T-2215121

CSI: TC=0.15/1.00 (A-B:1) , BC=0.04/1.00 (D-E:5) , WB=0.00/1.00 (n/a:0) , SSI=0.11/1.00 (A-B:1)

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEFT ONLY

TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.12 (E) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 1.00)

NAIL VALUES

LUMBER				
N. L. G. A	RULES			
CHORDS	SIZE		LUMBER	DESCR.
E - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
E - D	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 E
 BMV1+p
 MT20
 LEN Y 3.0 40

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	492	0	492	0	0	5-8	5-8
С	178	0	178	0	0	1-8	1-8
D	32	0	36	0	0	5-8	5-8
		•		0	0		

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C

CINE	ACTURED RE	ACTIONS				
	1ST LCASE	MAX./	MIN. COMPON	ENT REACTION	4S	
JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	
Е	342	258 / 0	0/0	0/0	0/0	
C	121	103/0	0/0	0/0	0/0	
		1ST LCASE JT COMBINED E 342	JT COMBINED SNOW E 342 258/0	1ST LCASE MAX/MIN. COMPON JT COMBINED SNOW LIVE E 342 258 / 0 0 / 0	1ST LCASE	TST LCASE

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C, D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

DEAD

84 / 0 19/0

26 / 0

SOIL

0/0

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS				WEBŞ			
MAX.	FACTORED	FACTORED			MA	X. FACTO	RED	
MEMB.	FORCE	VERT. LOAD LC1	MAX	MAX. M	IEMB.	FORCE	MAX	
	(LBS)	(PLF) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH F	R-TO		. ,	
E-B	-446 / 0	0.0 0.0	0.07 (4)	7.81				
A-B	0 / 24	-112.4 -112.4	0.14(1)	10.00				
B- C	-19/0	-112.4 -112.4	0.34 (1)	6.25				
E- D	0/0	-18.5 -18.5	0.07(4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = 32.5 6.0 PSF PSF 0.0 7.4 BOT CH. TOTAL LOAD 45.9

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

CSI: TG=0.34/1.00 (B-C:1) , BC=0.07/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.22/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.18 (E) (INPUT = 0.90) JSI METAL= 0.09 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423534 TRUSS DESC. J30 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 08:28:53 2022 Page 1

1-0-8

ID:c3jyj23uDijq_8pvRKbkZpy75XW-OOrLUQ7vYpjdNYwBrrYm8SjsKQBEkZM1eMuoqoz38Ju

LUMBER N. L. G. A. RULES CHORDS F - B LUMBER DRY SPF SPF SPF 2x4 No.2 2x4 DRY No 2 Ď DRY ALL WEBS 2x3 SPF No.2 DRY: SEASONED LUMBER

PLATES (table is in inches) W 4.0 3.0 LEN TMVW+p BMW+w MT20 MT20 4.0 1.00 2.00 BMV1+p

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

BEAF	RINGS						
	FACTOR	ED	MAXIMUN	/ FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
-	354	0	354	0	0	5-8	5-8
)	194	0	194	0	0	1-8	1-8
)	32	0	36	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS MAX SNOW (./MIN. COMPONENT REACTIONS LIVE PERM.LIVE WIND COMBINED LIVE 0/0 DEAD SOIL 0/0 0/0 0/0 186 / 0 60 / 0 21 / 0 0/0 246 0/0 133 112/0

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

	R D S FACTORED	FACTORED		W E B S MAX. FACTORED			
MEMB.	FORCE	VERT. LOAD I	LC1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO	, ,	. ,
F-B	-322 / 0	0.0	0.0 0.03 (1	7.81	B- E	0/0	0.00(1)
A-B	0 / 41	-112.4 -112	2.4 0.11 (1	10.00			. ,
B- C	0/0	-112.4 -112	2.4 0.23 (1	10.00			
F-E	0/0		3.5 0.06 (4				
E- D	0/0	-18.5 -18	3.5 0.06 (4	10.00			

TOTAL WEIGHT = 3 X 14 = 41 lb

Scale = 1:24.7

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = 32.5 6.0 PSF PSF 0.0 7.4 PSF PSF BOT CH. DL TOTAL LOAD 45.9 PSF

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

CSI: TC=0.23/1.00 (B-C:1) , BC=0.06/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.12/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT .

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.24 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 423534 131 TRUSS DESC. Version 8.530 S Feb 23 2022 MTek Industries, Inc. Fri Jun 24 08:28:54 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-sbPjim7YJ6rU?iVOPZ3?hfF3?qXTT0bAs0eMNEz38Jt Tamarack Roof Truss, Burlington 1-0-8 1-9-7 Scale = 1:17.7 С 10.00 12 4x4 || В W1 1-5-3 Е G 2x4 \ D 1-11-4 1-6-4 1-0-8 1-9-7 1-8-1 TOTAL WEIGHT = 2 X 11 = 21 lb LUMBER N. L. G. A. RULES DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING -BEARINGS FACTORED **BUILDING DESIGNER DESIGN CRITERIA** DESCR. SPF SPF CHORDS F - B SIZE LUMBER DRY MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: GROSS REACTION VERT HORZ 260 0 No.2 No.2 GROSS REACTION DOWN HORZ L BRG IN-SX LL = DL = LL = DL = PSF PSF C DRY SPF 6.0 FCD 260 100 BOT CH. 0.0 7.4 5-8 5-8 PSF ALL WEBS SPF No.2 100 1-8 1-8 DRY: SEASONED LUMBER. TOTAL LOAD 45.9 PSF SPACING = 24.0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D THIS TRUSS IS DESIGNED FOR RESIDENTIAL PLATES (table is in inches)
JT TYPE PLATES UNFACTORED REACTIONS OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 LEN Y R TMVW+p 4.0 2.0 4.0 MT20 1.00 2.00 BMW+w BMV1+p

1) Lateral braces to be a minimum of 2X4 SPF #2.

	1ST LCASE	MAX./N	MIN. COMPOR	VENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	182	132/0	0/0	0/0	0/0	50 / 0	0/0
C	69	58 / 0	0/0	0/0	0/0	11/0	0/0
D	26	0/0	0/0	0/0	0/0	26 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	DRDS						WE	BS		
MAX.	FACTOR	ED FA	CTORE	D				MAX. FACT	ORED	
иемв.	FOR	CE VER	T. LOAD	LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	С	SI (LC)	UNBRAG	0	(LBS)	CSI (I	LC)
R-TO		FR	OM TO)	. ,	LENGTH	FR-TO	, -,	(/
F- B	-228 / 0		0.0	0.0	0.02(1)	7.81	B-E	0/0	0.00	(1)
A- B	0 / 41	-1	12.4 -1	12.4	0.11 (1)	10.00				,
B- C	0/0				0.06 (1)					
F-E	0/0	-	18.5 -	18.5	0.06(4)	10.00				
E-G	0/0	-	18.5 -	18.5	0.06 (4)	10.00				
G- D	0/0				0.06 (4)					
					٠,					
SPECIFI	ED CONCI	ENTRATE	D LOAD	S (LB	S)					
JT	LOC.	LC1 N	1AX-	MÀX+	· F/	ACE I	DIR.	TYPE	HEEL	CONN.
G 1	-11-4	1	1		- FR	V TNC	ERT	TOTAL		C1
										•
CONNECTION REQUIREMENTS										

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00") ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.01")

CSI: TC=0.11/1.00 (A-B:1) , BC=0.06/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.08/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.17 (B) (INPUT = 0.90) JSI METAL= 0.05 (B) (INPUT = 1.00)

DWG# T-2215152

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. BAYVIEW WELLINGTON DRWG NO.

423534 J32 2 1 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.590 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 08:28:55 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-Knz5v68A4QzLcr4azGbEDtoFQDuPCTrK5gNvvgz38Js

LUMBER N. L. G. A. RULES DESCR. SPF SPF CHORDS SIZE LUMBER DRY DRY DRY No.2 No.2 В No.2 SPF ALL WEBS DRY 2x3 SPF No.2 DRY: SEASONED LUMBER.

 PLATES (table is in inches)

 JT
 TYPE
 PLATES
 W
 LEN
 Y
 X

 A
 TMVW+p
 MT20
 4.0
 4.0
 1.00
 2.00

 D
 BMW+w
 MT20
 2.0
 4.0
 W
 MT20
 4.0
 W

1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

1-10-8

BEA	RINGS						
	FACTOR	RED	MAXIMUN	/ FACTO	DRED	INPUT	REQRE
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	118	0	118	0	0	3-0	3-0
В	100	0	100	0	0	1-8	1-8
С	17	0	19	0	0	1-8	1-8

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, B

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) B , C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	DRDS					WE	BS		
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	_F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO	. ,	• ,	
E- A	-100 / 0	0.0	0.0	0.01(1)	7.81	A- D	0/0	0.00(1)	
A-B	0/0	-112.4	-112.4	0.06 (1)	10.00			` '	
E- D	0/0	-18.5	-18.5	0.02 (4)	10.00				
D- C	0/0	-18.5	-18.5	0.02 (4)	10.00				

TOTAL WEIGHT = 2 X 7 = 15 lb

DESIGN CRITERIA

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.00")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (A-D:1) , SSI=0.06/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.07 (A) (INPUT = 0.90) JSI METAL= 0.02 (A) (INPUT = 1.00)

Structural component only DWG# T-2215153

REVIEWED

JOB NAME TRUSS NAME QUANTITY JOB DESC **BAYVIEW WELLINGTON** PLY DRWG NO. 423537 TRUSS DESC J45

Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 09:02:54 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-72gwrJp9uvs1kCSSw?gOMslex9nMRedSzOpl_?z37q?

LUMBER
N. L. G. A. RULES
CHORDS SIZE
F - B 2x4 DESCR. SPF SPF SPF LUMBER BCD DRY No.2 DRY DRY ALL WEBS 2x3 DRY No.2 SPF DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW-t
 MT20

 E
 BMW+w
 MT20
 W 4.0 2.0 LEN 4.0 4.0 1 Y X 2.00 1.00 BMV1+p

NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2. DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

DOIL	טונים שרווים.	HALL !					
BEA	RINGS						
	FACTOR	ED	MAXIMUN	/ FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	419	0	419	0	0	5-8	5-8
С	227	0	227	0	0	1-8	1-8
D	37	0	42	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

1	OINE	ACTURED RE	RED REACTIONS							
ı		1ST LCASE	MAX./	MAX./MIN. COMPONENT REACTIONS						
ı	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
	F	291	220 / 0	0/0	0/0	0/0	71 / 0	0/0		
i	С	156	131 / 0	0/0	0/0	0/0	24 / 0	0/0		
	D	30	0/0	0/0	0/0	0/0	30 / 0	0/0		
ı										

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHO	ORDS		WEBS				
MAX	. FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
F-B	-382 / 0		0.05(1)	7.81	B- E	0/0	0.00(1)
A-B	0 / 43	-112.4 -112.4	0.15(1)	10.00			
B- C	0/0	-112.4 -112.4	0.31 (1)	10.00			
F-E	0/0	-18.5 -18.5		10.00			
E- D	0/0	-18.5 -18.5	0.09 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: SPECIFIED LOADS.

TOP CH. LL =

DL =

BOT CH. LL =

DL =

TOTAL LOAD = 32.5 6.0 0.0 7.4 PSF PSF PSF PSF 45.9 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 4 X 17 = 67 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.31/1.00 (B-C:1) , BC=0.09/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.15/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR (PLI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC **BAYVIEW WELLINGTON** DRWG NO. 423537 TRUSS DESC. J46 Tamarack Roof Truss, Burlington Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Fri Jun 24 09:02:55 2022 Page 1 1-3-8 1-9-7 8.00 12 В W1 G 2x4 \\ 1-11-4 2-1-4

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	-DESCR.
F - B	2x4	DRY	No.2	SPF
A - C	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED L	UMBER.		•

PLATES (table is in inches) JT TYPE PLATES B TMVW-t MT20 W LEN Y X 4.0 4.0 2.00 1.00 2.0 4.0 MT20 MT20 BMW+w BMV1+p

(1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER** BE

2-3-1

1-9-7

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS F	REACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	351	0	351	0 .	0	5-8	5-8
С	41	0	41	0	0	1-8	1-8
D	37	0	42	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./N	IN. COMPO	NENT REACTION	1S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	245	181 / 0	0/0	0/0	0/0	63 / 0	0/0
C	28	24 / 0	0/0	0/0	0/0	4/0	0/0
D	30	0/0	0/0	0/0	0/0	30 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
TO BE RIGHD CF. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	DRDS					W E	BS		
MAX.	FACTORE	D FACTO	DRED				MAX. FAC	TORED	
MEMB.	FORC	E VERT. LO	DAD LC1	MAX	MAX.	MEMB.	FORCE	E MAX	
	(LBS)	(P	LF) (CSI (LC)	UNBRA	С	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	HFR-TO	, ,	,	,
F-B	-314/0	0.0	0.0	0.04(1)	7.81	B- E	0/0	0.00	(1)
A-B	0 / 43	-112.4	-112.4	0.15(1)	10.00				. ,
B- C	-33 / 0	-112.4	-112.4	0.14(1)	6.25				
F-E	0/0	-18.5	-18.5	0.08 (4)	10.00				
E-G	0/0	-18.5	-18.5	0.09 (4)	10.00				
G-D	0/0	-18.5	-18.5	0.09 (4)	10.00				
SPECIFI	ED CONCE	NTRATED LO	DADS (LE	3S)					
JT	LOC. I	LC1 MAX-	MAX-	+ F	ACE	DIR.	TYPE	HEEL	CONN.
G 1	-11-4	1 1		BA	CK V	ERT	TOTAL		C1
CONNEC	TION REQU	JIREMENTS							

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	32.5	PS
		DL		6.0	PS
BOT	CH.			0.0	PS
			=	7.4	PS
TOTA	L LO	AD	=	45.9	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 13 = 27 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.09/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL I) (PL II) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.19 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

JOB NAME **BAYVIEW WELLINGTON** TRUSS NAME QUANTITY PLY JOB DESC. DRWG NO 423537 TRUSS DESC. J47 Tamarack Roof Truss, Burlington

Version 8.530 S Feb 23 2022 Mirlek Industries, Inc. Fri Jun 24 09:02:55 2022 Page 1 ID:c3jyj23uDijq_8pvRKbkZpy75XW-bFEI3fqnfD_uMM1fTiBdv3IrDZ8gA5tbB2YrWRz37q

1-3-8 1-9-7 8.00 12 4x4 🖊 В W1 Ε 2x4 \\\ D 1-10-8 1-3-8 1-9-7

N. L. G. A. RULES DESCR. SPF SPF SPF CHORDS F - B SIZE LUMBER 2x4 2x4 DRY No.2 DRY C No.2 No.2 DRY ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF No.2

PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 LEN Y 4.0 4.0 2.00 1.00 BMW+w BMV1+p 4.0

1) Lateral braces to be a minimum of 2X4 SPF #2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER**

EΑ	RINGS						
	FACTOR	RED	MAXIMUI	M FACTO	DRED	INPUT	REQRD
	GROSS RE	ACTION	GROSS I	REACTIO	N	BRG	BRG
Γ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	331	0	331	0	0	5-8	5-8
	41	0	41	0	-50	1-8	1-8
	17	0	19	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

UNF	ACTORED RE	<u>ACTIONS</u>					
	1ST LCASE	MAX./	JIN. COMPO	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	229	181 / 0	0/0	0/0	0/0	47 / 0	0/0
С	28	24 / -34	0/0	0/0	0/0	4/0	0/0
D	14	0/0	0/0	0/0	0/0	14/0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

. CD

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

СН	ORDS				W E	BS	
MAX	. FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAG	3	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		, ,
F-B	-314 / 0	0.0 0.0	0.04(1)	7.81	B-E	0/0	0.00(1)
A-B	0 / 43	-112.4 -112.4	0.15(1)	10.00			
B-C	-33 / 0	-112.4 -112.4	0.14(1)	6.25			
F-E	0/0	-18.5 -18.5					
E-D	. 0/0	-18.5 -18.5	0.02 (4)	10.00			
1							

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	32.5	PSF
ĺ		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
1		DL	=	7.4	PSF
TOTA	r ro	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 11 = 22 lb

Scale = 1:22.

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

CSI: TC=0.15/1.00 (A-B:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

| NAIL VALUES | VALUE

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.19 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components

2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.

3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.

4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.

5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.

- 2- Lumber is to be the sizes and grade specified on the truss drawing.
- 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6- The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)
- 7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals.

8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols, numbering tem and General Safety notes.

T-1300218

Feb 09, 2018

STANDARD DETAIL MSD2015-H

Issued: SEPTEMBER 22, 2020

Expiry: **APRIL 30, 2022**

TOE-NAIL CAPACITY DETAILS

LATERAL AND WITHDRAWAL RESISTANCE OF BEARING ANCHORAGE BY TOE-NAILS

			SPF	D. FIR	SPF	D. FIR
COMMON	3.00	0.144	122	139	30	42
WIRE	3.25	0.144	127	144	32	45
	3.50	0.160	152	173	38	52
COMMON	3.00	0.122	96	108	26	36
SPIRAL	3.25	0.122	97	108	28	40
	3.50	0.152	142	161	. 36	50
3.25" Gun nail	3.25	0.120	94	105	28	39

Note: If using truss with D. Fir lumber and SPF bearing plate, use tabulated SPF values in table.

Nail type:		Common wire	Common spiral	Common wire	Common spiral	Gun Nail
Diameter	(in.)	0.160	0.152	0.144	0.122	0.120
Length	(in.)	3.50	3.50	3.00	3.00	3.25
2x4 SPF		2	2 .	3	3	3
2x6 SPF		4	4	4	5	5
2x4 D. FI	R .	2	2	2	2	2
2x6 D. FI	R	3	3	3	4	4

Figure 1: Toe-Nailing Rafter / Ceiling Member to Girder Truss

December 21, 2020

©2020 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, www.mitek.ca

STANDARD DETAIL MSD2015-H

Issued: SEPTEMBER 22, 2020

Expiry:

APRIL 30, 2022

TOE-NAIL CAPACITY DETAILS

Figure 2: Toe-Nail Anchorage to Bearing Plate for Uplift

NOTES:

Elevation View

- 1. Rafter and ceiling members may be connected to top and bottom chords of girder truss by toe-nailing the members into the girder chords (see fig. 1), provided the factored vertical reactions of the supported members do not exceed the lateral resistance of the toe-nails. Mechanical connectors (hangers) are required if factored vertical reactions exceed the toe-nail capacity, or if the connection must resist horizontal loads (loads perpendicular to the face of girder or rafter).
- 2. Trusses, rafters or ceiling members may be anchored to the bearing plate with toe-nails (see fig. 2), provided that the factored uplift reactions due to wind or earthquake loads do not exceed the withdrawal resistance of the toe-nails. Mechanical anchors (tie-downs) are required for reactions that exceed the toe-nail withdrawal capacity. Toe-nail anchorage to bearing plates is NOT permitted if uplift reactions are generated from gravity loads (snow, floor live, dead).
- 3. Tabulated toe-nail resistances on page 1 are for **one** toe-nail. Multiply unit values by the number of nails used in the connection. Maximum number of nails in a connection shall not exceed the tabulated limits shown on page 1 for a given lumber size /species.
- 4. Nail values are based on specific gravity of G = 0.42 (SPF) and G = 0.49 (D. Fir).
- 5. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member.
- 6. For wind / earthquake loads, tabulated lateral resistances may be multiplied by 1.15 (K_D factor). No increases are permitted for tabulated withdrawal resistances.
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA 086-19, Clause 12.9.

REVIEWED

LUL/LUS/LJS/HUS/HHUS/HGUS

Standard and Double-Shear Joist Hangers

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

Most hangers in this series have double-shear nailing — an innovation that distributes the load through two points on each joist nail for greater strength. This allows for fewer nails, faster installation, and the use of all common nails for the same connection. (Do not bend or remove tabs)

Double-shear hangers range from the light capacity LUS hangers to the highest capacity HGUS hangers. For medium load truss applications, the HUS offers a lower cost alternative and easier installation than the HGUS hangers, while providing greater load capacity and bearing than the LUS.

Material: See table on pp. 217-218.

Finish: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, pp. 18-20.

Installation:

- Use all specified fasteners; see General Notes.
- · Nails must be driven at an angle through the joist or truss into the header to achieve the tabulated resistances (except LUL).
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated factored resistance.
- · Not designed for welded or nailer applications.
- With single ply 2x carrying members, use 10d x 1 ½" nails into the header and 10d commons into the joist, and reduce the resistance to 0.64 of the table value where 16d nails are specified and 0.77 where 10d nails are specified.

Options:

- LUS, LJS, LUL and HUS hangers cannot be modified.
- Other sizes available; consult your Simpson Strong-Tie representative.
- See Hanger Options information on pp. 105–107.

(HUS26, HUS28,

and HHUS similar)

Shear Nailing

Double-Shear Nailing Side View; bend tab

PROFESSIONAL IS V. LUBARSKY 100044463 PACE OF COUNTY

Typical HUS26 Installation with Reduced Heel Height (Truss Designer to provide fastener quantity for connecting multiple members together)

LUS - Double Shear Joist Hangers

SIMPSON Strong-Tie

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA 086-14.
- Uptift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 31/2" long common wire, 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

Options:

These hangers cannot be modified

Typical LUS

									in	stallation	ì	
Madel			Dimensions (in.)				Fasteners		Factored Resistance (lb.)			
No.	Ga.	w	Н	В	d _a ¹	Face	Joist	Uplift	Normal	Uplift	P-F Normal	
111004	<u> </u>		-		u _e	1 auc	JOISE	(K ₀ =1.15)	(K ₀ =1.00)	(K ₀ =1.15)	(K ₀ =1.00)	
LUS24	18	19/16	31/6	13/4	1 15/18	(4) 10d	(2) 10d	710	1630	645	1155	
LUS24-2	18	31/8	31/6	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435	
LUS26	18	1%	43/4	13/4	35/8	(4) 10d	(4) 10d	1420	2170	1290		
LUS26-2	18	31/8	41/8	2	4	(4) 16d	(4) 16d	1720			1630	
LUS26-3	18	4%	43/16	2	31/4	(4) 16d	(4) 16d		2595	1545	1920	
LUS28	18	1%	6%	13/4	33/4		· · · · · · · · · · · · · · · · · · ·	1720	2595	1545	2340	
LUS28-2	18	31/8	7			(6) 10d	(6) 10d	1420	2520	1290	1790	
	-		<u> </u>	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575	
LUS28-3	18	4%	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375	
LUS210	18	1%	713/16	13/4	37/8	(8) 10d	(4) 10d	1420	2785			
Ш8210-2	18	31/8	9	2	6	(8) 16d	(6) 16d			1290	2210	
LUS210-3	18	45%	83/16	2		<u> </u>		2580	4500	2320	3195	
d is the dis	للبل				51/4	(8) 16d	(6) 16d	2580	3345	2320	2375	

 $^{1.\,}d_{\rm e}$ is the distance from the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent

Shear Nailing Top View

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022: Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company inc.

T-SPECLUS20 3/20 exp. 6/22

(800) 999-5099 strongtie.com

TECHNICAL BULLETIN

HUS/LJS - Double Shear Joist Hangers

SIMPSON Strong-Tie

HUS210

(HUS26, HUS28, similar)

Typical HUS

Installation

All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: See table Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

See current catalogue for options

LJS26DS

0 0

Typical LJS26DS

(Truss Designer to provide fastener quantity for connecting multiple

		Di	Dimensions (in.)				teners	Factored Resistance (lb.)			
Model	Ga.		H B d_e^{\dagger} Face Joist Uplift $(K_0=1.15)$					D.Fir-L		S-P-F	
No.	ua.	W		Uplift (K ₀ =1.15)	Normal (K _p =1.00)	Uplift (K _p =1.15)	Normal (K _n =1.00)				
LJS26DS	10	401						lb.	lb.	lb.	lb.
	18	1%6	5	3½	45%	(16) 16d	(6) 16d	2055	4265	1460	4115
HUS26	16	1%	53/8	3	315/16	(14) 16d	(6) 16d	2705	4940	2065	
HUS28	16	1%	73/32	3	63/32	(22) 16d					3875
HUS210						,	(8) 16d	3605	5365	2675	4345
	16	1%	93/32	3	731/32	(30) 16d	(10) 16d	4505	5795	4010	4740
HUS1.81/10	16	113/16	9	3	8	(30) 16d	(10) 16d	4505	6450		
1 do is the dis	tanco	from t	ha aa	4 -611	<u> </u>			7000	U45U	4010	5200

om the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View Do not bend tab back.

Double Shear Nailing Top View.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHUS20 3/20 exp. 6/22

HGUS – Double Shear Joist Hangers

SIMPSON Strong-Tie

HGUS28-2

All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%.
 No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

See current catalogue for options

30-3-1			Dimens	ions (in	1.)	Faste	eners	F	actored Re	sistance (I	b.)
Model No.	Ga.		T	Т	Т	 	Т		D.Fir-L		P-F
HU.	1	W	Н	В	d _a 1	Face	Joist	Uplift	Normal	Uplift	Normal
HOUGO	10		-	ļ	ļ		Soldt	$(K_0=1.15)$	(K _D =1.00)	(K ₀ =1.15)	(K ₀ =1.00)
HGUS26	12	1%	5%	5	4 1/32	(20) 16d	(8) 16d	2685	6625	2685	5700
HGUS26-2	12	35/16	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-3	12	415/16	51/2	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	
HGUS26-4	12	6%s	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS28	12	1%	71/8	5	61/8	(36) 16d	(12) 16d	3310	7.675		6355
HGUS28-2	12	35/16	73/16	4	61/6	(36) 16d	(12) 16d	6070	12980	3100	6900
HGUS28-3	12	4 15/16	71/4	4	6%	(36) 16d	(12) 16d			4310	9215
HGUS28-4	12	6%e	73/16	4	61/8	(36) 16d	· /	6070	12980	4310	9215
HGUS210	12	15/8	91/8	5	71/a		(12) 16d	6070	12980	4310	9215
HGUS210-2	12	35/16			-	(46) 16d	(16) 16d	3535	11070	2510	8090
			93/16	4	81/8	(46) 16d	(16) 16d	6840	14015	4855	10270
HGUS210-3	12	415/16	91/4	4	8%	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS210-4	12	6%6	93/16	4	81/8	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS212-4	12	6%	10%	4	101/8	(56) 16d	(20) 16d	7640	14995	5425	
HGUS214-4	12	6%	12%	4	111/8	(66) 16d	(22) 16d	10130			10645
d ie the die	tanaa	4 4				(35) 100	() 104	10130	16400	7195	11645

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

This technical bulletin is effective until June 30; 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see stronglie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHGUS20 3/20 exp. 6/22

HHUS - Double Shear Joist Hangers

SIMPSON Strong-Tie

All HHUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 14 gauge Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

fastener quantity for connecting

Options:

See current catalogue for options

 $^{1.}d_{\theta}$ is the distance from the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back

Double Shear Nailing Top View.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongitie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHHUS20 3/20 exp. 6/22

SIMPSON

H/TSP

Seismic and Hurricane Ties (cont.)

14 H10A Field-Bent

Installation

C-C-CAN2018 @ 2017 SIMPSON STRONG-TIE COMPANY INC.

H14 Installation to **Double Top Plates**

15 H10S Installation

H14 Installation to Double 2x Header

Avoid a Misinstallation

H10A optional positive angle nailing connects shear blocking to rafter. Use 8d common nails. Slot allows maximum

field-bending up to a pitch of 6/12, use 75% of the table

Do not make new holes or overdrive nails

Installation

H/TSP

Seismic and Hurricane Ties

Simpson Strong-Tie® hurricane ties provide a positive connection between truss/rafter and the wall of the structure to resist wind and seismic forces. New additions to the line provide even more options.

- H10AR The heavy-duty design of the H10A available with a 2" wide throat to accommodate rough lumber
- H10A-2 The H10A design with a 3" throat for double 2x members
- H2ASS, H2.5ASS and H10ASS Popular ties now available in stainless steel

Material: See table

H10A-2

H₁₀AR

Finish: Galvanized. H7Z and H11Z — ZMAX® coating. Some models available in stainless steel or ZMAX; see Corrosion Information, pp. 20–24 or visit strongtie.com.

Installation:

- · Use all specified fasteners; see General Notes.
- H1 can be installed with flanges facing inward (reverse of H1 installation drawing; number 1).
- H2.5T, H3 and H6 ties are shipped in equal quantities of right and left versions (right versions shown).
- · Hurricane ties do not replace solid blocking.
- When installing ties on plated trusses (on the side opposite the truss plate) do not fasten through the truss plate from behind. This can force the truss plate off of the truss and compromise truss performance.
- H10A optional nailing to connect shear blocking, use 8d nails.
 Slots allow maximum field bending up to a pitch of 6:12, use H10A sloped loads for field bent installation.

H11Z

H14

H - Seismic and Hurricane Ties

SIMPSON Strong-Tie

The H connector series provides wind and seismic ties for trusses and rafters.

Material: 18 gauge Finish: G90 galvanized

Design: • Factored resistances are in accordance with CSA 086-14

 Factored resistances have been increased 15%. No further increase is permitted.

Installation: • Use all specified fasteners

- Nails: 8d = 0.131" dia. x 2½" long common wire, 8d x 1½" = 0.131" x 1½ long, 10d x 1½" = 0.146" x 1½" long
- H1 can be installed with flanges facing outwards
- Hurricane ties do not replace solid blocking

Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows: Factored Shear/Resisting Shear + Factored Tension/Resisting Tension ≤ 1.0 .

Nailing into both sides of a single ply 2x truss may cause the wood to split.

H2.5T

H2.5T Installation (Nails into both top plates)

	Ì	1	Fasteners		Factored Resistance (lb.)								
Model	١.	<u> </u>				D.Fir-L			S-P-F				
No.	Ga.	7.5.5			Uplift	Nor	mai	Uplift	Nor	mai			
		To Rafter	To Plates	To Studs		F ₁	F2	Opini	F ₁	F ₂			
							(K ₀ =1.15)			(K _n =1.15)			
H1	18	(6) 8d x 11/2"	(4) 8d		740	685	300	680	485	215			
H2A	18	(5) 8d x 11/2"	(2) 8d x 11/2"	(5) 8d x 11/2"	830	220	75	590	155	55			
H2.5A	18	(5) 8d	(5) 8d	_	805	160	160	755					
H2.5T	18	(5) 8d	(5) 8d		835				160	160			
НЗ	18	(4) 8d				175	240	740	160	210			
			(4) 8d		740	180	265	615	125	190			
H10A	18		(9) 10d x 11/2"		1735	795	410	1505	565	290			

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- Factored resistances are for one anchor. A
 minimum rafter thickness of 2½" must be used
 when framing anchors are installed on each side of
 the joist and on the same side of the plate.
- When cross-grain bending or cross-grain tension
 cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- Hurricane ties are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable. For a Continuous Load Path, connections must be on same side of the wall.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtic.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECH20 3/20 exp. 6/22

TC - Truss Connectors

SIMPSON Strong-Tie

The TC truss connector is an ideal connector for scissor trusses and can allow horizontal movement up to 11/4". The TC also attaches plated trusses to top plates or sill plates to resist uplift forces. Typically used on one or both ends of truss as determined by the building designer.

Material: 16 gauge Finish: G90 galvanized

Design: Factored resistances are in accordance with CSA 086-14

Installation:

- Use all specified fasteners.
- Nails: 10d = 0.148" dia. x 3" long common wire, 10d x 1½ = 0.148" dia. x 1½" long.
- Drive 10d nails into the truss at the inside end of the slotted holes (inside end is towards the centre of the truss) and clinch on the back side. Do not seat these nails into the truss-allow room under the nail head for movement of the truss with respect to the wall.

Optional TC Installation:

 Bend one flange up 90°. Drive specified nails into the top and face of the top plates or install Titen* screws into the top and face of masonry wall. See optional load tables and installation details.

TC24 U.S. Patent 4,932,173

TC26 (TC28 Similiar)

Typical TC24 Installation

Optional TC26 Installation for Grouted Concrete Block using a Wood Nailer (8", 10", 12" Wall Installation Similar)

Optional TC26 Installation for Grouted Concrete Block using Titen Screws

	Fast	eners	Factored Resistance		
Model			D.Fir-L	S-P-F	
No.	Truss	Wall Plates	Uplift (K ₀ =1.15)	Uplift (K _p =1.15)	
			fb.	lb.	
TC24	(4) 10d	(4) 10d	605	430	
TC26	(5) 10d	(6) 10d	1015	720	
TC28	(5) 10d	(6) 10d	1015	720	

Optional TC Installation Table

- Paoriai	O mstana	non isole				
	Fas	teners	Factored Resistance			
Model			D.Fir-L	S-P-F		
No.	Truss	Wall Plates	Uplift (K _D =1.15)	Uplift (K _D =1.15)		
			lb.	lb.		
TC26	(5) 10d	(6) 10d x 11/2"	810	660		
	(5) 10d	(6) 10d	930	660		

- Factored resistances have been increased 15% for earthquake or wind loading; no further increase allowed; reduce where other loads govern.
- Grout strength is 15 MPa minimum.
- Optional TC26 installation with 10d nails requires minimum 3" top plate thickness.
- 4. TC26 fastened to grouted concrete block with (6) 1/16" x 21/4" Titen screws has a factored uplift resistance of 275 lb.

REVIEWED
(800) 999-5099
strongtie.com

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see stronglie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECTC20 3/20 exp. 6/22

Face-Mount Truss Hanger (cont.)

These products are approved for installation with the Strong-Drive® SD Connector screw. See pp. 32-34 for more information.

Alternate Installation for (2) 2x4 and (2) 2x6 Headers

		1	FE	isteners		Factored Resistance				
Madal	Min.	Minimum	Header		. D,F	ir-L	S-P-F			
Model No.	Heel Height	Header		,	Uplift	Normal	Uplift	Normal		
	(in.)	Size		Joist	$(K_0 = 1.15)$	$(K_0 = 1.00)$	$(K_D = 1.15)$	$(K_0 = 1.00)$		
					ib.	ib.	lb.	lb.		
					kN	kN	kN	kN		
HTU26 (Min.)	37/8	(2) 2x4	(10) 16d	(14) 10d x 11/2"	1740	3340	1235	2370		
			<u> </u>	(1.1/1001/12	7.74	14,86	5,49	10,54		
HTU26 (Max.)	51/2	(2) 2x4	(10) 16d	(20) 10d x 11/2"	2470	4015	1755	2850		
				(20) 100 X 172	10.99	17,86	7.81	12.68		
TU28 (Max.)	3%	(2) 2x6	(20) 16d	(26) 10d x 11/2"	4150	6395	2945	4540		
				(EO) 100 X 172	18.46	28.45	13.10	20.19		
1TU210 (Max.)	71/4	(2) 2x6	(20) 16d	(32) 10d x 11/2"	4150	6395	2945	4540		
a table footboto			,==, 10u	(UE) 100 X 172	18.46	28.45	13.10	20.19		

See table footnotes on p. 260.

Hanger Options

See Hanger Options information on pp. 125-127. Skewed Seat

- Skewable up to 67½°
- Available in single and 2-ply size
- No bevel cut required

Top View HTU Hanger Skewed Right < 51°

Top View HTU Hanger Skewed Right ≥ 51°

Factored Resistances for Skewed HTU Hangers

		F	asteners	T	Footend		. 7. 7.227.22.22
			T	-	ractored ir-L	Resistance	
Model	Skew			Uplift			P-F
No.	Angle (Degrees)	Header	Joist	(KD=1.15)	Normal	Uplift	Normai
	(noth cost		50131	[bs	(KD=1.00)	(KD=1.15)	(KD=1.00)
			ĺ	kN	ibs	lbs	lbs
7			 		kN	kN	kN
	< 51	(20) 16d	(14) 10d x 1½"	1835	4110	1300	2905
HTU26		 		8.16	18.28	5.78	12.92
	51-671/2	(20) 16d	(12) 10d x 11/2"	1350	3620	955	2560
		 	 	6,01	18.10	4.25	11.39
	< 51	(26) 16d	(20) 10d x 11/2"	2810	4270	1985	3030
HTU28		<u> </u>	· · · · · · · · · · · · · · · · · · ·	12.50	18.99	8.83	13.48
	51-671/2	(26) 16d	(17) 10d x 11/2"	2075	3930	1465	2780
				9.23	17.48	6.52	12.37
	< 51	(32) 16d	(26) 10d x 1 ½"	3785	4430	2675	3135
HTU210				16.84	19.71	11,90	13,95
	51~671/2	(32) 16d	(22) 10d x 11/2"	2795	4240	1980	3000
				12.43	18.86	8.81	13.35
	< 51	(20) 16d	(14) 10d	2140	3715	1515	2625
HTU26-2			(1.7.102	9.52	16.53	6.74	11.68
	51~671/2	(20) 16d	(12) 10d	1610	3920	1140	2785
			(12) 100	7.16	17.44	5.07	12.39
	< 51	(26) 16d	(20) 10ơ	3960	5425	2815	3855
HTU28-2			1207 100	17.62	24.13	12.52	17.15
	51-671/2	(26) 16d	(17) 10d	2385	5425	1695	3855
		,, ,	(11) 100	10.61	24.13	7.54	17.15
	< 51	(32) 16d	(26) 10d	5025	6890	3570	4890
HTU210-2		(ac) 10d	(20) TOU	22.35	30.65	15.88	21.75
	51-671/2	(36) 16d	(22) 104	3145	6680	2225	4745
	0. 37 /2	(00) 100	(22) 10d	13.99	29.72	9,90	21.10

1. Factored uplift resistances have been increased 15% for wind or earthquake loading; no further increase is allowed.

2. Reduced heel heights are not permitted for skewed HTU's.

^{3.} Nails: 16d = 0.162" dia. x 3½" long, 10d x 1½" = 0.148" dia. x 1½" long, 10d = 0.148" dia. x 3" long. See pp. 27–28 for other nail sizes and information.

TECH-NOTES

TN 15-001 Piggyback Bracing

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

Disclalmer:

HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI

Strap Ties

Straps are designed to transfer tension loads in a wide variety of applications,

HRS — Heavy strap designed for installation on the edge of 2x members. The HRS416Z installs with Strong-Drive® SDS Heavy-Duty Connector screws.

LSTA and MSTA — Designed for use on the edge of 2x members, with a nailing pattern that reduces the potential for splitting.

LSTI and MSTI — Light and medium straps that are suitable where pneumatic-nailing is necessary through diaphragm decking and wood chord open-web trusses.

MST — High-capacity strap that can be installed with either nails or bolts. Suitable for double 2x member connections or greater.

MSTC — High-capacity strap that utilizes a staggered nail pattern to help minimize wood splitting. Nail slots have been countersunk to provide a lower nail head profile.

Finish: Galvanized. Some products are available in stainless steel, ZMAX® coating or black powder coat (add PC to sku); contact Simpson Strong-Tie. See Corrosion Information, pp. 18–20.

Installation: Use all specified fasteners; see General Notes

Options: Special sizes can be made to order; contact Simpson Strong-Tie for longer lengths

SIMPSON Strong-Tie

Strap Ties (cont.)

- These products are available with additional corrosion protection. For more information, see p. 20.
- Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 366–370 for more information.

				nsions n.)		ne	Factored Tens ir–L		P-F
1	Model	Ga.	- '	,	Fasteners	$(K_D = 1.00)$	(K _D = 1.15)		
	No.	ua.	w	L	(Total)	(ND = 1.00)	(ND = 1.15) lb.	(K _D = 1.00) lb.	(K _D = 1.15
						kN	kN	kN	kN
	L CTAO		11/		(0) 10-1	600	690	555	635
	LSTA9		11/4	9	(6) 10d	2.67	3.07	2.47	2.82
	LSTA12		11/4	12	(8) 10d	800	920	735	845
L	LOIMIZ				(0) 100	3.56	4.09	3.27	3.76
ļ	LSTA15		11/4	15	(10) 10d	1000	1150	920	1060
-		-				4.45	5.12	4.09	4.72
	LSTA18		11/4	18	(12) 10d	1200 5.34	1380 6.14	1105 4.92	1270 5.65
۱.						1400	1610	1290	1485
	LSTA21		11/4	21	(14) 10d	6.23	7.16	5.74	6.61
T	LCTAGA	20	11/	04	(10) 104	1600	1840	1475	1695
L	LSTA24		11/4	24	(16) 10d	7.12	8.19	6.56	7.54
١	ST292		21/s	95/16	(8) 8d	585	675	535	615
	01202		2710		(0) 00	2.60	3.00	2.38	2.74
1	ST2122		21/16	12 ¹³ /16	(12) 8d	940	1085	865	995
-					, ,	4.18	4.83	3.85	4.43
	ST2115		3/4	16 5/ 16	(8) 8d	670	770	615	710
ŀ						2.98 1335	3.43 1540	2.74 1235	3.16 1420
1	ST2215		21/16	165⁄16	(16) 8d	5.94	6.85	5.49	6.32
ŀ		,				2235	2465	2075	2385
	LSTA30		11/4	30	(20) 10d	9.94	10.97	9.23	10.61
1	LOTAGE		417	20	(04) 101	2465	2465	2465	2465
L	LSTA36		11/4	36	(24) 10d	10.97	10.97	10.97	10.97
	LSTI49		3¾	49	(32) 10d x 11/2"	3115	3580	2852	3280
				70	(UZ) 100 X 172	13.86	15.93	12.69	14.59
	LSTI73		3¾	73	(48) 10d x 11/2"	4670	5370	4280	4920
-						20.77	23.89	19.04	21.89
ļ	MSTA9		11/4	9	(6) 10d	670 2.98	770 3.43	625	715
.		18			 	895	1030	2.78 830	3.18 955
•	MSTA12		11/4	12	(8) 10d	3.98	4.58	3.69	4.25
	LIOTALE	1	444	4-	40.40.1	1120	1285	1040	1195
•	MSTA15		11/4	15	(10) 10d	4.98	5.72	4.63	5.32
3	MSTA18		11/4	18	(12) 10d	1340	1545	1245	1430
9	IVIOTATO	1	1 74	10	(12) 100	5.96	6.87	5.54	6.36
•	MSTA21		11/4	21	(14) 10d	1565	1800	1455	1670
-		-			(7.7.55	6.96	8.01	6.47	7.43
3	MSTA24		11/4	24	(16) 10d	1790	2060	1660	1910
					-	7.96 2470	9.16	7.38 2260	8.50 2595
	MSTA30		11/4	30	(20) 10d	10.99	12.63	10.05	11.54
_		1			 	2965	3070	2710	3070
3	MSTA36		11/4	36	(24) 10d	13.19	13.66	12.06	13.66
	MOTAMO	1	11/	40	(00) 04	2725	2725	2545	2725
	MSTA49		11/4	49	(28) 8d	12.12	12.12	11.32	12.12
	ST6215		21/16	165/16	(16) 8d	1405	1615	1300	1500
	0.02.10	_	2/18	10/18	(10) 00	6.25	7.18	5.78	6.67
	ST6224	16	21/16	235/16	(24) 8d	2305	2650	2155	2475
		-	ļ	+	, , ==	10.25	11.79	9.59	11.01
	ST9		11/4	9	(6) 8d	525	605	490	560
		-	-	-	<u> </u>	2.34 700	2.69	2.18	2.49
	ST12		11/4	11%	(8) 8d	3.11	3.58	650	750 3.34
	l	1	<u> </u>			1050	1210	975	1125
	ST18		11/4	173⁄4	(12) 8d	4.67	5.38	4.34	5.00
	OTOO	1	4	24	4.51.5.	1580	1790	1465	1685
	ST22	1	11/4	21%	(18) 8d	7.03	7.96	6.52	7.50

Typical LSTA Installation (hanger not shown) Bend strap one time only

Typical LSTA Installation (hanger not shown) Bend strap one time only

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- Use half of the nails in each member being connected to achieve the listed resistances.
- 3. Naiis: 10d = 0.148" dia. x 3" long, 10d x 1½" = 0.148" dia. x 1½" long, 8d = 0.131" dia. x 2½" long. See pp. 22–23 for other nail sizes and information.

C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.

HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI

Strap Ties (cont.)

These products are available with additional corrosion protection. For more Information, see p. 20.

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 366–370 for more information.

		Dimens (in.	sions			Factored Tensi	le Resistance		
		(in	.)	_	D.Fi	r-L	S-I	P-F	
Model No.	Ga.			Fasteners (Total)	$(K_D = 1.00)$	(K _D = 1.15)	$(K_D = 1.00)$	$(K_D = 1.15)$	
NO.		w	L	(Iotal)	lb.	lb.	lb.	ib.	
					kN .	kN	kN	kN	
MOTOGO			001/	(00) 404	3955	4545	3615	4155	
MSTC28		3	281/4	(32) 10d	17.59	20.22	16.08	18.48	
MOTO 40	1.		401/	(40) 404	5930	6820	5420	6235	
MSTC40	16	3	401⁄4	(48) 10d	26.38	30.34	24.11	27.74	
			501/	(F.A. 40.4	6670	6940	6100	6940	
MSTC52		3	521/4	(54) 10d	29.67	30.87	27.14	30.87	
HOTOGO		•	0537	(00) 104	8515	8565	7455	8565	
MSTC66		3	65¾	(66) 10d	37.88	38.10	33.16	38.10	
MOTOZO	ا ا		773/	(00) 104	8515	8565	7455	8565	
MSTC78	14	3	77¾	(66) 10d	37.88	38.10	33.16	38.10	
OTCOOC	1	01/	20197	(DC) D4	3735	4295	3270	3760	
ST6236		21/16	3313/16	(36) 8d	16.61	19.11	14.55	16.73	
MOTIOC		01/	00	(00) 104 4 114	2825	3250	2475	2850	
MSTI26		21/16	26	(22) 10d x 11/2"	12.57	14.46	11.01	12.68	
MOTIOO		01/	00	(00) 104 11(1)	4110	4725	3600	4140	
MSTI36		21⁄1в	36	(32) 10d x 1½"	18.28	21.02	16.01	18.42	
MOTIAN	1	21/16	48	(4.4) ±0.4 v ±1.60	5650	6500	4955	5695	
MSTI48			∠ 716	46	(44) 10d x 1½"	25,13	28.91	22.04	25.33
MSTI60				21/16	60	(56) 10d x 1 ½"	7195	7360	6305
NOI I GIVI		∠ 1/16	60	(50) 100 X 1 72	32.01	32.74	28.05	32.25	
MSTI72	12	21/16	72	(68) 10d x 11/2"	7360	7360	7240	7360	
WISTITZ	12	2716	12	(00) 100 x 1 72	32.74	32.74	32.21	32.74	
MST27		21/1s	27	(26) 8d	2685	3090	2355	2710	
WIS121	}	2718	21	(20) 80	11.94	13.75	10.48	12.06	
MST37		2 1/16	371/2	(38) 8d	3930	4515	3440	3960	
WioToT		2718	31 72	(30) 60	17.48	20.08	15.30	17.62	
MST48		21/16	48	(50) 8d	5170	5945	4530	5210	
IVIO 140		2/16	40	(50) 60	23.00	26.45	20.15	23.18	
HRS416Z		31/4	16	(16) 1/4" x 1 1/2" SDS	2400	2760	2120	2440	
11104102		J /4	/4 16	(10) 74 × 172 303	10.68	12.28	9.43	10.85	
MST60		2½ 60	(64) 8d	6620	7610	5800	6670		
1410100	10	2/10	30	(04) 00	29,45	33.85	25.80	29.67	
MST72		21/16	72	(78) 8d	8065	9135	7065	8125	
110.72		2/10		. (7.5) 64	35.88	40.64	31.43	36.14	

Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.

Use half of the nails in each member being connected to achieve the listed resistances.

3. Nails: 10d = 0.148" dia. x 3" long, 10d x 1½" = 0.148" dia. x 1½" long, 8d = 0.131" dia. x 2½" long. See pp. 22–23 for other nail sizes and information.

29/4" end distance

Typical MSTI (CE OF CITIENT)

Installation (MIT hanger shown)

LSTI similar

C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.

Straps and Ties

¥13/ 3

PLATE LOCATION AND ORIENTATION Symbols

Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss and fully embed teeth. Center plate on joint unless x, y offsets are indicated.

This symbol indicates the required direction of slots in connector plates. plates 0-1/18" from outside

* Plate location details available in MiTek

software or upon request

PLATE SIZE

4×4

width measured perpendicular to slots. Second dimension is The first dimension is the plate the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T. I or Eliminator bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

ndustry Standards:

for Light Metal Plate Connected Wood Trusses Iruss Design Procedures and Specifications Design Standard for Bracing. Bullding Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses. DSB-89: BCSI:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO 画光

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVAIS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MITek® All Rights Reserved

MITek Engineering Reference Sheet: MII-7473C rev. 10-'08 POWER TO PERFORM."

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative T, I, or Eliminator bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses. ന്
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by TPIC. ۶,
- Design assumes trusses will be suitably protected from the environment in accord with TPIC.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. œί
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no celling is installed, unless otherwise noted.
 - Connections not shown are the responsibility of others.
 - Do not cut or alter truss member or plate without prior approval of an engineer.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use. 17. Install and load vertically unless indicated otherwise.
- Review all partions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with TPIC Quality Criteria.