

Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information					
Building number, street name				Unit no.	Lot/con.
Municipality	Postal code	Plan number/ other desc	cription		
INNISFILL					
B. Individual who reviews and takes	responsibility fo	r design activities			
Name		Firm			
MICHAEL O'ROURKE		HVAC DESIGNS LTD.			1
Street address 375 FINLEY AVE			Unit no. 202		Lot/con. N/A
Municipality	Postal code	Province	E-mail		1
AJAX	L1S 2E2	ONTARIO	info@hvacdes	igns.ca	
Telephone number	Fax number		Cell number		
(905) 619-2300	(905) 619-2375		()		
C. Design activities undertaken by in	dividual identifi	ed in Section B. [Build	ling Code Tal	ble 3.5.2.1 OF Divi	sion C]
☐ House	⊠ HVAC	– House		Building Structura	al
☐ Small Buildings		g Services		Plumbing – Hous	
☐ Large Buildings☐ Complex Buildings	☐ Detecti	on, Lighting and Pow otection		Plumbing – All Bu On-site Sewage S	
Description of designer's work HEAT LOSS / GAIN CALCULATIONS DUCT SIZING RESIDENTIAL MECHANICAL VENTILATION RESIDENTIAL SYSTEM DESIGN per CSA-		Model: ARY Project:			
D. Declaration of Designer					
MICHAEL O'ROURKE			declare th	at (choose one as ap	propriate):
(pr	int name)				
☐ I review and take responsibility for Division C, of the Building Code. classes/categories.				ection 3.2.4.of appropriate	
Individual BCIN: . Firm BCIN: _					
☐ I review and take responsibility for designer" under subsection 3.2		m qualified in the appropr on C, of the Building Code		an "other	
Individual BCIN: Basis for exemption fi	19669 rom registration and	d qualification:	O.B.C SEN	TENCE 3.2.4.1 (<u>4)</u>
☐ The design work is exempt Basis for exemption from registra		on and qualification requi	rements of the E	Building Code.	
I certify that:					
The information contained I have submitted this applica		ule is true to the best of medge and consent of the f			
July 8, 2022	_		Michae	1 Oxombe	*
Date	_			Signature of Desi	gner

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

SITE NAME: A	ALCON	A															DATE: Jul-22		WINTE	R NATURAL AIR C	HANGE RATE 0.495	HEAT LOSS	ΔT °F.	83	cs	SA-F280-12
BUILDER: E	BAYVIE	W WEL	LING1	LON HO	MES			TYPE:	RL-1				GFA:	1883			LO# 97829		SUMME	R NATURAL AIR C	HANGE RATE 0.109	HEAT GAIN	ΔT °F.	9	SB-12 PA	CKAGE A
ROOM USE				MBR			ENS					BED-2			BED-3											
EXP. WALL				32			23					24			12											
CLG. HT.				9			9					9			9											
F	FACTO	RS																								
GRS.WALL AREA	LOSS	GAIN		288			207					216			108											
GLAZING				LOSS	GAIN		LOSS	GAIN				LOSS	GAIN		LOSS	GAIN										
NORTH	23.3	15.0	0	0	0	0	0	0			0	0	0	0	0	0										
	23.3	40.5	40	932	1622	0	0	0			33	769	1338	0	0	0										
SOUTH	23.3	23.9	0	0	0	0	0	0			0	0	0	0	0	0										
	23.3	40.5	0	0	0	24	559	973			0	0	0	29	676	1176										
	40.8	99.8	0	0	0	0	0	0			0	0	0	0	0	0										
	22.0	2.4	20	439	49	0	0	0			20	439	49	o	0	0										
NET EXPOSED WALL	4.9	0.5	228	1114	123	183	894	99			163	796	88	79	386	43										
NET EXPOSED BSMT WALL ABOVE GR	3.9	0.4	0	0	0	0	0	0			0	0	0	0	0	0										
EXPOSED CLG	1.4	0.5	425	597	224	132		70			0	0	0	0	0	0										
NO ATTIC EXPOSED CLG	3.0	1.1	0	0	0	0	0	0			0	0	0	110	331	124										
EXPOSED FLOOR	2.8	0.3	0	0	0	0	0	0			0	0	0	0	0	0										
BASEMENT/CRAWL HEAT LOSS	2.0	0.0	•	0	·	"	0	u			1	0		"	0	u										
SLAB ON GRADE HEAT LOSS				0		1	0				1	0			0			1								
				-		1	-				1	-			-			1								
SUBTOTAL HT LOSS				3082	2047		1639	4444			1	2004	447-		1393	4040										
SUB TOTAL HT GAIN			0.40	0.00	2017	0.40	0.00	1141			0.00	0.05	1475	0.00	0.0=	1343										
LEVEL FACTOR / MULTIPLIER			0.10	0.36		0.10	0.36				0.20			0.20				1								
AIR CHANGE HEAT LOSS				1100		1	585				1	1695			1178			1								
AIR CHANGE HEAT GAIN					94	1	_	53			1		69		_	63		1								
DUCT LOSS				0			0					0			0											
DUCT GAIN					0			0					0			0										
	240		2		480	0		0			1		240	1		240										
HEAT GAIN APPLIANCES/LIGHTS					479			479					479			479										
TOTAL HT LOSS BTU/H				4182			2224					3700			2571											
TOTAL HT GAIN x 1.3 BTU/H					3992			2176					2941			2761										
ROOM USE				ENS3			GRT		BE	/KT							I	1	FOY		1			WOB	l B	AS
EXP. WALL				10			16			22									9					22		16
CLG. HT.				9			10			10									10					9]	
	FACTO	RS		•																				•		•
GRS.WALL AREA L				90			160			20									90					198	2.	76
GLAZING	LUJJ	GAIN			GAIN		LOSS	CAIN		SS GAIN									LOSS GAIN				l .	LOSS GAIN		SS GAIN
	23.3	15.0	0	0	0	0	0	0		0 0	•							0	0 0				0	0 0	0 0	
	23.3	40.5	0	0	0	38	885	1541		0 0								20	466 811				0	0 0		3 162
	23.3	23.9	0	0	0	0	0	0		0 0								0	0 0				0	0 0	0 0	
	23.3				-			0			.							0					-		-	0 0
	40.8	40.5	8 0	186	324 0	0	0	-		165 2027 0 0								0	0 0				20 0	466 811 0 0	0	-
		99.8	-	0	-		-	0	_		1			1									-			-
DOORS NET EXPOSED WALL	22.0	2.4	0	0	0	0	0	0		39 49	1							10	220 24				20	439 49	0	
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR	4.9	0.5	82	401	44	122	596	66		33 81	1							60	293 32				158	772 85	0 (
		0.4	0	0	0	0	0	0	_	0 0	1							0	0 0				0	0 0		44 60
	3.9		•							0 0				1				0	0 0				0	0 0	0	
EXPOSED CLG	1.4	0.5	0	0	•	0																				
EXPOSED CLG NO ATTIC EXPOSED CLG	1.4 3.0	0.5 1.1	0	0	0	0	0	0	0	0 0													0	0 0		0 0
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR	1.4	0.5			0				0 0	0 0								0	0 0				0	0 0	0	0 0
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS	1.4 3.0	0.5 1.1	0	0 0 0	•	0	0		0	0 0 0 0									0 0				-	0 0		0 0
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS	1.4 3.0	0.5 1.1	0	0 0 0	•	0	0 0 0		0	0 0 0 0 0									0 0 0 0				0	0 0	0 (0 0
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS	1.4 3.0	0.5 1.1	0	0 0 0	Ō	0	0	0	0	0 0 0 0 0 0 0 337									0 0 0 0 979				0	0 0 246 1923	0	92
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN	1.4 3.0	0.5 1.1 0.3	0	0 0 0 0 587	•	0	0 0 0 0 1481		0 0 2	0 0 0 0 0 0 0 337 2157								0	0 0 0 0 979				0	0 0	0 11	0 0 92 329 222
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER	1.4 3.0	0.5 1.1 0.3	0	0 0 0 0 587	Ō	0	0 0 0 0 1481	0	0 0 2:	0 0 0 0 0 0 0 0 337 2157								0	0 0 0 0 979 868				0	0 0 246 1923	0 11 18 0.40 1.	0 0 192 329 222
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS	1.4 3.0	0.5 1.1 0.3	0	0 0 0 0 587	Ō	0	0 0 0 0 1481	1607	0 0 2:	0 0 0 0 0 0 0 337 2157 05	,							0	0 0 0 0 979				0	0 0 246 1923	0 11	0 0 192 329 222
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT CAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN	1.4 3.0	0.5 1.1 0.3	0	0 0 0 0 587 0.85 497	Ō	0	0 0 0 0 1481	0	0 0 2:	0 0 0 0 0 0 0 0 337 2157								0	0 0 0 0 979 868 1.05 1031				0	0 0 246 1923	0 11 18 0.40 1.	0 0 192 329 222
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS	1.4 3.0	0.5 1.1 0.3	0	0 0 0 0 587	369	0	0 0 0 0 1481	0 0 1607	0 0 2: 0.30 1 2:	0 0 0 0 0 0 0 337 2157 05								0	0 0 0 0 979 868 1.05 1031 41				0	0 0 246 1923	0 0 11 18 0.40 1. 67	0 0 92 329 222 80
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN	1.4 3.0	0.5 1.1 0.3	0	0 0 0 0 587 0.85 497	369	0	0 0 0 0 1481 1.05 1561	1607	0 0 2: 0.30 1 2:	0 0 0 0 0 0 337 2157 05 163								0	0 0 0 0 979 868 1.05 1031				0	0 0 246 1923	0 0 11 18 0.40 1. 67	0 0 92 329 222 80 740 55
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	1.4 3.0	0.5 1.1 0.3	0	0 0 0 0 587 0.85 497	369 17 0	0	0 0 0 0 1481 1.05 1561	0 0 1607 75 0	0 0 2: 0.30 1 2:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,							0	0 0 0 0 979 868 1.05 1031 41				0	0 0 246 1923 945	0 0 11 18 0.40 1. 67	0 0 92 229 222 80 40 55 0
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS	1.4 3.0 2.8	0.5 1.1 0.3	0 0	0 0 0 0 587 0.85 497	369 17	0.30	0 0 0 0 1481 1.05 1561	0 0 1607 75	0 0 2: 0.30 1 2:	0 0 0 0 0 0 337 2157 05 163 101	,							0.30	0 0 0 0 979 868 1.05 1031 41 0 0				0	0 0 246 1923 945	0 (11 18 0.40 1. 67	0 0 1992 229 222 80 740 55
EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	1.4 3.0 2.8	0.5 1.1 0.3	0 0	0 0 0 0 587 0.85 497	369 17 0	0.30	0 0 0 0 1481 1.05 1561	0 0 1607 75 0	0 0 2: 0.30 1 2:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,							0.30	0 0 0 0 979 868 1.05 1031 41 0 0				0	0 0 246 1923 945	0 (11 18 0.40 1. 67	0 0 1992 229 222 80 40 55 0 0 479

TOTAL HEAT GAIN BTU/H: 22909 TONS: 1.91 LOSS DUE TO VENTILATION LOAD BTU/H: 1429

STRUCTURAL HEAT LOSS: 34103

TOTAL COMBINED HEAT LOSS BTU/H: 35531

Mehal Oxombe.

SITE NAME: ALCONA BUILDER: BAYVIEW WELLINGTON HOMES TYPE: RL-1 DATE: Jul-22 GFA: 1883 LO# 97829 furnace pressure 0.6 HEATING CFM COOLING CFM furnace filter 0.05 \$LENNOX AFUE = 96 % ML196UH045XE36B INPUT (BTU/H) = 44,000 TOTAL HEAT LOSS 34,103 TOTAL HEAT GAIN 22,751 a/c coil pressure 0.2 45 AIR FLOW RATE CFM 28.74 AIR FLOW RATE CFM 43.08 OUTPUT (BTU/H) = 42.800 available pressure FAN SPEED for s/a & r/a 0.35 LOW 620 DESIGN CFM = 980 **RUN COUNT** MEDLOW 685 4th 3rd 2nd 1st Bas CFM @ .6 " E.S.P. S/A 3 4 plenum pressure s/a 0.18 r/a pressure 0.17 MEDIUM 980 R/A 0 1 max s/a dif press. loss 0.02 r/a grille press. Loss 0.02 MEDIUM HIGH 1110 All S/A diffusers 4"x10" unless noted otherwise on layout. min adjusted pressure s/a 0.16 adjusted pressure r/a 0.15 HIGH TEMPERATURE RISE 40 °F All S/A runs 5"Ø unless noted otherwise on layout 5 10 11 13 14 15 19 22 23 24 RUN# 6 12 21 ROOM NAME MBR ENS BED-2 BED-2 BED-3 BED-3 MBR GRT ENS3 GRT BR/KT BR/KT FOY BAS BAS BAS BAS RM LOSS MBH. 2.62 1.85 1.85 2.09 1.08 2.01 2.62 2.62 2.62 2.09 2.22 1.29 1.29 1.52 1.52 2.40 2.40 CFM PER RUN HEAT 53 37 37 60 31 75 75 60 64 53 44 44 69 69 58 75 75 RM GAIN MBH. 2.00 2.18 1.47 1.47 1.38 1.38 2.00 1.40 1.12 1.40 1.78 1.78 1.18 0.55 0.55 0.55 0.55 CFM PER RUN COOLING 77 24 24 86 94 63 63 59 59 86 60 48 60 77 51 24 24 ADJUSTED PRESSURE 0.16 0.16 0.17 0.17 0.17 0.17 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 ACTUAL DUCT LGH 94 54 52 62 53 58 80 32 51 28 16 25 19 18 31 23 20 **EQUIVALENT LENGTH** 200 170 160 170 140 130 210 120 150 120 90 100 140 110 130 130 140 TOTAL EFFECTIVE LENGTH 294 224 212 232 193 188 290 152 201 148 110 116 165 129 148 161 163 ADJUSTED PRESSURE 0.06 0.07 0.08 0.07 0.09 0.09 0.06 0.11 0.09 0.12 0.16 0.15 0.1 0.13 0.12 0.11 0.11 ROUND DUCT SIZE 5 5 5 5 5 HEATING VELOCITY (ft/min) 323 306 326 270 270 272 272 306 228 323 507 507 426 551 551 551 551 COOLING VELOCITY (ft/min 438 479 321 321 433 433 438 441 352 441 565 565 374 176 176 176 176 **OUTLET GRILL SIZE** 4X10 3X10 3X10 3X10 3X10 4X10 4X10 4X10 3X10 3X10 4X10 3X10 3X10 3X10 3X10 3X10 3X10 TRUNK В Α В В В Α D D Ε Е Α

ROOM
RM LOSS
CFM PER RUN
RM GAIN
CFM PER RUN CO
ADJUSTED PRES
ACTUAL DUCT
EQUIVALENT LE
TOTAL EFFECTIVE LE
ADJUSTED PRES
ROUND DUC
HEATING VELOCITY (
COOLING VELOCITY (
OUTLET GRILL
T

SUPPLY AIR TRUNK SIZE																	RETURN A	IR TRUNI	K SIZE					
	TRUNK	STATIC	ROUND	RECT			VELOCITY			TRUNK	STATIC	ROUND	RECT			VELOCITY		TRUNK	STATIC	ROUND	RECT			VELOCIT
	CFM	PRESS.	DUCT	DUCT			(ft/min)			CFM	PRESS.	DUCT	DUCT			(ft/min)		CFM	PRESS.	DUCT	DUCT			(ft/min)
TRUNK A	169	0.07	7.5	8	Х	8	380		TRUNK G	0	0.00	0	0	Х	8	0	TRUNK O	0	0.05	0	0	X	8	0
TRUNK B	226	0.06	8.6	8	X	8	509		TRUNK H	0	0.00	0	0	Х	8	0	TRUNK P	0	0.05	0	0	х	8	0
TRUNK C	395	0.06	10.6	16	х	8	444		TRUNK I	0	0.00	0	0	Х	8	0	TRUNK Q	0	0.05	0	0	Х	8	0
TRUNK D	138	0.15	5.7	8	Х	8	311		TRUNK J	0	0.00	0	0	Х	8	0	TRUNK R	0	0.05	0	0	X	8	0
TRUNK E	296	0.10	8.4	8	х	8	666		TRUNK K	0	0.00	0	0	Х	8	0	TRUNK S	0	0.05	0	0	X	8	0
TRUNK F	584	0.10	10.8	14	X	8	751		TRUNK L	0	0.00	0	0	Х	8	0	TRUNK T	0	0.05	0	0	х	8	0
																	TRUNK U	0	0.05	0	0	X	8	0
																	TRUNK V	0	0.05	0	0	х	8	0
RETURN AIR #	1		3	4	5											BR	TRUNK W	0	0.05	0	0	х	8	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		TRUNK X	980	0.05	15.7	28	Х	8	630
AIR VOLUME	220	0	130	125	360	0	0	0	0	0	0	0	0	0	0	145	TRUNK Y	485	0.05	12	16	х	8	546
PLENUM PRESSURE	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	TRUNK Z	0	0.05	0	0	х	8	0
ACTUAL DUCT LGH.	106	1	44	48	23	1	1	1	1	1	1	1	1	1	1	14	DROP	980	0.05	15.7	24	X	10	588
EQUIVALENT LENGTH	195	0	160	180	155	0	0	0	0	0	0	0	0	0	0	135								
TOTAL EFFECTIVE LH	301	1	204	228	178	1	1	1	1	1	1	1	1	1	1	149								
ADJUSTED PRESSURE	0.05	14.80	0.07	0.06	0.08	14.80	14.80	14.80	14.80	14.80	14.80	14.80	14.80	14.80	14.80	0.10								
ROUND DUCT SIZE	8.9	0	6.8	6.9	9.6	0	0	0	0	0	0	0	0	0	0	6.4								
NLET GRILL SIZE	8	0	8	8	8	0	0	0	0	0	0	0	0	0	0	8								
	Χ	Χ	X	X	Х	X	Χ	X	Χ	Χ	Χ	X	Х	X	X	X								
NLET GRILL SIZE	30	0	14	14	30	0	0	0	0	0	0	0	0	0	0	14								

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2 Tel: 905.619.2300 Fax: 905.619.2375

Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

TYPE: RL-1 SITE NAME: ALCONA LO# 97829

RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL V	ENTILATION CAPACIT	Y	9.32.3.5.
a)		Total Ventilation Ca	pacity	137.8	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Venti	il. Capacity	63.6	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Suppleme	ntal Capacity	74.2	cfm
d) Solid Fuel (including fireplaces)					
e) No Combustion Appliances		PRINCIPAL EXHAL	JST FAN CAPACITY		
		Model:	VANEE V150H	Location:	BSMT
HEATING SYSTEM		63.6	cfm	_	✓ HVI Approved
Forced Air Non Forced Air		PRINCIPAL EXHAU	JST HEAT LOSS CALCU		% LOSS
		63.6 CFM	X 83 F	X 1.08	X 0.25
Electric Space Heat		SUPPLEMENTAL F	ANS	BY INSTALLING CON	ITRACTOR
HOUSE TYPE	0.00.4(0)	Location	Model	cfm	HVI Sones ✓ 3.5
HOUSE TYPE	9.32.1(2)	ENS	BY INSTALLING CONTR	RACTOR 50	√ 3.5
Type a) or b) appliance only, no solid fuel					
II Type I except with solid fuel (including fireplaces	5)	HEAT RECOVERY	VENTU ATOR		0.22.2.44
III Any Type c) appliance		Model:	VANEE V150H		9.32.3.11.
IV Type I, or II with electric space heat		150	cfm high	35	cfm low
Other: Type I, II or IV no forced air		75	% Sensible Efficie @ 32 deg F (0 de		✓ HVI Approved
		LOCATION OF INC			
SYSTEM DESIGN OPTIONS	O.N.H.W.P.	LOCATION OF INS	TALLATION		
4 Fulcavet entry/Ferred Air Cysters		Lot:		Concession	
1 Exhaust only/Forced Air System		Township		Plan:	
2 HRV with Ducting/Forced Air System		Address			
HRV Simplified/connected to forced air system		Roll #		Building Per	mit #
4 HRV with Ducting/non forced air system		BUILDER:	BAYVIEW WELL	INGTON HOMES	
Part 6 Design		Name:			
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:			
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	cfm	City:			
Other Bedrooms 2 @ 10.6 cfm 21.2	cfm	Telephone #:		Fax #:	
Kitchen & Bathrooms 5 @ 10.6 cfm 53	cfm	INSTALLING CONT	IDACTOR	T dX II.	
Other Rooms 2 @ 10.6 cfm 21.2	cfm	Name:			
Table 9.32.3.A. TOTAL 137.8	cfm	Address:			
Table 9.32.3.A. 101AL 137.0	CIIII				
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	City:			
1 Bedroom 31.8	cfm	Telephone #:		Fax #:	
2 Bedroom 47.7	cfm	DESIGNER CERTIF I hereby certify that	FICATION this ventilation system ha	as been designed	
3 Bedroom 63.6	cfm		the Ontario Building Code HVAC Designs L	е.	
4 Bedroom 79.5	cfm	Signature:	<u> </u>	Mehad Ofound	pa M
5 Bedroom 95.4	cfm	HRAI#	7	Mehan Oxfound	.
TOTAL 63.6 cfm		Date:		July-22	
I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUAL	IFIED IN THE API		"OTHER DESIGNER" UNDER I		UILDING CODE.

				80-12 Residential Hea						
			Form	nula Sheet (For Air Lea		<u> </u>				
LO#: 9	7829	Model: RL-1		Builde	r: BAYVIEW WELLINGTO	ON HOMES			Date:	2022-07-08
		Volume Calculation	n				Air Change & Delt	a T Data		
				7		MAINTED NA	TUDAL AID CHANC	E DATE	0.405	
Level	Floor Area (ft²)	Floor Hoight (ft)	Volume (ft³)	_			TURAL AIR CHANG ATURAL AIR CHANG		0.495	
Bsmt	646	Floor Height (ft) 9	5814	-		30IVIIVIER IV	ATORAL AIR CHAIR	JE RATE	0.109	
First	646	10	6460							
Second	646	9	5814				Design Te	mperature Diff	erence	
Third	533	9	4797				Tin °C	Tout °C	ΔT °C	ΔT °F
Fourth	0	9	0			Winter DTDh	22	-24	46	83
•		Total:	22,885.0 ft ³			Summer DTDc	24	29	5	9
		Total:	648.0 m ³]						
	F 2 2	.1 Heat Loss due to A	* Lookaga			636	Sensible Gain due	to Air Lookaga		
	5.2.3	.1 Heat LOSS due to A	i Leakage			0.2.0	Sensible dam due	to All Leakage		
	***	V_b	OMD 4.0				V_b	1.0		
	$HL_{airb} =$	$LR_{airh} \times \frac{V_b}{3.6} \times I$	$DTD_h \times 1.2$		H	$IG_{salb} = LR_{airc}$	$\times \frac{3}{3.6} \times DTD_c$:	× 1.2		
0.495	x 180.01	x 46 °C	x 1.2	= 4938 W	= 0.109	x 180.01	x 5 °C	x 1.2	= [120 W
				= 16850 Btu/h					=	410 Btu/h
									_	
	5.2.3.2 Hea	at Loss due to Mechar	ical Ventilation			6.2.7 Se	nsible heat Gain d	ue to Ventilatio	n	
	111	DUC V DED V	100 × (1 = F)		111	- DUC v D	TD v 100 v	(1 E)		
	$\pi L_{vairb} =$	$PVC \times DTD_h \times 1$	1.08 × (1 – E)		ΠL_1	$_{vairb} = PVC \times D$	1D _h × 1.00 ×	(1-E)		
64 CFM	x 83 °F	x 1.08	x 0.25	= 1429 Btu/h	64 CFM	v 9°E	x 1.08	v 0.25	<u> </u>	158 Btu/h
04 (1111	x <u>05 1</u>	A	Λ 0.25	- 1425 Btu/II	<u> </u>	_ ^	A 1.00	A 0.25	L	150 514/11
			5.2.3.3 Calcula	tion of Air Change Heat	Loss for Each Room (Flor	or Multiplier Section	1			
			5.2.5.5 54.54.4			<u></u>				
		HL_a	$_{irr} = Level\ Fact$	$or \times HL_{airbv} \times \{(Hairbv) $	$(L_{agcr} + HL_{bgcr}) \div$	$(HL_{agclevel} + HL$	$_{bgclevel})$ }			
				HLairve Air Leakage +	Laval Canaly attending the A					
		Level	Level Factor (LF)	Ventilation Heat Loss	Level Conductive Heat	_				
				(Btu/h)	Loss: (HL _{clevel})	HLairbv /	HLIevel)			
		1	0.4		3,752	1.79	96			
		2	0.3		4,797	1.05	54			
		3	0.2	16,850	3,984	0.84	16			
		4	0.1		4,720	0.35	57		Michael O'Ro	ourke
		5	0		0	0.00	00		BCIN# 19669	
		*HLairbv = A	ir leakage heat loss	+ ventilation heat loss					med 1	1 Ofmule
									11111-1-	1/1/20010

375 Finley Ave. Suite 202 Ajax, ON L1S 2E2 Tel: 905.619.2300 Fax: 905.619.2375

Web: www.hvacdesigns.ca E-mail: info@hvacdesigns.ca

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL: RL-1		BUILDER: BAYVIEW WELLING	TON HOMES
SFQT: 1883	LO# 97829	SITE: ALCONA	TON HOIVILS
31Q1. 1003	LO# 37023	SITE. ALCONA	
DESIGN ASSUMPTIONS			
LIFATING	95	COOLING	°F
HEATING	°F	COOLING	·
OUTDOOR DESIGN TEMP.	-11	OUTDOOR DESIGN TEMP.	84
INDOOR DESIGN TEMP.	72	INDOOR DESIGN TEMP. (MAX 75°F)	75
BUILDING DATA		WINDOW SHGC	0.50
ATTACHMENT:	ATTACHED	# OF STORIES (+BASEMENT):	4
FRONT FACES:	EAST	ASSUMED (Y/N):	Υ
		(7.7)	•
AIR CHANGES PER HOUR:	3.57	ASSUMED (Y/N):	Υ
AIR TIGHTNESS CATEGORY:	AVERAGE	ASSUMED (Y/N):	Υ
Aut Hommess of the dott.	717210102	7.656.11.25 (17.11).	•
WIND EXPOSURE:	SHELTERED	ASSUMED (Y/N):	Υ
HOUSE VOLUME (ft³):	22885.0	ASSUMED (Y/N):	Υ
110002 10201112 (10).	22003.0	7.000.11.25 (17.11).	•
INTERNAL SHADING:	BLINDS/CURTAINS	ASSUMED OCCUPANTS:	4
INTERIOR LIGHTING LOAD (Bt	:u/h/ft²): 1.55	DC BRUSHLESS MOTOR (Y/N):	Υ
(2.	2.55	2021.001.2200 . 01. (1,7.1).	·
FOUNDATION CONFIGURATION	ON BCIN_1	DEPTH BELOW GRADE:	6.0 ft
LENGTH: 31.0 ft	WIDTH: 22.0 ft	EXPOSED PERIMETER:	46.0 ft
22.7077	22.010	Dit SSES , Emilieren	40.0 1€
WOB INSULATION CONFIGUR	ATION SCB_9	WOB EXPOSED PERIMETER	22.0 ft

2012 OBC - COMPLIANCE PACKAGE				
	Compliance	Package		
Component	A1			
	Nominal	Min. Eff.		
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22		
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65		
Exposed Floor Minimum RSI (R)-Value	31	29.80		
Walls Above Grade Minimum RSI (R)-Value	22	17.03		
Basement Walls Minimum RSI (R)-Value	20 ci	21.12		
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-		
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10		
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13		
Windows and Sliding Glass Doors Maximum U-Value	0.28	-		
Skylights Maximum U-Value	0.49	-		
Space Heating Equipment Minimum AFUE	96%	-		
HRV/ERV Minimum Efficiency	75%	-		
Domestic Hot Water Heater Minimum EF	0.8	-		

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

HVAC Designs Ltd. 375 Finley Ave, Suite 202 Ajax ON, L1S 2E2 905-619-2300

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

We	eather Sta	tion Description
Province:	Ontario	•
Region:	Barrie	
	Site D	escription
Soil Conductivity:	Normal o	conductivity: dry sand, loam, clay
Water Table:	Normal (7-10 m, 23-33 ft)
i	Foundatio	n Dimensions
Floor Length (m):	4.6	
Floor Width (m):	6.7	
Exposed Perimeter (m):	14.0	
Wall Height (m):	2.7	
Depth Below Grade (m):	1.48	Insulation Configuration
Window Area (m²):	0.4	
Door Area (m²):	0.0	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ation Loads
Heating Load (Watts):		349

TYPE: RL-1 **LO#** 97829

HVAC Designs Ltd. 375 Finley Ave, Suite 202 Ajax ON, L1S 2E2 905-619-2300

Residential Slab on Grade Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Wea	ther Sta	tion Description
Province:	Ontario	-
Region:	Barrie	
	Site D	escription
Soil Conductivity:	Normal c	onductivity: dry sand, loam, clay
Water Table:	Normal (7-10 m, 23-33 ft)
Fo	undatio	n Dimensions
Length (m):	1.5	
Width (m):	6.7	0.6m
Exposed Perimeter (m):	6.7	0.6m Insulation Configuration
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Re	esults
Heating Load (Watts):		72

TYPE: RL-1 **LO#** 97829

HVAC Designs Ltd. 375 Finley Ave, Suite 202 Ajax ON, L1S 2E2 905-619-2300

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Statio	n Des	cript	ion			
Province:	Ontar	io				
Region:	Barrie	9				
Weather Station Location:	Open	flat te	rrain, \S	grass		
Anemometer height (m):	10					
Local Sh	ieldin	g				
Building Site:	Subur	ban, f	orest			
Walls:	Heavy	/				
Flue:	Heavy	/				
Highest Ceiling Height (m):	11.28					
Building Co	nfigura	ation				
Type:	Semi					
Number of Stories:	Three)				
Foundation:	Full					
House Volume (m³):	648.0	1				
Air Leakage/	Venti l	latior	1			
Air Tightness Type:	Prese	nt (19	61-) (3	.57 ACI	⊣)	
Custom BDT Data:	ELA @	9 10 Pa	Э.		863.8 cm ²	
	3.57				ACH @ 50 Pa	
Mechanical Ventilation (L/s):	To	tal Sup	ply		Total Exhaust	
		30.0			30.0	
Flue	Size					
Flue #:	#1	#2	#3	#4		
Diameter (mm):	0	0	0	0		
Natural Infilt	ration	Rate	es.			
Heating Air Leakage Rate (ACH/H):						
Cooling Air Leakage Rate (ACH/H):	: 0.109					

TYPE: RL-1 **LO#** 97829

I MICHAEL O'ROURKE HAVE REVIEW
AND TAKE RESPONSIBILITY FOR THI
DESIGN WORK AND AM QUALIFIED
UNDER DIVISION C. 3.2.5 OF THE
BUILDING CODE.

Michael O'Rourke, BCINE 19669
HIVAC DESIGNS LTD.

CSA-F280-12 PACKAGE A1

			3.							
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

BAYVIEW WELLINGTON HOMES

Project Name ALCONA INNISFIL, ONTARIO HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

		SS 35531	BTU/H	# OF RUNS	S/A	R/A	FANS	She			
		JN I T DATA		3RD FLOOR	3	1	1				
	MAKE L	ENNOX		2ND FLOOR	5	2	3				
	ML196	SUH045XE3	6B	1ST FLOOR	5	1	2				
	INPUT	44	MBTU/H	BASEMENT	4	1	0	Date			
	OUTPUT		MBTU/H	ALL S/A DIFFU	SERS	4 "x10)"	Sca			
		42.8		UNLESS NOTED OTHERWISE							
ре	COOLING	2.0	TONS	ON LAYOUT. A UNLESS NOTE				_			
				J DINLEGG ING LED OTHERWISE							

cfm @ 0.6" w.c ON LAYOUT. UNDERCUT

DOORS 1" min. FOR R/A

FAN SPEED

980

;	Sheet Title									
	B₽	SEMENT								
	HEATING									
	L	AYOUT								
	LATOUT									
	Date JUNE/2022									
	Scale 3/16" = 1'-0"									
	В	CIN# 19669								
	LO# 97829									

RL-1

825 sqft

GROUND FLOOR PLAN 'A'/'A2'

HVAC LEGEND								3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE	N	14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER	REVISIONS		•

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

BAYVIEW WELLINGTON HOMES

Project Name

ALCONA INNISFIL, ONTARIO

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR **HEATING LAYOUT**

JUNE/2022 3/16" = 1'-0"

LO#

BCIN# 19669 97829

RL-1

		3.	-							
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u> </u>	30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

BAYVIEW WELLINGTON HOMES

Project Name

ALCONA INNISFIL, ONTARIO

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR **HEATING LAYOUT**

JUNE/2022 3/16" = 1'-0"

LO#

BCIN# 19669 97829

RL-1

I MICHAEL OROURKE HAVE REVIEW
AND TAKE RESPONSIBILITY FOR THI
DESIGN WORK AND AM QUALIFIED
UNDER DIVISION C, 3,2,5 OF THE
BUILDING CODE.

Michael O'Rourke, BCINH' 19669
HVAC DESIGNS LTD.

PACKAGE A1

HVAC LEGEND								3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE	N	14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER	REVISIONS		

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

Cllent

BAYVIEW WELLINGTON HOMES

Project Name

ALCONA INNISFIL, ONTARIO

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

THIRD FLOOR
HEATING
LAYOUT

Date JUNE/2022
Scale 3/16" = 1'-0"

LO#

BCIN# 19669

97829

RL-1

825 sqft