

TAMARACK ROOF TRUSSES INC.

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

Model:

BLOCK 403-1

Lot #:

Elevation: UNIT 1

Job Track:

PlanLog:

53568 207795

Layout ID:

436971

Ref#

Page:

1 of 4

Date: Designer:

Sales Rep:

Rick DiCiano

04-03-2024

	QTY	MARK	l				OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	10 /12	18-10-00	6-06-07	2 x 4 2 x 6	1-03-08	1-09-06 1-07-11	200.59 125.67		
	1	T2 Hip	10 /12	18-10-00	8-02-07	2 x 4	1-03-08	1-09-06 1-07-11	94.89 60.50		
	1	T3 Hip	10 /12	18-10-00	8-03-11	2 x 4	1-03-08	1-09-06 1-07-11	95.47 59.83		-
	1	T4 Hip	10 /12	18-08-08	6-07-11	2 x 4	1-03-08	1-07-11 1-10-10	90.68 57.67		
	1	T5 Roof Special	10 /12	18-08-08	9-01-11	2 x 4	1-03-08	1-07-11 1-10-10	95.07 62.00		
	1	T6 Roof Special	10 /12	18-08-08	9-01-11	2 x 4	1-03-08	1-07-11 1-10-10	92.37 59.50		
	1 2-ply	T7 Half Hip Girder	10 /12	18-08-08	4-01-04	2 x 4 2 x 6	1-03-08	1-07-11 4-01-04	178.16 112.67		
	1	T8 Half Hip	10 /12	18-08-08	5-01-04	2 x 4	1-03-08	1-07-11 5-01-04	82.84 53.17		
	1	T9 Half Hip	10 /12	18-08-08	6-01-04	2 x 4	1-03-08	1-07-11 6-01-04	88.98 55.83		
	1	T10 Half Hip	10 /12	18-08-08	7-01-04	2 x 4	1-03-08	1-07-11 7-01-04	90.17 56.50		
	1	T11 Half Hip	10 /12	18-08-08	8-01-04	2 x 4	1-03-08	1-07-11 8-01-04	95.55 60.33		
	1	T12A Half Hip	10 /12	18-03-08	9-01-04	2 x 4		1-11-14 9-01-04	98.89 62.67		
	1	T13A Half Hip	10 /12	18-03-08	10-01-04	2 x 4		1-11-14 10-01-04	111.33 69.50		
	1	T14 Half Hip	10 /12	17-08-08	5-01-04	2 x 4	1-03-08	1-07-11 5-01-04	79.99 51.83		

ROOF TRUSSES INC. ALPA LUMBER GROUP

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

Model: Lot #:

BLOCK 403-1

Elevation: UNIT 1 Job Track:

53568

PlanLog:

207795 436971

Layout ID: Ref#

Page:

2 of 4

Date:

04-03-2024

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T15 Half Hip	10 /12	17-08-08	6-01-04	2 x 4	1-03-08	1-07-11 6-01-04	78.4 50.00		
	1 .	T16 Half Hip	10 /12	17-08-08	7-01-04	2 x 4	1-03-08	1-07-11 7-01-04	87.37 55.17		
M	1	T17 Half Hip	10 /12	17-08-08	8-01-04	2 x 4	1-03-08	1-07-11 8-01-04	92.82 58.00		
	1	T18 Half Hip	10 /12	17-08-08	9-01-04	2 x 4	1-03-08	1-07-11 9-01-04	98.79 62.17		
	1	T19 Roof Special	10 /12	18-08-08	10-01-04	2 x 4	1-03-08	1-07-11 10-01-04	120.8 77.00		
	1	T20 Piggyback Base	10 /12	18-08-08	9-01-04	2 × 4	1-03-08	1-07-11 9-01-04	115.09 73.17		
	3	T21A Piggyback Base	10 /12	18-03-08	9-01-04	2 x 4	_	1-01-14 9-01-04	293.43 184.50		
	2	T22 Common	10 /12	12-06-00	6-10-03	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	120.2 79.00		
	1	T22G GABLE	10 /12	12-06-00	6-10-03	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	60.87 40.50		
	3	T23 Common	10 /12	10-10-00	6-01-14	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	145.4 93.00		
	1	T23Z Common	10 /12	10-10-00	6-01-14	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	48.47 31.00		
	3	T24 Common	10 /12	5-10-08	5-09-11	2 x 4	1-03-08	1-07-11 5-00-15	99.12 66.00		
	1 2-ply	T25 Monopitch Girder	10 /12	5-10-08	6-06-07	2 x 4 2 x 6		1-07-11 6-06-07	72.89 46.67		
	1 2-ply	T26 Monopitch Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

UNIT 1

Model:

BLOCK 403-1

Lot #:

Elevation:

Page:

207795 436971

53568

Layout ID: Ref#

3 of 4

Date:

04-03-2024

Designer:

Job Track:

PlanLog:

Sales Rep:

Rick DiCiano

Roof Trusses

ROOT IT											
	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T27 Common Girder	10 /12	8-04-00	5-01-06	2 x 4 2 x 6		1-07-11 1-07-11	83.52 57.00		
	1	T27G GABLE	10 /12	8-04-00	5-01-06	2 x 4 2 x 6	1-03-08 1-03-08	1-07-11 1-07-11	47.06 32.17		
	1	T28W Flat Girder	0 /12	15-08-00	1-07-12	2 x 4		1-07-12 1-07-12	57.89 37.67		
	1	T29W Flat Girder	0 /12	10-10-00	1-06-02	2 x 4		1-06-02 1-06-02	35.88 22.50		
	1	T100G GABLE	10 /12	10-00-00	5-09-11	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	49.41 33.33		
	1	PB1 Piggyback	10 /12	8-09-00	1-09-06	2 x 4		1-09-06	27.33 19.00		
	1	PB2 Piggyback	10 /12	8-09-00	2-06-12	2 x 4		2-06-12	28.38 18.00		
	1	PB3 Piggyback	10 /12	8-09-00	2-00-00	2 x 4		2-00-00	27.78 19.67		
	1	PB4 Piggyback	10 /12	8-09-00	2-11-00	2 x 4		2-11-00	29.01 19.83		
	3	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	50.38 32.00		•••
	9	J2W Jack-Open	4 /12	3-11-08	2-00-11	2 x 4	1-03-08	3-15 1-07-12	98.42 60.00		
	7	J3W Jack-Open	4 /12	3-06-08	1-11-00	2 x 4	1-03-08	3-15 1-06-02	69.71 46.67		
TOTAL #TRI	100-	68	<u></u>								·

TOTAL #TRUSS= 68

TOTAL BFT OF ALL TRUSSES= 2299.36

BFT.

TOTAL WEIGHT OF ALL TRSSES 3591.8

LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	LUS24	
9	Hardware	LJS26DS	

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

Model:

BLOCK 403-1

UNIT 1

Lot #:

Elevation:

Ref#

53568 207795 436971

PlanLog: Layout ID:

Job Track:

4 of 4

Page: Date:

04-03-2024

Designer:

Sales Rep:

Rick DiCiano

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
45	Hardware	H2.5T	

Lumber Yard: TAMARACK LUMBER

BAYVIEW WELLINGTON

Builder:

GREEN VALLEY ESTATE (2024)

Project: Location:

BRADFORD

Model:

BLOCK 403-1

UNIT 2

Lot #:

Elevation:

Job Track:

53568

PlanLog: Layout ID: 207795 436972

Ref#

Page:

1 of 1

Date:

Designer:

Sales Rep:

Rick DiCiano

04-03-2024

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	10	T30 Piggyback Base	6 /12	44-10-00	9-02-15	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	3043.8 1840.00		
	1	T30AG GABLE	6 /12	44-02-00	9-02-15	2 x 6	1-03-08	1-02-00 1-02-00	267.92 168.50		
	1 3-ply	T44 Half Hip Girder	10 /12	9-00-08	5-01-12	2 x 6		1-07-11 5-01-12	222.91 141.00		
	1	T46 Half Hip Girder	10 /12	9-00-08	3-00-12	2 x 4	1-03-08	1-07-11 3-00-12	39.92 27.67		
	1	T47 Half Hip	10 /12	9-00-08	3-07-00	2 x 4	1-03-08	1-07-11 3-07-00	39.84 26.00		
	1	T48 Monopitch	10 /12	6-08-08	7-02-12	2 x 4	1-03-08	1-07-11 7-02-12	36.49 23.00		,
	1	T48G GABLE	10 /12	6-08-08	7-02-12	2 x 4	1-03-08	1-07-11 7-02-12	36.76 23.50		
	11	PB5 Piggyback	6 /12	12-06-04	3-01-09	2 x 4			329.42 199.83		
	1	J4 Jack-Open	10 /12	1-08-08	3-00-12	2 x 4	1-03-08	1-07-11 3-00-12	9.32 7.00		
TOTAL #TRI	ISS=	30	TOTAL	DET OF ALL	TDUCCEC-	24EC E	DET	TOTAL MELO		LTDCCCC	4000.00

TOTAL #TRUSS= 30

TOTAL BFT OF ALL TRUSSES= 2456.5

BFT.

TOTAL WEIGHT OF ALL TRSSES 4026.36 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	HGUS26	
3	Hardware	H2.5T	
32	Hardware	H2.5A	
4	Hardware	H8	

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

UNIT 2

BLOCK 403-1

Model:

Elevation:

Lot #:

Job Track:

53568 207795

PlanLog: Layout ID:

Ref#

Page:

1 of 1

04-03-2024

436972

Date:

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	10	T30 Piggyback Base	6 /12	44-10-00	9-02-15	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	3043.8 1840.00		
	1	T30AG GABLE	6 /12	44-02-00	9-02-15	2 x 6	1-03-08	1-02-00 1-02-00	267.92 168.50		
	1 3-ply	T44 Half Hip Girder	10 /12	9-00-08	5-01-12	2 x 6		1-07-11 5-01-12	222.91 141.00		
	1	T46 Half Hip Girder	10 /12	9-00-08	3-00-12	2 x 4	1-03-08	1-07-11 3-00-12	39.92 27.67		
	1	T47 Half Hip	10 /12	9-00-08	3-07-00	2 x 4	1-03-08	1-07-11 3-07-00	39.84 26.00		
	1	T48 Monopitch	10 /12	6-08-08	7-02-12	2 x 4	1-03-08	1-07-11 7-02-12	36.49 23.00		
	1	T48G GABLE	10 /12	6-08-08	7-02-12	2 x 4	1-03-08	1-07-11 7-02-12	36.76 23.50		
	11	PB5 Piggyback	6 /12	12-06-04	3-01-09	2 x 4			329.42 199.83		
	1	J4 Jack-Open	10 /12	1-08-08	3-00-12	2 x 4	1-03-08	1-07-11 3-00-12	9.32 7.00		

TOTAL #TRUSS= 30

TOTAL BFT OF ALL TRUSSES= 2456.5

BFT.

TOTAL WEIGHT OF ALL TRSSES 4026.36 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	HGUS26	
3	Hardware	H2.5T	
32	Hardware	H2.5A	
4	Hardware	H8	

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

UNIT 3

Model:

BLOCK 403-1

Lot #:

Elevation:

Job Track:

53568

PlanLog: Layout ID: 207795 436973

Ref#

Page:

1 of 1

Date: Designer:

Sales Rep:

Rick DiCiano

04-03-2024

Roof Trusses

PLY 5	TYPE	РІТСН	SPAN	1						
5			0,7,1	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	T30 Piggyback Base	6 /12	44-10-00	9-02-15	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1521.9 920.00		
1	T30AG GABLE	6 /12	44-02-00	9-02-15	2 x 6	1-03-08	1-02-00 1-02-00	267.92 168.50		
1	T30G GABLE	6 /12	44-10-00	9-02-15	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	272.44 168.50		
4	T30X Piggyback Base	6 /12	45-11-00	9-02-15	2 x 6	1-03-08	1-02-00 7-08	1226.92 728.00		
1 3-ply	T45 Half Hip Girder	10 /12	9-00-08	4-02-15	2 x 6		1-07-11 4-02-15	189.59 122.00		
1	T46 Half Hip Girder	10 /12	9-00-08	3-00-12	2 x 4	1-03-08	1-07-11 3-00-12	39.92 27.67		
1	T48 Monopitch	10 /12	6-08-08	7-02-12	2 x 4	1-03-08	1-07-11 7-02-12	36.49 23.00		
1	T48G GABLE	10 /12	6-08-08	7-02-12	2 x 4	1-03-08	1-07-11 7-02-12	36.76 23.50		
11	PB5 Piggyback	6 /12	12-06-04	3-01-09	2 x 4			329.42 199.83		
1	J4 Jack-Open	10 /12	1-08-08	3-00-12	2 x 4	1-03-08	1-07-11 3-00-12	9.32 7.00		
	1 4 1 3-ply 1 1 1 1	GABLE 1 T30G GABLE 4 T30X Piggyback Base 1 T45 Half Hip Girder 1 T46 Half Hip Girder 1 T48 Monopitch 1 T48G GABLE 11 PB5 Piggyback 1 J4 Jack-Open	GABLE 6 /12	GABLE 6/12 44-02-00 1 T30G GABLE 6/12 44-10-00 4 T30X Piggyback 6/12 45-11-00 1 T45 Half Hip Girder 10/12 9-00-08 1 T46 Half Hip Girder 10/12 9-00-08 1 T48 Monopitch 10/12 6-08-08 1 T48G GABLE 10/12 6-08-08 1 PB5 Piggyback 6/12 12-06-04 1 J4 Jack-Open 10/12 1-08-08	GABLE 6 /12 44-02-00 9-02-15 1 T30G GABLE 6 /12 44-10-00 9-02-15 4 T30X Piggyback Base 6 /12 45-11-00 9-02-15 1 T45 Half Hip Girder 10 /12 9-00-08 4-02-15 1 T46 Half Hip Girder 10 /12 9-00-08 3-00-12 1 T48 Monopitch 10 /12 6-08-08 7-02-12 1 T48G GABLE 10 /12 6-08-08 7-02-12 11 PB5 Piggyback 6 /12 12-06-04 3-01-09 1 J4 Jack-Open 10 /12 1-08-08 3-00-12	GABLE 6 /12 44-02-00 9-02-15 2 x 6 1 T30G GABLE 6 /12 44-10-00 9-02-15 2 x 6 4 T30X Piggyback Base 6 /12 45-11-00 9-02-15 2 x 6 1 T45 Half Hip Girder 10 /12 9-00-08 4-02-15 2 x 6 1 T46 Half Hip Girder 10 /12 9-00-08 3-00-12 2 x 4 1 T48 Monopitch 10 /12 6-08-08 7-02-12 2 x 4 1 T48G GABLE 10 /12 6-08-08 7-02-12 2 x 4 1 PB5 Piggyback 6 /12 12-06-04 3-01-09 2 x 4 1 J4 Jack-Open 10 /12 1-08-08 3-00-12 2 x 4	GABLE 6 /12 44-02-00 9-02-15 2 x 6 1-03-08 1 T30G GABLE 6 /12 44-10-00 9-02-15 2 x 6 1-03-08 4 Piggyback Base 6 /12 45-11-00 9-02-15 2 x 6 1-03-08 1 T45 Half Hip Girder 10 /12 9-00-08 4-02-15 2 x 6 1-03-08 1 T46 Half Hip Girder 10 /12 9-00-08 3-00-12 2 x 4 1-03-08 1 T48 Monopitch 10 /12 6-08-08 7-02-12 2 x 4 1-03-08 1 T48G GABLE 10 /12 6-08-08 7-02-12 2 x 4 1-03-08 1 PB5 Piggyback 6 /12 12-06-04 3-01-09 2 x 4 1-03-08 1 J4 Jack-Open 10 /12 1-08-08 3-00-12 2 x 4 1-03-08	GABLE 6 /12 44-02-00 9-02-15 2 x 6 1-03-08 1-02-00 1 T30G GABLE 6 /12 44-10-00 9-02-15 2 x 6 1-03-08 1-02-00 1-02-00 4 T30X Piggyback Base 6 /12 45-11-00 9-02-15 2 x 6 1-03-08 1-02-00 7-08 1 T45 Half Hip Girder 10 /12 9-00-08 4-02-15 2 x 6 1-03-08 1-07-11 4-02-15 1 T46 Half Hip Girder 10 /12 9-00-08 3-00-12 2 x 4 1-03-08 1-07-11 3-00-12 1 T48 Monopitch 10 /12 6-08-08 7-02-12 2 x 4 1-03-08 1-07-11 7-02-12 1 T48G GABLE 10 /12 6-08-08 7-02-12 2 x 4 1-03-08 1-07-11 7-02-12 1 Piggyback 6 /12 12-06-04 3-01-09 2 x 4 1-03-08 1-07-11 7-02-12 1 J4 Jack-Open 10 /12 1-08-08 3-00-12 2 x 4 1-03-08 1-07-11 3-00-12	GABLE 6/12 44-02-00 9-02-15 2 x 6 1-03-08 1-02-00 168.50 1 T30G GABLE 6 /12 44-10-00 9-02-15 2 x 6 1-03-08 1-02-00 1-02-00 1-02-00 272.44 168.50 4 Piggyback Base 6 /12 45-11-00 9-02-15 2 x 6 1-03-08 1-02-00 7-08 1226.92 728.00 1 T45 Half Hip Girder 10 /12 9-00-08 4-02-15 2 x 6 1-03-08 1-07-11 4-02-15 188.59 122.00 1 T46 Half Hip Girder 10 /12 9-00-08 3-00-12 2 x 4 1-03-08 1-07-11 3-09-12 39.92 27.67 1 T48 Monopitch 10 /12 6-08-08 7-02-12 2 x 4 1-03-08 1-07-11 7-02-12 36.49 23.00 1 T48G GABLE 10 /12 6-08-08 7-02-12 2 x 4 1-03-08 1-07-11 7-02-12 36.76 23.50 11 PB5 Piggyback 6 /12 12-06-04 3-01-09 2 x 4 1-03-08 1-07-11 7-02-12 39.32 7.00 1 J4 Jack-Open 10 /12 1-08-08 3-00-12 2 x 4 1-03-08 1-07-11 3-00-	GABLE 6/12 44-12-00 9-02-15 2 x 6 1-03-08 1-02-00 168.50 1 T30G GABLE 6/12 44-10-00 9-02-15 2 x 6 1-03-08 1-02-00

TOTAL #TRUSS= 29

TOTAL BFT OF ALL TRUSSES= 2388

BFT.

TOTAL WEIGHT OF ALL TRSSES 3930.66 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	HGUS26	
28	Hardware	H2.5A	
2	Hardware	H2.5T	
4	Hardware	H8	

ROOF TRUSSES INC. ALPA LUMBER GROUP

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location: Model:

BLOCK 403-1

UNIT 4

Lot #:

Elevation:

BRADFORD

Page: Date:

Ref#

1 of 2

53568

207795

436974

Job Track:

PlanLog:

Layout ID:

04-03-2024

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT	LEFT	BFT.	STACK#	REMARKS
	1	T30G GABLE	6 /12	44-10-00	9-02-15	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	272.44 168.50	·	KLMAKKO
	1	T31 Piggyback Base	6 /12	50-04-00	9-02-15	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	330.99 201.00		
	1	T32 Piggyback Base	6 /12	50-04-00	9-02-15	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	337.91 203.33		
	1	T33 Piggyback Base	6 /12	50-04-00	9-02-15	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	334.45 200.33		
	1	T34 Piggyback Base	6 /12	50-04-00	9-02-15	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	349.08 209.00		
	1 3-ply	T35 Hip Girder	6 /12	50-04-00	9-00-07	2 x 6 2 x 8	1-03-08 1-03-08	1-02-00 1-02-00	1145.76 673.00		
	1	T49G GABLE	10 /12	10-06-00	10-04-11	2 x 4	1-03-08	1-07-11 10-04-11	62.57 40.00		
	5	T71 Piggyback Base	6 /12	37-09-00	9-00-07	2 x 6	1-03-08	1-02-00 7-05-08	1235.21 750.00		
	1 3-ply	T73Z Monopitch Girder	10 /12	10-02-00	10-03-07	2 x 6		1-11-14 10-05-08	264.12 167.00		
A	2	T74 Monopitch	10 /12	10-07-00	10-03-07	2 x 4	1-03-08	1-07-11 10-05-08	114.2 74.00		
	6	T74A Monopitch	10 /12	10-02-00	10-03-07	2 x 4		1-11-14 10-05-08	327.43 211.00		
	5	PB5 Piggyback	6 /12	12-06-04	3-01-09	2 x 4		,	149.74 90.83		
	3	PB8 Piggyback	6 /12	18-10-04	4-08-09	2 x 4			165.03 102.00		
	1	PB14 Piggyback	6 /12	18-10-04	3-06-08	2 x 4			56.83 35.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

Elevation:

BRADFORD

Model:

Lot #:

BLOCK 403-1

UNIT 4

Job Track:

53568

PlanLog: Layout ID: 207795 436974

Ref#

Page:

2 of 2

Date:

Designer:

Sales Rep:

Rick DiCiano

04-03-2024

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS

TOTAL #TRUSS= 34

TOTAL BFT OF ALL TRUSSES= 3125.32

BFT.

TOTAL WEIGHT OF ALL TRSSES 5145.75 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
6	Hardware	LUS24	
5	Hardware	LJS26DS	
1	Hardware	HGUS28-3	
10	Hardware	H2.5T	
20	Hardware	H2.5A	

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

UNIT 5

Model:

BLOCK 403-1

Lot #:

Elevation:

Ref#

Job Track:

Layout ID:

PlanLog:

Page: 1 of 1

Date:

04-03-2024

53568

207795

436975

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	РІТСН	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 3-ply	T36 Piggyback Base Girder	6 /12	50-04-00	9-00-07	2 x 6 2 x 8	1-03-08 1-03-08	1-02-00 1-02-00	1136.44 665.00		
	4	T37 Piggyback Base	6 /12	50-04-00	9-00-07	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1347.49 808.00		
	1	T37G GABLE	6 /12	50-04-00	9-00-07	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	314.86 204.50		
	1	T49G GABLE	10 /12	10-06-00	10-04-11	2 x 4	1-03-08	1-07-11 10-04-11	62.57 40.00		
	5	T70 Piggyback Base	6 /12	38-09-08	9-00-07	2 x 6	1-03-08	1-02-00 6-11-04	1250.27 765.00		
	1 3-ply	T73 Monopitch Girder	10 /12	10-02-00	10-03-07	2 x 6		1-11-14 10-05-08	264.12 167.00		
	2	T74 Monopitch	10 /12	10-07-00	10-03-07	2 x 4	1-03-08	1-07-11 10-05-08	114.2 74.00		
	5	T74A Monopitch	10 /12	10-02-00	10-03-07	2 x 4		1-11-14 10-05-08	272.86 175.83		
	11	PB8 Piggyback	6 /12	18-10-04	4-08-09	2 x 4			605.12 374.00		

TOTAL #TRUSS= 35

TOTAL BFT OF ALL TRUSSES= 3273.33

BFT.

TOTAL WEIGHT OF ALL TRSSES 5367.92 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
5	Hardware	LUS24	
5	Hardware	LJS26DS	
1	Hardware	HGUS28-3	
9	Hardware	H2.5T	
20	Hardware	H2.5A	

Lumber Yard: TAMARACK LUMBER

Builder: **BAYVIEW WELLINGTON**

Project: GREEN VALLEY ESTATE (2024)

BLOCK 403-1

Location: **BRADFORD**

Model: Lot #:

Elevation: UNIT 6 Job Track:

53568 207795 PlanLog:

Layout ID: 436976

Ref#

Page: 1 of 2

Date:

04-03-2024

Designer:

Sales Rep: Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	4	T37 Piggyback Base	6 /12	50-04-00	9-00-07	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1347.49 808.00		
	1	T37G GABLE	6 /12	50-04-00	9-00-07	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	314.86 204.50	:	
	1	T39 Piggyback Base	6 /12	50-04-00	10-00-00	2 x 6	1-03-08	1-02-00 2-09-00	329.03 200.00		
	1	T40 Piggyback Base	6 /12	50-04-00	10-00-00	2 x 6	1-03-08	1-02-00 4-05-00	333.82 202.67		
	1	T41 Piggyback Base	6 /12	50-04-00	10-00-00	2 x 6	1-03-08	1-02-00 2-11-02	330.21 202.33		
	2	T42 Piggyback Base	6 /12	50-04-00	10-00-00	2 x 6	1-03-08	1-02-00 4-07-02	669.67 405.33		
	1	T43 Piggyback Base	6 /12	50-04-00	10-00-00	2 x 6	1-03-08	1-02-00 2-00-11	323.38 197.00		
	2	T50 Common	10 /12	11-00-00	6-02-11	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	98.18 64.67		
	, 1	T50G GABLE	10 /12	11-00-00	6-02-11	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	53,45 35,33		
	1 3-ply	T51 Common Girder	10 /12	11-00-00	6-02-11	2 x 6 2 x 8		1-07-11 1-07-11	247.34 150.00		
	1	PB7 Piggyback	6 /12	18-10-04	3-10-11	2 x 4			57.54 36.50		
	3	PB8 Piggyback	6 /12	18-10-04	4-08-09	2 x 4			165.03 102.00		
	6	PB9 Piggyback	6 /12	12-09-00	3-02-04	2 x 4			210.72 135.00		

Lumber Yard: TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

Model: Lot #:

Elevation:

BLADFORD

BLOCK 403-1

UNIT 6

Job Track:

PlanLog:

53568 207795 436976

Layout ID:

Ref# Page:

2 of 2

Date:

Designer:

Sales Rep:

Rick DiCiano

04-03-2024

HARDWARE

QTY	TYPE	MODEL	LENGTH
6	Hardware	HGUS26	
28	Hardware	H2.5A	

ROOF TRUSSES INC. ALPA LUMBER GROUP

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

Model:

BLOCK 403-1

Lot #:

Elevation: UNIT 7 Job Track:

53568

PlanLog: Layout ID:

207795 436977

Ref#

Page:

1 of 2

Date:

04-03-2024

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T26Z Monopitch Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		
	1 2-ply	T52 Half Hip Girder	10 /12	19-06-08	4-01-04	2 x 4 2 x 6	1-03-08	1-07-11 4-01-04	188.32 117.67		
	1 2-ply	T52Z Half Hip Girder	10 /12	19-06-08	4-01-04	2 x 4 2 x 6	1-03-08	1-07-11 4-01-04	191.9 118.67		
	2	T53 Half Hip	10 /12	19-06-08	5-01-04	2 x 4	1-03-08	1-07-11 5-01-04	170.45 109.00		
	2	T54 Half Hip	10 /12	19-06-08	6-01-04	2 x 4	1-03-08	1-07-11 6-01-04	182.6 117.33		
	2	T55 Half Hip	10 /12	19-06-08	7-01-04	2 x 4	1-03-08	1-07-11 7-01-04	185.05 114.33		
	2	T56 Half Hip	10 /12	19-06-08	8-01-04	2 x 4	1-03-08	1-07-11 8-01-04	195.68 123.33		
	8	T57 Half Hip	10 /12	19-06-08	9-01-04	2 x 4	1-03-08	1-07-11 9-01-04	829.31 518.67		
	2	T58 Half Hip	10 /12	19-06-08	10-01-04	2 x 4	1-03-08	1-07-11 10-01-04	232.34 145.67		
	1	T59 Hip Girder	10 /12	14-04-00	5-10-07	2 x 4 2 x 6	1-03-08	1-07-11 2-07-11	74.95 50.00		
	1	T60 Hip	10 /12	14-04-00	7-06-07	2 x 4	1-03-08	1-07-11 2-07-11	72.4 47.00		
	3	T61 Common	10 /12	9-04-00	5-06-06	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	128.52 82.50		
	1	T61Z Common	10 /12	9-04-00	5-06-06	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	42.84 27.50		
	1 2-ply	T62 Monopitch Girder	10 /12	3-10-08	5-10-07	2 x 4 2 x 6		2-07-11 5-10-07	51.46 34.00		
	1	T61Z Common T62 Monopitch				2 x 4	1-03-08	1-07-11 1-07-11 2-07-11	42.84 27.50 51.46		

Lumber Yard:

TAMARACK LUMBER

Builder:

BAYVIEW WELLINGTON

Project:

GREEN VALLEY ESTATE (2024)

Location:

BRADFORD

Model:

BLOCK 403-1

UNIT 7

Lot #:

Elevation:

Ref#

PlanLog:

53568 207795 436977

Layout ID:

Job Track:

Page:

2 of 2

Date:

Designer:

Sales Rep:

Rick DiCiano

04-03-2024

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	PB10 Piggyback	10 /12	10-07-00	2-00-00	2 x 4		2-00-00	68.49 45.33		
	2	PB11 Piggyback	10 /12	10-07-00	3-00-00	2 x 4		3-00-00	71.17 44.33		
	2	PB12 Piggyback	10 /12	10-07-00	3-10-00	2 x 4		3-10-00	72.47 45.67		
	11	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	184.74 117.33		
	1	J6 Jack-Open	10 /12	3-10-08	5-10-07	2 x 4	1-03-08	2-07-11 5-10-07	16.96 10.83		
	1	C1 Jack-Open	10 /12	1-10-08	4-01-09	2 x 4	1-03-08	2-07-11 4-02-07	11.58 8.17		
	1	C2 Jack-Open	10 /12	1-09-07	4-01-09	2 x 4	1-03-08 2-01-01	2-07-11 4-01-09	13.86 9.50		

TOTAL #TRUSS= 52

TOTAL BFT OF ALL TRUSSES= 1924.5

BFT.

TOTAL WEIGHT OF ALL TRSSES 3043.49 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	LUS24	
2	Hardware	LJS26DS	
1	Hardware	LUS26-2	
1	Hardware	HGUS26-2	
22	Hardware	H2.5T	

JOB NAME JOB DESC. TRUSS NAME QUANTITY **BAYVIEW WELLINGTON** PLY DRWG NO. 436388 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MITek Industries, Inc. Tue Apr 2 10:53:19 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGl-zGqaRAz9kb Vs1hAmrxLlZpXD4MMGZGNqC5oB?zUo4U 5-10-8 5-8-8 1-3-8 Scale = 1:38. 5x6 \\ 2x4 || 5x6 // В С D T2 10.00 12 5x6 || 5x6 [] 1-9-E W2 Wi + \boxtimes \bowtie Μ Ν κ 1 н 5x6 = 4x6 [] 5x6 = 4x6 II 4x6 || 4x6 || 1-10-12 2-0-0 2-0-0 1-11-12 10-11-8 0-0 1-10-12 3-10-12 5-8-8 5-10-12 7-10-8 12-11-8 18-10-0 TOTAL WEIGHT = 2 X 100 = 201 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. RULES **DESIGN CRITERIA** BEARINGS FACTORED CHORDS SIZE LUMBER DESCR 2x4 2x4 2x4 - B SPF DRY No.2 No.2 MAXIMUM FACTORED GROSS REACTION REQRD SPECIFIED LOADS: GROSS REACTION VERT HORZ LL = DL = LL = DL = 32.5 PSF DRY BRG BRG CH. UPLIFT IN-SX 6.0 0.0 D - F DRY No.2 SPF JT DOWN HORZ IN-SX Ā 2x6 2x6 DRY No.2 No.2 SPF 1-9 1-8 Ğ SPF 2x6 DRY No.2 TOTAL LOAD = 45.9 G DRY SPF SPACING = 24.0 IN. C/C ALL WEBS DRY SPF 2x3 No.2 SOIL 0/0 EXCEPT DEAD 538 / 0 404 / 0 LOADING IN FLAT SECTION BASED ON A SLOPE DRY: SEASONED LUMBER. 0/0 OF 2.00/12 MINIMUM DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L. G THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.05 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. FOLLOWS: SURFACE SPACING (IN) CHORDS #ROWS LOAD(PLF) THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018, NBC-2019AE TOP CHORDS : (0.122"X3") SPIRAL NAILS A-B 1 12 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. - PART 9 OF OBC 2012 (2019 AMENDMENT) A-B B-D D-F TOP TOP TOP - CSA 086-14 12 LOADING TOTAL LOAD CASES: (4) - TPIC 2014 L-A G-E TOP TOP 5 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F CHORDS RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED WEBS MAX, FACTORED BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS MAX. FACTORED FACTORED ROOF LIVE LOAD VERT. LOAD LC1 (PLF) C: FROM TO FORCE (LBS) 01 MAX MAX. CSI(LC) UNBRAC SIDE(183.1) MEMB. MEMB. FORCE (LBS) CSI (LC) ALLOWABLE DEFL.(LL)= 1/360 (0.63") ALLOWABLE DEFL.(LL) = L/ 999 (0.04")
ALLOWABLE DEFL.(TL) = L/ 360 (0.63")
CALCULATED VERT, DEFL.(TL) = L/ 999 (0.07") WEBS: (0.122"X3") SPIRAL NAILS FR-TO LENGTH FR-TO A-B B-C C-D D-E E-F -112.4 -112.4 0.45 (1) -112.4 -112.4 0.20 (1) -112.4 -112.4 0.22 (1) -2702 / 0 -2316 / 0 0.09 (1) SIDE(161.4) 5.65 J- C 0 / 699 -531 / 0 0 / 1169 -163 / 57 0 / 2128 0.18 (1) 0.14 (1) 0.05 (1) -2316 / 0 5.63 -2052 / 0 -2052 / 0 0 / 50 -2540 / 0 -112.4 -112.4 -112.4 -112.4 0.44 (1) 0.09 (1) 5.60 10.00 H- D NAILS TO BE DRIVEN FROM ONE SIDE ONLY. CSI: TC=0.45/1.00 (A-B:1) , BC=0.32/1.00 (J-K:1) , WB=0.26/1.00 (A-K:1) , SSI=0.17/1.00 (K-L:1) GIRDER NAILING ASSUMES NAILED HANGERS ARE L- A G- E 0.0 A-K H-E 0.0 0.10 (1) 0.26 (1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 FASTENED WITH MIN. 3-0 INCH NAILS. -2125 / 0 0.0 0.0 0 / 1606 L- M M- N K- J J- I H- G TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY. 0/0 -18.5 -18.5 0.22 (1) 10.00 -18.5 -18.5 -18.5 -18.5 -18.5 0.22 (1) 0.22 (1) 10.00 10.00 0/0 COMPANION LIVE LOAD FACTOR = 1.00 -18.5 0.32 (1) AUTOSOLVE HEELS OFF 0 / 2084 10.00 -18.5 -18.5 -18.5 0.15 (1) -18.5 0.15 (1) 0 / 1571 10.00 0 / 1571 -18.5 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE 0/0 -18.5 0.04 (4) -18.510.00 TRUSS MANUFACTURING PLANT. SPECIFIED CONCENTRATED LOADS (LBS) LOC LC1 MAX--919 MAX+ DIR. TYPE HEEL CONN. NAIL VALUES 7-10-8 -919 FRONT VERT TOTAL C1 PLATE GRIP(DRY) SHEAR SECTION G1 G1 C1 5-10-12 1-10-12 -255 -255 -255 -255 FRONT FRONT VERT VERT TOTAL (PSI) (PLI) MAX MIN MAX MIN M PROFESSIONAL CILCULATION OF THE PROFESSION OF 650 371 1747 788 1987 1873 3-10-12 -255 -255 FRONT VERT TOTAL CONNECTION REQUIREMENTS PLATE PLACEMENT TOL. = 0.250 inches 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.84 (K) (INPUT = 0.90) JSI METAL= 0.47 (K) (INPUT = 0.95) 100505065 POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040022

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
436388	T1	1	2	TRUSS DESC.		
Tamarack Roof Truss, Burlington		•			Version 8.630 S Aug 30 2023 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-zGqaRAz9	MiTek Industries, Inc. Tue Apr. 2 10:53:19 2024 Page 2
A TMVW+p MT20 5.	LEN Y X 0 6.0 2.00 2.25 0 6.0 2.25 1.50 0 4.0 0 6.0 2.02 2.25 0 6.0 2.00 2.25 0 6.0 0 6.0 0 6.0 0 6.0 0 6.0 0 6.0 0 6.0 0 6.0 0 6.0				ib. GKIIIVuII Tuygi Si iyubis I PCC yoOGi-29qaKA29	KO VSTHAMIXLIZĮJAD4WIMIGZGNIQUSOB?ZU04U
NOTES- (1) 1) Lateral braces to be a minimum						
PROFESS 4/02 C. M. HE 100500 PROVINCE OF	F ONT ARIO					
STRUCTURAL CO DWG # TR2	MPONENT ONLY					

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 436388 T5 TRUSS DESC. Version 8.630 S Aug 30 2023 MTek Industries, Inc. Tue Apr 2 10:53:23 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-s135HX0gnpUxLe y?h?HTPzFphl CLkylq30KnzUo4Q Tamarack Roof Truss, Burlington 1-3-8 2-0-0 1-0-0 7-0-0 Scale = 1:56.4 4x6 || 4x6 // 4x6 < 9-1-11 5x6 \\ 5x6 \\ 10.00 12 C 4x6 || 4x6 | 3-3-11 1-10-10 Κ 0 N 3x8 == 3x4 || 4x6 =4x6 =4x6 == 4x6 =18-8-8 0-0 2-0-0 3-0-0 14-3-0 18-8-8 TOTAL WEIGHT = 95 lb <u>LUMBER</u> N. L. G. A. RULES DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY [M][F **BUILDING DESIGNER** DESIGN CRITERIA N. L. G. A. CHORDS A - C C - D D - F F - H P - B SIZE 2x4 DESCR SPF LUMBER BEARINGS FACTORED No.2 No.2 MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: DRY DRY DRY DRY GROSS REACTION LL = LL = 2x4 SPF GROSS REACTION BRG BRG CH. 32.5 PSE 2x4 2x4 SPF DOWN 1380 HORZ 0 0 IN-SX 1-8 1-8 6.0 0.0 VERT HORZ UPLIFT IN-SX BOT CH. 5-8 PSF SPF 2x4 No.2 DΙ PSE 244 DRY No.2 SPE SPF UNFACTORED REACTIONS 2x4 No.2 SPACING = 24.0 IN. C/C MAX (./MIN. COMPONENT REACTIONS LIVE PERM.LIVE WIND 0/0 0/0 0/0 1ST L CASE ALL WEBS EXCEPT DRY SPF JΤ SOIL 0/0 No.2 965 698 / 0 267 / 0 LOADING IN ALL FLAT SECTIONS BASED ON A 608 / 0 SLOPE OF 2.00/12 MINIMUM DRY: SEASONED LUMBER. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P. I THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 BRACING TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.59 FT. PLATES (table is in Inches) THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. TYPE TMVW+p TTWW+m PLATES LEN Y Х 6.0 Edge 2.25 1.50 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. MT20 5.0 CSA 086-14 5.0 4.0 4.0 4.0 6.0 6.0 6.0 6.0 TTWW+m MT20 LOADING TOTAL LOAD CASES: (4) TMWW-t MT20 EFGH TTW+p TMWW-t Edge MT20 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD MT20 CHORDS WEBS MT20 MT20 4.0 3.0 6.0 4.0 TMVW+p MAX. FACTORED Edge FACTORED BMV1+p MEMB. VERT, LOAD LC1 MAX MAX. FORCE MEMB. FORCE MAX ALLOWABLE DEFL.(LL)= L/360 (0.62")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.62")
CALCULATED VERT. DEFL.(TL)= L/999 (0.06") J. M. N. O (PLF) CSI (LC) FROM TO -112.4 -112.4 0.15 (1) -112.4 -112.4 0.07 (1) (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) 4.0 3.0 4.0 6.0 8.0 6.0 BMWW-t MT20 FR-TO LENGTH FR-TO MT20 A-B B-C C-D E-F 0.06 (1) -331/0 10.00 O- C C- N BMWWW-t 0.19 (1) 0.17 (1) 0.16 (1) L MT20 -993 / 0 6.20 0 / 839 -112.4 -112.4 0.07 (1) -112.4 -112.4 0.02 (1) -112.4 -112.4 0.21 (1) -112.4 -112.4 0.24 (1) -112.4 -112.4 0.28 (1) -112.4 -112.4 0.29 (1) 0.0 0.0 0.15 (1) 6.25 5.59 6.25 BMV1+p -883 / 0 0 / 710 MT20 3.0 -088/0 CSI: TC=0.29/1.00 (G-H:1) , BC=0.21/1.00 (M-N:1) , WB=0.42/1.00 (E-L:1) , SSI=0.18/1.00 (G-H:1) Edge - INDICATES REFERENCE CORNER OF PLATE L-G J-G B-O -875 / 0 -308 / 0 0.26 (1) 6.18 5.77 -206 / 17 0 / 893 TOUCHES EDGE OF CHORD F-G -885 / 0 0.10 (1) G-H P-B DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 0.20 (1) -1380 / 0 6.92 J- H E- L 0 / 893 COMP=1.10 SHEAR=1.10 TENS= 1.10 NOTES-I- H -1190/0 0.0 0.0 0.13 (1) 7.32 -501/0 0.42 (1 0.04 (4) 1) Lateral braces to be a minimum of 2X4 SPF #2. 0 / 140 COMPANION LIVE LOAD FACTOR = 1.00 -18.5 -18.5 0.05 (1) 10.00 -79/0 D- M O- N N- M M- L L- K K- J J- I -18.5 0.05 (1) -18.5 0.17 (1) -18.5 0.21 (1) -18.5 0.19 (1) -18.5 0.17 (1) -18.5 0.08 (4) 0/747 0/1018 0/965 -18.5 -18.5 -18.5 -18.5 10.00 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE 10.00 0 / 844 10.00 TRUSS MANUFACTURING PLANT. 0/844 NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873 PROFESSIONAL ENGINEERS PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.86 (B) (INPUT = 0.90) JSI METAL= 0.51 (H) (INPUT = 0.95) 100505065 win NOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040026

JOB NAME JÖB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 436388 T6 TRUSS DESC. Famarack Roof Truss, Burlingtor Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:24 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6QGI-KDdTVt1IY7cozoZ8ZOXW?cWPB558xps6zUpZsDzUg4P 1-3-8 4-0-0 1-0-0, 5-0-0 4x6 [] Scale = 1:56.4 5x6 \\ 4x6 ◇ F 10.00 12 4x6 || 4x6 || G 1-10-10 J 3x8 = 3x4 II 4x6 =4x6 == 4x6 = 4x6 18-8-8 0-0 4-0-0 5-0-0 10-0-0 15-0-0 18-8-8 TOTAL WEIGHT = 92 lb LUMBER N. L. G. A. RULES DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY [M][F] **BUILDING DESIGNER** DESIGN CRITERIA DESCR. SPF SPF LUMBER BEARINGS FACTORED **CHORDS** SIZE 2x4 CHORD A - C C - D D - E E - G N - B H - G N - J J - H No.2 MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: BRG IN-SX 1-8 LL = DL = LL = DL = AD = 2x4 DRY PSF PSF PSF No.2 GROSS REACTION GROSS REACTION BRG 32.5 2x4 2x4 No.2 No.2 SPF SPF SPF HORZ 0 HORZ 0 DRY VERT DOWN UPLIFT 6.0 0.0 DRY N H 1380 BOT CH. 2x4 No.2 2×4 DRY No.2 SPE TOTAL LOAD 45.9 DRY UNFACTORED REACTIONS
1ST LCASE _____MAX SPF 2x4 No.2 SPACING = 24.0 IN. C/C /MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND
0/0 0/0 0/0 MAX ALL WEBS DRY SPF DEAD 267 / 0 No.2 SOIL EXCEPT 698 / 0 LOADING IN ALL FLAT SECTIONS BASED ON A SLOPE OF 2.00/12 MINIMUM 0/0 608/0 0/0 DRY: SEASONED LUMBER. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) N, H THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.74 FT.
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.74 FT. PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. LEN Y Х MT20 MT20 6.0 Edge 2.25 1.50 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 5.0 5.0 4.0 TTWW+m 6.0 6.0 TTWW+m MT20 LOADING TOTAL LOAD CASES: (4) TTW+p TMWW-t MT20 MT20 Edge 4.0 4.0 6.0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. FACTORED
VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
LENGTH FR-TO
41, 10.00 M-C 6.0 4.0 WEBS MAX. FACTORED RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD TMVW+r MT20 Edge CHORDS BMV1+p MT20 MEMB. FORCE FORCE MAX ALLOWABLE DEFL.(LL)= L/360 (0.62")
CALCULATED VERT. DEFL.(LL) = L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.62")
CALCULATED VERT. DEFL.(TL) = L/999 (0.06") BMWW-t MT20 4.0 6.0 (LBS) (LBS) CSI (LC) 3.0 4.0 8.0 BS-t MT20 K BMWWW-t A- B B- C C- D E- F -152 / 0 0.06(1)5.75 6.25 6.13 6.07 0.13 (1) 0.21 (1) 0.37 (1) BMV1+p MT20 3.0 4.0 -1098 / 0 0 / 588 L-D D-K K-E K-F -949 / 0 -848 / 0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD, CSI: TC=0.37/1.00 (D-E:1) , BC=0.22/1.00 (K-L:1) , WB=0.37/1.00 (D-K:1) , SSI=0.20/1.00 (E-F:1) -423 / 0 0.13 (1) 0.23 (1) 0.10 (1) -885 / 0 0 / 572 F-G N-B H-G 5.74 6.97 7.31 -1056 / 0 -264 / 0 -283 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 (1) -1198 / 0 B-M 0 / 883 COMP=1.10 SHEAR=1.10 TENS= 1.10 1) Lateral braces to be a minimum of 2X4 SPF #2 1- G 0/925 N- M M- L L- K K- J J- I I- H -18.5 -18.5 0.08 (4) 10.00 COMPANION LIVE LOAD FACTOR = 1.00 -18.5 -18.5 -18.5 0 / 838 -18.5 0.20 (1) 10.00 -18.5 0.22 (1) -18.5 0.20 (1) -18.5 0.20 (1) 10.00 10.00 0 / 962 0 / 850 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE 0 / 850 -18.5 10.00 -18.5 0/0 -18.50.07 (4) 10.00 TRUSS MANUFACTURING PLANT. NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 PROFESSIONAL ENGINEER

4/02/24

C. M. HEYENS PLATE PLACEMENT TOL. = 0.250 Inches PLATE ROTATION TOL. = 5.0 Deg JSI GRIP= 0.85 (B) (INPUT = 0.90) JSI METAL= 0.56 (B) (INPUT = 0.95) 100505065 NOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040027

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW	V WELLIN	NGTON		DRWG NO.		
436388	Т7	1	2	TRUSS DESC.				A 00 0000 M		T A 0 40:52:00 2	024 D 0
Tamarack Roof Truss, Burlingto	on .				ID:GRmvu	ve uh1dyQr3nyd	ersion 8.630 S JBfsTFcCy60	Aug 30 2023 Mi DGI-GcIEvZ2Y	4ksWC6jWhpZ	Tue Apr 2 10:53:26 2 41bi5vnnPh_PRol	gx5zUo4N
PLATES (table is In Inches) JT TYPE PLATES B TM/W+p MT20 C TTWW-m MT20 D TM/W+w MT20 E TM/W+w MT20 E TM/W+w MT20 G BM/1+p MT20 H BM/WW+t MT20 H BM/WW+t MT20 J BM/WW+t MT20 J BM/WW+t MT20 K BM/WW+t MT20 K BM/W+t MT20	W LEN Y X 5.0 6.0 2.00 2.25 5.0 6.0 2.00 1.75 4.0 6.0 2.0 4.0 5.0 6.0 4.0 6.0 3.00 Edge 5.0 8.0 2.50 6.0 4.0 4.0 6.0 4.0 6.0 4.0 6.0 4.0 6.0 4.0 6.0										
Edge - INDICATES REFERENTOUCHES EDGE OF CHOR	ICE CORNER OF PLATE										
	J.										
NOTES- (1) 1) Lateral braces to be a minir	num of 2X4 SPF #2.										
PROFE 4/	SSIONAL ENGINEER OZ/24 HEYENS ER SISOSOGS										
PROVINCE	HEYENS TO DESCRIPTION TO THE PROPERTY ONLY										

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 436388 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MTEk Industries, Inc. Tue Apr 2 10:53:29 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-hBQMYa5RNfE43ZS5Mx6higDA86o3c?yr7mWKXQzUo4K 1-3-8 12-1-13 3x4 📏 Scale = 1:40.3 4x6 == 4x6 == Ε F 10.00 12 5x6 // 3x4 || J н 3x8 = 4x6 = 4x6 = 18-8-8 0-0 6-6-11 18-8-8 TOTAL WEIGHT = 90 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES CHORDS SIZE BUILDING BEARINGS FACTORED DESIGN CRITERIA SIZE LUMBER DESCR A - D
D - F
G - F
K - B
K - I
I - G 2x4 2x4 2x4 DRY DRY DRY SPF MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: GROSS REACTION VERT HORZ LL = DL = LL = PSF PSF GROSS REACTION BRG BRG CH. 32.5 HORZ 0 UPLIET IN-SX 1-8 6.0 No.2 SPF J٦ DOWN IN-SX 2×4 DRY Nn.2 SPF BOT CH. PSF 1-8 DL 2x4 DRY No.2 SPF ALL WEBS DRY UNFACTORED REACTIONS
1ST LCASE _____MA 2x3 No.2 SPF SPACING = 24.0 IN. C/C EXCEPT MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE V
608 / 0 0 / 0 0 / 0 K - C 2x4 DRY No.2 SPF COMBINED DEAD 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 251/0 DRY: SEASONED LUMBER. 698 / 0 0/0 267 / 0 OF 2.00/12 MINIMUM BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.24 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 LEN Y THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) 3.0 TMWW-I MT20 6.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. TTW+h TMWW-t 2.00 1.00 - CSA 086-14 MT20 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-J. 4.0 4.0 6.0 4.0 6.0 8.0 TMVW-t MT20 MT20 MT20 MT20 MT20 3.0 4.0 3.0 BMV1+p BMWW-t END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW G H (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD BS-t BMWWW-t MT20 MT20 4.0 4.0 LOADING TOTAL LOAD CASES: (4) BMVW1-t ALLOWABLE DEFL.(LL)= L/360 (0.62")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.62")
CALCULATED VERT. DEFL.(TL)= L/999 (0.08") CHORDS MAX. FACTORED **FACTORED** MAX. FACTORED 1) Lateral braces to be a minimum of 2X4 SPF #2. MEMB FORCE VERT. LOAD LC1 MAX MEMB MAX CSI (LC) /ERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO -112.4 -112.4 0.15 (1) -112.4 -112.4 0.21 (1) -112.4 -112.4 0.21 (1) (LBS) CSI (LC) UNBRAC CSI: TC=0.74/1.00 (E-F:1), BC=0.24/1.00 (H-J:4), LENGTH FR-TO WB=0.70/1.00 (E-H:1), SSI=0.33/1.00 (E-F:1) 0.04 (1) 0.06 (1) 0.04 (1) 0 / 50 A-B 10.00 -92 / 16 B- C C- D D- E E- F J-E H-F 0 / 27 -1040 / 0 0/249 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 5.90 5.35 COMP=1.10 SHEAR=1.10 TENS= 1.10 -780 / 0 -798 / 0 0.70 (1) 0.28 (1) 5.24 5.88 7.81 -112.4 -112.4 0.0 0.0 0.74 (1) 0 / 1232 -1330 / 0 -823 / 0 COMPANION LIVE LOAD FACTOR = 1.00 G-F K-B к- c 0.0 0.03 (1) -296 / 0 0.0 AUTOSOLVE RIGHT HEEL ONLY -18.5 0.23 (4) -18.5 0.24 (4) -18.5 0.24 (4) -18.5 0.15 (4) 0 / 836 -18.5 -18.5 -18.5 10.00 10.00 TRUSS PLATE MANUFACTURER IS NOT J-1 I- H 0 / 823 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT H- G NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN PROFESSIONAL ENGINEERS 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.89 (F) (INPUT = 0.90) JSI METAL= 0.30 (C) (INPUT = 0.95) 100505065 NOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040031

JOB NAME TRUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** DRWG NO 436388 T12A TRUSS DESC Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:31 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-dZY7zG6hvHVoltbUTM99n5Ja8wVa4xC8a4?RcJzUo4 Tamarack Roof Truss, Burlington 8-6-8 9-9-0 3x4 N 4x6 == 4x6 || С D Ε 10.00 12 4x6 // В 4x6 II 1-11-14 Н G 3x8 = 3x4 || 3x4 II 4x6 == 4x6 =4x6 II 18-3-8 0-0 4-4-8 8-6-8 13-4-8 18-3-8 TOTAL WEIGHT = 99 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES BUILDING DESIGNER **DESIGN CRITERIA** BEARINGS FACTORED CHORDS A - C C - E F - E SIZE LUMBER DESCR DRY DRY DRY DRY DRY 2x4 2x4 SPF MAXIMUM FACTORED INPUT No.2 REQRD SPECIFIED LOADS: LL DL LL GROSS REACTION No.2 GROSS REACTION BRG BRG CH. 32.5 PSF 2x4 2x4 VERT 1197 HORZ 0 HORZ 0 PSF PSF SPF DOWN UPLIFT IN-SX IN-SX SPF BOT CH. 0 0.0 ĸ No.2 1197 1197 MECHANICAL DI PSF No.2 SPF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K. MINIMUM BEARING LENGTH AT JOINT K = 1-8. ALL WEBS DRY No.2 SPF 2x3 SPACING = 24.0 IN. C/C **EXCEPT** DRY: SEASONED LUMBER. LOADING IN FLAT SECTION BASED ON A SLOPE UNFACTORED REACTIONS

1ST LCASE MAX,/MIN. COMPONENT REACTIONS

JT COMBINED SNOW LIVE PERM.LIVE WIND OF 2.00/12 MINIMUM DEAD SOIL THIS TRUSS IS DESIGNED FOR RESIDENTIAL 594 / 0 0/0 0/0 245 / 0 0/0 OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES
A TMVW+p MT20 4.0 6.0 Edge BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F THIS DESIGN COMPLIES WITH: 6.0 4.0 - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) TMWW-t MT20 4.0 TTW+h TMWW-t MT20 MT20 2.00 1.00 TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 5.71 FT. 4.0 6.0 - CSA 086-14 TMVW+p 6.0 4.0 6.0 MT20 40 MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. RMV1+ MT20 MT20 BMWW+ ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 4.0 3.0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. 8.0 6.0 6.0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD BS-t MT20 BMWWW-t MT20 MT20 4.0 4.0 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-F, D-G. J K ALLOWABLE DEFL.(LL)= L/360 (0.61*)
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03*)
ALLOWABLE DEFL.(TL)= L/360 (0.61*)
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.05*) END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW BMV1+p MT20 3.0 4.0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. LOADING TOTAL LOAD CASES: (4) CSI: TC=0.45/1.00 (C-D:1) , BC=0.17/1.00 (I-J:1) , WB=0.46/1.00 (D-G:1) , SSI=0.27/1.00 (D-E:1) NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO MEMB. DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 (LBS) (LBS) CSI (LC) COMP=1.10 SHEAR=1.10 TENS= 1.10 FR-TO -112.4 -112.4 0.38 (1) -112.4 -112.4 0.37 (1) -112.4 -112.4 0.45 (1) -112.4 -112.4 0.45 (1) 0.0 0.0 0.45 (1) A-B B-C C-D F-E -1011 / 0 -847 / 0 5.71 6.11 J-B B-1 -215 / 14 0.10(1) COMPANION LIVE LOAD FACTOR = 1.00 -295 / 0 0.25 (1) 6.25 6.25 5.91 I-C I-D G-D 0 / 137 0 / 193 -847 / 0 -621 / 0 0.03 (4) 0.04 (1) 0.46 (1) 0.24 (1) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE -530 / 0 K-A -1164 / 0 0.0 0.0 0.13 (1) 7.39 G-E 0 / 1087 TRUSS MANUFACTURING PLANT. 0 / 860 0.19 (1) -18.5 0.08 (4) -18.5 0.17 (1) -18.5 0.14 (4) -18.5 0.14 (4) K- J J- I -18.5 -18.5 -18.5 10.00 10.00 NAIL VALUES 0 / 805 PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 ŀΗ 0 / 530 10.00 PROFESSION ALL ENGINEERS C. M. HEYENS -18.5 0.11 (4) PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.76 (A) (INPUT = 0.90) JSI METAL= 0.49 (A) (INPUT = 0.95) 100505065 ROVINCE OF ONTARIO

STRUCTURAL COMPONENT ONLY DWG # TR24040033

JOB NAME RUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** DRWG NO 436388 T13A TRUSS DESC Version 8.630 S Aug 30 2023 MFek Industries, Inc. Tue Apr 2 10:53:32 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-5m6VAc7Jgadfw1Ag14gOKIrjwKrWpMvHpkl?8lzUo4H Tamarack Roof Truss, Burlington 9-8-14 4x6 == 4x6 | С Ε 10.00 12 4x6 || 1-11-14 Н 3x8 = 3x4 || 4x6 == 4x6 =4x6 II 18-3-8 0-0 4-11-11 9-8-14 13-11-11 18-3-8 TOTAL WEIGHT = 111 lb [M][F] LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. RULES CHORDS SIZE **DESIGN CRITERIA** BEARINGS FACTORED GROSS REACTION SIZE LUMBER DESCR A - C C - E F - E K - A H - F 2x4 2x4 2x4 2x4 2x4 No.2 No.2 SPF MAXIMUM FACTORED GROSS REACTION DRY INPUT REQRD SPECIFIED LOADS: DRY LL = DL = LL = DL = PSF PSF PSF BRG BRG CH. 32.5 JT UPLIFT IN-SX 6.0 0.0 7.4 No.2 SPF VERT HORZ DOWN HORZ IN-SX DRY DRY SPF 0 BOT CH. MECHANICAL 0 DRY No.2 SPF TOTAL LOAD A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K. MINIMUM BEARING LENGTH AT JOINT K = 1-8. ALL WEBS EXCEPT 2x3 DRY No.2 SPF SPACING = 24.0 IN. C/C I - D G - E 2x4 DRY No.2 SPF LOADING IN FLAT SECTION BASED ON A SLOPE UNFACTORED REACTIONS
1ST LCASE MA OF 2.00/12 MINIMUM DRY: SEASONED LUMBER. XX./MIN. COMPONENT REACTIONS
V LIVE PERM.LIVE WIND SNOW COMBINED SOIL THIS TRUSS IS DESIGNED FOR RESIDENTIAL LIVE 0/0 594 / 0 0/0 245 / 0 0/0 OR SMALL BUILDING REQUIREMENTS OF PART 594 / 0 0/0 PLATES (table is in inches)
JT TYPE PLATES
A TMVW+p MT20 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) LEN Y BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.76 FT. 6.0 Edge TMWW-t MT20 - CSA 086-14 MT20 2.00 1.00 MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED 6.0 TMWW-t MT20 TMVW+p MT20 MT20 6.0 4.0 6.0 8.0 6.0 6.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD G H 4.0 BMWW+t MT20 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-F, D-G. MT20 MT20 BMWWW-t 2.00 1.50 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW ALLOWABLE DEFL.(LL)= L/360 (0.61")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.61")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.06") BMWW-t MT20 BMV1+p <u>LOADING</u> TOTAL LOAD CASES: (4) Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

СH	ORDS				WEBS							
MAX	C. FACTORED	FACTO	RED				MAX. FACTO	RED				
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX				
	(LBS)	(PI	_F) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)				
FR-TO		FROM	TO		LENGTH	FR-TO		, ,				
A-B	-1014/0	-112.4	-112.4	0.36(1)	5.76	J- B	-165 / 41	0.10(1)				
B-C	-768 / 0	-112.4	-112.4	0.35 (1)	6.25	B- I	-399 / 0	0.46 (1)				
C-D	-556 / 0	-112.4	-112.4	0.26(1)	6.25	I- C	0/82	0.03 (4)				
D-E	-431 / 0	-112.4	-112.4	0.26 (1)	6.25	I- D	0 / 324	0.05 (1)				
F-E	-1165 / 0	0.0	0.0	0.58(1)	5.91	G-D	-890 / 0	0.62 (1)				
K-A	-1160 / 0	0.0	0.0	0.13(1)	7.39	G-E	0 / 1069	0.17 (1)				
						A-J	0 / 855	0.19 (1)				
K-J	0/0	-18.5	-18.5	0.11 (4)	10.00							
J- I	0/812	-18.5	-18.5	0.19 (1)	10.00							
I- H	0/431	-18.5	-18.5	0.11 (1)	10.00							
H- G	0 / 431	-18.5	-18.5	0.11(1)	10.00							
G-F	0/0	-18.5	-18.5	0.08 (4)	10.00							

CSI: TC=0.58/1.00 (E-F:1) , BC=0.19/1.00 (I-J:1) , WB=0.62/1.00 (D-G:1) , SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (A) (INPUT = 0.90) JSI METAL= 0.50 (A) (INPUT = 0.95)

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 436388 T17 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:37 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-SjvODKBSU7Fy0o3eqdFZ1MYcHLW7Uei0z?SlqzzUo4C 1-3-8 7-9-1 9-11-7 3x4 N 4x6 = 4x6 II Scale = 1:45.2 ח 10.00 12 4x6 // 3x4 || а 4x6 = 3x8 = 4x6 == 4x6 II 3x4 || 17-8-8 0-0 7-9-1 12-8-5 17-8-8 TOTAL WEIGHT = 93 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES DESIGN CRITERIA BEARINGS FACTORED DESCR CHORDS SIZE 2x4 LUMBER DRY DRY DRY DRY No.2 SPF MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: GROSS REACTION DOWN HORZ U 1159 0 0 1315 0 0 LL = DL = LL = DL = AD = No.2 SPE BRG IN-SX PSF PSF PSF 2x4 **GROSS REACTION** BRG 32.5 G - F K - B K - I 2x4 2x4 No.2 No.2 SPF SPF SPF HORZ 0 UPLIFT IN-SX 6.0 G BOT CH. 0 1-8 1-8 DRY 2x4 No.2 1315 G DRY No.2 SPF TOTAL LOAD 45.9 PSF ALL WEBS DRY SPF 2x3 No.2 UNFACTORED REACTIONS
1ST LCASE MA SPACING = 24.0 IN. C/C EXCEPT K - C DRY SPF No.2 DEAD SOIL LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM 812 237 / 0 0/0 DRY: SEASONED LUMBER. 665 / 0 0/0 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 ERACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.11 FT. PLATES (table is in inches) LEN Y THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. TMV+n MT20 MT20 3.0 4.0 TMWW-t ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. MT20 2.00 1.00 3.0 4.0 4.0 6.0 4.0 6.0 8.0 TMWW-f MT20 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H. MT20 MT20 MT20 MT20 TMVW+p BMV1+p (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD 3.0 4.0 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN BMWW+t THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW 3.0 4.0 4.0 BS-t BMWWW-t MT20 MT20 LOADING TOTAL LOAD CASES: (4) J K 6.0 ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL)= L/999 (0.13") BMVW1-t MT20 6.0 CHORDS WEBS NOTES-(1) MAX. FACTORED FACTORED MAX. FACTORED FORCE MAX VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FORCE (LBS) 1) Lateral braces to be a minimum of 2X4 SPF #2. MEMB. MEMB. CSI: TC=0.48/1.00 (D-E:1) , BC=0.29/1.00 (J-K:4) , CSI (LC) (LBS) FR-TO LENGTH FR-TO WB=0.52/1.00 (C-K:1), SSI=0.27/1.00 (E-F:1) -112.4 -112.4 0.15 (1) -112.4 -112.4 0.28 (1) -112.4 -112.4 0.30 (1) -112.4 -112.4 0.48 (1) -112.4 -112.4 0.47 (1) 0.0 0.0 0.33 (1) A-B B-C D-E E-F K-B 10.00 10.00 6.11 -209 / 0 0 / 171 0 / 152 0.13 (1) 0.04 (1) 0.03 (1) 0.34 (1) 0.24 (1) C- J J- D J- E 0/50 0/33 -891/0 DOL LUMBER=1,00 NAIL=1,00 LS BEND=1,10 COMP=1.10 SHEAR=1.10 TENS= 1.10 6.25 6.25 6.00 H-E -821/0 H-F 0/1073 K-C -1228/0 -660 / 0 -580 / 0 -1118 / 0 COMPANION LIVE LOAD FACTOR = 1.00 -320 / 0 0.0 0.0 0.03 (1) AUTOSOLVE RIGHT HEEL ONLY -18.5 -18.5 -18.5 -18.5 0.29 (4) -18.5 0.28 (4) -18.5 0.28 (4) -18.5 0.10 (4) K- J J- I 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0 / 580 10.00 0/580 NAIL VALUES PROFESSIONAL ENGINEERS

4/02/24

C. M. HEYENS PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.74 (D) (INPUT = 0.90) JSI METAL= 0.27 (C) (INPUT = 0.95) 100505065 Muser ROVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040038

JOB NAME TRUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** DRWG NO. 436388 T18 TRUSS DESC. Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:38 2024 Page 1 Tamarack Roof Truss, Burlington ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-wwTmRfC4FQNpeyeqOKnoZZ5niku4D6zABfCJMPzUo4B 1-3-8 Scale = 1:52.8 3x4 N 4x6 == 4x6 || 10.00 12 4x6 // C 4x6 || W 3x8 = 3x4 || 3x4 || 4x6 =4x6 II 4x6 = 17-8-8 0-0 4-7-0 8-11-8 13-3-8 17-8-8 TOTAL WEIGHT = 99 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER MIF N. L. G. A. RULES BUILDING DÉSIGNER **DESIGN CRITERIA** SIZE 2x4 2x4 CHORDS LUMBER DESCR BEARINGS FACTORED DRY No.2 No.2 SPF MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: A - D D - F DRY DRY DRY DRY LL = DL = LL = SPE GROSS REACTION 32.5 PSF GROSS REACTION BRG BRG TOP CH. 2x4 2x4 SPF HORZ 0 HORZ 0 UPLIFT IN-SX IN-SX 1-8 6.0 PSF PSF Ğ-No.2 VERT DOWN 0 No.2 DL = 2x4 SPF 1315 1315 5-8 1-8 PSF G No.2 SPE TOTAL LOAD = SPF SPACING = 24.0 IN. C/C ALL WEBS DRY No.2 UNFACTORED REACTIONS 2x3 EXCEPT MAX./MIN. COMPONENT REACTIONS SNOW LIVE 0/0 DEAD 237 / 0 SOIL 0/0 DRY: SEASONED LUMBER. 575 / 0 LOADING IN FLAT SECTION BASED ON A SLOPE 665 / 0 0/0 254 / 0 0/0 OF 2.00/12 MINIMUM BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.79 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. CSA 086-14

PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW+p	MT20	4.0	6.0	Edge					
С	TMWW-t	MT20	4.0	6.0	_					
D	TTW+h	MT20	3.0	4.0	2.00	1.00				
Е	TMWW-t	MT20	4.0	6.0						
F	TMVW+p	MT20	4.0	6.0						
G	BMV1+p	MT20	3.0	4.0						
Н	BMWW+t	MT20	4.0	6.0						
1	BS-t	MT20	3.0	8.0						
J	BMWWW-t	MT20	4.0	6.0						
K	BMWW-t	MT20	4.0	6.0						
L	BMV1+p	MT20	3.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING
TOTAL LOAD CASES: (4)

	CHORDS MAX. FACTORED FACTORED					W E B S MAX, FACTORED				
	MEMB.	FORCE	VERT. LO		MAX	MAX.	мемв.	FORCE	MAX	
		(LBS)				UNBRAC		(LBS)	CSI (LC)	
	FR-TO	, ,	FROM	TO	` '	LENGTH	FR-TO	. ,	. ,	
ı	A-B	0 / 50	-112.4	-112.4	0.15 (1)	10.00	K-C	-142 / 40	0.06 (1)	
	B-C	-1040 / 0	-112.4	-112.4	0.31(1)	5.79	C-J	-374 / 0	0.32 (1)	
	C-D	-800 / 0			0.30(1)		J- D	0 / 117	0.03 (4)	
ì	D-E	-583 / 0			0.27(1)		J-E		0.06 (1)	
	E-F	-469/0	-112.4		0.27 (1)		H-E	-844 / 0	0.46 (1)	
	G-F	-1126 / 0	. 0.0	0.0	0.43(1)	5.98	H-F		0.24 (1)	
	L- B	-1280 / 0	0.0	0.0	0.14 (1)	7.13	B-K	0 / 861	0.19(1)	
	L-K	0/0	-18.5		0.09 (4)					
	K-J	0/828	-18.5		0.18 (1)					
	J-1	0 / 469	-18.5		0.12 (1)					
	I-H	0 / 469	-18.5		0.12 (1)					
	H- G	0/0	-18.5	-18.5	0.08 (4)	10.00				

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL) = L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.43/1.00 (F-G:1) , BC=0.18/1:00 (J-K:1) , WB=0.46/1.00 (E-H:1) , SSI=0.24/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.81 (B) (INPUT = 0.90) JSI METAL= 0.54 (B) (INPUT = 0.95)

JOB NAME TRUSS NAME JOB DESC. QUANTIT **BAYVIEW WELLINGTON** DRWG NO. 436388 T19 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:39 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGl-O618e?Ci0kVgG6C0x2l16nevy8DpyWiJQJxsurzUo4A 1-3-8 , 1-4-8 , 1-0-0 8-9-6 3x4 N 4x6 == 4x6 || 4x6 4 Е 5x6 \\ 10.00 12 B1 L 0 Ν М κ 3x8 = 4x6 = 3x4 II 4x6 == 4x6 = 4x6 || 3x4 []

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER DESCR DRY DRY DRY 2x4 2x4 No.2 No.2 SPF ACDFIPPL 2x4 No.2 SPF DRY DRY DRY Н 2x4 2x4 No.2 No.2 SPF SPF B 2x4 No.2 SPF DRY SPE ALL WEBS 2x3 DRY No.2 SPE K - G 2x4 2x4 DRY No.2 No.2 SPF DRY SPE

DRY: SEASONED LUMBER.

PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	Х		
В	TMVW+p	MT20	4.0	6.0	Edge			
C	TTWW+m	MT20	5.0	6.0	2.00	1.50		
D	TTWW+m	MT20	5.0	6.0				
E	TMWW-t	MT20	4.0	6.0				
	TTW+h	MT20	3.0	4.0	2.00	1.00		
G	TMWW-t	MT20	4.0	6.0				
H	TMVW+p	MT20	4.0	6.0				
1	BMV1+p	MT20	3.0	4.0				
J	BMWW+t	MT20	4.0	6.0				
K	BMWWW-t	MT20	4.0	6.0	2.00	1.50		
L	BS-t	MT20	3.0	8.0				
M,	N, O							
M	BMWW-t	MT20	4.0	6.0				
P	BMV1+p	MT20	3.0	4.0				

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS A	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

18-8-8

11-1-14

14-10-11

Αŀ	RINGS						
FACTORED			MAXIMUN	/ FACTO	INPUT	REQRD	
GROSS REACTION			GROSS REACTION			BRG	BRG
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1219	0	1219	0	0	1-8	1-8
	1386	0	1386	0	0	5-8	1-8

6-9-3

UNP	ACTORED REACTIONS									
	1ST LCASE	MAX./	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
1	854	604 / 0	0/0	0/0	0/0	250 / 0	0/0			
P	969	701/0	0/0	0/0	0/0	268 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I, P

4x6 =

1-4-8 2-4-8

0-0

JT

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.62 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF H-I, G-J.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	CHORDS MAX. FACTORED FACTORED					W E B S MAX. FACTORED					
	MEMB.		VERT. LOAD LC1 MAX			MAN					
	IVICIVID.	(LBS)				UNBRAC		FORCE (LBS)			
	FR-TO	(200)				LENGTH		(LLDO)	001 (00)		
	A-B	0 / 50			0.15 (1)			-439 / 0	0.07 (1)		
ł		-876 / 0			0.12 (1)			0/976	0.22 (1)		
1		-943 / 0			0.02 (1)			-947 / 0	0.16 (1)		
ı	D-E	-1135/0				5.62			0.04 (1)		
	E-F	-763 / 0			0.29 (1)			0 / 143	0.04 (4)		
	F-G	-556 / 0			0.20 (1)		E-K		0.68 (1)		
	G-H	-398 / 0			0.19 (1)		K-F		0.03 (4)		
	I- H	-1190 / 0	0.0	0.0	0.59 (1)	5.86	B- O	0 / 839	0.19 (1)		
	P- B	-1400 / 0	0.0	0.0	0.15 (1)	6.88	K-G	0 / 455	0.07 (1)		
					, ,		J- G	-945 / 0	0.66 (1)		
	P- O	0/0	-18.5	-18.5	0.06(1)	10.00	J- H	0 / 1098	0.18 (1)		
	0- N	0 / 610	-18.5	-18.5	0.15 (1)	10.00					
	N- M	0 / 983	-18.5		0.21 (1)						
	M- L	0 / 903	-18.5		0.19 (1)						
	L- K	0/903	-18.5		0.19 (1)						
	K-J	0/398	-18.5		0.10(1)						
	J- I	0/0	-18.5	-18.5	0.06 (4)	10.00					

DESIGN CRITERIA

18-8-8

SPECIFIED LOADS:									
TOP	CH.	LL	=	32.5	PSF				
		DL		6.0	PSF				
BOT	CH.	LL	=	0.0	PSF				
		DL	=	7.4	PSF				
TOTA	1 10	AΠ	-	45 Q	DOE				

SPACING = 24.0 IN. C/C

- TPIC 2014

DESIGN ASSUMPTIONS

LOADING IN ALL FLAT SECTIONS BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 121 lb

[M][F

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

-OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.62")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.62")
CALCULATED VERT. DEFL.(TL)= L/999 (0.07")

CSI: TC=0.59/1.00 (H-I:1) , BC=0.21/1.00 (M-N:1) , WB=0.68/1.00 (E-K:1) , SSI=0.20/1.00 (G-H:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PL) (PL) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (B) (INPUT = 0.90) JSI METAL= 0.43 (B) (INPUT = 0.95)

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 436388 T20 TRUSS DESC Version 8.630 S Aug 30 2023 MITek Industries, Inc. Tue Apr 2 10;53:40 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-slbXrLDLn1dWtFnDVlpGf A6OYZ2h?UTfzhQQHzUo49 Tamarack Roof Truss, Burlington 8-9-0 3x4 N 4x6 = 4x6 || Н 4x6 4 Ε 5x6 \\ 5x6 \\ 10.00 12 4x6 | ĸ 0 N М L 3x8 = 3x4 II 4x6 = 4x6 = 4x6 3x4 II 4x6 || 4x6 = 18-8-8 0-0 3-4-8 4-4-8 9-11-8 14-3-8 18-8-8 TOTAL WEIGHT = 115 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. RULES DESIGN CRITERIA CHORDS SIZE LUMBER DESCR BEARINGS FACTORED - C - D - F 2x4 2x4 2x4 2x4 2x4 2x4 MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: GROSS REACTION VERT HORZ 1292 0 PSF PSF PSF DRY No.2 SPF GROSS REACTION BRG BRG CH. 32.5 SPF SPF SPF DOWN HORZ 1292 0 IN-SX 1-8 1-8 No.2 UPLIFT IN-SX DRY DRY BOT CH. 0.0 No.2 1401 DI - B 2x4 DRY No.2 SPE SPF UNFACTORED REACTIONS No.2 SPACING = 24.0 IN. C/C MAX/MIN. COMPONENT REACTIONS
NOW LIVE PERM.LIVE WIND
10 0/0 0/0 0/0 1ST LCASE ALL WEBS DRY No.2 SPF SNOW 2x3 EXCEPT 608 / 0 0/0 LOADING IN HIGHEST FLAT SECTION BASED ON 304 / 0 284 / 0 PIGGYBACK TRUSS WITH SLOPES OF 6.00/12
AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS
OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD 698 / 0 0/0 0/0 DRY: SEASONED LUMBER. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I, P LOAD OF 4.0 P.S.F LOADING IN OTHER FLAT SECTIONS BASED ON PLATES (table is in inches)
JT TYPE PLATES FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 5.70 FT. A SLOPE OF 6.00/12 LEN Y Х MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 6.0 TMVW+p MT20 Edge 2.25 1.50 THIS TRUSS IS DESIGNED FOR RESIDENTIAL TTWW+m ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. OR SMALL BUILDING REQUIREMENTS OF PART TTWW+m MT20 5.0 6.0 4.0 3.0 4.0 TMWW-f MT20 6.0 1 LATERAL BRACE(S) AT 1/2 LENGTH OF H-I, G-J. 2.00 1.00 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) 6.0 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN TMWW-t MT20 TMVW+p 6.0 4.0 6.0 MT20 THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW BMV1+p BMWW+t LOADING TOTAL LOAD CASES: (4) MT20 4.0 BS-t MT20 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. CHORDS WEBS RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED 4.0 6.0 3.0 4.0 MAX. FACTORED FORCE MAX BMWW-t MT20 MAX. FACTORED FACTORED ROOF LIVE LOAD VERT. LOAD LC1 MAX MAX.

(PLF) CSI (LC) UNBRAC
FROM TO LENGTH BMV1+p MT20 MEMB. ALLOWABLE DEFL.(LL)= L/360 (0.62")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.62")
CALCULATED VERT. DEFL.(TL)= L/999 (0.07") (LBS) (LBS) CSI (LC) Edge - INDICATES REFERENCE CORNER OF PLATE FR-TO LENGTH FR-TO FROM TO
-112.4 -112.4 0.15 (1)
-112.4 -112.4 0.24 (1)
-112.4 -112.4 0.03 (1)
-112.4 -112.4 0.15 (1) A-B B-C C-D 0 / 50 TOUCHES EDGE OF CHORD. 0.05 (1) 0.15 (1) -1113/0 5.70 0 / 665 0.21 (1) 0.05 (1) 0.07 (1) -988 / 0 6.25 N-D -715/0 -112.4 -112.4 0.03 (1) -112.4 -112.4 0.15 (1) -112.4 -112.4 0.15 (1) -122.4 -122.4 0.39 (1) 0.0 0.0 0.49 (1) D- E E- F F- G G- H I- H P- B -1117/0 -896/0 -670/0 5.82 6.25 2.00 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. 0 / 236 CSI: TC=0.49/1.00 (H-I:1) , BC=0.21/1.00 (M-N:1) , WB=0.52/1.00 (G-J:1) , SSI=0.26/1.00 (G-H:1) L-G 0 / 333 0.52 (1) 0.26 (1) 0.20 (1) J- G -959 / 0 2.00 5.74 J- H B- O 0/1175 0/910 -527 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 0.50 (1) 0.06 (1) 0.09 (1) -1381 / 0 0.0 0.0 0.15 (1) 6.92 -516/0 0 / 249 COMPANION LIVE LOAD FACTOR = 1.00 P- O O- N N- M M- L L- K K- J J- I -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 0.06 (4) 10.00 0 / 848 -18.5 0.19 (1) 10.00 0 / 1006 -18.5 0.21 (1) 0.16 (1) 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE 0/879 ROFESSIONAL FILE OF THE PROPESSION OF THE PROPES -18.5 0.13 (1) 10.00 TRUSS MANUFACTURING PLANT. 0 / 527 -18.5 0 13 (1 10.00 PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches 100505065 PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.86 (B) (INPUT = 0.90) JSI METAL= 0.55 (B) (INPUT = 0.95) 30 VINCE OF ONTARIO

STRUCTURAL COMPONENT ONLY DWG # TR24040041

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 436388 T21A TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:41 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-KV9v3hEzYLINVPMP3TKVBCjHJyuMQTyctdQzzkzUo48 9-6-8 8-9-0 3x4 N 4x6 = 4x6 || Scale = 1:50.6 E 10.00 12 4x6 4 5x6 || 1-1-14 W2 Н G 3x8 == 3x4 || 4x6 = 4x6 = 4x6 || 3x4 II 18-3-8 0-0 4-10-8 9-6-8 13-10-8 18-3-8 TOTAL WEIGHT = 3 X 98 = 293 lb LUMBER N. L. G. A. RULES DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS FACTORED **DESIGN CRITERIA** CHORDS LUMBER A - C C - E F - A K - H DRY 2x4 2x4 No.2 SPF MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: DRY DRY DRY GROSS REACTION VERT HORZ GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX No.2 SPE BRG IN-SX 32.5 CH. LL = DL = 2x4 2x4 6.0 0.0 PSF No.2 SPF 1264 0 1264 0 0 BOT CH. LL DL = 2x4 DRY No.2 SPF ō 1218 MECHANICAL DRY TOTAL LOAD = 45.9 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT K. MINIMUM ALL WEBS 2x3 DRY No.2 SPE BEARING LENGTH AT JOINT K = 1-8. SPACING = 24.0 IN. C/C DRY: SEASONED LUMBER. UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMANATE SOIL 0/0 0/0 COMBINED WIND DEAD 594 / 0 594 / 0 LOAD OF 4.0 P.S.F. PLATES (table JT TYPE A TMVW+p (table is in inches) E PLATES /W+p MT20 0/0 0/0 0/0 262 / 0 LEN Y THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 6.0 6.0 4.0 5.0 Edge BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F TMWW-t MT20 MT20 BCD 9. NBCC 2015 BRACING
FOR SECTION C-E, MAX. PURLIN SPACING = 2.00 FT.
FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.38 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 2.00 1.00 6.0 TMWW-t MT20 4.0 THIS DESIGN COMPLIES WITH: TMVW+ 6.0 4.0 6.0 MT20 MT20 EFGHL - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) BMWW+t MT20 4.0 BS-t MT20 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. - TPIC 2014 BMWW-t MT20 4.0 6.0 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-F, D-G (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED J BMV1+p MT20 3.0 4.0 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN ROOF LIVE LOAD Edge - INDICATES REFERENCE CORNER OF PLATE THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW ALLOWABLE DEFL.(LL)= L/360 (0.61")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.61")
CALCULATED VERT. DEFL.(TL)= L/999 (0.06") TOUCHES EDGE OF CHORD. LOADING TOTAL LOAD CASES: (4) 1) Lateral braces to be a minimum of 2X4 SPF #2. CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED CSI: TC=0.47/1.00 (E-F:1), BC=0.20/1.00 (I-J:1), WB=0.50/1.00 (D-G:1), SSI=0.26/1.00 (D-E:1) MEMB. VERT, LOAD LC1 MAX MAX, (PLF) GSI (LC) UNBRAC FORCE MEMB MAX CSI (LC) /ERT. LOAD LC1 (PLF) (FROM TO -112.4 -112.4 -112.4 -122.4 -122.4 -122.4 -122.4 -122.4 (LBS) (LBS) FR-TO LENGTH FR-TO DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 -1221 / 0 0.35 (1) 0.34 (1) 0.30 (1) 5.38 6.10 0.03 (1) 0.41 (1) 0.03 (4) A-B -63 / 65 B-C C-D D-E F-E K-A -881 / 0 -644 / 0 -513 / 0 -467 / 0 0 / 138 2.00 COMPANION LIVE LOAD FACTOR = 1.00 0.07 (1) 0.50 (1) 0.26 (1) 0 29 (1) 2.00 I-D 0 / 304 5.79 7.35 G-D G-E -933 / 0 0 / 1144 -1230 / 0 0.0 0.0 0.12(1) TRUSS PLATE MANUFACTURER IS NOT 0/983 0.22 (1) RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 0.10 (4) 0.20 (1) 0.12 (1) K- J J- I 10.00 10.00 0/0 i- H H- G G- F 0/513 10.00 NAIL VALUES PROFESSIONAL ENGINEERS

4/02/24

C. M. HEYENS

1005050000 0 / 513 -18.5 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.74 (C) (INPUT = 0.90) JSI METAL= 0.46 (A) (INPUT = 0.95) 100505065

NOVINCE OF ONTARIO

STRUCTURAL COMPONENT ONLY DWG # TR24040042

				4		•	
JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLIN	IGTON	DRWG NO.
436388 Tamarack Roof Truss, Burlingto	T22	2	1	TRUSS DESC.	Ve	rsion 8.630 S Aug 30 2023	MiTek Industries, Inc. Tue Apr 2 10:53:43 2024 Page 1
	4.0.0						NGD4y?5kjWoAuMzGdoiXlaluPGvLxv41czUo46
·	<u>1-3-8</u>		6-3-0	4>	6-3-0 6	1-3	-8 ; Scale = 1:41.1
*.		10.00 12 4	x6 <i>1</i> ,			v6 \	
·	3x4	// //		NAS IN	yvis	3x4 F	0 1-7-1
		J 4x6 ==		•	6 =	H 4x6 =	
				12-	6-0		
		0-0		6-3	3-0	12-6-0	
LUMBER N. L. G. A. RULES		DIMENSIONS, S BUILDING DESI		ID LOADINGS SPEC	FIED BY FABRICATOR TO BE V		TOTAL WEIGHT = 2 X 60 = 120 lb [M][F] DESIGN CRITERIA
CHORDS SIZE A - D 2x4 DRY D - G 2x4 DRY J - B 2x4 DRY H - F 2x4 DRY J - H 2x4 DRY ALL WEBS 2x3 DRY EXCEPT DRY: SEASONED LUMBER.	LUMBER DESC No.2 SPI No.2 SPI No.2 SPI No.2 SPI No.2 SPI No.2 SPI	R. BEARINGS F FACTO GROSS R JT VERT F J 974 F H 974	RED MEACTION GOOD HORZ DO 9 9 0 9		BRG BRG	MUMIMIM	SPECIFIED LOADS: TOP CH. LL = 32.5 PSF
PLATES (table is in inches)	W LEN Y X 3.0 4.0 4.0 6.0 4.0 6.0 4.0 6.0 Edge 4.0 6.0 3.0 4.0 4.0 6.0 4.0 6.0 4.0 6.0	BRACING TOP CHORD TO MAX. UNBRACE	MAX., SNOW 496 / 0 496 / 0 ERIAL TO BE SO BE SHEATH CO BOTTOM CO	0 / 0 0 / 0 SPF NO.2 OR BETTI SED OR MAX. PURLI CHORD LENGTH = 1	RM.LIVE WIND DEAL 0/0 0/0 184/0 0/0 0/0 184/0	D SOIL 0 / 0 0 / 0 0 / 0 RECTLY APPLIED. RESTRAINED.	OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 THIS DESIGN COMPLIES WITH: - PART 9 OF OBC 2018, NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.42")
Edge - INDICATES REFEREN TOUCHES EDGE OF CHORD NOTES- (1) 1) Lateral braces to be a minim	; ·	LOADING TOTAL LOAD CA CHORDS MAX. FACTO MEMB. FO	ORED FAC	CTORED T. LOAD LC1 MAX (PLF) CSI (LC)	W E B S MAX. FACTI MAX. MEMB. FORCE UNBRAC (LBS)	DRED MAX	CALCULATED VERT. DEFL.(LL) = L/ 999 (0.01") ALLOWABLE DEFL.(TL) = L/360 (0.42") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.04") CSI: TC=0.17/1.00 (B-C:1), BC=0.24/1.00 (I-J:4), WB=0.32/1.00 (E-H:1), SSI=0.13/1.00 (C-D:1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10
		FR-TO A-B 0/ B-C 0/ C-D -553/ D-E -553/ E-F 0/ F-G 0/ J-B -290/	FRC 50 -11 26 -11 0 -11 0 -11 26 -11 50 -11	DM TO 12.4 -112.4 0.15 (1 12.4 -112.4 0.17 (1 12.4 -112.4 0.13 (1 12.4 -112.4 0.13 (1 12.4 -112.4 0.15 (1 12.4 -112.4 0.15 (1 12.4 0.00 0.03 (1	LENGTH FR-TO 0 / 399 10.00 I-D 0 / 399 10.00 I-E -166 / 0	0.09 (1) 0.07 (1) 0.07 (1) 0.32 (1)	COMP=1.10 SHEAR=1.10 TENS= 1.10 COMPANION LIVE LOAD FACTOR = 1.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.
			510 -1	0.0 0.0 0.03 (1 18.5 -18.5 0.24 (4 18.5 -18.5 0.24 (4) 10.00		NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873
	2/24 HEYENS 505065 OF ONTARIO						PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.53 (C) (INPUT = 0.90) JSI METAL= 0.18 (C) (INPUT = 0.95)
	OF ONTE OMPONENT ONLY R24040043						N. Carlotte

JOB NAME TRUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** DRWG NO 436388 T22G TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc., Tue Apr. 2 10:53:44 2024, Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-l3q1hjGrrG7yMt5 kbuCpqLtY9zvdwi2abfdZ3zUo45 1-3-8 1-3-8 4x6 || Scale = 1:41.1 2x4 || 2x4 || 10.00 12 2x4 II 2x4 || G 4x6 || 4x6 || 3x4 || 4x6 == 2x4 || 2x4 || 2x4 || 4x6 = 3x4 II 12-6-0 0-0 12-6-0 TOTAL WEIGHT = 61 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES BUILDING DESIGNER **DESIGN CRITERIA** CHORDS SIZE LUMBER DESCR **BEARINGS** P - B A - E 2x4 2x4 2x4 DRY No.2 No.2 SPF SPECIFIED LOADS: LL = DL = LL = DL = AD = DRY DRY DRY THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS CH. 32.5 PSF 6.0 0.0 7.4 PSF PSF No.2 SPF SPF THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. BOT CH. No.2 PSF BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) TOTAL LOAD ALL WERS DRY No.2 SPF ALL GABLE WEBS BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT. SPACING = 24.0 IN. C/C DRY 2x3 No.2 SPF THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART DRY: SEASONED LUMBER. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED GABLE STUDS SPACED AT 2-0-0 OC. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED 9, NBCC 2015 LOADING TOTAL LOAD CASES: (4) THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 CHORDS MAX. FACTORED PLATES (table is in inches)
JT TYPE PLATES WEBS FACTORED LEN Y MAX. FACTORED - TPIC 2014 TMVW+p MT20 4.0 6.0 Edge MEMB. FORCE VERT. LOAD LC1 MAX MAX. мемв. FORCE (PLF) FROM TO 0.0 0 D, F, G TMW+w CSI (LC) UNBRAC LENGTH FR-TO CSI (LC) (LBS) (LBS) (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED MT20 2.0 4.0 FR-TO FROM 10 0.0 0.0 0.03 (1) -112.4 -112.4 0.15 (1) -112.4 -112.4 0.07 (1) -112.4 -112.4 0.06 (1) -112.4 -112.4 0.06 (1) -112.4 -112.4 0.07 (1) 6.0 6.0 4.0 0.12 (1) 0.10 (1) 0.05 (1) 0.10 (1) 0.05 (1) 0.01 (1) 0.01 (1) TTW+p TMVW+p 4.0 4.0 3.0 Edge Edge -302 / 0 M-E N-D O-C L-F MT20 P-B 7 81 -157 / 0 ROOF LIVE LOAD MT20 MT20 0/50 -29/0 -246 / 0 -253 / 0 A-C D-F G-H F-G-H 6.25 -35 / 0 CSi: TC=0.15/1.00 (H-I:1) , BC=0.02/1.00 (N-O:4) , WB=0.12/1.00 (E-M:1) , SSi=0.09/1.00 (A-B:1) BMWW1-t MT20 4.0 6.0 -246 / 0 6.25 6.25 6.25 K- G B- O K- H -42/0 -42/0 -253 / 0 0 / 39 BMW1+w 2.0 4.0 3.0 4.0 6.0 MT20 BMWW1-t MT20 -35 / 0 0/39 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 -112.4 -112.4 0.07 (1) -112.4 -112.4 0.15 (1) BMV1+p MT20 4.0 -29 / 0 6 25 COMP=1.10 SHEAR=1.10 TENS= 1.10 Edge - INDICATES REFERENCE CORNER OF PLATE -302/0 J-H 0.0 0.0 0.03 (1) 7.81 COMPANION LIVE LOAD FACTOR = 1.00 TOUCHES EDGE OF CHORD. 0.02 (4) 0.02 (4) 0.02 (4) 0.02 (4) 0.02 (4) -18.5 -18.5 -18.5 10.00 10.00 10.00 P- 0 -18.5 O- N N- M M- L L- K K- J 0/26 -18.5 -18.5 TRUSS PLATE MANUFACTURER IS NOT NOTES- (1) RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. 0/21 -18.5 -18.5 -18.5 -18.5 1) Lateral braces to be a minimum of 2X4 SPF #2. 10.00 -18.5 -18.5 0.02 (4) 10.00 NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.19 (H) (INPUT = 0.90) JSI METAL= 0.13 (C) (INPUT = 0.95) PROFESSIONAL ENGINEERS

4/02/24

C. M. HEYENS 100505065 POVINCE OF ONTARIO

STRUCTURAL COMPONENT ONLY DWG # TR24040044

JOB NAME TRUSS NAME JOB DESC. QUANTIT PLY **BAYVIEW WELLINGTON** DRWG NO. 436388 T23 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:45 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-DGOQv3HTcaFp 1gAllPRM2u 3ZH4MNbCoFOB6VzUo44 1-3-8 5-5-0 1-3-8 4x6 II Scale = 1:37.1 C 10.00 12 4x6 II 4x6 || G 4x6 = 3x4 II 10-10-0 0-0 5-5-0 10-10-0 TOTAL WEIGHT = 3 X 48 = 145 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES **BUILDING DESIGNER** BEARINGS FACTORED DESIGN CRITERIA CHORDS A - C C - E SIZE 2x4 2x4 DESCR. SPF SPF LUMBER A - C C - E H - B F - D H - F DRY DRY DRY No.2 No.2 MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: GROSS REACTION BRG
DOWN HORZ UPLIFT IN-SX
865 0 0 5-8 TOP CH. LL =

DL =

BOT CH. LL =

DL =

TOTAL LOAD = GROSS REACTION VERT HORZ BRG IN-SX PSF PSF No.2 No.2 SPF 2x4 6.0 0.0 7.4 PSF SPF 2x4 DRY No.2 865 865 0 0 MECHANICAL PSF ALL WEBS EXCEPT DRY A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8. No.2 SPACING = 24.0 IN. C/C DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 UNFACTORED REACTIONS

1ST LCASE MAX./MIN. COMPONENT REACTIONS

JT COMBINED SNOW LIVE PERM.LIVE WIND THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) DEAD SOIL PLATES (table is in inches)
JT TYPE PLATES 0/0 LEN Y 6.0 Edge 6.0 Edge 6.0 Edge 4.0 TYPE TMVW+p TTW+p 4.0 4.0 4.0 3.0 - CSA 086-14 MT20 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H TMVW+p MT20 BMV1+p BMWWW-t MT20 MT20 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. 4.0 6.0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD BMV1+p MT20 3.0 MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. ALLOWABLE DEFL.(LL)= L/360 (0.36")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.36")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.02") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. <u>LOADING</u> TOTAL LOAD CASES: (4) NOTES-(1) 1) Lateral braces to be a minimum of 2X4 SPF #2. CSI: TC=0.43/1.00 (B-C:1) , BC=0.15/1.00 (F-G:4) , WB=0.08/1.00 (D-G:1) , SSI=0.18/1.00 (B-C:1) CHORDS MAX. FACTORED FACTORED MAX. FACTORED VERT, LOAD LC1 MAX MAX, MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO мемв. FORCE FORCE /ERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO -112.4 -112.4 0.15 (1) -112.4 -112.4 0.43 (1) -112.4 -112.4 0.43 (1) -112.4 -112.4 0.15 (1) (LBS) (LBS) CSI (LC) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 A- B B- C C- D D- E H- B F- D 0 / 50 0.03 (4) 0.08 (1) 0.08 (1) 10.00 -41 / 88 -444 / 0 -444 / 0 0 / 50 COMPANION LIVE LOAD FACTOR = 1.00 6.25 10.00 G-D 0 / 351 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. -826 / 0 0.0 0.09 (1) 0.09 (1) H- G G- F 0/0 -18.5 0.15 (4) -18.5 0.15 (4) 10.00 10.00 PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PROFESSIONAL ENGINEER

4/02/24

C. M. HEYENS PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.52 (B) (INPUT = 0.90) JSI METAL= 0.31 (B) (INPUT = 0.95) 100505065 3 OVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040045

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 436388 T23Z TRUSS DESC. Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:46 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-hSyo6Pl5NtNgbAFMs0wguFQ5 zVf5pXL1v8kexzUo43 Tamarack Roof Truss, Burlington 1-3-8 5-5-0 1-3-8 Scale = 1:37.1 4x6 II C 10.00 12 4x6 || 4x6 II W G 4x6 = 3x4 || 3x4 II 10-10-0 0-0 5-5-0 10-10-0 TOTAL WEIGHT = 48 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER N. L. G. A. RULES CHORDS SIZE **BUILDING DESIGNER** DESIGN CRITERIA LUMBER DESCR BEARINGS A - C C - E H - B F - D 2x4 2x4 2x4 DRY *** SPECIAL LOADS ANALYSIS *** FACTORED MAXIMUM FACTORED INPUT REORD No.2 No.2 SPF DRY DRY DRY DRY GROSS REACTION VERT HORZ 1132 0 1132 0 GROSS REACTION DOWN HORZ U BRG IN-SX SPE GEOMETRY AND/OR BASIC LOADS CHANGED SPF UPLIFT BY USER.
LOADS WERE DERIVED FROM USER INPUT 0 No.2 1132 0 5-8 1-8 2x4 No.2 SPF 0 5-8 1-8 NO FURTHER MODIFICATIONS WERE MADE ALL WEBS EXCEPT 2x3 DRY No.2 SPECIFIED LOADS: LL = 32.5 PSF DL = 6.0 PSF LL = 0.0 PSF CH. DRY: SEASONED LUMBER. DEAD SOIL CH. DL = AD = 376 / 0 0/0 TOTAL LOAD BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H. F SPACING = 24.0 IN. C/C
 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 C
 TTW+p
 MT20
 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.90 FT. LEN Y *** NON STANDARD GIRDER *** Edge Edge 4.0 4.0 6.0 6.0 ADDT'L USER-DEFINED LOADS APPLIED TO ALL MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. LOAD CASES 4.0 3.0 4.0 TMVW+p BMV1+p MT20 MT20 6.0 4.0 Edge DFGH ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. THIS TRUSS IS DESIGNED FOR RESIDENTIAL BMWWW-t MT20 OR SMALL BUILDING REQUIREMENTS OF PART BMV1+p MT20 3.0 LOADING TOTAL LOAD CASES: (4) Edge - INDICATES REFERENCE CORNER OF PLATE THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , NBC-2019AE PART 9 OF OBC 2012 (2019 AMENDMENT) TOUCHES EDGE OF CHORD. CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO MEMB. FORCE FORCE MAX CSI (LC) CSA 086-14 (PLF) CSI (LC) UNSRAC (PLF) CSI (LC) UNSRAC FROM TO LENGTH -112.4 -112.4 0.67 (1) 5.90 -112.4 -112.4 0.167 (1) 5.90 -112.4 -112.4 0.17 (1) 10.00 -112.4 -112.4 0.17 (1) 10.00 -112.4 -112.4 0.17 (1) 10.00 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. (LBS) (LBS) FR-TO A-B B-C C-D D-E H-B 0.16 (4) 0.13 (1) 0.13 (1) (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. 0 / 50 0 / 423 G-C B-G -678 / 0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD -678 / 0 0 / 50 ALLOWABLE DEFL.(LL)= L/360 (0.36")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.36") -1019 / 0 F-D 0.0 0.0 -96.0 0.64 (4) -39.8 0.64 (4) H-G G-F 0/0 -39.8 10.00 CALCULATED VERT. DEFL.(TL) = L/ 999 (0.07") CSI: TC=0.67/1.00 (B-C:1) , BC=0.64/1.00 (G-H:4) , WB=0.16/1.00 (C-G:4) , SSI=0.38/1.00 (F-G:4) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00 COMPANION LIVE LOAD FACTOR = 1.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.73 (G) (INPUT = 0.90)

JSI METAL= 0.40 (B) (INPUT = 0.95)

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY BAYVIEW WELLINGTON DRWG NO 436388 T24 TRUSS DESC. Version 8.630 S Aug 30 2023 MTek Industries, Inc. Tue Apr 2 10:53:48 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-dr4YX4JMuVeOrUOIzRy8zqWUSmIGZiDeUDdriqzUo4 Tamarack Roof Truss, Burlington 10-8 1-3-8 5-0-0 4x6 || С 3x4 II D 10.00 12 4x6 || В W 3x4 || 5x8 = 5-10-8 5-0-0 5-10-8 TOTAL WEIGHT = 3 X 33 = 99 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER N. L. G. A. RULES **BUILDING DESIGNER** DESIGN CRITERIA CHORDS LUMBER DESCR BEARINGS FACTORED A - C C - D F - B DRY SPF MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: 2x4 2x4 No.2 No.2 GROSS REACTION DOWN HORZ U 540 0 0 385 0 0 LL = DL = LL = PSF PSF PSF DRY GROSS REACTION BRG BRG CH. 32.5 - B - D 2x4 2x4 DRY SPF HORZ 0 UPLIFT IN-SX 0 5-8 6.0 0.0 7.4 No.2 BOT CH. No.2 F 0 2x4 DRY No.2 SPF 385 MECHANICAL DL TOTAL LOAD ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8. SPACING = 24.0 IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW C/MIN. COMPONENT REACTIONS

1.1.1/E PERM.LIVE WIND 9, NBCC 2015 PLATES (table is in inches)
JT TYPE PLATES LEN Y Х DEAD THIS DESIGN COMPLIES WITH: SOIL 4.0 4.0 3.0 5.0 TMVW+p 6.0 Edge 6.0 Edge 4.0 8.0 MT20 281 / 0 0/0 0/0 0/0 - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) TTW+p TMV+p BMVWW1-t MT20 MT20 MT20 MT20 CDE - CSA 086-14 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F - TPIC 2014 BMV1+p MT20 3.0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. Edge - INDICATES REFERENCE CORNER OF PLATE TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD TOUCHES EDGE OF CHORD MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. LOADING TOTAL LOAD CASES: (4) CSI: TC=0.48/1.00 (B-C:1) , BC=0.19/1.00 (E-F:4) , WB=0.15/1.00 (C-E:1) , SSI=0.17/1.00 (B-C:1) CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 MEMB. FORCE VERT. LOAD LC1 MAX MAX. MEMB COMP=1.10 SHEAR=1.10 TENS= 1.10 CSI (LC) UNBRAC LENGTH FR-TO (LBS) (LBS) CSI (LC) FR-TO COMPANION LIVE LOAD FACTOR = 1.00 A-B B-C C-D F-B 0 / 50 10.00 C-E -295 / 0 0.15 (1) 0.01 (1) -61/0 0/0 6.25 10.00 AUTOSOLVE HEELS OFF -486 / 0 7.81 TRUSS PLATE MANUFACTURER IS NOT E-D -49/0 0.0 0.0 0.02 (1) 7.81 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. F-E 0/0 -18.5 -18.5 0.19 (4) 10.00 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. PROFESSIONAL ENGINEERS C. M. HEYENS JSI GRIP= 0.30 (B) (INPUT = 0.90) JSI METAL= 0.14 (B) (INPUT = 0.95) 100505065 wien POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040047

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 436388 T25 TRUSS DESC.

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:49 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-51ewkQK_fomFSezxX8TNWu2lNAd_l8gnjtMOFGzUo40

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR DRY DRY DRY 2x4 2x4 SPF A D 2x6 No.2 SPF DRY SPF ALL WEBS DRY No.2 SPF 2x3

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS	#ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CHO	ORDS : (0.12	22"X3") SPIRAL NAILS	
A- C	1 `	12	TOP
C-D	1	12	TOP
F- A	2	12	TOP
BOTTOM	CHORDS:	(0.122"X3") SPIRAL NAILS	
F- D	2	12	SIDE(0.0)
WEBS: (0.122"X3") §	SPIRAL NAILS	
2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN, 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING, REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)

	TYPE	PLATES	W	LEN	Υ	Х
Α	TMVW+p	MT20	5.0	6.0	2.00	2.25
В	TMWW-t	MT20	4.0	6.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS RE	GROSS F	REACTIO	BRG	BRG		
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	1339	0	1339	0	0	MECHANIC	CAL
F	1123	0	1123	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D, MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS									
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
D	933	689 / 0	0/0	0/0	0/0	244 / 0	0/0					
F	783	576 / 0	0/0	0/0	0/0	207/0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					WE	вѕ			
MAX	C. FACTORED	FACTO	RED				MAX. FACT	ORED		
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PI	_F)	CSI (LC)	UNBRAC	3	(LBS)	CSI (LC)	
FR-TO		FROM	ΤÒ		LENGTH	FR-TO	. ,			
A-B	-908 / 0	-112.4	-112.4	0.09 (1)	6.25	E-B	0 / 1086	0.13	(1)	
B-C	-24 / 0	-112.4	-112.4	0.08 (1)	6.25	B- D	-1145/0	0.20	(1)	
D-C	-128 / 0	0.0	0.0	0.05(1)	7.81	A-E	0 / 775	0.10	(1)	
F- A	-1022 / 0	0.0	0.0	0.04 (1)	7.81					
F- G	0/0	-18.5	-18.5	0.11 (1)	10.00					
G-E	0/0	-18.5		0.11 (1)						
E-H	0 / 716	-18.5	-18.5	0.22 (1)	10.00					
H- D	0/716	- 18.5	-18.5	0.22 (1)	10.00					
SPECIF	SPECIFIED CONCENTRATED LOADS (LBS)									
170	100 10		****							

SPE	SPECIFIED CONCENTRATED LOADS (LBS)											
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN			
G	2-3-12	-589	-589		FRONT	VERT	TOTAL		C1			
H	4-3-12	-589	-589		FRONT	VERT	TOTAL		C1			

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

TOTAL LOAD

SPECIFIED LOADS: LL = DL = LL = 32.5 PSF CH. 6.0 0.0 7.4 PSF PSF BOT CH. PSF DL =

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 2 X 36 = 73 lb

Scale = 1:37.3

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.09/1.00 (A-B:1) , BC=0.22/1.00 (D-E:1) , WB=0.20/1.00 (B-D:1) , SSI=0.27/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.50 (B) (INPUT = 0.90) JSI METAL= 0.16 (D) (INPUT = 0.95)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
	T25	1	2	TRUSS DESC.	BATTOLEV WELLINGTON	
Tamarack Roof Truss, Burlington	120		<u> - </u>		Version 8.630 S Aug 30 202	L 3 MiTek Industries, Inc. Tue Apr 2 10:53:49 2024 Page 2 QK_fomFSezxX8TNWu2INAd_l8gnjtMOFGzUo40
	<u> </u>				ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-51ewk0	QK_fomFSezxX8TNWu2lNAd_l8gnjtMOFGzUo40
C TMV+p MT20 3.0 D BMVW1+p MT20 4.0 E BMWW+t MT20 4.0	LEN Y X 0 4.0 0 6.0 0 6.0					
NOTES- (1) 1) Lateral braces to be a minimum						
Lateral braces to be a minimum	of 2X4 SPF #2.					
•						
					•	
					,	
OFESSI	IOA/					
QROFESS/ 4/02/ C. M. HE	STUAL EST.					
\\ \signt{\signt\} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	24					
C.M. HE	YENS H				·	
100505	5065					•
Chan	<u>un</u> /					
1 April 10 Miles	/RIO/					
POVINCE OF	ONTA				,	
STRUCTURAL CON DWG # TR2	4040048					

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 436388 T26 TRUSS DESC Version 8.630 S Aug 30 2023 MITek Industries, Inc. Tue Apr 2 10:53:50 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-ZDBJymLcQ6u64oY85s d35bwHazi1c3xyX6xnizUo4? Tamarack Roof Truss, Burlington

> 5-10-8 3x4 II 6.00 12 4x6 -В 4x6 == B1 G Н Ε 4x6 || D 4x6 || 4x6 || 2-0-12 2-0-0 1-9-12

N. L. G. A. RULES CHORDS SIZE LUMBER DESCR DRY DRY DRY DRY SPF CC 2x4 No.2 No.2 2x4 SPF Ā No.2 ALL WEBS 2x3 DRY No.2 SPE

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)				
		SPACING (IN)					
TOP CH	IORDS: (0.1	22"X3") SPIRAL NAILS					
A- C	1 .	12	TOP				
C-D	1	12	TOP				
F-A	2	12	TOP				
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS					
F- D	2	12	SIDE(0.0)				
WEBS: (0.122"X3") SPIRAL NAILS							
2v3	1 1	6					

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN	Υ	Х	
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00	
В	TMWW-t	MT20	4.0	6.0			

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

2-11-4

4-0-12

5-10-8

ROIL	かいいき ひをかい	3NEK										
BEAL	BEARINGS											
	FACTOR	RED	MAXIMU	M FACTO	DRED	INPUT	REQRD					
GROSS REACTION			GROSS I	REACTIO	BRG	BRG						
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX					
D	1381	0	1381	0	0	MECHANIC	AL					
F	1299	0	1299	0	0	5-8	1-8					

2-0-12

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS									
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
D	963	708 / 0	0/0	0/0	0/0	255 / 0	0/0					
F	906	666 / 0	0/0	0/0	0/0	241/0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS X. FACTOREI	D FACTO	NOED			W	EBS		
							MAX. FACT		
MEMB.	FORCE	E VERT. LO	DAD LC1	MAX	MAX.	MEMB	 FORCE 	MAX	
	(LBS)	(P	LF) (CSI (LC)	UNBRAC	2	(LBS)	CSI (LC)
FR-TO		FROM			LENGTH	FR-TC) ' '	`	•
A-B	-1413/0	-112.4	-112.4	0.08 (1)	6.25	E-B	0 / 1220	0.15	(1)
B-C	-14/0	-112.4	-112,4	0.07 (1)	6.25	B- D	-1606 / 0	0.19	(1)
D-C	-134 / 0	0.0	0.0	0.02(1)	7.81	A-E	0 / 1320	0,16	
F-A	-1109/0	0.0	0.0	0.04 (1)	7.81				,
F- G	0/0			0.13 (1)					
G-E	0/0	-18.5	-18.5	0.13(1)	10.00				
E- H	0 / 1276	-18.5	-18.5	0.25 (1)	10.00				
H- D	0 / 1276	-18.5	-18.5	0.25 (1)	10.00				
CDECII		TOATEDIA	ADC // I	201					
	FIED CONCEN								
JT		C1 MAX-		+ F/	ACE D	DIR.	TYPE	HEEL	CONN.
	2-0-12 -6	65 -665	_	FR6	ONT VE	ERT	TOTAL		C1
Н	4-0-12 -6	65 -665	-	- FR	ONT VE	ERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

SPECIFIED LOADS: LL PSF PSF PSF CH. == 32.5 6.0 0.0 7.4 BOT CH.

ÐΙ TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 29 = 58 lb

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02")

CSI: TC=0.08/1.00 (A-B:1) , BC=0.25/1.00 (D-E:1) , WB=0.19/1.00 (B-D:1) , SSI=0.27/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.60 (D) (INPUT = 0.90) JSI METAL= 0.29 (D) (INPUT = 0.95)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW	/ WELLING	TON	DRWG NO.		
436388	T26	1	2	TRUSS DESC.						
Tamarack Roof Truss, Burlington			•		ID:GRmvi	Versio uh1dyQr3nydBf	n 8.630 S Aug 30 2023 sTFcCy6OGI-ZDBJ	MiTek Industries, Inc mLcQ6u64oY85s	Tue Apr 2 10:53 d35bwHazi1c	3:50 2024 Page 2 3xyX6xnizUo4?
C TMV+p MT20 3 D BMVW1+p MT20 4	V LEN Y X .0 4.0 .0 6.0 .0 6.0 .0 6.0									
NOTES- (1) 1) Lateral braces to be a minimur	n of 2X4 SPF #2.									
·										·
									,	
				ı						
	·									
OFFS	SION									
4/02 C. M. HI	TONAL FIZE									
$\begin{pmatrix} \frac{3}{2} & \frac{4}{102} \\ 0 & \text{C. M. HI} \end{pmatrix}$	2/24) [
10000	10000									
on Clin	NEW									
SROVINCE O										
STRUCTURAL CO DWG # TR	MPONENT ONLY 24040049									

JOB NAME TRUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** DRWG NO 436388 T26Z TRUSS DESC Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MTRk Industries, Inc. Tue Apr 2 10:53:51 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-2QIh96MEBQ0ziy7KeZWsbJ85 ICm194BBrVJ9zUo4

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER SIZE DESCR A - C D - C F - A F - D No.2 No.2 SPF 2x4 DRY DRY No.2 2x6 SPF DRY No.2 ALL WEBS EXCEPT DRY 2x3 No.2 SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	, ,
TOP CH	IORDS: (0.1	22"X3") SPIRAL NAILS	
A-C	1 `	12	TOP
C-D	1	12	TOP
F-A	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
F-D	2	12	SIDE(122,0)
WEBS:	(0.122"X3")	SPIRAL NAILS	,
243	` 1 ′	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN	Υ	Х
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00
В	TMWW-t	MT20	4.0	6.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

BEA	RINGS						
	FACTO		UMIXAM	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	1852	0	1852	0	0	MECHANI	CAL
F	1963	0	1963	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./\\	IIN. COMPO	NENT REACTION	NS.		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	1293	941/0	0/0	0/0	0/0	352 / 0	0/0
F	1367	1017 / 0	0/0	0/0	0/0	351/0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.19 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS					WE	BS	
MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT, LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(Pi	_F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM			LENGTH	FR-TO		
A-B	-1965 / 0			0.08 (1)		E-B		0.23 (1)
	-12/0	-112.4	-112.4	0.06(1)	6.25	B- D	-2225 / 0	0.27 (1)
	-138 / 0	0.0			7.81	A-E	0 / 1829	0.23 (1)
F-A	-1488 / 0	0.0	0.0	0.05 (1)	7.81			
F-G	0/0	-18.5	-18.5	0.17 (1)	10.00			
G-H	0/0	-18.5		0.17 (1)				
H-E	0/0	-18.5	-18.5	0.17(1)	10.00			
E-I	0 / 1768	-18.5	-18.5	0.30(1)	10.00			
I- D	0 / 1768	-18.5	-18.5	0.30 (1)	10.00			
SPECIFIED CONCENTRATED LOADS (LBS)								

ウ トにし	ににし ぐつ	ACEIN LAV	いにわ しつい	109 (FB9)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN
G	5-4	-221	-221	_	FRONT	VERT	TOTAL		C1
Н	2-5-4	-1258	-1258		FRONT	VERT	TOTAL		C1
ı	4-5-4	-643	-643		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = CH. 32.5 PSE 6.0 0.0 7.4 PSF PSF вот сн. DI PSE TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 29 = 58 lb

Scale = 1:24.5

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02")

CSI: TC=0.08/1.00 (A-B:1) , BC=0.30/1.00 (D-E:1) , WB=0.27/1.00 (B-D:1) , SSI=0.57/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.84 (D) (INPUT = 0.90) JSI METAL= 0.40 (D) (INPUT = 0.95)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
436388	T26Z	1	2	TRUSS DESC.		
Tamarack Roof Truss, Burlington					Version 8.630 S Aug 30 2023 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-2Qlh96	MiTek Industries, Inc. Tue Apr 2 10:53:51 2024 Page 2 MEBQ0ziy7KeZWsbJ85 ICm194BBrVJ9zUo4
Type	LEN Y X 0 4.0 0 6.0 0 6.0 0 6.0					·
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.					
.,					,	
OFESS	ION					
2 PROFESS 4/02/ C. M. HE	THE STATE OF THE S					
(<u>4/02/</u>	(24) E					·
10050s	5065 H					
\ a Clary	un) o /					
ROVINCE OF	ONTARIL					
STRUCTURAL CO DWG # TR2	24040050					

JOB DESC. JOB NAME TRUSS NAME QUANTITY **BAYVIEW WELLINGTON** DRWG NO 436388 T27 TRUSS DESC. Version 8.630 S Aug 30 2023 MTek Industries, Inc. Tue Apr 2 10:53:53 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI- otRaoNUj1GgxFHim YKgkDPFnymExoNeVKcN1zUo3y Tamarack Roof Truss, Burlington 4-2-0 4x6 ||

LUMBER	===			
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - C	2x4	DRY	No.2	SPF
F - A	2x6	DRY	No.2	SPF
D - C	2x6	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP CI	HORDS : (0.1	22"X3") SPIRAL NAILS	
A-B	1 '	12	TOP
B-C	1	12	TOP
F-A	2	2	SIDE(125.4)
D-C	2	2	. SIDE(130.9)
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
F-D	2	12	SIDE(183.1)
WEBS	: (0.122"X3")	SPIRAL NAILS	
E-B	1	6	SIDE(129.9)
2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DÉSIGNER	

3EA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS RE	EACTION	GROSS	REACTIO	N	BRG	BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	3515	0	3515	0	0	5-8	1-14
)	3541	0	3541	0	0	5-8	1-15

UNFACTORED REACTIONS

	151 LUASE	WAX./	MAX./MIN. COMPONENT REACTIONS									
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL					
F	2461	1756 / 0	0/0	0/0	0/0	705 / 0	0/0					
D	2482	1756 / 0	0/0	0/0	0/0	726 / 0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.58 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING

Ī	0	1	Α	L	l	OAD	CASES:	(4)

	ORDS			WEBS						
MAX	(. FACTORED	FACTO	RED				MAX. FACT	ORED		
MEMB.	FORCE	VERT. LO	DAD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(P	LF) (CSI (LC)	UNBRAG)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO				
A-B	-2385 / 0	-112.4	-112.4	0.22 (1)	5.58	E-B	0 / 2585	0.32	(1)	
B-C	-2385 / 0	-112.4	-112.4	0.22 (1)	5.58	A-E	0 / 1909	0.24	(1)	
F-A	-2298 / 0	0.0	0.0	0.08(1)	7.81	E-C	0 / 1909	0.24	(1)	
D- C	-2298 / 0	0.0	0.0	0.08 (1)	7.81					
F-G	0/0	-18.5	-18.5	0.42(1)	10.00					
G- H	0/0	-18.5	-18.5	0.42 (1)	10.00					
H-E	0/0	-18.5	-18.5	0.42 (1)	10.00					
E-I	0/0	-18.5	-18.5	0.42 (1)	10.00					
l- J	0/0	-18.5	-18.5	0.42(1)	10.00			-		
J- D	0/0	-18.5	-18.5	0.42 (1)	10.00					
SPECIF	TED CONCENT	FRATED LC	ADS (LE	3\$)						
IT	100 10	4 AAAV	MANY		105 1	פור	TVDE	Deel	COL	

BACK

VERT

TOTAL

,	7-4	-827	-827	-	BACK	VERI	IOIAL	
l	2-7-4	-824	-824		BACK	VERT	TOTAL	
	5-8-12	-841	-841		BACK	VERT	TOTAL	
	7-8-12	-844	-844		BACK	VERT	TOTAL	

CONNECTION REQUIREMENTS

-841

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
ГОР	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
	~				

LL = DL = AD = BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 42 = 84 lb

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL)= L/999 (0.05")

CSI: TC=0.22/1.00 (A-B:1) , BC=0.42/1.00 (E-F:1) , WB=0.32/1.00 (B-E:1) , SSI=0.41/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

C1 C1 C1 C1

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.72 (C) (INPUT = 0.90) JSI METAL= 0.31 (B) (INPUT = 0.95)

IOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
	T27	1	2	TRUSS DESC.		
Famarack Roof Truss, Burlington					Version 8.630 S Aug 30 2023 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI- otRaoN	MiTek Industries, Inc. Tue Apr 2 10:53:53 2024 Page 2 Uj1GgxFHjm_YKgkDPFnymExoNeVKcN1zUo3y
F BMV1+p MT20 4.0	LEN Y X 0 6.0 2.00 2.25 0 6.0 Edge 0 6.0 2.00 2.25 0 6.0 0 9.0 0 6.0					
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE					
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.					
					·	
						·
C. M. HE 1005050	ONTARIO	. ·				
STRUCTURAL COI DWG # TR2	4040051					

DB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	RΔ	Y\/IE\/	V WEI I	INGTO)N	DRWG NO.		
36388	T28W	1	1	TRUSS DES		TAIEA.	* ******					
marack Roof Truss, Burlingt		l			ID:G	Rmvuh1	ldyQr3nyo	Version 8.	630 S Aug 30 20 y6OGI-ONZaC	23 MiTek Industries, Ir pQN0yeFoj0HR65	c. Tue Apr 2 10:53:56 2024 1IMrpI?u7RCGpKTZG	4 Page MzUo
		SPECIFIED CON	NCENTRATED L LC1 MAX	OADS (LBS)	FACE	DIR.	TYPE	HEEL	CONN.			
		P 6-0-12 Q 9-7-4	-36 -3 -36 -3	9 31 9 31	FRONT FRONT	VERT VERT	TOTAL TOTAL	<u> </u>	C1 C1			
		R 13-7-4 CONNECTION R	-36 -3		FRONT	VERT	TOTAL	***	C1			
		1) C1: A SUIT.			CONNEC.	TION IS R	EQUIRED.					
		WIND LOAD AP	PLIED IS DERIV	ED FROM REF	ERENCE	VELOCIT	Y PRESSU	JRE OF (7.	5) PSF AT			
		COFFERENTS	CoCo BASED	ON THE MAIN	J WIND FO	ORCE RE	SISTING ST	VSTEMI INT	TERNAL			
		WIND PRESSU {OPEN TERRAI FROM EAVE.TF PSF AND 7.4 F	IN), AND TRUSS RUSS UPLIFT IS	S IS DESIGNED S BASED ON TO	TO BE LO	OCATED A	AT LEAST (CHORD DE	(0-0) FT-IN- AD LOADS	SX AWAY OF 6.0			
		FOR AND 7.4 F	-SF KESFEOTIV	ELI,								
•												
					,							
										·		
		,										
OROFE	SSIONAL											
	The last											
/ ×× (_4/	O2/24 HEYENS											
의 C. M.	HEYENS 🖫											
100	0505065											
1 2 CM	ujen / 0 /											
VOVINCE	OF ONTARIO					•						
_												
STRUCTURAL	COMPONENT ONLY FR24040053											

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLIN	IGTON	DRWG NO.
436388	T29W	1	1	TRUSS DESC.			
Tamarack Roof Truss, Burlin	ngton				Ve ID:GRmvuh1dvQr3nvdBt	ersion 8.630 S Aug 30 2023 M fsTFcCy6OGl-sa7vQ9Q?	iTek Industries, Inc. Tue Apr 2 10:53:57 2024 Page 2 nGm6QtbU?qcGraNxvPMCAf0zZ7lpWozUo3u
		CONNECTION F	EQUIREMENT	<u>rs</u>			
		1) C1: A SUIT	ABLE HANGE	ER/MECHANICAL CO	NNECTION IS REQUIRED.		
		WIND LOAD AF	PLIED IS DEF	RIVED FROM REFER	ENCE VELOCITY PRESSURE	OF (7.5) PSF AT	
		(20-0-0) FT-IN-	SX REFEREN: S, CpCg, BASI	CE HEIGHT ABOVE ED ON THE {MAIN W	ENCE VELOCITY PRESSURE GRADE AND USING EXTERNA IND FORCE RESISTING SYST GORY 2). BUILDING MAY BE L I BE LOCATED AT LEAST (0-0 AND BOTTOM CHORD DEAD I	AL PEAK TEM}.INTERNAL	
		WIND PRESSU	RE IS BASED IN), AND TRU	ON DESIGN (CATE SS IS DESIGNED TO	GORY 2}. BUILDING MAY BE L BE LOCATED AT LEAST (0-0	OCATED ON FT-IN-SX AWAY	
		FROM EAVE.T PSF AND 7.4 F	RÚSS UPLIFT PSF RESPECT	' IS BASED ON TOP . TIVELY.	AND BOTTOM CHORD DEAD	LOADS OF 6.0	
				•			
	•						
						1	
•							•
						'	
•							
7ROF	LO2/24 1. HEYENS						
(0)	" (F)						
/ <u>\$</u> / 1	102/24 \ [6]						
/ / / /	É LIEVENO É						
\int C. M	I. HEYENS 盟						
10	00505065						
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	migen)						
1 /3/	/2/						
VINA	E OF ONTARIO						
_							
STRUCTURAL	COMPONENT ONLY TR24040054						
DWG#	1H24040054	1					

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 436388 T30 15 TRUSS DESC Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:59 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-pyEirrSFJt0qfAks6Ffkw?TJQCvlecgG0RnwahzUo3s Tamarack Roof Truss, Burlington 1-3-8 16-1-14 12-6-4 16-1-14 6x10 = 4x6 II 6x10 = 6.00 12 Н 5x6 < 5x6 ≥ 5x6 < 5x6 ≥ E n 10x16 = 10x16 ≥ W> П Tol U R Р w ٧ т s Q o Ν 6x14 MT18HS II 6x7 = 4x6 || 4x6 || 4x6 || 5x8 = 4x6 || 4x6 || 4x6 II 2-H2.5A 5x6 = 2-H2.5A 44-10-0 0-0 4-0-14 10-2-4 16-1-14 34-7-12 40-9-2 44-10-0 TOTAL WEIGHT = 15 X 291 = 4366 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES **BUILDING DESIGNER** DESIGN CRITERIA DESCR SPF CHORDS LUMBER **BEARINGS** A - D D - F F - H H - J DRY MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: 2x6 No.2 No.2 LL DL LL 2x6 DRY SPF GROSS REACTION GROSS REACTION BRG CH. 43.5 PSF 2x6 2x6 SPF VERT 4408 HORZ 193 UPLIFT PSF DRY No.2 HORZ DOWN IN-SX DR BOT CH. 5-8 10.5 2x6 DRY No.2 SPF 4408 4408 0 -735 5-8 5-8 DI 2x6 2x6 DRY DRY SPF No.2 BURP 67.3 PROVIDE ANCHORAGE AT BEARING JOINT B FOR 735 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT L FOR 735 LBS FACTORED UPLIFT DRY 2x6 No.2 SPF SPACING = 24.0 IN. C/C DRY No.2 SPE PROVIDE FOR 193 LBS FACTORED HORIZONTAL REACTION AT JOINT B REINFORCING MEMBERS LOADING IN ELAT SECTION BASED ON UNFACTORED REACTIONS
1ST LCASE MA
JT COMBINED SNOW HW1 DRY No 2 SPE PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS DRY No.2 SPF MIN. COMPONENT REACTIONS
LIVE PERM.LIVE SNOW WIND DEAD SOIL OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD 2069 / 0 ALL WEBS 2x4 DRY No.2 SPF 3207 471/0 0/0 106 / -854 0/0 LOAD OF 4.0 P.S.F. DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR COMMERCIAL HORIZONTAL REACTIONS OR INDUSTRIAL BUILDING REQUIREMENTS OF 0/0 0/0 138 / -138 0/0 0 /0 **PART 4, NBCC 2015** PLATES (table is in inches)
JT TYPE PLATES
B TMBMW1+t MT38HS BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B. I. THIS DESIGN COMPLIES WITH: LEN Y - PART 4 OF BCBC 2018 , NBC-2019AE - PART 4 OF OBC 2012 (2019 AMENDMENT) Х MT18HS MT20 14.0 Edge 16.0 5.00 7.75 BRACING FOR SECTION F-H, MAX. UNBRACED TOP CHORD LENGTH = 2.00 FT. BCD TMWWW-t 10.0 - CSA 086-14 6.0 MT20 5.0 FOR OTHER SECTIONS, MAX, UNBRACED TOP CHORD LENGTH = 2.91 FT - TPIC 2014 TMWW-t . UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. EFGHL **DESIGN ASSUMPTIONS** TTWW-m MT20 6.0 10.0 2.75 4.25 TMW+w MT20 4.0 6.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. SLOPE REDUCTION FACTOR NOT USED 6.0 5.0 5.0 TTWW-m TMWW-t MT20 MT20 10.0 2.75 4.25 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-T, F-T, F-S, G-S, H-S, H-Q, I-Q. (80 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. 6.0 TS-t MT20 6.0 RAIN LOAD) TIMES IMPORTANCE FACTOR MT20 MT18HS 16.0 14.0 EQUALS 43.5 P.S.F. SPECIFIED ROOF LIVE LOAD TRAVAMANAL 10.0 5.00 7.75 LOADING TOTAL LOAD CASES: (18) KLZOOP 6.0 Edge 1.50 BMW+w MT20 6.0 ALLOWABLE DEFL.(LL)= L/360 (1.49")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.25")
ALLOWABLE DEFL.(TL)= L/180 (2.99") CHORDS WEBS FACTORED VERT. LOAD LC1 MAX MT20 MAX. FACTORED MAX. FACTORED BS-t MT20 6.0 7.0 MEMB. FORCE MAX. MEMB. FORCE BS-MT20 5.0 6.0 8.0 (LBS) (PLF) CSI (LC) UNBRAC (LBS) CSI (LC) CALCULATED VERT. DEFL.(TL) = L/ 999 (0.34") R S U W MT20 MT20 5.0 6.0 FROM TO -145.3 -145.3 FR-TO 0.11 (2) 0 / 245 0.04 (17) CSI: TC=0.69/1.00 (I-K:3), BC=0.80/1.00 (N-O:1), BS-I A- B B- Y 10.00 W-C 0.28 (1) 0.21 (1) 3.77 4.86 2.91 0.10 (2) 0.06 (5) 0.49 (2) BMW+w MT20 4 N -4817 / 756 -145.3 -145.3 -170 / 307 WB=0.76/1.00 (C-X:1), SSI=0.39/1.00 (F-G:2) Y-C C-D D-E F-G G-H V- E E- T T- F -2730 / 519 -6529 / 1079 -145.3 -145.3 -145.3 -145.3 -3 / 365 Edge - INDICATES REFERENCE CORNER OF PLATE -1478 / 418 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 0.69 (2) -234 / 1259 -234 / 1395 -1179 / 225 TOUCHES EDGE OF CHORD. -6529 / 1079 -145.3 -145.3 0.69 (2) 2.91 0.20 (2 COMP=1.10 SHEAR=1.10 TENS= 1.10 -145.3 -145.3 -155.3 -155.3 -155.3 -155.3 -5628 / 960 -5510 / 915 F- S S- G 0.22 (3) 0.43 (1) SNOW LOAD IMPORTANCE FACTOR = 1.00 0.67 (1) -5510 / 915 2.00 S-H -235 / 1395 0.22 (2 WIND LOAD IMPORTANCE FACTOR = 1.00 H- I I- J -5628 / 960 -145.3 -145.3 0.61 (3) 3.20 O- H -235 / 1259 0.20 (3) 0.49 (3) LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00 -6529 / 1079 -145.3 -145.3 -145.3 -145.3 Q-1 PROFESSIONAL ENGINEERS J-K -6529 / 1079 0.69 (3) 2.91 -3/3650.06 (6) -145.3 -145.3 -145.3 -145.3 -145.3 -145.3 0.00 (0) 0.10 (3) 0.04 (17) 0.00 (1) 4.86 3.77 K-AA -2730 / 519 0.21 (1 -170 / 307 AUTOSOLVE HEELS OFF AA- L L- M -4817 / 755 -328 / 2618 TRUSS PLATE MANUFACTURER IS NOT 0/1 0.11(3) 10.00 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT, X-C -4201 / 610 0.76 (1) -557 / 2429 -39.5 0.29 (1 6.25 D- X X- W W- V -1045 / 5791 0.74 (1 6.25 6.25 0.00 (1) -39.5-39.5Z-AA -328 / 2618 -1047 / 5786 -39.5 -39.5 0.80 (1 NAIL VALUES 6.25 6.25 6.25 -923 / 5866 -39.5 -39.5 -39.5 -39.5 0.77 PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) -923 / 5866 100505065 MAX MIN MAX MIN MAX MIN T-S -623 / 5011 -39.5 -39.5 0.67 (1) S-R R-Q Q-P -471 / 5011 -471 / 5011 -471 / 5866 6.25 6.25 6.25 -39.5 -39.5 -39.5 -39.5 MT20 650 371 1747 788 1987 1873 MT18HS 586 403 2455 1382 3163 3004 with 0.67 (1 -39.5 -39.5 0.77 (1) ROVINCE OF ONTARIO -731 / 5866 -856 / 5786 -855 / 5791 6.25 6.25 6.25 P- 0 O- N -39.5 -39.5 -39.5 -39.5 0.77 (1) PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. N-Z -39.5 -39.5 0.74 (1 JSI GRIP= 0.88 (H) (INPUT = 0.90) JSI METAL= 0.91 (B) (INPUT = 0.95) STRUCTURAL COMPONENT ONLY DWG # TR24040055 TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

IOD NAME	TOUGO NAME	OUANTITY	In v	JOB DESC. RAY	A UEVALVALET LIK	IOTON	IDDING NO	
IOB NAME	TRUSS NAME	QUANTITY	PLY		YVIEW WELLIN	IGION	DRWG NO.	
436388 Famarack Roof Truss, Bu	T30	15	1	TRUSS DESC.	Ve	ersion 8 630 S Aug 30 2023 M	Tek Industries Inc. Tue	Anr. 2 10:53:59 2024 Page 2
Territori Trede, ed	······································				ID:GRmvuh1dyQr3i	ersion 8.630 S Aug 30 2023 M nydBfsTFcCy6OGI-pyEirr	SFJt0qfAks6Ffkw?T	JQCvlecgG0RnwahzUo3
NOTES- (1) 1) Lateral braces to be a	a minimum of 2X4 SPF #2.	WIND LOAD APF (40-0-0) FT-IN-S COEFFICIENTS. WIND PRESSUF (OPEN TERRAIN FROM EAVE.TR PSF AND 5.0 P:	PLIED IS DERIVE X REFERENCE I CPCg, BASED O RE IS BASED ON J, AND TRUSS I USS UPLIFT IS I SF RESPECTIVE	ED FROM REFERENCE HEIGHT ABOVE GRADE ON THE (MAIN WIND FO I DESIGN (CATEGORY S DESIGNED TO BE LO BASED ON TOP AND BI ILY.	VELOCITY PRESSURE E AND USING EXTERNA DRCE RESISTING SYST 2). BUILDING MAY BE L COATED AT LEAST (0-0 OTTOM CHORD DEAD I	OF (7.5) PSF AT AL PEAK TEMI.INTERNAL OCATED ON FT-IN-SX AWAY LOADS OF 5.0		
		·						
PRI SEP PRI	A/02/24 M. HEYENS							
\ \	M. HEYENS TO TOO TOO TO TOO TO TOO TO TOO TO TOO TO T						·	
	AL COMPONENT ONLY # TR24040055							

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 436388 TRUSS DESC. T30AG Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 11:31:53 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-DReN5PzfnZWATeavKqS 4Xe35tCOR62zwDeFPuzUnWK 16-1-14 1-3-8 15-5-14 Scale = 1:73.7 5x8 \\ 5x8 // 6.00 12 Q 2x4 11 2x4 II R 2x4 || 2x4 || 2x4 || s 2x4 || 5x6 = 5x6 <> 2x4 || Ų 2x4 || G 2x4 II 2x4 || w 2x4 II 2x4 !! 2x4 || z 1-6-0 AW AS AI AH AG ΑE ΑD AC ΑB AΑ 4x12 || 5x6 == 5x6 = 2-3-2 4-3-2 6-3-2 8-3-2 10-3-2 12-3-2 14-3-2 16-1-14 18-3-2 20-3-2 24-6-14 26-6-14 28-8-2 30-6-14 32-6-14 34-6-14 36-6-14 38-6-14 40-6-14 42-6-1444-2-0 22-5-0 TOTAL WEIGHT = 2 X 268 = 536 Ib LUMBER N. L. G. A. CHORDS DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY RULES **BUILDING DESIGNER DESIGN CRITERIA** LUMBER DESCR **BEARINGS** A - G - Q -DRY 2x6 No.2 SPE SPECIFIED LOADS GKQU DRY DRY 2×6 SPE THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS 32.5 6.0 PSF PSF CH. DL = 2x6 2x6 DRY No.2 SPF BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) вот сн. 0.0 PSF 216 DRY No 2 SPE AY-AA-AY-В DRY TOTAL LOAD 45.9 PSF 2x6 DRY No.2 SPF FOR SECTION K-Q. MAX, PURLIN SPACING = 2.00 FT. ĀQ FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT. OR RIGID CEILING DIRECTLY APPLIED. 2x6 DRY No.2 SPF SPACING = 24.0 IN. C/C AQ-DRY 2x6 No.2 LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. ALL WEBS 2x3 ALL GABLE WEBS DRY No.2 SPF 1 LATERAL BRACE(S) AT 1/2 LENGTH OF Q-AJ, K-AP, L-AO, M-AN, O-AL, P-AK, N-AM, DRY No.2 SPF OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD DRY: SEASONED LUMBER END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW LOAD OF 4.0 P.S.F. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 GABLE STUDS SPACED AT 200-0-0 OC. <u>LOADING</u> TOTAL LOAD CASES: (4) WEBS MAX. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) CHORDS PLATES (table is in inches)
JT TYPE PLATES MAX. FACTORED FACTORED LEN MEMB. VERT. LOAD LC1 MAX MAX. FORCE MEMB. FORCE (PLF) (FROM TO -112.4 -112.4 (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) E, F, W, X, Y FR-TO LENGTH FR-TO **TPIC 2014** TMW-MT20 2.0 4.0 0.08 (1) 2.75 A-B B-C 0/35 10.00 -231 / 0 0.12 (1) -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.12 (1) 0.27 (1) 0.18 (1) 0.12 (1) D. H. I. J. R. S. T. V -75/0 0.04 (1) 6.25 AH- R AG- S -222 / 0 -223 / 0 DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. TMW+w 2.0 5.0 5.0 -58 / 0 -49 / 0 MT20 3.00 0.03 -231/0 0.03 (1) 6.25 AP-K E- F F- G G- H H- I (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD TTW+m MT20 8.0 -42/0 0.03 (1 6 25 AO-I -250 / 0 0 13 (1 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 I. N. O. P -36 / 0 0.03 4.0 5.0 -36/0 MT20 0.03 (1 -255/0 0.13 (1) AL- O AK- P TTW+m MT20 8.0 -32/0 0.03 (1 6.25 -250 / 0 0.13 *(*1 U Z AA AB, -112.4 -112.4 -112.4 -112.4 -122.4 -122.4 MT20 5.0 6.0 I- J J- K -28 / 0 0.03 6.25 AM- N -266 / 0 -222 / 0 0.14 (1) CSI: TC=0.08/1.00 (A-B:1) , BC=0.02/1.00 (AA-AB:1) , WB=0.27/1.00 (R-AH:1) , SSI=0.08/1.00 (A-B:1) 0.03 BMV1+p MT20 4.0 6.0 -20 / 0 0.03 2.00 AS-I -223 / 0 0.18 (1 -122.4 -122.4 -122.4 -122.4 -122.4 -122.4 AC. AD. AE AF, AG, AH, AJ, AK, AL AM, AN, AO, AP, L- M -20/0 0.03 2.00 AT- H -223 / 0 -223 / 0 0.12 AR AB AI AS. AT. AU AV, AW MT20 BMW1+w 4.0 5.0 6.0 AV- E -20 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 N- O 0.03 (1 2.00 -222 / 0 0.05 (1) -122.4 -122.4 -122.4 -122.4 -112.4 -112.4 -112.4 -112.4 BS-1 MT20 6.0 -20/0 0.03 /1 2 00 AW- D -221/0 0.04 AQ BS-t P- Q Q- R R- S -20 / 0 -24 / 0 -221/0 -177/0 0.03 (1) 0.03 (1) 5.0 6.0 AX- C AB- Y 0.03 (1 6.25 COMPANION LIVE LOAD FACTOR = 1.00 AY TMBMV1+p MT20 0.04 (1) 0.05 (1) 4.0 12.0 7.50 2.00 -28 / 0 0.03 /1 6.25 AC-X -228 / 0 -32 / 0 -36 / 0 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.03 (1) 6.25 AD-W -221 / 0 AUTOSOLVE HEELS OFF 6.25 AE-V -223 / 0 0.08 (1) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. NOTES-1) (1) -36 / 0 0.03 (1 6.25 -223 / 0 0.12 (1) -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 0.0 0.0 V-W -42/0 0.03 (1 6.25 6.25 PROFESSIONAL ENGINEERS THEYENS -55 / 0 6.25 0.03 (1 -73 / 0 -317 / 0 -123 / 0 0.03 (1) 0.02 (1) 0.03 (1) 6.25 NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 0.0 7.81 0.0 AY-AX AX-AW AW-AV 0/64 0 / 52 0.01 (4 -18.5 -18.510.00 0.01 (1) 0/43 -18 5 -18.5 10.00 PLATE PLACEMENT TOL. = 0.250 inches AV-AU AU-AT -18.5 -18.5 0/37 PLATE ROTATION TOL. = 5.0 Deg 0/33 -18.5 0.01 (4) 10.00 AT-AS -18.5 -18.5 0.01 (4) 10.00 100505065 AS-AR AR-AQ AQ-AP 0/25 0/25 0/22 0/22 -18.5 -18.5 JSI GRIP= 0.35 (Y) (INPUT = 0.90) JSI METAL= 0.09 (X) (INPUT = 0.95) -18.5 -18.5 0.01 (4) 10.00 -18.5 -18.5 10.00 0/20 -18.5 -18.5 -18.5 -18.5 AP-AO 10.00 SPOVINCE OF ONTARIO AO-AN AN-AM 10.00 0/20 -18.5 -18.5 0.01 (4) 10.00 AM-AI 0/20 -18.5 -18.5 -18.5 10.00 10.00 AL-AK AK-AJ 0/20 10.00 -18.5-18.5 0.01 (4) 0/22 -18.5 -18.5 0.01 10.00 STRUCTURAL COMPONENT ONLY DWG # TR24040056 -18.5 -18.5 0.01 (4) CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIE	W WELLING	GTON	DRWG NO.	
436388	T30AG	2	1	TRUSS DESC.					
Tamarack Roof Truss, Burlington				ļ	D:GRmvuh1	Vers dyQr3nydBfsTF	ion 8.630 S Aug 30 2023 M cCy6OGI-DReN5PzfnZ	Tek Industries, Inc. Tue Apr 2 11:31:5 WATeavKqS 4Xe35tCOR62zwD	3 2024 Page 2 eFPuzUnWK
NOTES- 1) Lateral braces to be a minimun	n of 2X4 SPF #2.	LOADING TOTAL LOAD CA	.,			VEBS			
		MAX. FACTO MEMB. FO (LE FR-TO AG-AF 0/2 AF-AE 0/3 AE-AD 0/3 AD-AC 0/4 AC-AB 0/8	FROM 18.5 19 -18.5 13 -18.5 17 -18.5 13 -18.5	ORED DAD LC1 MAX LF) CSI (LC) TO -18.5 0.01 (4) -18.5 0.01 (1) -18.5 0.01 (1) -18.5 0.01 (1) -18.5 0.01 (1)	MAX. MEM UNBRAC LENGTH FR-1 10.00 10.00 10.00 10.00	MAY EACTO	RED MAX CSI (LC)		
		AB-AA 0/6	2 -18.5	-18.5 0.02 (1)	10.00				
	,								
PROFESS 4/02 C. M. HE 10050 POLINCE O	1005							·	
STRUCTURAL CC DWG # TR									

JOB NAME JOB DESC. TRUSS NAME QUANTITY **BAYVIEW WELLINGTON** DRWG NO 436388 lT30G TRUSS DESC Version 8.630 S Aug 30 2023 MITek Industries, Inc. Tue Apr 2 11:31:55 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-Aqm7W5?vJAmujyklSFUSAykPbgtyv0YGOX7LTmzUnWI Tamarack Roof Truss, Burlington 16-1-14 12-6-4 16-1-14 1-3-8 1-3-8 5x8 \\ 5x8 // 6.00 12 O Q 2x4 II 2x4 || R 2x4 11 2x4 || 2x4 [] s 2x4 |i 5x6 = 5x6 ≈ U 2x4 || Т 2x4 || G U ٧ F 16 2x4 II 2x4 [[2x4 | 2x4 || 2x4 II 2x4 || AN AM AF ΑE AG AD AC 4x12 || 5x6 = 5x6 = 5x6 4x12 || 44-10-0 6-3-2 8-3-2 10-3-2 12-3-2 14-3-2 16-1-14 18-3-2 20-3-2 22-5-0 24-6-14 26-6-14 28-8-2 30-6-14 32-6-14 34-6-14 36-6-14 38-6-14 40-6-14 42-6-14 44-10-0 TOTAL WEIGHT = 2 X 272 = 545 lb LUMBER N. L. G. A. RULES DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** CHORDS LUMBER DESCR BEARINGS A G - Q -DRY SPECIFIED LOADS: G K 2x6 No.2 No.2 CH. 2x6 DRY SPF THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS. TOP LL DL LL 32.5 PSE 2x6 2x6 DRY No.2 No.2 PSF PSF SPE BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) вот сн. 0.0 DRY 2x6 No.2 SPF DΙ PSF BA-AB-BA-B Z AT AN 2x6 2x6 DRY No.2 <u>BRACING</u> FOR SECTION K-Q, MAX. PURLIN SPACING = 2.00 FT. FOR OTHER SECTIONS, TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. No.2 2x6 DRY No.2 SPF SPACING = 24.0 IN. C/C AT-AN-AI -2x6 DRY No.2 SPF MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. SPF Αl DRY ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. AB LOADING IN FLAT SECTION BASED ON 2x6 DRY No.2 PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS ALL WEBS 2x3 ALL GABLE WEBS DRY No.2 SPF ATERAL BRACE(S) AT 1/2 LENGTH OF Q-AK, K-AR, L-AQ, M-AP, O-AM, P-AL, N-AO. OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD DRY No.2 SPF END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN LOAD OF 4.0 P.S.F. DRY: SEASONED LUMBER. THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART GABLE STUDS SPACED AT 20000-0-0 OC LOADING TOTAL LOAD CASES: (4) 9, NBCC 2015 CHORDS WEBS THIS DESIGN COMPLIES WITH: MAX. FACTORED FORCE MAX - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) MAX. FACTORED FACTORED PLATES (table is in inches)
JT TYPE PLATES VERT. LOAD LC1 MAX MAX. UNBRAC MEMB. W LEN Y Х CSI (LC) (LBS) (PLF) M TO (LBS) CSI (LC) - CSA 086-14 B, Z, AB, BA FR-TO FROM LENGTH FR-TO **TPIC 2014** -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 A-B B-C C-D 0.12 (1) 0.12 (1) 0.13 (1) AK-Q AR-K 10.00 **DESIGN ASSUMPTIONS** -79 / 0 -61 / 0 0.04 (1) 6.25 -229 / 0 4.0 2.75 TMW+w MT20 2.0 6.25 AQ-L -250/0OVERHANG NOT TO BE ALTERED OR CUT OFF. I, I, J, R, S TMW+w AP- M AM- O AL- P V, W MT20 -52 / 0 -45 / 0 -112.4 -112.4 -112.4 -112.4 -255 / 0 -255 / 0 0.03 DOGKL (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F 3.00 0.03 (1 6.25 6.25 0.13 (1) TS-t MT20 5.0 6.0 -40 / 0 -112.4 -112.4 0.03 (1 -250 / 0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED -112.4 -112.4 -112.4 -112.4 -112.4 -112.4 G- H H- I -40 / 0 -36 / 0 0.03 (1 6.25 6.25 AS- J AU- I -222 / 0 -223 / 0 0.27 (1) 0.18 (1) TTW+m MT20 5.0 8.0 ROOF LIVE LOAD M, N, O, P TMW+w MT20 4.0 6.0 -32 / 0 0.03 (1 6.25 AZ- C -221 / 0 0.03 (1) -112.4 -112.4 -122.4 -122.4 -122.4 -122.4 AY- D AX- E AW- F 6.25 -221/0 -222/0 CSI: TC=0.08/1.00 (A-B:1) , BC=0.02/1.00 (AB-AC:1) , WB=0.27/1.00 (J-AS:1) , SSI=0.08/1.00 Q TTW+m MT20 5.0 8.0 J- K -28 / 0 0.03 (1 0.04 MT20 MT20 6.0 12.0 7.25 2.00 5.0 0.05 TMBMV1+p AB 4.0 -23 / 0 0.03 (1 2.00 -223 / 0 0.08 (A-B:1) AD. AE. AF AG. AH. AK, AL, AM, AO, AP, AQ, AR, M- N -23 / 0 -122.4 -122.4 0.03 (1 2.00 AV- H -223/0 0.12 (1) N- 0 O- P Q- R R- S AJ-R AH-S AS, AU, AV, AW, AX, AY AC BMW1+w MT20 -23 / 0 -23 / 0 -122.4 -122.4 -122.4 -122.4 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 4.0 0.18 (1 0.03 (1 2.00 -223 / 0 -122.4 -122.4 -112.4 -112.4 -112.4 -112.4 0.12 (1 AL AN. AT -23 / 0 0.03 (1 2.00 AG- T -223 / 0 -28 / 0 -32 / 0 6.25 6.25 AF- V AE- W -223 / 0 -222 / 0 0.08 (1) 0.05 (1) 6.0 12.0 7.25 2.00 0.03 (1 COMPANION LIVE LOAD FACTOR = 1.00 TMBMV1+p 0.03 (1 S-T -112.4 -112.4 AD- X AC- Y -36/00.03 (1 6.25 -221/0 0.04 (1) AUTOSOLVE HEELS OFF -112.4 -112.4 -112.4 -112.4 6.25 6.25 6.25 -40 / 0 -40 / 0 -112.4 -112.4 0.03 (1 0.03 (1) AO- N TRUSS PLATE MANUFACTURER IS NOT NOTES--266 / 0 V-W -45/0 -112.4 0.03 (1 RESPONSIBLE FOR QUALITY CONTROL IN THE W- X X- Y Y- Z -52 / 0 -112.4 -112.4 0.03 (1 6.25 TRUSS MANUFACTURING PLANT. -112.4 -112.4 -112.4 -112.4 0.03 6.25 6.25 PROFESSIONAL ENGINEER

4/02/24

C. M. HEYENS -79/00.04 (1 NAIL VALUES 10.00 7.81 7.81 PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN 7-AA 0 / 35 -112.4 -112.4 0.08 (1 BA- B AB- Z -319/0 -319/0 0.0 0.0 MT20 650 371 1747 788 1987 1873 BA-AZ AZ-AY AY-AX -18.5 -18.5 10.00 0/55 -18.5 PLATE PLACEMENT TOL. = 0.250 inches -18.5 -18.5 0.01 (1 10.00 -18.5 0.01 (1 10.00 AX-AW AW-AV AV-AU 0/41 -18.5 -18.5 -18.5 0.01 LATE ROTATION TOL. = 5.0 Deg. 0/36 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (4) 100505065 JSI GRIP= 0.34 (R) (INPUT = 0.90) JSI METAL= 0.09 (BA) (INPUT = 0.95) -18.5-18.5 10.00 AU-AT 0/29 -18.5 -18.5 AS-AR 0 / 26 -18.5-18.5 10.00 NOVINCE OF ONTARIO 0/23 0/23 0/23 10.00 10.00 AR-AC -18 5 -18.5 AQ-AP AP-AO -18.5 0.01 -18.5 -18.5 0.01 (4 10.00 0/23 0/23 0/23 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (4) -18.5 -18.5 10.00 AO-AN -18.5 AM-AL -18.5 -18.5 10.00 STRUCTURAL COMPONENT ONLY AI -AK 0/23 -18 5 -18.5 DWG # TR24040057 CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW V	WELLINGTON	DRWG NO.	
436388 Tamarack Roof Truss, Burlington	T30G	2	1	TRUSS DESC.				
Tamarack Roof Truss, Burlington			······································	····	ID:GRmvuh1dv	Version 8.630 S Aug 30 202 Qr3nydBfsTFcCy6OGI-Agm7W5	3 MiTek Industries, Inc. Tue Apr 2 11	:31:55 2024 Page 2 GOX7LTmzUnWI
NOTES- 1) Lateral braces to be a minimum	L	OADING OTAL LOAD CA						
	F	CHORDS MAX. FACTO (L. R-TO J-AI 0/	ORED FACTO DRCE VERT. L BS) (F FROM	OAD LC1 MAX PLF) CSI(LC)	MAX. MEMB. UNBRAC LENGTH FR-TO	3 S MAX. FACTORED FORCE MAX (LBS) CSI (LC)		
	A A A A	N-AH 0 / N-AG 0 / NG-AF 0 / NF-AE 0 / NE-AD 0 /	29 -18.5 32 -18.5 36 -18.5 41 -18.5 47 -18.5	5 -18.5 0.01 (4) 5 -18.5 0.01 (4) 5 -18.5 0.01 (4) 6 -18.5 0.01 (1) 6 -18.5 0.01 (1)	10.00 10.00 10.00 10.00 10.00			
		.D-AC 0 / .C-AB 0 /	55 -18.5	5 -18.5 0.01 (1) 5 -18.5 0.02 (1)	10.00			
								-
OFESS	BIONA							
25 4/02 25 C. M. HE 10050	3003							
STRUCTURAL CO		٨	•				·	
STRUCTURAL CO DWG # TR	24040057							

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 436388 T30X TRUSS DESC. Version 8.630 S Aug 30 2023 MTek Industries, Inc. Tue Apr 2 10:54:05 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-d6bz5uX0ujnzN5C0TVm8AGjKkd192iG8PMEEoLzUo3m Tamarack Roof Truss, Burlingtor 16-1-14 1-3-8 12-6-4 17-2-14 Scale = 1:78. 6x10 = 4x6 || 6x10 = 6.00 12 G Н 5x6 < 5x6 ≥ 5x6 4 5x6 <> E j n 10x16 🖈 5x6 < CIVI 4000 2-2 HW2 **R**1 [⁸2] Щ s О x14 MT18HS II 6x7 = 8x12 = 4x6 II 4x6 II 4x6 || 6x10 == 5x6 = 4x6 || 4x6 II 6x7 2-H2.5A HGUS26 45-11-0 0-0 4-0-14 10-2-4 16-1-14 22-5-0 34-7-12 40-9-2 45-11-0 TOTAL WEIGHT = 4 X 285 = 1141 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY N. L. G. A. RULES **BUILDING DESIGNER** DESIGN CRITERIA CHORDS LUMBER DESCR BEARINGS A - D D - F F - H H - J DRY FACTORED SPF MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: 2x6 No.2 No.2 CH. LL DL LL 246 DRY SPE GROSS REACTION GROSS REACTION BRG HEEL 43.5 PSF DRY DRY SPF VERT 4510 PSF 2x6 HORZ DOWN HORZ LIPI IFT IN-SX IN-SX WEDGE BOT CH. 2x6 4510 193 No.2 5-8 10.5 2x6 DRY No.2 SPF 4304 4304 0 -712 MECHANICAL 2x4 R DI PSF BSO DRY 2100F 1.8E 2100F 1.8E 67.3 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT L. MINIMUM 2x6 DRY 2100F 1.8E BEARING LENGTH AT JOINT L = 3-13. SPACING = 24.0 IN. C/C REINFORCING MEMBERS PROVIDE ANCHORAGE AT BEARING JOINT B FOR 747 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT L FOR 712 LBS FACTORED UPLIFT SPF LOADING IN FLAT SECTION BASED ON HW₁ 2x6 DRY No.2 PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD ALL WEBS 2x4 DRY DRY: SEASONED LUMBER. SPF No.2 PROVIDE FOR 193 LBS FACTORED HORIZONTAL REACTION AT JOINT B LOAD OF 4.0 P.S.F UNFACTORED REACTIONS
1ST LCASE _____MA THIS TRUSS IS DESIGNED FOR COMMERCIAL MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE \ COMBINED WIND DEAD SOIL OR INDUSTRIAL BUILDING REQUIREMENTS OF 2116 / 0 1995 / 0 106 / -870 121 / -835 683 / 0 664 / 0 0/0 PLATES (table is in inches)
JT TYPE PLATES 3281 0/0 **PART 4, NBCC 2015** TYPE TMBMW1m B THE CO TO TO THE CO TO THE CO MT18HS 6.0 5.50 THIS DESIGN COMPLIES WITH: 14.0 TMWWW-t 10.0 5.0 PART 4 OF BCBC 2018 , NBC-2019AE
PART 4 OF OBC 2012 (2019 AMENDMENT) 16.0 5.00 8.00 HORIZONTAL REACTIONS 0 /0 CSA 086-14 5.0 6.0 6.0 10.0 2.75 3.25 TMWW-MT20 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B **TPIC 2014** MT20 DESIGN ASSUMPTIONS TMW+w MT20 4.0 6.0 6.0 FOR SECTION F-H, MAX. UNBRACED TOP CHORD LENGTH = 2.00 FT TTWW-m MT20 10.0 2.75 4.25 SLOPE REDUCTION FACTOR NOT USED MT20 MT20 FOR OTHER SECTIONS, MAX. UNBRACED TOP CHORD LENGTH = 2.67 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT. OR RIGID CEILING DIRECTLY APPLIED. TS-t TMBH1-I 5.0 12.0 Edge 4.75 (80 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. 8.0 BMW+w MT20 4.0 6.0 RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 43.5 P.S.F. SPECIFIED ROOF LIVE LOAD ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. NNOP BMWW+t MT20 4.0 6.0 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-R, F-R, F-Q, G-Q, H-Q, H-P, I-P BS-t MT20 6.0 7.0 ALLOWABLE DEFL.(LL)= L/360 (1.53")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.28")
ALLOWABLE DEFL.(TL)= L/180 (3.06") 5.0 6.0 6.0 10.0 RMWW MT20 ัด ธ บ MT20 LOADING TOTAL LOAD CASES: (18) BS-t MT20 6.0 7.0 BMW+w MT20 4.0 6.0 CALCULATED VERT. DEFL.(TL) = L/ 999 (0.38") CHORDS WEBS Edge - INDICATES REFERENCE CORNER OF PLATE FACTORED MAX. FACTORED MAX. FACTORED CSI: TC=0.76/1.00 (I-K:1), BC=0.45/1.00 (M-N:1), TOUCHES EDGE OF CHORD. MEMB FORCE VERT, LOAD LC1 MAX MAX MEMB FORCE MAX WB=0.79/1.00 (C-V:1) , SSI=0.39/1.00 (F-G:2) (PLF) CSI (LC) FROM TO -145.3 -145.3 0.11 (2) CSI (LC) UNBRAC LENGTH FR-TO (LBS) CSI (LC) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 U- C C- T T- E NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. A-B 0/1 10.00 0/2450.04 (17) COMP=1.10 SHEAR=1.10 TENS= 1.10 -145.3 -145.3 0.29 (1) -145.3 -145.3 0.21 (1) -145.3 -145.3 0.70 (2) B-W W-C -4911 / 761 -2778 / 522 0.09 (2) -162 / 331 SNOW LOAD IMPORTANCE FACTOR = 1.00 C-D -6727 / 1102 2.85 E-R -1469 / 416 0.48 (2) WIND LOAD IMPORTANCE FACTOR = 1.00 R-F-Q-H-LIVE LOAD IMPORTANCE FACTOR = 1.00 D-E -6727 / 1102 -5838 / 983 -145.3 -145.3 -145.3 -145.3 0.70 (2) 0.61 (1) 2.85 -234 / 1256 -254 / 1609 0.20 (2) E-F F-G -145.3 -145.3 -155.3 -155.3 COMPANION LIVE LOAD FACTOR = 1.00 -5768 / 957 0.69 (1) 2.00 -1178 / 225 0.43 (1) PROFESSIONAL ENGINEERS

4/02/24

C. M. HEYENS I- J -155.3 -155.3 -145.3 -145.3 -145.3 -145.3 2.00 3.06 2.69 0.43 (1) 0.21 (2) 0.24 (3) 0.61 (3) 0.69 (1 0.64 (1 -302 / 1330 -279 / 1510 -5768 / 957 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE -7215 / 1191 0.76 (1) -1850 / 483 J- K K- Y Y- L -7215 / 1191 -145.3 -145.3 0.76 (1) 2.69 N-I -68 / 708 0.11 (3) TRUSS MANUFACTURING PLANT. -145.3 N- K M- K V- W -8451 / 1304 2.67 0.04 (17) NAIL VALUES -145.3 -145.3 0.52 (1) -46 / 210 -332 / 2683 | NAIL O'ALCUSES | PLATE GRIP(DRY) | SHEAR | SECTION (PSI) | (PLI) | (PLI) | MAX MIN | MAX MIN | MAX MIN | MT20 | 650 | 371 | 1747 | 788 | 1987 | 1873 | MT18HS | 586 | 403 | 2455 | 1382 | 3163 | 3004 | 0.00 (1) 0.79 (1) 0.00 (1) 6.25 6.25 6.25 B- V V- U -560 / 2473 -39.5 -39.5 -39.5 0.12 (1) -39.5 0.32 (1) -4340 / 629 -1063 / 5946 -1065 / 5941 -39.5 -39.5 0/388 100505065 0.35 (1 U- T -39.5 T- S S- R R- Q 6.25 6.25 6.25 -943 / 6043 -943 / 6043 -39.5 -39.5 -39.5 -39.5 0.33 with 0.33 (1 -645 / 5199 -39.5 -39.5 0.29 (1 PLATE PLACEMENT TOL. = 0.250 inches NOVINCE OF ONT ARIO Q-P P-O O-N 0.29 (1) 0.35 (1) 0.35 (1) 6.25 6.25 6.25 -509 / 5342 -832 / 6483 -39.5 -39.5 -39.5 -39.5 PLATE ROTATION TOL. = 5.0 Deg -832 / 6483 -39.5 -39.50.45 (1) 0.43 (1) 0.41 (1) N- M M- X -39.5 -39.5 JSI GRIP= 0.89 (F) (INPUT = 0.90) JSI METAL= 0.94 (B) (INPUT = 0.95) -1100 / 7215 -39.5 6.25 X-L -1100 / 7215 -39.5 -39.5 STRUCTURAL COMPONENT ONLY DWG # TR24040058

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON		DRWG NO.
436388 Tamarack Roof Truss, Burlington	T30X	4	1	TRUSS DESC.		Ha 30 2002 FE	Tol Industrian Inc. Tree Ave C 40.51.05.0001
					ID:GRmvuh1dyQr3nydBfsTFcCy6OG	-d6bz5uX0u	Tek Industries, Inc. Tue Apr 2 10:54:05 2024 Page 2 ijnzN5C0TVm8AGjKkd192IG8PMEEoLzUo3m
		AS PER NBCC 4	.1.6.2.(8) PLIED IS DERIVE X REFERENCE , CPCG, BASED OF RE IS BASED OF N), AND TRUSS USS UPLIFT IS	OR UNBALANCED ED FROM REFER: HEIGHT ABOVE (ON THE (MAIN W N DESIGN (CATE(IS DESIGNED TO BASED ON TOP A ELY.	ENCE VELOCITY PRESSURE OF (7.5) PSF / GRADE AND USING EXTERNAL PEAK IND FORCE RESISTING SYSTEM).INTERNAL GORY 2), BUILDING MAY BE LOCATED ON BE LOCATED AT LEAST (0-0) FT-IN-SX AWA AND BOTTOM CHORD DEAD LOADS OF 5.0	NT NY	
				•			
			1				
7500					e e e		
PROFESS: 4/02/ C. M. HE	24 YENS						
100505 Chry O _{VINCE OF}	1005						
STRUCTURAL CON							

· .·

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW	WELLINGTO	N	DRWG NO.
436388	T31	1	1	TRUSS DESC.			200 0 4	T. I. I. T. A. 0.40.54.07.0004. D. 0.
Tamarack Roof Truss, Burlingt	UII				ID:GRmvuh1c	version 8.6 lyQr3nydBfsTFcCy	60Gl-aVjkWaYGC	Tek Industries, Inc. Tue Apr 2 10:54:07 2024 Page 2 RK1hdPLPawocFhogFRdPW8bRsgiLsDzUo3k
PLATES (table is in inches) JT TYPE PLATES S BMWW-t MT20 T BMWW-t MT20 W BMWW+t MT20 W BMWW+t MT20 Y BMWW+t MT20 Z BMW+w MT20 Edge - INDICATES REFERE! TOUCHES EDGE OF CHOR	W LEN Y X 6.0 10.0 6.0 7.0 6.0 10.0 4.0 6.0 4.0 6.0 4.0 6.0 NCE CORNER OF PLATE D.	AS PER NBCC 4				' PRESSURE OF (7.5 NG EXTERNAL PEAK ISTING SYSTEM),INT NG MAY BE LOCATE TLEAST (0-0) FT-IN-S HORD DEAD LOADS (JS	SI GRIP= 0.88 (P) (INPUT = 0.90) SI METAL= 0.93 (R) (INPUT = 0.95)
NOTES- (1) 1) Lateral braces to be a mini	mum of 2X4 SPF #2.		•					
ROVINCE	DOZ/24 HEYENS DOSOSO65 TOF ONT ARIO COMPONENT ONLY							

10B NAME 436388	TRUSS NAME	QUANTITY 1	PLY 1	JOB DESC. TRUSS DESC.	BAYVIEW W	/ELLINGTON		DRWG NO.
Tamarack Roof Truss, Burlington			11	1	ID:GRmath1d	Version 8.630 S	6 Aug 30 2023 N	I ⊪Tek Industries, Inc Tue Apr_2 10:54:08 2024 Page ZvBe9YEZwb8eJrnuLr?q11FbXa5KTuPgzUo
S BMWW+t MT20 T BMWW-t MT20 V BMWWW-t MT20		WIND LOAD APP	.1.6.2.(8) PLIED IS DERIVI X REFERENCE , CPCg, BASED RE IS BASED OF N), AND TRUSS USS UPLIFT IS	ON THE (MAIN WI N DESIGN (CATE) IS DESIGNED TO BASED ON TOP A	D LOADING ENCE VELOCITY PR	RESSURE OF (7.5) PS EXTERNAL PEAK ING SYSTEM), INTERN MAY BE LOCATED ON EAST (0-0) FT-IN-SX A RD DEAD LOADS OF S	J J	ZVBe9YEZwb8eJrnuLr?q11FbXa5KTuPgzUo SI GRIP= 0.90 (K) (INPUT = 0.90) SI METAL= 0.90 (H) (INPUT = 0.95)
							:	
	,							
(1005)	SIONAL CHAIRERS DESCRIPTION OF THE PROPERTY OF							
_	OF ON ARIO OMPONENT ONLY							

JOB NAME	TRUSS NAME		PLY		BAYVIEW WEL	LINGTON	DRWG NO.
436388 Tamarack Roof Truss, Burl	T33	1	1	TRUSS DESC.	ID-00 1115	Version 8.630 S Aug 30 202	3 MiTek Industries, Inc. Tue Apr 2 10:54:10 2024 Page
PLATES (table is in inch JT TYPE PLATE: X BMW+w MT20	S W LEN Y X 4.0 6.0 RENCE CORNER OF PLATE HORD.	TRUSS HAS BEEN AS PER NBCC 4.1 WIND LOAD APPL (40-0-0) FT-IN-SX COEFFICIENTS, C WIND PRESSURE (OPEN TERRAIN), FROM EAVE.TRU PSF AND 5.0 PSF	.6.2.(8) IED IS DERIVE REFERENCE CPCg, BASED OF IS BASED ON AND TRUSS SS UPLIFT IS	ED FROM REFERE HEIGHT ABOVE G ON THE (MAIN WII V DESIGN (CATO IS DESIGNED TO I BASED ON TOP A		SINGBISTFCCy6OGI- 4Ps	8ca9jFPGUt4 G2LJsJQ9Oek?jUDtYey?TYzUo JSI GRIP= 0.90 (I) (INPUT = 0.90) JSI METAL= 0.90 (H) (INPUT = 0.95)
PRO!	FESSIONAL FILES					**	
ROVING	M. HEYENS TO DO TO THE TER 24040061						

JOB NAME TRUSS NAME	QUANTITY PLY	JOB DESC. BAYVIEW WELLINGTON	DRWG NO.
436388 T34 Famarack Roof Truss, Burlington	1 1	TRUSS DESC. Version 8.630 S Aug 30 20	023 MiTek Industries, Inc. Tue Apr 2 10:54:12 2024 Page 2
		ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-wSXdZ	HcPFtf jAEMNTOnykVW SRcBPSA0yR6YRzUo3f
PLATES (table s in inches)	TRUSS HAS BEEN CHECKED FOR AS PER NBCC 4.1.6.2.(8)	·····	JSI GRIP= 0.87 (N) (INPUT = 0.90) JSI METAL= 0.89 (H) (INPUT = 0.95)
Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.	WIND LOAD APPLIED IS DERIVI	ED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK	
NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2.	WIND PRESSURE IS BASED OF A COMMENT OF THE PROPERTY OF THE PRO	ED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK ON THE (MAIN WIND FORCE RESISTING SYSTEM),INTERNAL N DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 ELY.	
	·		
,			
•			
OFFSSION.			·
A/02/24 C. M. HEYENS TOOSOSOS			
(4/02/24) E			
100505065		•	
\ & Chuyen) o /			
BOLINCE OF ONTARIO			
STRUCTURAL COMPONENT ONLY DWG # TR24040062			

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO T35 TRUSS DESC. 436388 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:14 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-sreN zefnUviyUOIVuQF19awBF6efNATTGwDcJzUo3d 1-3-8 15-8-14 18-10-4 15-8-14 Scale = 1:84.8 4x6 II 6.00 12 5x6 = 4x6 || 6x10 = 4x6 [] Gн Κ 5x6 \\ 5x6 // 5x6 / 5x6 ≥ М 10x16 = 10x16 ≥ С N ΑE 0 _P Φ AD 2 ΑB ٧ s AF AG ΑH ΑI т AA х W U R 0 6x7 = 5x6 || $10 \times 12 =$ 6x7 = 10x12 = 4x6 I 6x10 = 6x10 == 6x10 || 4x6 | 6x10 II 6x7 = 2-H2.5A 2-H2.5A 37-11-4 1-11-8 10-5-4 5-5-11 12-4-12 15-8-14 22-0-14 28-3-2 34-7-2 37-11-4 39-10-12 44-10-5 50-4-0 TOTAL WEIGHT = 3 X 382 = 1146 lb LUMBER N. L. G. A CHORDS DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY RULES **BUILDING DESIGNER DESIGN CRITERIA** BEARINGS FACTORED DRY ADFHKMBY D F 2x6 No.2 SPF MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ UPLIFT DRY No 2 SPE BRG IN-SX BRG IN-SX CH. LL DL = DRY HKMPYV 6.0 PSF 2x6 No.2 SPF В 6958 6958 188 -807 5-8 2-8 BOT CH. LL 10.5 PSF 2x6 DRY No.2 SPF 13095 13095 ó -807 5-8 4-12 DRY DRY DRY 2x6 SPF TOTAL LOAD 67.3 PSF PROVIDE ANCHORAGE AT BEARING JOINT B FOR 807 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT O FOR 807 LBS FACTORED UPLIFT 1950F 1.7E 2x8 2x8 1950F 1.7E SPF SPACING = 24.0 IN. C/C DRY 1950F 1950F 1.7E PROVIDE FOR 188 LBS FACTORED HORIZONTAL REACTION AT JOINT B LOADING IN FLAT SECTION BASED ON PIGGYBACK TRUSS WITH SLOPES OF 6.00/12 AND -6.00/12 AND RESPECTIVE HEEL HEIGHTS REINFORCING MEMBERS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE V WIND DEAD HW₂ 2x8 DRY No.2 SPF COMBINED SOIL OF 0-0 AND 0-0 AND AN ADDITIONAL DEAD 5015 3285 / 0 0/0 123 / -958 123 / -958 0/0 LOAD OF 4.0 P.S.F. 1202 / 0 No.2 SPF 9318 6317 / 0 2473 / 0 DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015 HORIZONTAL REACTIONS DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS 0/0 134 / -134 0 /0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, O THIS DESIGN COMPLIES WITH: - PART 4 OF BCBC 2018 , NBC-2019AE - PART 4 OF OBC 2012 (2019 AMENDMENT) FOLLOWS: CHORDS #ROWS LOAD(PLF) SPACING (IN) FOR SECTION F-K MAX LINBRACED TOP CHORD LENGTH = 2 00 FT CSA 086-14 TOP CHORDS: (0.122"X3") SPIRAL NAILS A-D D-F F-H 12 12 12 MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED TOP TOP TOP DESIGN ASSUMPTIONS
- SLOPE REDUCTION FACTOR NOT USED ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 12 TOP DRY SPF No.2 T-BRACE AT F-X, K-T, L-T, K-U, F-W, J-U, G-W, I-W, I-U (80 % OF 43.9 P.S.F. G.S.I. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 43.5 P.S.F. SPECIFIED ROOF LIVE TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% TOP B-12 12 TOP OF WEB LENGTH. ALLOWABLE DEFL.(LL)= L/360 (1.68")
CALCULATED VERT. DEFL.(LL)= L/999 (0.21")
ALLOWABLE DEFL.(TL)= L/180 (3.36")
CALCULATED VERT. DEFL.(TL)= L/999 (0.30") LOADING TOTAL LOAD CASES: (18) SIDE(340.9) S- O 2 12 WEBS: (0.122"X3") SPIRAL NAILS L- R 2x4 E- Z SIDE(1802.9 WEBS CSI: TC=0.46/1.00 (L-N:1) , BC=0.42/1.00 (Q-R:1) , WB=0.84/1.00 (N-AD:1) , SSI=0.26/1.00 (O-AD:1) MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO -145.3 -145.3 0.04 (2) -145.3 -145.3 0.12 (2) 1 MAX MAX. CSI (LC) UNBRAC MEMB. 2x8 FORCE MEMB. MAX CSI (LC) (LBS) (LBS) STAGGER NAILS BY HALF THE SURFACE SPACING IN FR-TO LENGTH FR-TO DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 0.03 (17) 0.10 (2) 0.04 (10) 10.00 5.07 ADJACENT PLIES A. R 0/412 COMP=1.10 SHEAR=1.10 TENS= 1.10 B-AC AC- C C- D C-Z Z-E -360 / 530 -228 / 295 -8011 / 863 SNOW LOAD IMPORTANCE FACTOR = 1.00 -5942 / 748 -11463 / 1183 5.64 0.21 (1) 0.30 (2) WIND LOAD IMPORTANCE FACTOR = 1.00
LIVE LOAD IMPORTANCE FACTOR = 1.00 -145.3 -145.3 4.28 -1174 / 389 -145.3 -145.3 -145.3 -145.3 -145.3 -145.3 -155.3 -155.3 -165.3 -155.3 -155.3 -155.3 -11463 / 1183 A/02/24
HEYENS -11071 / 1173 0.17 (2) 4.36 T-K -325 / 7531 0.40 (3) COMPANION LIVE LOAD FACTOR = 1.00 0.56 (3) 0.43 (3) 0.53 (3) F- G 0.23 (1 -12261 / 1122 2.00 -8135 / 388 G- H H-1 I- J -12261 / 1123 -12261 / 1123 R-L R-N AUTOSOLVE HEELS OFF -1956 / 277 0.19 (2) 2.00 0.15 (1 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT, -13732 / 1123 0.20 (1 2 00 O-N 0 / 2856 -155.3 -155.3 -155.3 -155.3 -145.3 -145.3 -145.3 -145.3 -145.3 -145.3 J- K K- L L- M -13732 / 1122 -15928 / 1173 0.26 (1 0.19 (3 U-K F-W -2117 / 39 -271 / 4169 2.00 3.72 0.22(3)-19892 / 1183 0.46 (1) 3.19 U-J -1090 / 254 0.09 (3) 0.46 (1) 3.19 4.38 W-G W-I -1109 / 255 -3214 / 171 -19892 / 1183 N-AE AE- O PLATE GRIP(DRY) SHEAR SECTION 0.31 (3) -15210 / 864 -145.3 -145.3 0.16 (1 3.81 I- U -141 / 3084 (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 100505065 AB-AC -193 / 295 AB- C -6201 / 565 N-AD -11512 / 567 0.00 (1) 0.45 (1) 0.84 (1) 0- P -145.3 -145.3 0.04 (3) 10.00 -193 / 2955 -6201 / 565 B-AB -741 / 5334 0.12 (1) 6.25 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 -39.5 0.19 (1 6.25 6.25 AR-AA -1196 / 10335 PLATE PLACEMENT TOL. = 0.250 inches ROVINCE OF ONTARIO -1197 / 10326 Z- Y Y- X X- W W- V -951 / 10255 0.16 (1) 6.25 PLATE ROTATION TOL. = 5.0 Deg. -39.5 -39.5 -39.5 -39.5 0.16 (1) -39.5 0.16 (1) -39.5 0.20 (1) -951 / 10255 6.25 -779 / 9858 -774 / 13028 JSI GRIP= 0.88 (E) (INPUT = 0.90) 6.25 JSI METAL= 0.84 (Y) (INPUT = 0.95) 0.20 (1) 0.22 (1) 0.27 (1) V-U -774 / 13028 -39.5 -39.5 6.25 STRUCTURAL COMPONENT ONLY DWG # TR24040063 -591 / 14324 -763 / 17792 -39.5 -39.5 -39.5 -39.5 CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.	
436388	T35	1	3	TRUSS DESC.			

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MITek Industries, Inc. Tue Apr 2 10:54:14 2024 Page 2 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-sreN_zefnUviyUOIVuQF19awBF6efNATTGwDcJzUo3d

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

PLA	ATES (table i	s in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMBMW1-I	MT20	10.0	12.0	4.00	
С	TMWWW-t	MT20	10.0	16.0	5.00	7.25
D, F	1, M					
D	TS-t	MT20	5.0	6.0		
E	TMWW+t	MT20	5.0	6.0	3.00	1.25
F	TTWW-m	MT20	6.0	10.0	2.75	4.25
G	TMW+w	MT20	4.0	6.0		
1	TMWW+t	MT20	4.0	6.0		
J	TMW+w	MT20	4.0	6.0		
K	TTWW-m	MT20	6.0	10.0	2.75	4.25
L	TMWW+t	MT20	5.0	6.0	3.00	1.25
N	TMWWW-t	MT20	10.0	16.0	5.00	7.25
0	TMBMW1-I	MT20	10.0	12.0	4.00	Edge
Q	BMW+w	MT20	4.0	6.0		-
R	BMWW+t	MT20	6.0	10.0	5.50	2.75
S, \	/, Y					
Ş	BS-t	MT20	6.0	7.0		
Т	BMWW+t	MT20	5.0	6.0	3.00	2.25
U	BMWWW-t	MT20	6.0	10.0		
W	BMWWW-t	MT20	6.0	10.0		
Х	BMWW+t	MT20	5.0	6.0	3.00	2.25
Z	BMWW+t	MT20	6.0	10.0	5.50	2.75
AA	BMW+w	MT20	4.0	6.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

LOADING TOTAL LOAD CASES: (18)

c	HORD	s					WE	BS		
٨	AX. FAC	TORED	FACTO	RED				MAX. FAC	CTORED	
MEM	B. F	ORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORC	E MAX	
	(LBS)	(PI	.F) (CSI (LC)	UNBRA	С	(LBS)	CSI (LC)
FR-T			FROM				FR-TO	, ,		,
S-R	-763	/ 17792			0.27 (1)	6.25				
R-Al	-1011	/ 19292	-39.5	-39.5	0.42 (1)	6.25				
AF-A	G -1011		-39.5		0.42 (1)	6.25				
AG-A	H -1011	/ 19292	-39.5	-39.5	0.42 (1)	6.25				
AH-	-1011	/ 19292	-39.5	-39.5	0.42 (1)	6.25				
Q-A	-1010	/ 19364	-39.5	-39.5	0.37 (1)	6.25				
AI-AI	-1010	/ 19364	-39.5	-39.5	0.37(1)	6.25				
AD-	O -553	/ 10080	-39.5	-39.5	0.24 (1)	6.25				
	CIFIED CO									
JT	LOC.	LC1	MAX-	MAX			DIR.	TYPE	HEEL	CONN.
Q	45-1-4	-456					ERT	TOTAL		C1
R	37-11-4						ERT	TOTAL		C1
AD	49-1-4	-456					ERT	TOTAL		C1
AF	39-10-12	-456		_			ERT	TOTAL		C1
AG	41-1-4	-456					ERT	TOTAL		C1
AΗ	43-1-4	-456		-			ERT	TOTAL		C1
Αl	47-1-4	-456	-456	-	BA	CK V	ERT	TOTAL		C1
	NEGTION									

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (40-0-0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM).INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.	
436388	T36	1	3	TRUSS DESC.	•		
Tamarack Roof Truss, Bui	rlington					2023 MiTek Industries, Inc. Tue Apr 2 10:54:17 202 KWc?gY3PHGpx6KA1zvfnCTiT9Ask5v9E8tL	

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

PL/	ATES (table)	s in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMBMW1-I	MT20	10.0	12.0	4.50	
С	TMWWW-t	MT20	10.0	16.0	4.75	7.25
	-I, M					
D	TS-t	MT20	5.0	6.0		
Е	TMWW+t	MT20	5.0	6.0	3.00	1.25
F	TTWW-m	MT20	6.0	10.0	2.75	4.50
G	TMW+w	MT20	4.0	6.0		
1	TMWW+t	MT20	4.0	6.0		
J	TMW+w	MT20	4.0	6.0		
ĸ	TTWW-m	MT20	6.0	10.0	2.75	4.50
L	TMWW+t	MT20	5.0	6.0	3.00	1.25
N	TMWWW-t	MT20	10.0	16.0	4.75	7.25
0	TMBMW1-I	MT20	10.0	12.0	4.50	Edge
Q	BMW+w	MT20	4.0	6.0		
R	BMWW+t	MT20	6.0	10.0	5.50	3.00
S, \	/, Y					
S	BS-t	MT20	6.0	7.0		
Т	BMWW+t	MT20	5.0	6.0		
U	BMWWW-t	MT20	6.0	10.0		
W	BMWWW-t	MT20	6.0	10.0		
Х	BMWW+t	MT20	5.0	6.0		
Z	BMWW+t	MT20	6.0	10.0	5.50	3.00
AA	BMW+w	MT20	4.0	6.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

LOADING TOTAL LOAD CASES: (18)

			R D S	ORED	FACTO	RED			Wı	EBS MAX	FACTO	ORED		
	MEN			ORCE	VERT. LC		MAX	MAX.	MEMB		ORCE	MAX		
- 1			(1	.BS)					AC		BS)	CSI (
	FR-1			•	FROM			LENG	TH FR-TC	`	•		,	
	S-F			17663	-39.5		0.28(1)		.5					
	R-A			18665	-39.5		0.37(1)							
	AF-A			18665			0.37 (1)							
	AG-			18665			0.37 (1)							
- 1	Q-A			18723			0.35 (1)							
- 1	AH-A			18723			0.35 (1)							
ı	AD-	0	-563 /	9977	-39.5	-39.5	0.23 (1)	6.2	5					
					RATED LO	ADS (LE	S)							
- 1	JΤ		OC.	LC1	MAX-	MAX+	⊦ F/	\CE	DIR.	TYPE	Ξ.	HEEL	CONN.	
- !	Q	45		-456					VERT	TOTAL			C1	
ı	R	38-1		-4489					VERT	TOTAL		***	C1	
	ΑD		1-4	-456					VERT	TOTAL			C1	
- 1	AF			-456					VERT	TOTAL			C1	
-	AG		3-1-4	-456					VERT	TOTAL			C1	
-	АН	47	-1-4	-456	-456	-	- FRO	TNC	VERT	TOTAL			C1	
- 1														

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (40-0-0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CPC9, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM).INTERNAL WIND PRESSURE IS BASED ON DEIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE-TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELL	INGTON	DRWG NO.
436388 Tamarack Roof Truss, Burlington	T37	8	1	TRUSS DESC.		Version 8 630 S Aug 30 2023 Mi	Tek Industries Inc. Tue Apr 2 10:54:19 2024 Page 2
				····	lD:GRmvuh1dyQr3ny	rdBfsTFcCy6OGI-DoSG1hhc	Tek Industries, Inc. Tue Apr 2 10:54:19 2024 Page 2 bb0Y 3FGiHR0QkCljnGqVKcoCdYd IXzUo3Y
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE	TRUSS HAS BEI	EN CHECKED F	OR UNBALANCED) LOADING		
NOTES- (1) 1) Lateral braces to be a minimum	n of 2X4 SPF #2.		PLIED IS DERIVI X REFERENCE , CpCg, BASED RE IS BASED OI NJ, AND TRUSS RUSS UPLIFT IS	ED FROM REFERE HEIGHT ABOVE O ON THE (MAIN WI N DESIGN (CATEC IS DESIGNED TO BASED ON TOP A ELY.	ENCE VELOCITY PRESSU 3RADE AND USING EXTER IND FORCE RESISTING S'S 50RY 2), BUILDING MAY B BE LOCATED AT LEAST (AND BOTTOM CHORD DEA	RE OF (7.5) PSF AT RNAL PEAK (STEM),INTERNAL E LOCATED ON 0-0) FT-IN-SX AWAY ID LOADS OF 5.0	
					,		
C. M. HI 10050 POVIVCE O STRUCTURAL CC DWG # TR	F ONT ARIO						

### AND AND SWITCH STREET OF THE STRUCK SUPPLY AND LOADINGS SPECIFIED BY PASHCATOR TO BE VERIFIED BY SWITCH	DB NAME TRU	RUSS NAME	QUANTITY PLY	JOB DESC.	BAYVIEW WELLIN	IGTON	DRWG NO.	
15-14 15-1	36388 T3	37G	2 1	TRUSS DESC.				
## 18-94 18-	marack Roof Truss, Burlington				Ve ID:GRmvuh1dvQr3nvdBf	rsion 8.630 S Aug 30 20 sTFcCv6OGI-9BZ1SI	23 MiTek Industries, Inc. Tue A Mi27eoilZQ5Ps2updNDQ4	pr 2 10:54:21 2024 Page
24 1	1-3-8	15-8-14		18-10		1	•	,1-3-8
24 1								Scale = 1:84
LUMBER N. L. G. A. RULES LUMBER CAS 10-72 12-72 14-72 15-8-14 16-72 19-72 12-72 12-72 12-72 12-72 14-72 15-8-14 16-72 19-72 12-7	2x4 E 2x4 D C C GA BJ BI BH B	2x4 2x4 1 72	SIT STB STB	M N O P Q	R S T U T4 B B B B B B B B B B B B B B B B B B B	W 2: W 2: W 3: W 4: W 4: W 5: W 7: W 7	2x4 2x4 y 5x6 Z AA 2x4 AB ST5 ST4 ST3 ST	AC 2x4 AD AE AF CO
CHORDS SIZE	UMBER		2 14-7-2 15-8-14 16-7-2 DIMENSIONS, SUPPORT	2 18-7-2 20-7-2 22-7-2 24-7	0 -2 26-7-2 28-7-230-7-2 32-7-2	34-7-2 36-7-2 38-7-2		-2 48-7-250-4-0 WEIGHT = 2 X 315 = 630 II
C	CHORDS SIZE LUM	MBER DESCR.	BUILDING DESIGNER					Įve
U-V -3/0 -122.4 -122.4 0.03 (1) 2.00 AK-AA -222/0 0.07 (1) NAIL VALUES	CHORDS SIZE LUM	MBER DESCR. IN No.2 SPF No.2 S	BEARINGS THIS TRUSS DESIGNED THIS TRUSS REQUIRES BEARING MATERIAL TO BRACING FOR SECTION K-V, MANON FOR OTHER SECTIONS WAX. UNBRACED BOTT ALL PITCH BREAKS AN MAY, L-AZ, K-BA. END VERTICAL(S) MUS' THE MAX. UNBRACED L CADING OTAL LOAD CASES: (4 C H O R D S MAX. FACTORED MEMB. FORCE (LBS) FORCE TRO A-B 0/35 B-C 73/0 C-B -32/0 C-F -34/0 C-J -18/0 C-J -19/0 C-L -3/0 C-M -	S RIGID SHEATHING ON E D BE SPF NO.2 OR BETTE: X. PURLIN SPACING = 2.00 S, TOP CHORD TO BE SHE TOM CHORD LENGTH = 10 D PERIMETER CORNER J XT 1/2 LENGTH OF V-AP, U T BE SHEATHED OR HAVI LENGTH COLUMN OF THE BY FACTORED VERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -112.4 0.03 (1) -112.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.02 (1) -12.4 -12.4 0.02 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.02 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1) -12.4 -12.4 0.03 (1)	XPOSED FACE. R AT JOINT(S) D FT. ATHED OR MAX. PURLIN SPA .00 FT OR RIGID CEILING DIF OINTS MUST BE LATERALLY J-AQ, T-AR, S-AS, R-AU, Q-AV E BRACES AS INDICATED IN TABLE BELOW WE B S MAX. FACTO MAX. MEMB. FORCE UNBRAC LENGTH FR-TO 10.00 AP-V -237/0 6.25 AQ-U -253/0 6.25 AQ-U -253/0 6.25 AR-S -247/0 6.25 AV-Q -164/0 6.25 AV-Q -168/0 6.25 AV-Q -198/0 6.25 AV-Q -168/0 6.25 A	DRED MAX CSI (LC) 0.12 (1) 0.12 (1) 0.12 (1) 0.12 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.10 (1) 0.11 (1) 0.12 (1) 0.10 (1) 0.10 (1) 0.11 (1) 0.12 (1) 0.12 (1) 0.12 (1) 0.13 (1) 0.14 (1) 0.15 (1) 0.15 (1) 0.16 (1) 0.17 (1) 0.17 (1) 0.05 (1) 0.06 (1) 0.07 (1) 0.07 (1) 0.09 (1) 0.01 (1) 0.01 (1) 0.02 (1) 0.02 (1) 0.02 (1) 0.02 (1) 0.03 (1) 0.04 (1) 0.05 (1) 0.05 (1) 0.06 (1) 0.07 (1) 0.05 (1) 0.07 (1) 0.05 (1) 0.07 (1)	SPECIFIED LOADS: TOP CH. LL = 32.5 DL = 6.0 BOT CH. LL = 0.0 DL = 7.4 TOTAL LOAD = 45.9 SPACING = 24.0 IN.C LOADING IN FLAT SECTION PIGGYBACK TRUSS WITH AND -6.00/12 AND RESPICE OF 0.0 AND 0.0 AND AN AL LOAD OF 4.0 P.S.F. THIS TRUSS IS DESIGNED OR SMALL BUILDING REQU 9, NBCC 2015 THIS DESIGN COMPLIES W -PART 9 OF BCBC 2018, N -PART 9 OF BCBC 2018, N -PART 9 OF BCBC 2012 (201 -CSA 086-14 - TPIC 2014 DESIGN ASSUMPTIONS -OVERHANG NOT TO BE AL (55 % OF 43.9 P.S.F. G.S.L. RAIN LOAD) EQUALS 32.5 I ROOF LIVE LOAD CSI: TC=0.08/1.00 (A-B:1), E, ,WB=0.25/1.00 (J-BC:1), SC DOL LUMBER=1.00 NAIL=1. COMP=1.10 SHEAR=1.10 T. COMPANION LIVE LOAD FA AUTOSOLVE HEELS OFF TRUSS PLATE MANUFACTL RESPONSIBLE FOR QUALIF	PSF
AE-AF 0/35 -1124 -1124 0.08 (f) 10.00 BJ-B -324/10 0.0 0.0 0.03 (f) 7.81 AG-AE -324/10 0.0 0.0 0.03 (f) 7.81 AG-AE -324/10 0.0 0.0 0.03 (f) 7.81 BJ-BI 0/47 -18.5 -18.5 0.03 (f) 10.00 BJ-BI 0/47 -18.5 -18.5 0.01 (f) 10.00	OVINCE OF O	4 ENS 65 BB	J-V -3/0 /-W -6/0 /-W -6/0 /-X -10/0 /-Z -14/0 /-Z -18/0 /-AAB -24/0 /-B-AC -32/0 /-C-AD -37/0 /-B-AF 0/35 J-B -324/0 /-B-AF 0/35 J-B 0/47 /-B-BH 0/37 /-B-BE 0/16 /-B-BE 0/16 /-B-BE 0/16 /-B-BE 0/19 /	-1224 -1224 0.03 (1) -1224 -1224 0.03 (1) -1124 -1124 0.03 (1) -1124 -1124 0.03 (1) -1124 -1124 0.03 (1) -1124 -1124 0.03 (1) -1124 -1124 0.03 (1) -1124 -1124 0.03 (1) -1124 -1124 0.03 (1) -1124 -1124 0.03 (1) -1124 -1124 0.03 (1) -1124 -1124 0.07 (1) -1124 -1124 0.07 (1) -1124 -1125 0.07 (1) -1125 -185 0.01 (1) -185 -185 0.01 (1) -185 -185 0.01 (4) -185 -185 0.01 (4) -185 -185 0.01 (4) -185 -185 0.01 (4)	2.00 AK-AA -222 / 0 10.00 AJ-AB -220 / 0 10.00 AJ-AB -220 / 0 6.25 AH-AD -149 / 0 6.25 6.25 6.25 6.25 6.25 6.25 10.00 7.81 7.81 10.00 10.00 10.00 10.00 10.00 10.00	0.11 (1) 0.07 (1) 0.05 (1) 0.04 (1) 0.02 (1)	NAIL VALUES PLATE GRIP(DRY) SHEAF (PSI) (PLI) MAX MIN MAX MI MT20 650 371 1747 78 PLATE PLACEMENT TOL. = PLATE ROTATION TOL. = 5. JSI GRIP= 0.36 (C) (INPUT =	R SECTION (PLI) N MAX MIN 38 1987 1873 0.250 inches 0 Deg.

JOB NAME	TRUSS NAME	QUANTI	TY PLY		JOB DESC.	BAYVIEW V	VELLING	TON	DRWG NO.		
436388	T37G	2	1		TRUSS DESC.						
Tamarack Roof Truss, Burlington			<u> </u>			ID:GRmvuh1dy0	Versio Qr3nydBfsTF	on 8.630 S Aug 30 2023 M FcCy6OGI-9BZ1SMj27	Tek Industries, Inc. 'eoiIZQ5Ps2updN	Tue Apr 2 10:54:21 IDQ4bNodqV4s6	2024 Page 2 4MPzUo3W
A36388 Tamarack Roof Truss, Burlington NOTES- (1) 1) Lateral braces to be a minimun	T37G	сно	FACTORED	FACTO VERT. LC FROM -18.5	DRED DAD LC1 MAX LF) CSI (LC)	W E B M MAX. MEMB. UNBRAC LENGTH FR-TO 10.00 10.	Gr3nydBfsTF S AX. FACTORI FORCE I	FcCy6OGI-9BZ1SMj27	Tek Industries, Inc.	Tue Apr 2 10:54:21	2024 Page 2 4MPzUo3W
PROFESS 4/02 C. M. HE 10050 POUNCE O STRUCTURAL CO DWG # TRE	FONTARIO										

	TRUSS NAME	QUANTITY PLY	JOB DESC.	BAYVIEW WEL	LINGTON	DRWG NO.
436388 Tamarack Roof Truss, Burlington	Г39	1 1	TRUSS DESC.		Version 8.630 S Aug 30 20	23 MiTek Industries, Inc. Tue Apr 2 10:54:22 2024 Page
				ID:GRmvuh1dyQr3ny	/dBfsTFcCy6OGI-dN7Pg	ikhuxwZwj?HzaZ7MrwCWUoQX_deJWseuszUo3
PLATES (table is in inches) TT TYPE	17.5 6.0 3.00 2.25 7.0 10.0 17.5 6.0	(LBS)	FACTORED ERT. LOAD LC1 MAX	MAX. MEMB. FO) UNBRAC (LB LENGTH FR-TO 1) 6.25 1) 6.25 1) 6.25 1) 6.25	FACTORED RCE MAX BS) CSI(LC)	JSI GRIP= 0.90 (P) (INPUT = 0.90) JSI METAL= 0.93 (P) (INPUT = 0.95)
NOTES- (1) 1) Lateral braces to be a minimum of	of 2X4 SPF #2.	TRUSS HAS BEEN CHEC	KED FOR UNBALANCE	ED LOADING		
·		(40-0-0) FT-IN-SX REFER COEFFICIENTS, CpCg, E WIND PRESSURE IS BA (OPEN TERRAIN), AND 1	DERIVED FROM REFE RENCE HEIGHT ABOVE RASED ON THE (MAIN IN SED ON DESIGN (CATI RUSS IS DESIGNED T LIFT IS BASED ON TOF	RENCE VELOCITY PRESSI GRADE AND USING EXTE WIND FORCE RESISTING S EGORY 2). BUILDING MAY O BE LOCATED AT LEAST AND BOTTOM CHORD DE	ERNAL PEAK SYSTEM].INTERNAL BE LOCATED ON (0-0) FT-IN-SX AWAY	·
		·				
		-, -				
OROFESSI	ONA					
PROFESSION 4/02/2 C. M. HEY	24 YENS					-
100505	065					
Clary	un /					
SROVINCE OF	TARIO					
WCE OF	ONI					
STRUCTURAL CON DWG # TR2	APONENT ONLY					

JOB NAME	TRUSS NAME	QUANTITY	ln: v	JOB DESC.	DAN 2 4	VELLING CO.	Jenaire	
436388	T40	1	PLY 1	TRUSS DESC.	RAYVIEW V	VELLINGTON	DRWG N	iu.
Tamarack Roof Truss, Burlington		L'			ID:GRmvuh1dvi	Version 8.630 S Aug Qr3nvdBfsTFcCv6OGI-a	g 30 2023 MiTek Industr amF94OlxOZAH909/	es, Inc. Tue Apr 2 10:54:24 2024 Page 2 47bbRG?Y?HWy?soxmpLizkzUo3T
R BMWW+t MT20 5 S BS-t MT20 6 T BMWWW-t MT20 6 V BS-t MII16 6	W LEN Y X 5.0 6.0 3.0 7.0 6.0 10.0 6.0 17.5 4.0 6.0 E CORNER OF PLATE	FR-TO (S TORED FAC FORCE VERT. LBS) FROI / 4920 -39	TORED LOAD LC1 MAX (PLF) CSI (LC) M TO 9.5 -39.5 0.31 (1 9.5 -39.5 0.03 (1	W E B MAX. MEMB. UNBRAC LENGTH FR-TO 6.25		JSI GRIP= 0.	39 (R) (INPUT = 0.90) 0.91 (J) (INPUT = 0.95)
NOTES- (1) 1) Lateral braces to be a minimu	m of 2V4 SDE #2	TRUSS HAS BI	EEN CHECKED	FOR UNBALANCE	D LOADING			
1) Lateral braces to be a minimu	M OT 2X4 SPT #2.	(40-0-0) FT-IN- COEFFICIENT WIND PRESSI (OPEN TERRA FROM EAVE.T	PPLIED IS DERI -SX REFERENC -S, CpCg, BASE URE IS BASED AIN), AND TRUS	E HEIGHT ABOVE D ON THE (MAIN W ON DESIGN (CATE IS IS DESIGNED TO IS BASED ON TOP	GRADE AND USING I'IND FORCE RESIST GORY 2}. BUILDING D BE LOCATED AT L	RESSURE OF (7.5) PSF AT EXTERNAL PEAK ING SYSTEM, INTERNAL MAY BE LOCATED ON EAST (0-0) FT-IN-SX AWAY RD DEAD LOADS OF 5.0		
								,
US PROFES	SIONALEN							
PROFESS 4/02 C. M. H 10050 PROVINCE O	18000							
	OMPONENT ONLY							

B NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW W	ELLINGTON		DRWG NO.
36388 marack Roof Truss, Burling	T41	1	1	TRUSS DESC.		Version 8 630 C A	20 2022 14	Tek Industries, Inc. Tue Apr 2 10:54:25 2024 Page
maraux noor rruss, buriingi		1			ID:GRmvuh	11dyQr3nydBfsTFcCy6	GOGI-2ypX	Tek industries, inc. Tue Apr 2 10:54:25 2024 Page IkmZBsI8nAjsei7qzTYjlhpfkKM4?T4IVBzUo
TYPE	W LEN Y X 5.0 6.0 6.0 17.5 5.0 6.0 3.00 2.25 6.0 7.0 6.0 10.0 6.0 17.5 4.0 6.0 NCE CORNER OF PLATE		ORED FACT DRCE VERT. L BS) (1 7563 -39. 9414 -39. 9688 -39. 5332 -39.		MAX. MEMB. UNBRAC LENGTH FR-TO) 6.25) 6.25) 6.25) 6.25	X. FACTORED FORCE MAX (LBS) CSI (LC)		I GRIP= 0.90 (P) (INPUT = 0.90) I METAL= 0.92 (P) (INPUT = 0.95)
OTES- (1)) Lateral braces to be a mini	mum of 2YA SPE #2			OR UNBALANCE				
		AS PER NBCC 4 WIND LOAD AP {40-0-0} FT-IN-5 COEFFICIENTS WIND PRESSU {OPEN TERRAL FROM EAVE.TE	4.1.6.2.(8) PLIED IS DERIV SX REFERENCE 5, CpCg, BASED IRE IS BASED O IN), AND TRUSS	ED FROM REFEF HEIGHT ABOVE ON THE {MAIN V N DESIGN (CATE IS DESIGNED TO BASED ON TOP	RENCE VELOCITY PRE GRADE AND USING E GIND FORCE RESISTIN GORY 2}. BUILDING M D BE LOCATED AT LE	ESSURE OF (7.5) PSF AT XTERNAL PEAK IG SYSTEM),INTERNAL IAY BE LOCATED ON AST (0-0) FT-IN-SX AWAY O DEAD LOADS OF 5.0	1	
						•		
_								
PROFE 4/ 901 C. M. 100	SSIONAL ENGINEERS SIONAL ENGINEERS SIONA							
POVINCE	OF ONTARIO							en.
STRUCTURAL DWG # 1	COMPONENT ONLY R24040069	21						

1,000,00	1	JANTITY PLY	JOB DESC.	BAYVIEW WELL	INGTON	DRWG NO.
436388 Tamarack Roof Trues Burlington	2	1	TRUSS DESC.		Version 0 600 D Av. 00 007	T-Cladesia Inc. 7 A 046 T-C-
Tamarack Roof Truss, Burlington				ID:GRmvuh1dyQr	3nydBfsTFcCy6OGI- LxljQi	iTek Industries, Inc. Tue Apr. 2 10:54:27 2024 Page 2 opjUYs0UtFI79I3ud2FVXpCBINSnZPa3zUo30
PLATES (table Is in Inches)	C N MEM FR-T	AL LOAD CASES: (18) CHORDS MAX. FACTORED FACE B. FORCE VERT (LBS) O FRC 1 -742 / 4885 -3	CTORED T. LOAD LC1 MAX (PLF) CSI (LC) MM TO 19.5 -39.5 0.30 (1) 19.5 -39.5 0.04 (17	UNBRAC (LBS LENGTH FR-TO 6.25	CTORED CE MAX	SI GRIP= 0.90 (N) (INPUT = 0.90) SI METAL= 0.89 (J) (INPUT = 0.95)
NOTES- (1) 1) Lateral braces to be a minimum of 2X4 S	PF #2. AS P WINI (40-1 COE WIN (OP) FRO	0-0} FT-IN-SX REFERENC EFFICIENTS, CpCg, BASE ID PRESSURE IS BASED EN TERRAIN}, AND TRUS	RIVED FROM REFERI CE HEIGHT ABOVE O ED ON THE (MAIN WI ON DESIGN (CATEO SS IS DESIGNED TO IS BASED ON TOP A	D LOADING ENCE VELOCITY PRESSUR SRADE AND USING EXTER IND FORCE RESISTING SY GORY 2). BUILDING MAY BE BE LOCATED AT LEAST (C	NAL PEAK STEM).INTERNAL E LOCATED ON 0-0} FT-IN-SX AWAY	
	·					
C. M. HEYENS 100505065 ROUNCE OF ONI	- /					

JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC.	BAYVIEW WELLING	TON	DRWG NO.	
436388	T43	1 1	TRUSS DESC.				
Tamarack Roof Truss, Burlington		. 1. L.	L	Versio	on 8.630 S Aug 30 2023 N		28 2024 Page 2
PLATES (table is in inches)	CORNER OF PLATE	LOADING TOTAL LOAD CASES: (1:	FACTORED VERT. LOAD LC1 MAX	WEBS MAX. FACTOR MAX. MEMB. FORCE UNBRAC (LBS) LENGTH FR-TO 1 6.25	J J	ISI GRIP= 0.89 (L) (INPUT = 0.90) ISI METAL= 0.94 (M) (INPUT = 0.95)	
NOTES- (1) 1) Lateral braces to be a minimum	n of 2X4 SPF #2.	AS PER NBCC 4.1.6.2.(8) WIND LOAD APPLIED IS {40-0-0} FT-IN-SX REFEI COEFFICIENTS, CpCg, I WIND PRESSURE IS BA {OPEN TERRAIN}, AND	DERIVED FROM REFER RENCE HEIGHT ABOVE BASED ON THE (MAIN W ASED ON DESIGN (CATE TRUSS IS DESIGNED TO FULL BASED ON TOP	D LOADING RENCE VELOCITY PRESSURE OF GRADE AND USING EXTERNAL FIND FORCE RESISTING SYSTEM OF THE LOCATED AT LEAST (0-0) FT AND BOTTOM CHORD DEAD LOAD BOTTOM CHORD DEAD LOAD LOAD BOTTOM CHORD DEAD LOAD LOAD LOAD LOAD LOAD LOAD LOAD LO	PEAK I).INTERNAL CATED ON I-IN-SX AWAY		
·							
QROFESS 4/02/ C. M. HE 100508 PROVINCE OF	F ONT ARIO						
STRUCTURAL CO DWG # TR2	MPONENT ONLY 24040071						

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. 436388 T44 TRUSS DESC Version 8.630 S Aug 30 2023 MIT k Industries, Inc. Tue Apr 2 10:54:30 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-OwcQLRqj?PwQtxcqRFj?qXFkZic?Pdjq9lo3AOzUo3N Tamarack Roof Truss, Burlington 4-2-8 4-10-0 Scale = 1:29.3 4x6 || 6x7 II 5x6 \\ С D F 11 10.00 12 5x6 🗸 6x7 4 W7 28 Ν G F 5x8 11 6x10 == 4x10 II 6x10 || 8x9 II LGT3-SDS2.5 LGT3-SDS2.5 9-2-8 0-0 2-4-0 4-2-8 6-5-12 9-2-8 TOTAL WEIGHT = 3 X 74 = 222 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER N. L. G. A. RULES **BUILDING DESIGNER** DESIGN CRITERIA CHORDS SIZE 2x6 LUMBER BEARINGS FACTORED DESCR DRY C No.2 No.2 SPF MAXIMUM FACTORED INPUT SPECIFIED LOADS: A - C C - E REORD DRY DRY DRY PSF PSF PSF LL = DL = LL = 2×6 SPF **GROSS REACTION** GROSS REACTION BRG BRG CH. 135 2x6 2x6 HORZ 0 DOWN 10107 HORZ 240 IN-SX 3-10 SPE VERT UPLIFT SPF BOT CH. 10.5 -1669 9058 9085 -1645 = ALL WERS DRY No.2 2x4 PROVIDE ANCHORAGE AT BEARING JOINT J FOR 1669 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT F FOR 1645 LBS FACTORED UPLIFT EXCEPT DRY SPF - E 2x6 No.2 SPACING = 24.0 IN. C/C DRY: SEASONED LUMBER. PROVIDE FOR 240 LBS FACTORED HORIZONTAL REACTION AT JOINT J LOADING IN FLAT SECTION BASED ON A SLOPE DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS: UNFACTORED REACTIONS
1ST LCASE MA
JT COMBINED SNOW ./MIN. COMPONENT REACTIONS

....''' PFRM.LIVE WIND SNOW DEAD SOIL THIS TRUSS IS DESIGNED FOR COMMERCIAL 247 / -1930 1494 / 0 4799 / 0 1040 / 0 0/0 OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015 CHORDS #ROWS SURFACE SPACING (IN)
TOP CHORDS : (0.122"X3") SPIRAL NAILS LOAD(PLF) THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018 , NBC-2019AE
- PART 4 OF OBC 2012 (2019 AMENDMENT) HORIZONTAL REACTIONS A-C C-E 12 12 0/0 0/0 172 / -115 0/0 0 /0 TOP TOP BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J. F BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS BRACING MAX. UNBRACED TOP CHORD LENGTH = 5.07 FT. J- F 3 5 WEBS : (0.122"X3") SPIRAL NAILS SIDE(1139. DESIGN ASSUMPTIONS MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. SLOPE REDUCTION FACTOR NOT USED 2x6 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (80 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. STAGGER NAILS BY HALF THE SURFACE SPACING IN RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 43.5 P.S.F. SPECIFIED ROOF LIVE ADJACENT PLIES LOADING TOTAL LOAD CASES: (18) GIRDER NAILING ASSUMES NAILED HANGERS ARE ALLOWABLE DEFL.(LL)= L/360 (0.29")
CALCULATED VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/180 (0.58")
CALCULATED VERT. DEFL.(TL)= L/999 (0.03") FASTENED WITH MIN. 3-0 INCH NAILS. CHORDS WEBS MAX. FACTORED TOP - COMPONENTS ARE LOADED FROM THE TOP AND VERT. LOAD LC1 MAX мемв. FORCE MAX. MEMB. FORCE MAX (PLF) CSI (LC) FROM TO -145.3 -145.3 0.11 (3) MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY. CSI (LC) UNBRAC LENGTH FR-TO (LBS) CSI (LC) 0.18 (2) 0.42 (2) 0.11 (2) 0.14 (3) 0.36 (2) 0.16 (2) -7869 / 1320 -6275 / 1113 A-B B-C C-D 5.07 H-C F-E -573 / 3384 CSI: TC=0.18/1.00 (A-J;2) . BC=0.26/1.00 (I-J;2) . -8193 / 1509 SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED -145.3 -145.3 0.10 (3) 0.11 (2) 5.54 WB=0.46/1.00 (E-G:2), SSI=0.72/1.00 (F-G:2) TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. -4960 / 917 -3687 / 671 -145.3 -145.3 -145.3 -145.3 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 I-B -436 / 2615 0.11(2) 6.25 REMAINING PLF MUST BE APPLIED ON THE OPPOSITE J- A -8165 / 1352 0.0 0.0 0.18 (2) 6.33 -1046 / 6632 COMP=1.10 SHEAR=1.10 TENS= 1.10 SIDE OR ON THE TOP. H- D -596 / 3076 J- K K- I -222 / 38 6.25 6.25 0.26 (2) -2651 / 575 SNOW LOAD IMPORTANCE FACTOR = 1.00 G-D -39.5 0.26 (2) -39.5 0.24 (2) -39.5 0.24 (2) -39.5 0.22 (2) WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00 -222 / 38 -39.5G-E -1575 / 8654 0.46 (2) I- L L- H H- M 6.25 6.25 6.25 -39.5 -39.5 1158 / 5986 -1158 / 5986 -671 / 3687 -39.5 M- G G- N N- F -671 / 3687 -39.5 -39.5 0.22 (2) -39.5 0.17 (3) 6.25 AUTOSOLVE RIGHT HEEL ONLY PROFESSIONAL ENGINEERS

4/02/24

C. M. HEYENS 0/0 -39.5 -39.5 0.17 (3) 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. SPECIFIED CONCENTRATED LO DS (LBS) DIR. TYPE LC1 -3171 MAX--3171 MÀX+ FACE HEEL CONN BACK BACK BACK 1-1-4 352 VERT TOTAL C1 C1 NAIL VALUES -3171 352 VERT TOTAL PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 TOTAL -3171 352 VERT C1 C1 N -3171 -3171 352 BACK VERT TOTAL CONNECTION REQUIREMENTS 100505065 PLATE PLACEMENT TOL. = 0.250 inches C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. Musen PLATE ROTATION TOL. = 5.0 Deg. TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING POVINCE OF ONTARIO JSI GRIP= 0.87 (H) (INPUT = 0.90) JSI METAL= 0.72 (I) (INPUT = 0.95) STRUCTURAL COMPONENT ONLY DWG # TR24040072

CONTINUED ON PAGE 2

DB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
36388	T44	1	3	TRUSS DESC	5 .	·
marack Roof Truss, Burlin	ngton			 	Version 8.630 S A	ug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:30 2024 Pr DGI-OwcQLRgi?PwQtxcgRFi?gXFkZic?Pdjg9lo3AOzU
PLATES (table is in inche IT TYPE PLATES IT TYPE PLATES IT TWW-t MT20 IT TW+m MT20 IT TWWW+t MT20 IT TWWW+t MT20 IT TWWW+t MT20	s) W LEN Y X 6.0 7.0 3.00 Edge 5.0 6.0 2.50 2.75 5.0 6.0 4.0 6.0	CONNECTION F		_	CONNECTION IS REQUIRED.	
TMWW+t MT20 BMWW1+m MT20 BMWW+t MT20 BMWWW-t MT20 BMWW+t MT20	6.0 7.0 8.0 9.0 5.50 Edge 4.0 10.0 6.0 10.0 4.00 5.00 5.0 8.0 4.25 2.00	(40-0-0) FT-IN- COEFFICIENT: WIND PRESSU (OPEN TERRA	SX REFEREN S, CpCg, BASI JRE IS BASEC JN}, AND TRU	CE HEIGHT ABOV ED ON THE {MAIN O ON DESIGN {CA' SS IS DESIGNED	ERENCE VELOCITY PRESSURE OF (7.5) PSF A TE GRADE AND USING EXTERNAL PEAK WIND FORCE RESISTING SYSTEM].INTERNAL TEGORY 2). BUILDING MAY BE LOCATED ON TO BE LOGATED AT LEAST (0-0) FT-IN-SX AWA	- AY
BMV1+p MT20 dge - INDICATES REFER OUCHES EDGE OF CHO	6.0 10.0 5.50 RENCE CORNER OF PLATE	PSF AND 5.0 I	RUSS UPLIFT PSF RESPEC	IS BASED ON TO	IP AND BOTTOM CHORD DEÀD LOADS OF 5.0	
COUNTED EDGE OF ORK	JND.					
OTES- (1)) Lateral braces to be a m	inimum of 2X4 SPF #2.					
					•	
		1				

JOB NAME TRUSS NAME JOB DESC. BAYVIEW WELLINGTON QUANTITY DRWG NO 436388 TRUSS DESC T45 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:32 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-LIkBm7syX0A87FmCYgITmyK4NWGDtXu6c3HAFHzUo3L 3-1-8 6x7 || Scale = 1:24.6 4x6 || 5x6 \\ В С D 10.00 12 5x8 // W5 B1 8 K F 5x8 || E 8x9 == 6x10 11 8x9 || LGT3-SDS2.5 LGT3-SDS2.5 9-2-8 0-0 3-1-8 5-11-4 8-10-8 9-2-8 TOTAL WEIGHT = 3 X 63 = 189 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **DESIGN CRITERIA**

FOMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x6	DRY	No.2	SPF
B - D	2x6	DRY	No.2	SPF
H - A	2x6	DRY	No.2	SPF
H-E	2x6	DRY	2100F 1.8E	SPF
ALL WEBS	2x4	DRY	No.2	SPF
EXCEPT				
E - D	2x6	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHOR	OS #ROWS	SURFACE	LOAD(PLF)
1		SPACING (II	
TOP C	HORDS : (0.	122"X3") SPIR/	L NAILS
A-B	2 `	12	TOP
B-D	2	12	TOP
H- A	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") S	PIRAL NAILS
H-E	3	` 5	SIDE(1487
WEBS	: (0.122"X3"	SPIRAL NAILS	3
2x4	1	6	
2x6	2	6	

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

	RINGS						
	FACTOR	ED	MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS R	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Η .	9721	0	9789	189	-1632	5-8	3-9
Ξ	8944	0	8958	0	-1591	3-8	3-4

PROVIDE FOR 189 LBS FACTORED HORIZONTAL REACTION AT JOINT H

<u>UNF</u>	UNFACTORED REACTIONS 1ST LCASE MAX/MIN. COMPONENT REACTIONS													
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	ŞOIL							
Н	7079	4594 / 0	1056 / 0	0/0	259 / -1891	1474 / 0	0/0							
Ε	6512	4195 / 0	971/0	0/0	217 / -1803	1356 / 0	0/0							
HOR H	IZONTAL RE	ACTIONS 0/0	0/0	0/0	135 / -96	0/0	0 /0							

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H, E

 $\frac{\text{BRACING}}{\text{MAX. UNBRACED TOP CHORD LENGTH}} = 5.13 \, \text{FT.} \quad .$ MAX. UNBRACED BOTTOM CHORD LENGTH = $6.25 \, \text{FT.}$ OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (18)

υп	OKDS		WEBS								
MAX	K. FACTORED	FACTORED				MAX. FACTO	RED				
MEMB.	FORCE	VERT, LOAD LC1	MAX	MAX.	MEMB	FORCE	MAX				
	(LBS)	(PLF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)				
FR-TO		FROM TO		LENGTH	FR-TO						
A-B	-7711 / 1303	-145.3 -145.3	0.08 (2)	5.13	G-B	-732 / 4470	0.24(3)				
B- C	-6062 / 1098	-145.3 <i>-</i> 145.3	0.09(2)	5.61	A- G	-1019 / 6224	0.33(2)				
C-D	-5307 / 947	-145.3 -145.3	0.08(2)	5.90	E-D	-7608 / 1380	0.27 (2)				
H- A	-7248 / 1222	0.0 0.0	0.16 (2)	6.64	G-C	-263 / 1308	0.07 (2)				
					F-C	-1199 / 315	0.07(2)				
H-1	-171 / 31	-39.5 -39.5	0.34 (2)		F- D	-1612 / 9031	0.48 (2)				
1- G	-171 / 31	-39.5 -39.5	0.34 (2)	6.25							
G- J	-947 / 5307	-39.5 -39.5	0.26(2)	6.25							
J-F	-947 / 5307	-39.5 -39.5	0.26 (2)	6.25							
F-K	0/0	-39.5 -39.5	0.25 (3)	10.00							
K-E	0/0	-39.5 -39.5	0.25 (3)	10.00							

SPEC	IFIED COL	NCENTRA	ATED LOA	ADS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
G	3-1-4	-3105	-3105	337	FRONT	VERT	TOTAL		C1
1	1-1-4	-3105	-3105	337	FRONT	VERT	TOTAL		C1
J	5-1-4	-3105	-3105	337	FRONT	VERT	TOTAL		C1
ĸ	7-1-4	-3105	-3105	337	FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (40-0-0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg. BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM), INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

SPECIFIED LOADS: LL = DL = LL = 43.5 PSF CH. 6.0 PSF LL DL 10.5 PSF PSF TOTAL LOAD 67.3 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12

THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018, NBC-2019AE
- PART 4 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

- TPIC 2014

DESIGN ASSUMPTIONS
- SLOPE REDUCTION FACTOR NOT USED

(80 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 43.5 P.S.F. SPECIFIED ROOF LIVE

ALLOWABLE DEFL.(LL)= L/360 (0.29") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.02") ALLOWABLE DEFL.(TL)= L/180 (0.58") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.03")

CSI: TC=0.16/1.00 (A-H:2) , BC=0.34/1.00 (G-H:2) , WB=0.48/1.00 (D-F:2) , SSI=0.62/1.00 (F-G:2)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.84 (G) (INPUT = 0.90) JSI METAL= 0.64 (F) (INPUT = 0.95)

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON		DRWG NO.
	T45	1	3	TRUSS DESC.			
Tamarack Roof Truss, Burlington					Version 8.630 ID:GRmvuh1dvQr3nvdBfsTFcCv60	S Aug 30 2023 MiT GI-LIkBm7svX0A	ek Industries, Inc. Tue Apr 2 10:54:32 2024 Page 2 87FmCYgITmyK4NWGDtXu6c3HAFHzUo3L
A TM/W+t MT20 5.8 C TM/W+t MT20 5.0 C TM/W+t MT20 6.0 D TM/W+t MT20 6.0 E BM/WW+t MT20 8.0 F BM/WW+t MT20 5.0 G BM/WW+t MT20 8.0	LEN Y X 0 8.0 2.50 3.25 0 6.0 0 7.0 0 9.0 5.50 Edge 0 8.0 4.25 2.25 0 9.0 4.25 3.00 0 10.0 5.50 CORNER OF PLATE					·	o i mo igrinyra wobolcosa izi rizobol.
TOUCHES EDGE OF CHORD.	:						
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.						
PROFESS 4/02/ C. M. HE 100505	10/VAV CINCINEER YENS						
STRUCTURAL COLD DWG # TR2	ONTARIO						

LIOD NAME	TDI ICC NAME	louis transmiss	Tour	LIOP DECC			<u> </u>
JOB NAME	TAO	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON		DRWG NO.
436388 Tamarack Roof Truss, Burlington	T48	2	7	TRUSS DESC.	Version 8.630 S	Aug 30 2023 MiT	ek Industries, Inc. Tue Apr 2 10:54:36 2024 Page 1
	140	7.2.12 1.7.11	3x4 II B F 4x6	10.00 12 4x6 %	ID:GRmvuh1dyQr3nydBfsTFcCy6OG	Aug 30 2023 MiT I-D4zheVvTbF	ek Industries, Inc. Tue Apr 2 10:54:36 2024 Page 1 habs3znWpPwoVIU7gUpQNiXhFNO2zUo3H Scale = 1:41.1
					6-8-8		
			0-0		6-8-8		TOTAL WEIGHT = 2 X 36 = 73 lb
LUMBER N. L. G. A. RULES		BUILDING DESI	JPPORTS AND L GNER	OADINGS SPECIF	FIED BY FABRICATOR TO BE VERIFIED BY	DES	IGN CRITERIA [M][F]
N, L, G, A, RULES CHORDS SIZE A - D 2x4 DRY E - D 2x4 DRY F - B 2x4 DRY F - E 2x4 DRY ALL WEBS 2x3 DRY EXCEPT DRY: SEASONED LUMBER. PLATES (table is in inches) JT TYPE PLATES W B TMV+p MT20 3. C TMWW-t MT20 4. F BMVW1-t MT20 4. F BMVW1-t MT20 4. NOTES- (1) 1) Lateral braces to be a minimum	No.2 SPF No.2 SPF No.2 SPF No.2 SPF No.2 SPF No.2 SPF No.2 SPF	BUILDING DESIBERATINGS FACTOR GROSS RIF JT VERT E 439 F 595 UNFACTORED R 1 ST LCAS JT COMBINE E 308 F 414 BEARING MATE BRACING TOP CHORD TO MAX. UNBRACE ALL PITCH BRE. LATERAL BRA END VERTICAL THE MAX. UNBF LOADING TOTAL LOAD CA C H O R D S MAX. FACTIC MEMB. FC	MAX MAX	IMUM FACTORE SS REACTION VN HORZ UP 0 0 0 0 0 0 0 N. COMPONENT F LIVE PEF 0/0 0/0 0/0 N. COMPONENT F 10/0 0/0 N. C	D INPUT REQRD BRG	SPETOF SPA BOT TOT SPA THIS OR 9, N THIS - PA - CS - TP (55 'RAI RO' ALLI CAL CSI: WB DOL COI TRU RES TRU NAIL PLA' MT2	GIGN CRITERIA CIFIED LOADS: CH. LL = 32.5 PSF DL = 6.0 PSF CH. LL = 0.0 PSF CH. LL = 0.0 PSF DL = 7.4 PSF CAL LOAD = 45.9 PS
A/02 RROFESS A/02 C. M. HE 10050 C. M. HE 10050 STRUCTURAL CO DWG # TR2	F ONTARIO MPONENT ONLY					JSI (TE ROTATION TOL. = 5.0 Deg. SRIP= 0.20 (C) (INPUT = 0.90) METAL= 0.10 (B) (INPUT = 0.95)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 436388 T48G TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MTek Industries, Inc. Tue Apr 2 10:54:37 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-hGX4prv5MYpRD0eALDKeT?1xAX3LYupsmL xwUzUo3G 1-3-8 3x4 II Scale = 1:44.2 2x4 || 10.00 12 D 4x6 [] 4x6 = 2x4 || 2x4 If 3x4 II 6-8-8 TOTAL WEIGHT = 2 X 38 = 77 lb LUMBER
N. L. G. A. RULES
CHORDS SIZE
K - B 2x4
A - F 2x4
G - F 2x4 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** LUMBER DESCR BEARINGS DRY DRY SPF SPECIFIED LOADS: CH. LL = DL = CH. LL = 32.5 6.0 0.0 PSF PSF THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS DRY No.2 SPF Ġ THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. BOT CH. ALL WEBS 2x3 DRY No.2 SPE BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) TOTAL LOAD ALL GABLE WEBS DRY 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. SPACING = 24.0 IN. C/C MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS TRUSS IS DESIGNED FOR RESIDENTIAL GABLE STUDS SPACED AT 2-0-0 OC. OR SMALL BUILDING REQUIREMENTS OF PART ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 9, NBCC 2015 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G. THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW LEN Y 6.0 Edge - CSA 086-14 4.0 - TPIC 2014 <u>LOADING</u> TOTAL LOAD CASES: (4) 4.0 4.0 4.0 4.0 TMW+w MT20 20 DESIGN ASSUMPTIONS TMV+p BMV1+p -OVERHANG NOT TO BE ALTERED OR CUT OFF. 3.0 2.0 2.0 4.0 CHORDS MT20 WEBS (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED MT20 MT20 MT20 FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBF RMW1+w MAX. FACTORED MAX. FACTORED BMW1+w BMWW1-t MEMB. FORCE MEMB. FORCE MAX CSI (LC) UNBRAC LENGTH FR-TO (LBS) (LBS) CSI (LC) ROOF LIVE LOAD (PLF) CSI (LC)
FROM TO
0.0 0.0 0.04 (1)
-112.4 -112.4 0.15 (1)
-112.4 -112.4 0.05 (1)
-112.4 -112.4 0.06 (1)
-112.4 -112.4 0.06 (1)
0.0 0.00 (1) BMV1+p MT20 3.0 40 FR-TO K-B A-B B-C C-D -336 / 0 H- E J- C B- J -258 / 0 7.81 0.12(1)Edge - INDICATES REFERENCE CORNER OF PLATE 0.05 (1) 0.01 (1) CSI: TC=0.15/1.00 (A-B:1), BC=0.02/1.00 (G-H:4), WB=0.12/1.00 (E-H:1), SSI=0.10/1.00 (B-C:1) 0/50 10.00 -201/0 -72/0 0/2 6.25 TOUCHES EDGE OF CHORD. 0.00 (1) 0/16 D-E E-F 0/0 10.00 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. -15/0 G- F COMPANION LIVE LOAD FACTOR = 1.00 -18.5 0.01 (4) -18.5 0.01 (4) -18.5 0.02 (4) 0/0 -18.5 10.00 0/10 0/5 -18.5 -18.5 10.00 10.00 TRUSS PLATE MANUFACTURER IS NOT H-G 0.02 (4) RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(SI II) (PI II) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. PROFESSIONAL ENGINEER

4/02/24

C. M. HEYENS JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.14 (E) (INPUT = 0.95) 100505065 ROVINCE OF ONTARIO

STRUCTURAL COMPONENT ONLY DWG # TR24040077

JOB NAME TRUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** DRWG NO 436388 T49G TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:38 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-9S5S1Awj7sxlrADMvxst?Da6wwOTHKz? ?kUTwzUo3F

| N. L. G. A. RULES | CHORDS | SIZE | M - B | 2x4 | A - G | 2x4 | H - G | 2x4 | M - H | 2x4 | LUMBER DESCR DRY DRY DRY No.2 SPF ALL WEBS 2x3 DRY No.2 SPF ALL GABLE WEBS 2x3 DRY
DRY: SEASONED LUMBER. No.2

GABLE STUDS SPACED AT 2-0-0 OC.

LEN Y 6.0 E . Edge 4.0 2.0 3.0 3.0 4.0 4.0 4.0 BMV1+p MT20 2.0 4.0 3.0 BMW1+w MT20 BMWW1-t MT20 MT20 L M BMV1+p 4.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **BEARINGS**

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

1 LATERAL BRACE(S) AT 1/2 LENGTH OF G-H, F-I.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	CHC	ORDS		WEBS							
	MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED		
	MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
		(LBS)	(PL	.F) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)		
	FR-TO		FROM	TO		LENGTH	FR-TO	, ,			
	M-B	-290 / 0	0.0	0.0	0.03(1)	7.81	ŀF	-252 / 0	0.12(1)		
	A-B	0/50	-112.4	-112.4	0.15 (1)	10.00	J-E	-221/0	0.19 (1)		
	B- C	-7 / 0	-112.4	-112.4	0.08(1)	10.00	K-D	-205 / 0	0.09 (1)		
	C-D	-22/0	-112.4	-112.4	0.08(1)	6.25	L-C	-281/0	0.06 (1)		
	D-E	-6/0	-112.4	-112.4	0.05(1)	10.00	B-L	0/20	0.00 (1)		
		-2/0			0.06 (1)						
	F-G	-14 / 0	-112.4	-112.4	0.06(1)	6.25					
	H- G	-97/0	0.0	0.0	0.05(1)	6.25					
į	M-L	0/0	-18.5	-18.5	0.03 (4)	10.00					
Į	L-K	0/10	-18.5	-18.5	0.03 (4)	10.00					
		0/6			0.01 (4)						
1	J- 1	0/3	-18.5	-18.5	0.02 (4)	10.00					
	I- H	0/0	-18.5	-18.5	0.02 (4)	10.00					

DESIGN CRITERIA

SPECIFIED LOADS: LL =
DL =
DL =
DL =
DL = TOP CH. 32.5 PSE 6.0 0.0 7.4 BOT CH.

PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 2 X 63 = 125 lb

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018, NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.15/1.00 (A-B:1) , BC=0.03/1.00 (K-L:4) , WB=0.19/1.00 (E-J:1) , SSI=0.10/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT

RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.20 (C) (INPUT = 0.90) JSI METAL= 0.15 (C) (INPUT = 0.95)

JOB DESC. JOB NAME TRUSS NAME QUANTITY **BAYVIEW WELLINGTON** DRWG NO. 436388 T50 TRUSS DESC Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:40 2024 Page 1 Famarack Roof Truss, Burlington ID:GRmvuh1dyQr3nydBfsTFcCy6OGl-6rDCRsyzfTB04UNl0MuL4efO k2slFAlSJDbXpzUo3D 1-3-8 Scale = 1:37.5 4x6 || 10.00 12 4x6 II 4x6 II G 4x6 11-0-0 0-0 5-6-0 11-0-0 TOTAL WEIGHT = 2 X 49 = 98 lb [M][F] DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER <u>LUMBER</u> N. L. G. A. RULES DESIGN CRITERIA CHORDS LUMBER DESCR A - C C - E H - B F - D H - F DRY DRY DRY DRY DRY 2x4 2x4 2x4 No.2 No.2 No.2 No.2 SPF MAXIMUM FACTORED REQRD SPECIFIED LOADS: LL = DL = LL = DL = GROSS REACTION VERT HORZ GROSS REACTION 32.5 PSF BRG BRG IN-SX TOP CH. HORZ 0 UPLIFT 6.0 0.0 7.4 PSF PSF SPF DOWN IN-SX SPF BOT CH. 2x4 No.2 PSF TOTAL LOAD = ALL WEBS EXCEPT DRY No.2 SPF 2x3 UNFACTORED REACTIONS SPACING = 24.0 IN. C/C 1ST LCASE LIVE PERM.LIVE V SNOW SOIL 0/0 THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART DRY: SEASONED LUMBER. COMBINED WIND DEAD 164 / 0 164 / 0 447/0 0/0 9 NBCC 2015 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H, F PLATES (table is in inches)
JT TYPE PLATES BRACING
TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. w I FN Y 4.0 4.0 6.0 Edge Edge TMVW+p TTW+p MT20 - TPIC 2014 6.0 4.0 6.0 4.0 DFGH TMVW+p MT20 Edge MT20 MT20 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. BMWWW-t LOADING TOTAL LOAD CASES: (4) BMV1+p MT20 3.0 ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.37")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.37")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02") Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. CHORDS WEBS MAX. FACTORED FORCE FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX. (PLF) CSI (LC) UNBRAC
FROM TO LENGTH MEMB. FORCE MAX CSI (LC) NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. (LBS) (LBS) CSI: TC=0.44/1.00 (B-C:1) , BC=0.16/1.00 (G-H:4) , WB=0.08/1.00 (D-G:1) , SSI=0.19/1.00 (B-C:1) FR-TO A-B B-C 0/50 -40/90 0.03 (4) 0.08 (1) 452/0 0 / 357 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 C- D -452 / 0 0 / 357 0.08 (1) D-E H-B F-D 0/50 -837 / 0 COMPANION LIVE LOAD FACTOR = 1.00 H- G G- F -18.5 0.16 (4) -18.5 0.16 (4) -18.5 -18.5 0/0 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg PROFESSIONAL ENGINEERS

4/02/24

C. M. HEYENS JSI GRIP= 0.52 (B) (INPUT = 0.90) JSI METAL= 0.31 (D) (INPUT = 0.95) 100505065 wien POVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040079

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 436388 T50G TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:41 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-a1nafCybQnJtidyxa3PadrCdA8QLUi6Rgzy83FzUo3C 1-3-8 5-6-0 4x6 | 2x4 || 2x4 || 10.00 12 2x4 || 2x4 || G 4x6 II 4x6 || XXXXXXXXXXXXXXXXXXXXX Р 0 N 3x4 II 4x6 = 2x4 II 2x4 || 2x4 || 4x6 = 3x4 || 11-0-0 0-0 11-0-0 LUMBER
N. L. G. A. RULES
CHORDS SIZE
P - B 2x4
A - E 2x4
E - I 2x4
J - H 2x4 TOTAL WEIGHT = 53 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **DESIGN CRITERIA** SIZE LUMBER DESCR **BEARINGS** DRY No.2 SPF SPECIFIED LOADS: DRY LL = DL = LL = DL = AD = THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS. TOP CH. 32.5 PSE No.2 SPF 6.0 0.0 7.4 PSF PSF DRY No.2 SPF THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE DRY PSF BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) TOTAL LOAD ALL WEBS 2x3 DRY SPF No.2 ALL GABLE WEBS BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT. SPACING = 24.0 IN. C/C 2x3 DRY DRY: SEASONED LUMBER. No.2 MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART GABLE STUDS SPACED AT 2-0-0 OC. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 9. NBCC 2015 LOADING TOTAL LOAD CASES: (4) THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 CHORDS MAX. FACTORED PLATES (table is in inches)
JT TYPE PLATES WEBS FACTORED VERT. LOAD LC1 MAX MAX. LEN Y MAX. FACTORED B TMVV C, D, F, G C TMW-TMVW+p Edge 4.0 6.0 MEMB. FORCE MEMB. FORCE MAX (PLF) FROM TO 0.0 0 CSI (LC) UNBRAC LENGTH FR-TO CSI (LC) DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF. (LBS) (LBS) 2.0 4.0 4.0 TMW+w MT20 FROM TO
0.0 0.0 0.04 (1)
-112.4 -112.4 0.15 (1)
-112.4 -112.4 0.15 (1)
-112.4 -112.4 0.07 (1)
-112.4 -112.4 0.07 (1)
-112.4 -112.4 0.07 (1)
-112.4 -112.4 0.07 (1)
-112.4 -112.4 0.07 (1)
-112.4 -112.4 0.15 (1) TTW+p TMVW+p MT20 MT20 P-BBCDEFGHI Edge -336/0 M-E N-D O-C L-F -170 / 0 7.81 0.10 (1) 10.00 6.25 10.00 -273 / 0 -97 / 0 -273 / 0 0.08 (1) 0.02 (1) (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED 6.0 Edge 0 / 50 -69/0 -5/0 -28/0 BMV1+r MT20 3.0 BMWW1-0.08 (1) ROOF LIVE LOAD -97/0 0/25 0/25 0.02 (1) 0.01 (1) 0.01 (1) 6.25 6.25 K-G 2.0 4.0 3.0 -28/0 -5/0 -69/0 BMW1+w MT20 4.0 BMWW1-t MT20 MT20 6.0 4.0 10.00 CSI: TC=0.15/1.00 (H-I:1) , BC=0.02/1.00 (K-L:4) , WB=0.10/1.00 (E-M:1) , SSI=0.09/1.00 (H-I:1) BMV1+p 6.25 0.15 (1 0 / 50 -112.4 -112.4 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. -336 / 0 0.0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 0.01 (4) 0.02 (4) 0.02 (4) 10.00 10.00 10.00 P- 0 O- N N- M 0/15 0/9 COMPANION LIVE LOAD FACTOR = 1.00 NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. M- L L- K K- J -18.5 0.02 (4) -18.5 0.02 (4) -18.5 0.01 (4) 0/9 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE 0/15 TRUSS MANUFACTURING PLANT. NAIL VALUES GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. ROFESSIONAL TURNS JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.15 (F) (INPUT = 0.95) 100505065 NOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040080

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **BAYVIEW WELLINGTON** DRWG NO. 436388 T51 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:43 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-WQuL4u syOZaxx6KhUR2iGHxCx2ZyTek8HRF88zUo3A 5-6-0 Scale = 1:37.5 5x8 II С 10.00 12 5x6 / 5x6 🛇 D 6x7 = 6x7 E **B**1 L М N 鮝 0 G 1 Н 10x12 || 10x12 || 10x12 || 6x12 II LGT3-SDS2.5 LGT3-SDS2.5 6-12 1-0-8 2-0-0 2-0-0 2-0-0 2-0-0 1-4-12 0-0 6-12 1-7-4 2-10-4 3-7-4 5-6-0 5-7-4 7-7-4 8-1-12 9-7-4 11-0-0 TOTAL WEIGHT = 3 X 82 = 247 lb LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** BEARINGS FACTORED SIZE LUMBER DESCR DRY DRY DRY 2x6 2x6 No.2 No.2 SPF MAXIMUM FACTORED INPUT SPECIFIED LOADS: LL = DL = LL = DL = **GROSS REACTION** GROSS REACTION 43.5 PSF BRG BRG CH. DOWN HORZ UPLIFT IN-SX DL LL 6.0 10.5 PSF PSF Α 2x6 No.2 SPF JT VERT HORZ IN-SX 2×6 DRY SPF -201 0 -2889 -2232 DRY PSF TOTAL LOAD 67.3 PSF ALL WEBS PROVIDE ANCHORAGE AT BEARING JOINT J FOR 2889 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT F FOR 2232 LBS FACTORED UPLIFT 2x4 DRY No.2 SPF SPACING = 24,0 IN. C/C THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF DRY: SEASONED LUMBER. PROVIDE FOR 201 LBS FACTORED HORIZONTAL REACTION AT JOINT J DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS UNFACTORED REACTIONS
1ST LCASE MA PART 4, NBCC 2015 (./MIN. COMPONENT REACTIONS LIVE PERM.LIVE V 1851 / 0 0 / 0 51 MA) SNOW THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018, NBC-2019AE
- PART 4 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 FOLLOWS: COMBINED WIND 7936 / 0 512 / -3324 2567 / 0 12354 0/0 CHORDS #ROWS SURFACE LOAD(PLF) 9550 6139 / 0 0/0 401 / -2567 1982 / 0 0/0 SPACING (IN)
TOP CHORDS: (0.122"X3") SPIRAL NAILS HORIZONTAL REACTIONS A-C C-E 12 12 TOP 0/0 0/0 0/0 143 / -143 0/0 0 /0 DESIGN ASSUMPTIONS TOP TOP TOP BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J, F BEARING SIZE FACTOR = 1.15 AT JNT(S) J, F (BASED ON SUPPORT DEPTH = 1-8) - SLOPE REDUCTION FACTOR NOT USED (80 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(2421. WEBS: (0.122"X3") SPIRAL NAILS MAX. UNBRACED TOP CHORD LENGTH = 4.16 FT. EQUALS 43.5 P.S.F. SPECIFIED ROOF LIVE 2x4 MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. STAGGER NAILS BY HALF THE SURFACE SPACING IN ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. ALLOWABLE DEFL.(LL)= L/360 (0.37") CALCULATED VERT. DEFL.(LL) = Lf 999 (0.04")
ALLOWABLE DEFL.(TL) = Lf 180 (0.73")
CALCULATED VERT. DEFL.(TL) = Lf 999 (0.05") ADJACENT PLIES. LOADING TOTAL LOAD CASES: (18) GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS. CHORDS WEBS CSI: TC=0.25/1.00 (A-J:1) , BC=0.29/1.00 (I-J:2) , WB=0.61/1.00 (C-H:1) , SSI=0.97/1.00 (I-J:2) TOP - COMPONENTS ARE LOADED FROM THE TOP AND MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX. MAX. FACTORED MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY. мемв. MEMB. FORCE FORCE MAX (PLF) CSI (LC) FROM TO -145.3 -145.3 0.19 (3) CSI (LC) UNBRAC LENGTH FR-TO DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 (LBS) (LBS) FR-TO SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED A-B B-C C-D D-E -12215 / 2122 4.16 H-C -2062 / 11386 0.61 (1) TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP. -145.3 -145.3 0.17 (3) -145.3 -145.3 0.16 (2) -145.3 -145.3 0.18 (2) H- D -2557 / 566 G- D -550 / 3248 B- H -3431 / 715 SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 0.17 (3) 0.17 (2) -9343 / 1711 4.68 -9349 / 1712 -11512 / 2001 4.69 4.28 0.23 (2) -11512 / 1976 0.0 0.0 0.25 (1) 5 48 I- R -745 / 4404 COMPANION LIVE LOAD FACTOR = 1.00 F-E -10862 / 1865 0.0 0.23 (1) 5.62 -1662 / 9904 0.50 (1) AUTOSOLVE HEELS OFF G-E -1564 / 9335 J-K -184 / 193 -39.5-39.5 0.29(2)6.25 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. K- L -184 / 193 -184 / 193 -39.5 -39.5 -39.5 -39.5 0.29 (2) 6.25 6.25 I- M -1619 / 9306 -39.5 -39.5 0.25 (1) 6.25 -39.5 0.25 (1) -39.5 0.23 (1) -39.5 0.23 (1) 6.25 6.25 6.25 M- H -1619 / 9306 -39.5

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

MAX+ 381

376

379 381

380

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

-39.5

-39.5 -39.5 0.23 (3)

MAX--3402 -3410

-3402 -3402

-3402

10.00

DIR.

VERT

VERT

VERT

VERT

VERT

TYPE

C1 C1 C1 C1 C1

TOTAL

TOTAL

TOTAL TOTAL

TOTAL

FACE FRONT

FRONT

FRONT

FRONT

N-G

G- O

O- F

K

L M

N

-1452 / 8771

LOC. 5-7-4 6-12

-8 / 17

CONNECTION REQUIREMENTS

SPECIFIED CONCENTRATED LOADS (LBS)

LC1 -3402

-3410

-3402 -3402

-3402

CONTINUED ON PAGE 2

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (A) (INPUT = 0.90)

JSI METAL= 0.72 (C) (INPUT = 0.95)

JOB NAME	TRUSS NAME	OI IANITITY	lbi v	LIOD DECC	DAM (IFIA) IA III	
		QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
436388 Tamarack Roof Truss, Burlington	T51	1	<u> </u> 3	TRUSS DESC.	Version 8.630 S Aug 30 2023	MiTek Industries, Inc. Tue Apr 2 10:54:43 2024 Page 2
PLATES (table is in inches) JT TYPE PLATES W A TMVW-P MT20 6 B TMVW-t MT20 5 D TMWW-t MT20 5 E TMVW-P MT20 6 G BMWW+m MT20 11 H BMWWW+t MT20 11 BMWWW+m MT20 11	0. 7.0 1.50 3.75 0. 6.0 2.50 2.50 0. 8.0 0. 6.0 2.50 2.50 0. 7.0 1.50 3.75 0. 12.0 Edge 0.50 0.0 12.0 Edge 3.50 0.0 12.0 7.00 5.00 0.0 12.0 T.25 0.0 12.0 T.25 0.0 12.0 7.25	WIND LOAD AF {40-0-0} FT-IN-5 COEFFICIENTS: WIND PRESSU {OPEN TERRA FROM EAVE.TI	ABLE HANGER/I	ED FROM REFER HEIGHT ABOVE ON THE {MAIN W N DESIGN (CATE IS DESIGNED TO BASED ON TOP	Version 8,630 S Aug 30 2023 ID:GRmvuh1dyQr3nydBfsTFcCy6OGl-WQuL4u NNECTION IS REQUIRED. RENCE VELOCITY PRESSURE OF (7.5) PSF AT GRADE AND USING EXTERNAL PEAK IND FORCE RESISTING SYSTEM).INTERNAL GORY 2), BUILDING MAY BE LOCATED ON BE LOCATED AT LEAST (0.0) FT.IN-SX AWAY AND BOTTOM CHORD DEAD LOADS OF 5.0	syOZaxx6KhUR2iGHxCx2ZyTek8HRF88zUo3A
NOTES- (1) 1) Lateral braces to be a minimum	n of 2X4 SPF #2.					
		·				
					÷	
4/02 4/02 C. M. HE 10050 TOLINCE OF STRUCTURAL CO DWG # TRE	F ONTARIO					

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	D 434 (IE)	A7.1A7E1.1	INOTON		IDDWO NO	
436388	T52	1	2	TRUSS DESC.	DAYVIE	vv VVELL	INGTON		DRWG NO.	
amarack Roof Truss, Burlingl		I'	<u> </u>		ID:GRmvi	มh1dv⊜r3m	Version 8.630	S Aug 30 2023	MiTek Industries, Inc. Tu	e Apr 2 10:54:44 2024 Page g1FLPbh 0tNxBogazUo3
PLATES (table is in Inches)	W LEN Y X 5.0 6.0 2.00 2.25 5.0 6.0 2.00 1.75 4.0 6.0 3.0 8.0 2.0 4.0 5.0 6.0 6.0 10.0 Edge 0.50 6.0 10.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0 5.0 6.0	JT LOC. T 15-11-4 U 17-11-4 V 1-11-4 W 3-11-4 X 5-11-4 Y 7-11-4 Z 9-11-4 AB 13-11-4 AC 15-11-4 AD 17-11-4	NCENTRATED LC LC1 MAX93 -93 -93 -93 -21	MAX+ FA	CE DIR. NT VERT NT VERT NT VERT NT VERT	TYPE TOTAL	HEEL C	ONN. C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	.com acgvi cyn c	u ci sii okkaboyazabo
NOTES- (1)		1) C1: A SUIT	ABLE HANGER/M	ECHANICAL CON	NECTION IS I	REQUIRED.				
NOTES- (1) 1) Lateral braces to be a mini	murn of 2X4 SPF #2.									
							ı		·	
100	D2/24 HEYENS D505065 OF ONTARIO									
STRUCTURAL C DWG # T	COMPONENT ONLY R24040082									

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	DAVAGELLINGTON		DRWG NO.
		QUANTITY			BAYVIEW WELLINGTON		DRWG NO.
	T52Z	1	2	TRUSS DESC.		0.400.0000.14"	
Famarack Roof Truss, Burlington					Version 8,630 ID:GRmvuh1dyQr3nydBfsTFcCy6C	S Aug 30 2023 Mi GI-Sp05Va06T	Tek Industries, Inc. Tue Apr 2 10:54:45 2024 Page 2 OpiAFFipvUWnhNESIkgQOU1bbwMC0zUo38
C TTWW-m MT20 5.0 D TMWW-t MT20 4.0 E TS-t MT20 3.0 F TMW+w MT20 2.0 G TM/W-t MT20 5.0 J BMWWW-t MT20 6.0 K BMWW-t MT20 5.0 L BS-t MT20 5.0	0 6.0 2.00 2.25 0 6.0 2.00 1.50 0 8.0 0 4.0 0 6.0 2.50 2.75 1 10.0 Edge 0.50 0 6.0 0 6.0				D.S. William G. Grand St. Coyce	O O O O O O O O O O O O O O O O O O O	SPINITED IN THE STATE OF THE ST
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.							
NOTES- (1) 1) Lateral braces to be a minimum	of 2X4 SPF #2.						
			·				
C. M. HE 100508 STRUCTURAL COL DWG # TRE	FONTARIO						

JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC.	BAYVIEW WELLING	TON	DRWG NO.
436388	T55	2 1	TRUSS DESC.	DITT VIEW VVECEING	71011	
Tamarack Roof Truss, Burlington				Versi	on 8.630 S Aug 30 2023	I MiTek Industries, Inc. Tue Apr 2 10:54:49 2024 Page 1 3dXEJkfsZT2IYSyXXp2M6eM8IdWCuZLozUo34
<u>1-3</u>	-8 ,	6-6-11		12-11-13		
		5x6 \\		2x4		4x6 Scale = 1:40.6
Ī		D		E T2		F
	10.00 12 _{5x6}	,				
7.14		c W		706 W4	yds	<mark>⊠</mark> we
3x4	B W1	Mal				
1-7-11		B1				•
1 1				1 H		<u> </u>
	K 4x6 =	4x6 =		3x8 = 5x6 =		୍ରି 3x4
			40	-6-8		
	0-0	6-6-11	19	13-0-1		19-6-8
						TOTAL WEIGHT = 2 X 93 = 185 lb
LUMBER N. L. G. A. RULES CHORDS SIZE	LUMBER DE	DIMENSIONS, SUPPORTS AND BUILDING DESIGNER SCR. BEARINGS	LOADINGS SPECIFI	ED BY FABRICATOR TO BE VER		DESIGN CRITERIA [M
A - D 2x4 DRY D - F 2x4 DRY	No.2	SPF FACTORED M	AXIMUM FACTORED	O INPUT REQRD BRG BRG		SPECIFIED LOADS: TOP CH. LL = 32.5 PSF
G - F 2x4 DRY K - B 2x4 DRY	No.2 No.2	SPF JT VERT HORZ D SPF G 1279 0 12	OWN HORZ UPL 179 0 0	LIFT IN-SX IN-SX 1-8 1-8		DL = 6.0 PSF BOT CH. LL = 0.0 PSF
K - I 2x4 DRY I - G 2x4 DRY		SPF K 1435 0 14 SPF	35 0 0	5-8 1-9		DL = 7.4 PSF TOTAL LOAD = 45.9 PSF
ALL WEBS 2x3 DRY EXCEPT	No.2	SPF UNFACTORED REACTIONS 1ST LCASEMAX./	AIN. COMPONENT R	FACTIONS	<u> </u>	SPACING = 24.0 IN. C/C
K - C 2x4 DRY	No.2	SPF JT COMBINED SNOW G 897 635/0	LIVE PER	M.LIVE WIND DEAD 0/0 0/0 262/0	SOIL 0/0	LOADING IN FLAT SECTION BASED ON A SLOPE
DRY; SEASONED LUMBER.		K 1003 725 / 0 BEARING MATERIAL TO BE S		0 / 0 0 / 0 278 / 0 RAŤ JOINT(S) G, K	0/0	OF 2.00/12 MINIMUM THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART
PLATES (table is in inches)		BRACING TOP CHORD TO BE SHEATHE	D OR MAX. PURLIN	SPACING = 4.59 FT.		9, NBCC 2015
B TMV+p MT20 S C TMWW-t MT20 S D TTWW+m MT20 S E TMW+w MT20 S	W LEN Y X 8.0 4.0 6.0 6.0 6.0 6.0 2.25 1.50 2.0 4.0		IMETER CORNER JO	.00 FT OR RIGID CEILING DIRE	STRAINED.	THIS DESIGN COMPLIES WITH: -PART 9 OF BCBC 2018, NBC-2019AE -PART 9 OF DGC 2012 (2019 AMENDMENT) -CSA 086-14 -TPIC 2014
G BMV1+p MT20 3 H BMWWW-t MT20 5 I BS-t MT20 3	1.0 6.0 3.0 4.0 5.0 6.0 2.25 1.50 3.0 8.0 1.0 6.0	END VERTICAL(S) MUST BE S THE MAX. UNBRACED LENGT	HEATHED OR HAVE H COLUMN OF THE	BRACES AS INDICATED IN TABLE BELOW		(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD
NOTES- (1)	l.O 6.0		TORED	WEBS MAX, FACTOR		ALLOWABLE DEFL.(LL)= L/360 (0.65") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.03") ALLOWABLE DEFL.(TL)= L/360 (0.65") CALCULATED VERT. DEFL.(TL)= L/ 999 (0.08")
Lateral braces to be a minimu	m of 2X4 SPF #2.	(LBS)	LOAD LC1 MAX P (PLF) CSI(LC) U M TO L			CSI: TC=0.87/1.00 (E-F:1) , BC=0.24/1.00 (H-J:4) ,
		A-B 0/50 -112	.4 -112.4 0.15 (1) .4 -112.4 0.19 (1)	10.00 C-J -79 / 20	0.04 (1)	WB=0.79/1.00 (E-H:1) , SSI=0.36/1.00 (E-F:1) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10
		C-D -1110/0 -112 D-E -911/0 -112	4.4 -112.4 0.21 (1) 4.4 -112.4 0.86 (1)	5.76 D-H 0/114 4.59 H-E -905/0	0.03 (1) 0.79 (1)	COMP=1.10 SHEAR=1.10 TENS= 1.10
		G-F -1229/0 (1.4 -112.4 0.87 (1) 1.0 0.0 0.28 (1) 1.0 0.0 0.03 (1)		0.43 (1)	COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE RIGHT HEEL ONLY
		K- J 0 / 881 -18 J- I 0 / 833 -18	i.5 -18.5 0.24 (1) i.5 -18.5 0.24 (4) i.5 -18.5 0.24 (4)	10.00 10.00 10.00		TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE
			1.5 -18.5 0.17 (4)		,	TRUSS MANUFACTURING PLANT . NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
SEES	SION				,	(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873
PROFES	WALK!					PLATE PLACEMENT TOL. = 0.250 inches
/ £ 4/no	2/24 \ 6					PLATE ROTATION TOL. = 5.0 Deg.
PROFES: 4/02 C. M. H 10050	EYENS III					ISI GRIP= 0.90 (H) (INPUT = 0.90) ISI METAL= 0.41 (F) (INPUT = 0.95)
\ s. Clin	yen)					
PROVINCE	OF ONTARIU					
STRUCTURAL CO	OMPONENT ONL	.Y				

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 436388 T56 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:50 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-pmq YH3FIYSbH08gcS3hUl41VmR35ekmlse7uEzUo33 <u>1-3-8</u> 7-9-1 11-9-7 3x4 📏 4x6 = Scale = 1:45.2 4x6 || D 10.00 12 4x6 // 3x4 II 4x6 = 3x8 = 4x6 II 4x6 =3x4 || 19-6-8 0-0 7-9-1 13-7-5 19-6-8 TOTAL WEIGHT = 2 X 98 = 196 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES CHORDS SIZE **DESIGN CRITERIA** LUMBER DESCR SIZE BEARINGS FACTORED A - D D - F G - F K - B K - I MAXIMUM FACTORED INPUT GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX INPUT No.2 No.2 SPECIFIED LOADS: 2x4 DRY SPF REQRD 2x4 2x4 DRY DRY DRY GROSS REACTION VERT HORZ 32.5 BRG IN-SX TOP CH. LL = DL = No.2 SPF 6.0 PSF 2x4 No.2 SPF 0 1-8 1-8 1-9 BOT CH. LL DL = 0.0 7.4 PSF PSF DRY No.2 SPF TOTAL LOAD 45.9 No.2 PSF UNFACTORED REACTIONS

1ST LCASE MAX./MIN. COMPONENT REACTIONS
JT COMBINED SNOW LIVE PERM.LIVE V ALL WEBS 2x3 DRY No.2 SPF SPACING = 24.0 IN. C/C EXCEPT DRY K - C SPF MIND 2x4 No.2 DEAD SOIL 635 / 0 0/0 262 / 0 278 / 0 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 725 / 0 DRY: SEASONED LUMBER. OF 2.00/12 MINIMUM THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.51 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.
 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 C
 TMWW-t
 MT20
 LEN Y THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018, NBC-2019AE 3.0 4.0 6.0 4.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. - PART 9 OF OBC 2012 (2019 AMENDMENT) TTW+h TMWW-t MT20 MT20 3.0 4.0 4.0 2.00 1.00 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H. TPIC 2014 MT20 TMVW+n 6.0 3.0 4.0 3.0 4.0 6.0 8.0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED G BMV1+p BMWW+t MT20 MT20 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW MT20 BS-t ROOF LIVE LOAD BMW/WW-t MT20 4.0 4.0 6.0 LOADING TOTAL LOAD CASES: (4) ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL)= L/999 (0.13") ĸ CHORDS WEBS FACTORED VERT. LOAD LC1 MAX MAX. FACTORED MAX. FACTORED NOTES-1) Lateral braces to be a minimum of 2X4 SPF #2. MAX. MEMB FORCE FORCE MAX CSI: TC=0.69/1.00 (D-E:1) , BC=0.30/1.00 (J-K:4) , WB=0.59/1.00 (C-K:1) , SSI=0.32/1.00 (E-F:1) (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) UNBRAC LENGTH FR-TO 10.00 C- J 10.00 J- D 5.75 J- E 5.51 H- E FR-TO 0.12 (1) 0.05 (1) 0.01 (4) 0.36 (1) A-B B-C C-D D-E E-F G-F K-B 0 / 50 -183 / 0 0 / 233 0 / 62 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 0 / 33 -1047 / 0 -780 / 0 -744 / 0 3-E H-E H-F -871/0 5.60 0 / 1229 0.28 (1) COMPANION LIVE LOAD FACTOR = 1.00 -1232 / 0 -1385 / 0 0.59 (1) 0.0 0.03 (1) AUTOSOLVE RIGHT HEEL ONLY -18.5 0.30 (4) -18.5 0.29 (4) -18.5 0.29 (4) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. K-.i 0 / 899 -18.5 10.00 J-1 I- H 0/744 10.00 H-G NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION A/02/24
HEYENS (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.83 (C) (INPUT = 0.90) JSI METAL= 0.34 (F) (INPUT = 0.95) 100505065 ROVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040087

JOB NAME TRUSS NAME JOB DESC. QUANTITY **BAYVIEW WELLINGTON** DRWG NO. 436388 T57 TRUSS DESC Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:51 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-HyNMid4t3saSvAjs9Aaw1ydEXAoyq7Zv WNgQgzUo32 Tamarack Roof Truss, Burlington 1-3-8 8-11-8 10-7-0 3x4 N Scale = 1:50.6 4x6 == 4x6 II D 10.00 12 4x6 // 5x6 II W2 Κ 3x8 == 4x6 == 4x6 = 3x4 II 4x6 II 3x4 [] 19-6-8 0-0 4-7-0 8-11-8 14-2-8 19-6-8 TOTAL WEIGHT = 8 X 104 = 829 lb LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BUILDING BEARINGS FACTORED **DESIGN CRITERIA** LUMBER DESCR SIZE A - D D - F G - F 2x4 2x4 2x4 No.2 No.2 SPF MAXIMUM FACTORED GROSS REACTION DRY REQRD SPECIFIED LOADS: DRY **GROSS REACTION** LL DL LL PSF PSF PSF = BRG BRG CH. 32.5 HORZ UPLIFT IN-SX IN-SX 1-8 6.0 0.0 7.4 No.2 SPF VERT HORZ DOWN В 2x4 DRY No.2 SPF G вот сн. DRY 1-9 DΙ G No.2 SPF TOTAL LOAD ALL WEBS DRY No.2 SPF 2x3 UNFACTORED REACTIONS SPACING = 24.0 IN. C/C EXCEPT MAX./MIN. COMPONENT REACTIONS
NOW LIVE PERM.LIVE \ SNOW WIND 0/0 COMBINED DEAD SOIL DRY: SEASONED LUMBER. 0/0 LOADING IN FLAT SECTION BASED ON A SLOPE 262 / 0 278 / 0 725 / 0 0/0 0/0 0/0 OF 2.00/12 MINIMUM BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART
 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 C
 TMWW-t
 MT20
 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.32 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. I FN Y 6.0 6.0 4.0 Edge THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) 4.0 TTW+h MT20 3.0 2.00 1.00 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. TMWW-t TMVW+p MT20 MT20 6.0 6.0 4.0 - CSA 086-14 4.0 3.0 1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H. - TPIC 2014 BMV1+r MT20 4.0 3.0 4.0 6.0 8.0 6.0 BMWW+ MT20 MT20 END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BMWWW-t MT20 ROOF LIVE LOAD BMWW-t MT20 LOADING TOTAL LOAD CASES: (4) BMV1+p ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.06") Edge - INDICATES REFERENCE CORNER OF PLATE CHORDS MAX. FACTORED FACTORED MAX. FACTORED FORCE MEMB. VERT. LOAD LC1 MAX MAX. FORCE MEMB. /ERT. LOAD LC1 MAX (PLF) CSI (LC) FROM TO -112.4 -112.4 0.15 (1) -112.4 -112.4 0.41 (1) -112.4 -112.4 0.55 (1) 0.0 0.0 0.48 (1) 0.0 0.0 0.15 (1) CSI (LC) UNBRAC LENGTH FR-TO (LBS) (LBS) CSI (LC) CSI: TC=0.55/1.00 (D-E:1) , BC=0.19/1.00 (J-K:1) , WB=0.49/1.00 (E-H:1) , SSI=0.29/1.00 (E-F:1) NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. FR-TO A-B B-C C-D D-E E-F 0/50 K-C J-D J-E 10.00 -175 / 29 0.08 (1) 5.32 5.76 6.12 0.30 (1) 0.04 (1) 0.04 (1) -349 / 0 0 / 182 -1179 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 -960 / 0 -707 / 0 0 / 190 -612/0 6.25 5.77 H-E H-F -900 / 0 0 / 1182 0.49 (1) 0.27 (1) COMPANION LIVE LOAD FACTOR = 1.00 G-F L-B -1239 / 0 -1399 / 0 0.0 0.0 0.15(1) B-K 6.88 0 / 972 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE L- K K- J J- I -18.5 -18.5 -18.5 -18.5 0.09 (4) -18.5 0.19 (1) -18.5 0.17 (4) 10.00 10.00 10.00 TRUSS MANUFACTURING PLANT. 0/612 0/612 PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PROFESSIONAL ENGINEERS

4/02/24

C. M. HEYENS PLATE PLACEMENT TOL. = 0.250 Inches PLATE ROTATION TOL. = 5.0 Deg JSI GRIP= 0.74 (D) (INPUT = 0.90) JSI METAL= 0.48 (B) (INPUT = 0.95) 100505065 NOVINCE OF ONTARIO

STRUCTURAL COMPONENT ONLY DWG # TR24040088

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO 436388 T58 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:53 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-DLV7AJ67bTqA8TsFHadO6NiZtzT6I NCRqsnUZzUo30 1-3-8 10-1-14 3x4 📏 4x6 = 4x6 || D 10.00 12 4x6 // 5x6 II W2 Κ 3x8 = 3x4 || 4x6 == 4x6 = 3x4 || 4x6 || 19-6-8 0-0 5-2-3 10-1-14 14-9-11 19-6-8 TOTAL WEIGHT = 2 X 116 = 232 (t DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BUILDING ...
BEARINGS
FACTORED
GROSS REACTION
VERT HORZ **DESIGN CRITERIA** MAXIMUM FACTORED GROSS REACTION INPUT SPECIFIED LOADS: LL = DL = LL = DL = AD = PSF PSF HORZ UPLIFT IN-SX 0 0 1-8 0 0 5-8 BRG TOP CH. 32.5 6.0 0.0 7.4 DOWN IN-SX G вот сн. TOTAL LOAD SPACING = 24.0 IN. C/C

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
G-F	2x4	DRY	No.2	SPF
L - B	2x4	DRY	No.2	SPF
L - I	2x4	DRY	No.2	SPF
I ~ G	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
J-E	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
DDV: SEAS	ONEDII	MOCO		

DRY: SEASONED LUMBER.

PL	ATES (table)	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMVW+p	MT20	5.0	6.0	Edge	
С	TMWW-t	MT20	4.0	6.0	-	
D	TTW+h	MT20	3.0	4.0	2.00	1.00
E	TMWW-t	MT20	4.0	6.0		
F	TMVW+p	MT20	4.0	6.0		
G	BMV1+p	MT20	3.0	4.0		
Н	BMWW+t	MT20	4.0	6.0		
1	BS-t	MT20	3.0	8.0		
J	BMWWW-t	MT20	4.0	6.0	2.00	1.50
K	BMWW-t	MT20	4.0	6.0		
L	BMV1+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

UNF	ACTORED RE	ACTIONS					
l	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	VS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G	897	635 / 0	0/0	0/0	0/0	262 / 0	0/0
11	1003	725 / D	0.70	0/0	0.7.0	279 / 0	0.10

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.38 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

C.F	IORDS				WE	RS	
	X. FACTORED	FACTORED			** -	MAX. FACTO	RED
MEMB.		VERT. LOAD LO	C1 MAX	MAX	MEMB.		MAX
	(LBS)		CSI (LC)			(LBS)	CSI (LC)
FR-TO		FROM TO	()	LENGTH		(220)	00. (20)
A-B	0 / 50	-112.4 -112.	4 0.15 (1)		K-C	-129 / 55	0.07(1)
B-C	-1176 / 0	-112.4 -112.			C-J	-450 / 0	0.52 (1)
C-D	-875 / 0	-112.4 -112.	4 0.39 (1)	6.04	J- D	0 / 124	0.03 (4)
D-E	-637 / 0	-112.4 -112.	4 0.32 (1)	6.25	J-E		0.05 (1)
E-F	-502 / 0	-112.4 -112.	4 0.31 (1)	6.25	H-E	-943 / 0	0.66 (1)
G-F	-1244 / 0	0.0 0.	0.62 (1)	5.76	H-F	0 / 1155	0.19 (1)
L-B	-1396 / 0	0.0 0.	0.15 (1)	6.89	B-K	0/966	0.22 (1)
				•			. ,
L-K	0/0	-18.5 -18.					
K-J	0 / 937	-18.5 <i>-</i> 18.					
J-1	0 / 502	-18.5 -18.	5 0.13 (1)	10.00			
I-H	0 / 502	-18.5 -18.					
H-G	0/0	-18.5 -18.	5 0.10 (4)	10.00			
1							

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.06")

CSI: TC=0.62/1.00 (F-G:1) , BC=0.21/1.00 (J-K:1) , WB=0.66/1.00 (E-H:1) , SSI=0.26/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT,

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.74 (D) (INPUT = 0.90) JSI METAL= 0.49 (B) (INPUT = 0.95)

TIOR NAME	TRI ISS NAME	OHANTITY	loi v	JOB DESC.	DAMUENTALIATECTICA	N	IDDWC NO.
JOB NAME 436388	TRUSS NAME	QUANTITY	PLY 1	TRUSS DESC.	BAYVIEW WELLINGTO	N	DRWG NO.
Tamarack Roof Truss, Burlington	1100		11	111000 0200.	Version 8.	.630 S Aug 30 2023 M	Tek Industries, Inc. Tue Apr 2 10:54:55 2024 Page 1 I744tNn0dO?fsBon?Rn8vmxoVu8LuZRzUo3
	_ 1-3-8 ,		7-0-14		1-4-10 5-10-8	-	1744UNIOUO (ISBUIT/RITOVITIXOVUOLUZRZUUS
				3x4	3x4		Scale = 1:42.8
	3x4 II	10.00 12 4x1	34	M3	T2 E	4x6 \\F 3x4 G W6	
							2-7-2
		6 =			5x8 =	4x6 =	
	L			14	-4-0		
	0-0			7-0	-14 7-9-3 8-5-8	14-4	0
LUMBER N. L. G. A. RULES		DIMENSIONS, SU BUILDING DESI		ID LOADINGS SPECI	FIED BY FABRICATOR TO BE VERIFIE		TOTAL WEIGHT = 72 lb [M][F] ESIGN CRITERIA
C TMWW+t MT20 4 D TTW+p MT20 3 E TTW+p MT20 3 F TMWW-t MT20 4 G TMV+p MT20 3 H BMVWW1-t MT20 4 I BMWWWW-1-MT20 5	LUMBER DESCR. No.2 SPF 0.0 4.0 SPF No.2 SPF	UNFACTORED R J ST LCAS J COMBINE! J 764 H 658 BEARING MATE BRACING TOP CHORD TO MAX. UNBRACE	EACTIONS EACTIONS E MAX. SNOW 555/0 465/0 BE SHEATH D BOTTOM G AKS AND PE	/MIN. COMPONENT I LIVE PEI 0 / 0 0 / 0 SPF NO.2 OR BETTE	BRG BRG LIFT IN-SX IN-SX 5-8 1-8 MECHANICAL DN IS REQUIRED AT JOINT H. MINIML REACTIONS RMLIVE WIND DEAD 0/0 0/0 209/0 0/0 0/0 192/0	SOIL THOUSAND CO OF THE PROPERTY APPLIED.	PECIFIED LOADS: OP CH. LL = 32.5 PSF
NOTES- (1) 1) Lateral braces to be a minimum	n of 2X4 SPF #2.		RCE VERI 3S) FRC 50 -11 30 -11 0 -11 1) -11 1) -11 25 -11 0	CTORED T. LOADL C1 MAX (PLF) CSI (LC) M TO 12.4 -112.4 0.15 (1) 12.4 -112.4 0.3 (1) 12.4 -112.4 0.03 (1) 12.4 -112.4 0.10 (1) 12.4 -112.4 0.10 (1) 12.4 -112.4 0.10 (1) 12.4 -112.4 0.10 (1) 10.0 0.0 0.03 (1) 10.0 0.0 0.03 (1) 18.5 -18.5 0.32 (4) 18.5 -18.5 0.31 (4)	UNBRAC (LBS) CSI- LENGTH FR-TO 10.00 C-I -207 / 0 0.13 10.00 I-F -25 / 30 0.02 6.25 J-C -950 / 0 0.47 6.25 F-H -904 / 0 0.46 6.25 D-I 0 / 155 0.03 10.00 I-E 0 / 177 0.04 7.81 10.00	(CLC) (LC) (11) (11) (11) (11) (12) (13) (14) (15) (15) (16) (17) (17) (18) (18) (19) (19) (19) (19) (19) (19) (19) (19	LOWABLE DEFL.(IL)= L/360 (0.48") LCULATED VERT. DEFL.(IL) = L/ 999 (0.01") LOWABLE DEFL.(TL)= L/380 (0.48") LCULATED VERT. DEFL.(TL) = L/ 999 (0.01") SI: TC=0.23/1.00 (B-C:1), BC=0.32/1.00 (L/34), B=0.47/1.00 (C/3:1), SSI=0.15/1.00 (C-D:1) DL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 DMP=1.10 SHEAR=1.10 TENS=1.10 DMPANION LIVE LOAD FACTOR = 1.00 UTOSOLVE LEFT HEEL ONLY RUSS PLATE MANUFACTURER IS NOT ESPONSIBLE FOR QUALITY CONTROL IN THE RUSS MANUFACTURING PLANT.
PROFESS 4/02 C. M. Hi 10050 POLIVICE O STRUCTURAL CC DWG # TR	OMPONENT ONLY					Pl M Pl Pl JS	NIL VALUES ATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 120 650 371 1747 788 1987 1873 ATE PLACEMENT TOL. = 0.250 inches ATE ROTATION TOL. = 5.0 Deg. I GRIP= 0.76 (F) (INPUT = 0.90) I METAL= 0.21 (C) (INPUT = 0.95)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 436388 T61 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:56 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-ewBFoK80uOCk?xbpyjA5k0K9uBXKVUMe7o5R4uzUo2z 1-3-8 4-8-0 4x6 || Scale = 1:34.8 10.00 12 4x6 || 4x6 || G 4x6 == 3v4 II 3x4 [] 0-0 4-8-0 9-4-0 TOTAL WEIGHT = 3 X 43 = 129 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY MIF N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER **DESIGN CRITERIA** SIZE LUMBER BEARINGS A - C C - E H - B 2x4 2x4 2x4 INPUT DRY No.2 SPF FACTORED MAXIMUM FACTORED REQRD SPECIFIED LOADS: DRY DRY DRY GROSS REACTION VERT HORZ GROSS REACTION BRG
DOWN HORZ UPLIFT IN-SX LL = DL = LL = DL = AD = BRG IN-SX 32.5 PSF TOP CH. 6.0 PSF PSF 2x4 No.2 SPF 767 767 BOT CH. H - F DRY No.2 SPF PSF TOTAL LOAD 45.9 PSF ALL WEBS 2x3 EXCEPT DRY No.2 SPF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8. SPACING = 24.0 IN. C/C DRY: SEASONED LUMBER. THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART UNFACTORED REACTIONS
1ST LCASE _____MA 9. NBCC 2015 MAX,/MIN. COMPONENT REACTIONS SNOW SOIL 0/0 0/0 WIND THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018, NBC-2019AE COMBINED DEAD PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 142 / 0 142 / 0 LEN Y 0/0 - PART 9 OF OBC 2012 (2019 AMENDMENT) 393 / 0 0/0 0/0 6.0 6.0 6.0 4.0 6.0 4.0 Edge Edge TTW+p TMVW+p MT20 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H Edge BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. MT20 3.0 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED BMWWW-t MT20 ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.31")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.31") Edge - INDICATES REFERENCE CORNER OF PLATE ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. TOUCHES EDGE OF CHORD. LOADING TOTAL LOAD CASES: (4) CALCULATED VERT. DEFL.(TL) = 1/ 999 (0.01") NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. CHORDS WEBS CSI: TC=0.31/1.00 (B-C:1) , BC=0.11/1.00 (G-H:4) , WB=0.07/1.00 (D-G:1) , SSI=0.16/1.00 (B-C:1) MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO мемв. (LBS) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 (LBS) CSI (LC) FR-TO COMP=1.10 SHEAR=1.10 TENS= 1.10 -112.4 -112.4 0.15 (1) -112.4 -112.4 0.31 (1) -112.4 -112.4 0.31 (1) -112.4 -112.4 0.15 (1) 0.0 0.0 0.08 (1) A-B B-C C-D D-E 10.00 6.25 6.25 G- C B- G G- D 0.02 (4) 0.07 (1) 0.07 (1) 0 / 50 -53 / 70 0 / 294 COMPANION LIVE LOAD FACTOR = 1.00 -369 / 0 0 / 294 10.00 7.81 0/50 H-B F-D TRUSS PLATE MANUFACTURER IS NOT 0.0 0.0 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. -733 / 0 0.08 (1) 7.81 H-G G-F -18.5 0.11 (4) -18.5 0.11 (4) NAIL VALUES PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. PROFESSIONAL TRANS JSI GRIP= 0.48 (G) (INPUT = 0.90) JSI METAL= 0.26 (D) (INPUT = 0.95) 100505065 NOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040092

JOB NAME	TRUSS NAME	QUANTITY	PLY JOB DESC.	BAYVIEW WELLINGTON	DRWG NO,
436388	T61Z	1	1 TRUSS DESC.		
Tamarack Roof Truss, Burlington				Version 8.630 S Aug 30 2 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-aJI0E	023 MiTek Industries, Inc. Tue Apr 2 10:54:58 2024 Page 1 00AGP?SSEFIC48CZpRPRI 65zNpxb6aY9mzUo2x
	ı	1-3-8	4-8-0	4-8-0 , 1-3-8 3	Scale = 1:34.8
				5 II	
	1771 5-56-6	10.00 12 4x6 B W1 3x4	C C W.		1-7-1
		0-0	9-4- 4-8	· · · · · · · · · · · · · · · · · · ·	
LUMBER				FIED BY FABRICATOR TO BE VERIFIED BY	TOTAL WEIGHT = 43 lb
LUMBER N. L. G. A. RULES CHORDS SIZE A - C 2x4 DRY C - E 2x4 DRY F - D 2x4 DRY F - D 2x4 DRY H - F 2x4 DRY EXCEPT DRY: SEASONED LUMBER. PLATES WB TMVW+p MT20 4.1 C TTW+p MT20 4.1 C TTW+p MT20 4.1 C TTW+p MT20 4.1 C TTW+p MT20 4.1 C TMVW+p MT20 4.1 C TMVW+p MT20 4.1 C TMVW+p MT20 4.1 C TMVW+p MT20 4.1 C BMV1+p MT20 3.1 C BMWWW-t MT20 4.1 E BMV1+p MT20 3.1 C BMWWW-t MT20 3.1 C BMWWW-t MT20 3.1 C BMWWW-t MT20 3.1 C BMWWW-t MT20 3.1 C BMVT-p MT20 3.1 C C C C C C C C C	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	ESCR. SPF	RED MAXIMUM FACTORE REACTION GROSS REACTION HORZ DWN HORZ UP 0 1000 0 0 0 1000 0 0 EACTIONS E MAX./MIN. COMPONENT I 0 SNOW LIVE PER 393 / 0 0 / 0 393 / 0 0 / 0 393 / 0 0 / 0 RIAL TO BE SPF NO.2 OR BETTE BE SHEATHED OR MAX. PURLIN D BOTTOM CHORD LENGTH = 10 AKS AND PERIMETER CORNER J ORED FACTORED RES: (4) ORED FROM TO 30 -112.4 -112.4 0.48 (1) 0 -112.4 -112.4 0.48 (1) 0 -112.4 -112.4 0.17 (1) 0 -112.4 -112.4 0.17 (1) 0 -112.4 -112.4 0.19 (1) 0 -112.4 -112.4 0.19 (1) 0 -112.4 -112.4 0.19 (1) 0 -112.4 -112.4 0.19 (1) 0 -112.4 -112.4 0.19 (1) 0 -112.4 -112.4 0.19 (1) 0 -112.4 -112.4 0.19 (1) 0 -112.4 -112.4 0.19 (1) 0 -112.4 -112.4 0.19 (1) 0 -112.5 -93.5 0.48 (4)	D INPUT REQRD BRG	
PROFESS 4/02 C. M. HE 100500 TRUCTURAL CO DWG # TR	F ONTARIO	_Y			TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PLI) (PLI) (PLI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.73 (G) (INPUT = 0.90) JSI METAL= 0.35 (D) (INPUT = 0.95)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO TRUSS DESC. 436388 T62

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:54:59 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGl-2VsORMAuAJaJsOKOdrkoMeyhaOVEis75pmJ5hCzUo2w

Scale = 1:32.6

LUMBER N. L. G. A. R CHORDS A - B C - B D - A D - C	ULES SIZE 2x4 2x4 2x6 2x6	DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF
ALL WEBS DRY: SEASO	2x3 ONED L	DRY UMBER.	No.2	SPF

DESIGN CONSISTS OF <u>2</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #RO	WS SURFACE	LOAD(PLF)
	SPACING (IN)	
TOP CHORDS	: (0.122"X3") SPIRAL NA	AILS
A-B 1	12	TOP
B- C 1	12	TOP
D- A 2	12	TOP
воттом сно	RDS: (0.122"X3") SPIRA	L NAILS
D- C 2	` 12	SIDE(0.0)
WEBS: (0.122)	"X3") SPIRAL NAILS	, ,
2v3 `1	, e	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

FL	WIES (IBDIO	is in inches					
JT	TYPE	PLATES	W	LEN	Υ	X	
Α	TMVW+p	MT20	5.0	6.0	2.00	2.25	
В	TMV+p	MT20	3.0	4.0			
С	BMVW1+p	MT20	4.0	6.0			
n	BMV1+n	MT20	4.0	6.0			

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

<u>BEA</u>	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
С	922	0	922	0	0	MECHAN	ICAL
D	1084	0	1084	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN, COMPO	NENT REACTION	18		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
С	642	477 / 0	0/0	0/0	0/0	166 / 0	0/0
D	755	561 / 0	0/0	0/0	0/0	194 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTOR	RED	FACTO	RED			W	EBS MAX. FA	CTORED	
MEMB.	FOR		VERT. LC	AD LC1	MAX	MAX.	MEM			
	(LBS	3)			CSI (LC)			(LBS)) CSI(LC)
FR-TO			FROM				TH FR-TO)		
A-B	0/0		-112.4	-112.4	0.16 (1)	10.0	0 A-C	0/0	0.00	(1)
C-B	-218 / 0		0.0	0.0	0.06 (1)	7.8	11			
D-A	-218 / 0		0.0	0.0	0.01 (1)	7.8	11			
D-E	0/0		-18.5	-18.5	0.29 (1)	10.0	10			
E-F	0/0		-18.5	-18.5	0.29 (1)	10.0	0			
F- C	0/0		-18.5	-18.5	0.29 (1)	10.0	0			
SPECIF	ED CONC		ATED LO	ADS (LE	3S)					
JT	LOC.	LC1	MAX-	MAX	+ F.	ACE	DIR.	TYPE	HEEL	CONN.
E F	8-12	-522	-522	_	- FR	ONT	VERT	TOTAL		C1
F	2-8-12	-520	-520	-	FR	ONT	VERT	TOTAL		C1 `

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	ソトドドロ	LUAI	JS:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	Λ.		45.0	DOE

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

TOTAL WEIGHT = 2 X 26 = 51 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/399 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.03")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.29/1.00 (C-D:1) , WB=0.00/1.00 (A-C:1) , SSI=0.29/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.05 (B) (INPUT = 0.90) JSI METAL= 0.04 (B) (INPUT = 0.95)

CONTINUED ON PAGE 2

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
136388	T62		2	TRUSS DESC.		
amarack Roof Truss, Burlington			,		Version 8.630 S Aug 30 2023 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-2VsORM	B MiTek Industries, Inc. Tue Apr 2 10:54:59 2024 Page 2 AuAJaJsOKOdrkoMeyhaOVEis75pmJ5hCzUo2w
NOTES- (1) 1) Lateral braces to be a minimur	n of 2X4 SPF #2.					
						:
QROFESS 4/02 C. M. HE 10050	1000					
STRUCTURAL CO	FONTARIO			·		

DB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTO	ON	DRWG NO.		
	T70	5	1	TRUSS DESC.					
amarack Roof Truss, Burlington					Version 8 ID:GRmvuh1dyQr3nydBfsTFcQ	30 S Aug 30 2023 I Cy6OGI-WhQmeiB	MiTek Industries, WxdiAUYvbB2	Inc. Tue Apr 2 10 ZF1usUplooWR	:55:00 2024 Page 2 7dE2Q3fDfzUo2v
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE								
NOTES- (1) I) Lateral braces to be a minimum	n of 2X4 SPF #2.								
1									
								·	·
									:
						·		v	
							ŕ		
aOFESS	GIONA								
PROFESS 4/02 C. M. HE	/24 FYENS FF								
10050 Clary POVINCE O	3063								
STRUCTURAL CO									

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTO	N	DRWG NO.	
136388 amarack Roof Truss, Bu	T71	5	1	TRUSS DESC.	Version D.C.	70 D A 20 0000 Lat		10.55.00.0001
	· · · · · · · · · · · · · · · · · · ·	<u> </u>			Version 8.6 ID:GRmvuh1dyQr3nydBfsTFc	Cy6OGI-S4YX3OE	er industries, inc. Tue Apr 2 emTEyujs3zJzHVzHa88bl	JCv?uXVkYllXzUo2t
Edge - INDICATES REF TOUCHES EDGE OF C	ERENCE CORNER OF PLATE HORD.							
NOTES- (1) 1) Lateral braces to be a	minimum of 2X4 SPF #2.							
/-	EESSION.							
LICENS C.	4/02/24 M. HEYENS							
	CE OF ONT ARIO							
	L COMPONENT ONLY # TR24040096							

JOB NAME JOB DESC. TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO 436388 TRUSS DESC. IT73

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:55:03 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-xG6vGkEPEY4lL0dAshokWU6O2?oSeUcgkOHJq zUo2s

LUMBER N. L. G. A. RULES CHORDS SIZE 2x6 LUMBER DESCR No.2 No.2 SPF SPF DRY Α 2x6 2100F 1.8E No.2 SPF DRY Ē 2x6 DRY ALL WEBS 2x4 DRY No.2 SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS **FOLLOWS**

CHOR	OS #ROWS	SURFACE SPACING (IN	LOAD(PLF)
TOP C	HORDS : (0.	122"X3") SPIRAL	
A-D	2 `	12	TOP
I- A	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SF	PIRAL NAILS
I- E	2	6	SIDE(768.7)
WEBS	: (0.122"X3") SPIRAL NAILS	
D-F	1	6	SIDE(261.8)
2x4	1	6	
2x6	2	6	

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

<u>BEAI</u>	<u>RINGS</u>						
	FACTOR	RED	MAXIMUN	/ FACTO	DRED	INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	6395	0	6395	0	0	MECHANIC	:AL
=	8122	0	8122	0	0	3-0	2-15

SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 1-14.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	AIN. COMPO	VENT REACTION	4S			
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL	
1	4504	3061 / 0	0/0	0/0	0/0	1443 / 0	0/0	
Ε	5723	3876 / 0	0/0	0/0	0/0	1847 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

<u>BRACING</u> TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.87 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x6 DRY SPF No.2 T-BRACE AT D-F

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

		, ,	•,							
CH	ORD	s					W E	BS		
MA:	X. FAC	TORED	FACTO	RED				MAX, FACT	ORED	
MEMB.		FORCE	VERT. LC	DAD LC1	MAX	MAX.	MEMB	. FORCE	MAX	
		(LBS)	(P	LF)	CSI (LC)	UNBRA	С	(LBS)		
FR-TO		7			(,	LENGTH				(20)
A-B	-5509	9/0	-112.4					-147 / 15	0.03	(1)
			-112.4					-6439 / 0		
C-D	-3607	7/0	-112.4	-112.4	0.08 (1)	6.25	B- G	-2432 / 0	0.26	
I- A	-5493	3/0	0.0	0.0	0.13 (1)	7.39	H- B	-2432 / 0 0 / 2648		
		•		0,0	0.70 (17			0 / 4604		
I- J	0	0/0	-18.5	-18.5	0.21 (1)	10.00		0 / 8964		
J- H		1/0			0.21 (1)				0.10	(- /
H-K		/ 4244			0.28 (1)					
K-L		/ 4244			0.28 (1)					
L- G		/ 4244			0.28 (1)					
	Č	1/0	-18.5	-18.5	0.59 (1)	10.00				
			-18.5							
F-E		70			0.46 (1)					
		,, ,		-10.0	0.40 (1)	10.00				
SPECII	FIED C	ONCENTE	RATED LO	ADS (LE	381					
JT	LOC.				+ F/	ACF I	DIR.	TYPE	HEEL	CONN.
		-1867					ERT	TOTAL	***	C1
			-1863				ERT	TOTAL		C1
			-1863				ERT	TOTAL		Č1
		-1863					ERT	TOTAL		Č1
	7-11-4						ERT	TOTAL		C1
		1000	1000		110	J V.	_,,,	TOTAL		01
CONNE	CONNECTION REQUIREMENTS									

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	HLIED	LUAI	JS:		
TOP	CH.	LL	=	32.5	PSF
		DL	=	6.0	PSF
BOT	CH.	LL.	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	45.9	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

TOTAL WEIGHT = 3 X 88 = 264 lb

Scale = 1:55.1

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.35")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (0.35") CALCULATED VERT. DEFL.(TL) = 1/ 926 (0.13")

CSI: TC=0.13/1.00 (A-I:1) , BC=0.59/1.00 (F-G:1) , WB=0.74/1.00 (D-F:1) , SSI=0.82/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (D) (INPUT = 0.90) JSI METAL= 0.62 (F) (INPUT = 0.95)

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
	T73	1	3	TRUSS DESC.		
Tamarack Roof Truss, Burlington	·				Version 8,630 S Aug 30 2023 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-xG6vGkE	MITek Industries, Inc. Tue Apr 2 10:55:03 2024 Page 2 PEY4IL0dAshokWU6O2?oSeUcgkOHJq zUo2s
I BMV1+p MT20 6.	LEN Y X 0 6.0 2.00 2.25 0 6.0 2.50 2.75 0 4.0 0 8.0 2.50 2.25 0 9.0 0.50 Edge 0 9.0 4.25 2.00 0 8.0 4.25 2.50 0 10.0 5.50					·
Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD.	CORNER OF PLATE					
NOTES- (1) 1) Lateral braces to be a minimum	n of 2X4 SPF #2.					
4/02 C. M. HE 10050	3065					
STRUCTURAL CO					·	

JOB DESC. JOB NAME TRUSS NAME QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC 436388 T73Z

Tamarack Roof Truss, Burlington

Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:55:04 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-PSgHU3E1?rCcyACMQOJz3ifZrP7vNx6qz21sMQzUo2r

TOTAL WEIGHT = 3 X 88 = 264 lb

Scale = 1:55.1

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x6	DRY	No.2	SPF
1 - A	2x6	DRY	No.2	SPF
1 - E	2x6	DRY	2100F 1.8E	SPF
F-E	2x6	DRY	No.2	SPF
ŀ				
ALL WEBS	2x4	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF $\underline{\mathbf{3}}$ TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CH	IORDS : (0.1	22"X3") SPIRAL NAILS	
A-D	2 .	12	TOP
I- A	2	12	TOP
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS	
I-E	2	6	SIDE(749.9)
WEBS:	(0.122"X3")	SPIRAL NAILS	• •
D-F	` 1 '	6	SIDE(239.2)
2x4	1	6	
2x6	2	6	

STAGGER NAILS BY HALF THE SURFACE SPACING IN

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

	FACTOR GROSS RE		MAXIMUI GROSS I			INPUT BRG	REQRD BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	6254	0	6254	0	0	MECHANIC	AL.
	7939	0	7939	0	0 .	3-0	2-14

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 1-13.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	1S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
1	4406	2988 / 0	0/0	0/0	0/0	1419 / 0	0/0
E	5595	3780 / 0	0/0	0/0	0/0	1815 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.91 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x6 DRY SPF No.2 T-BRACE AT D-F

FASTEN T AND LIBRACES TO NARROW FIGE OF WEB WITH ONE ROW PER PLY OF 3' COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

<u>LOADING</u> TOTAL LOAD CASES: (4)

IOIAL	LOAD	CAGEG. (7)							
СН	ORD	s					W E	BS		
MAX	X. FAC	TORED	FACTO	RED				MAX. FACT	ORED	
MEMB.		FORCE			MAX	MAX.	MEMB			
		(LBS)					C			
FR-TO		,,			(,		H FR-TO			,,
	-5385	5/0						-152 / 14	0.03	(1)
B ₂ C	-3660	0/0	-112.4	-112.4	0.07 (1)	6.25	F- D	-6299 / 0	0.72	
C-D	-3526	3/0	-1124	-112.4	0.08 (1)	6.25	B- G	-2378 / 0	0.25	
I. A	-5374	1/0	0.0	0.0	0.12 (1)	7.45	H-B	0 / 2580	0.14	
			0.0		01.12(1)		A-H	0 / 4502		
I- J	0	0/0	-18.5	-18.5	0.20 (1)	10.00		0 / 8763		
			-18.5					-,		,
		/ 4149			0.27 (1)					
K- L	Ö	/ 4149	-18.5	-18.5	0.27 (1)	10.00				
			-18.5							
			-18.5							
			-18.5							
F-E		0/0			0.45 (1)					
			10.0		0.10(1)					
SPECI	FIED C	ONCENTI	RATED LC	ADŞ (LI	3S)					
JT	LOC.					ACE	DIR.	TYPE	HEEL	CONN.
	9-11-4	-1821	-1821		BA	ÇK V	/ERT	TOTAL.		C1
j	1-11-4	-1818	-1821 -1818	_			/ERT	TOTAL		C1
K	3-11-4	-1818	-1818	_	BA	CK \	/ERT	TOTAL		C1
Ĺ	5-11-4	-1818	-1818		BA	CK \		TOTAL		C1
M		-1818					/ERT	TOTAL		C1
CONN	ECTION	REQUIR	EMENTS							

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS:

LU = 32.5 DL = 6.0 LL = 0.0 DL = 7.4 AD = 45.9 32.5 PSF 6.0 PSF 0.0 PSF CH. BOT CH. PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.35")
CALCULATED VERT. DEFL.(IL)= L/999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (0.35")
CALCULATED VERT. DEFL.(TL)= L/948 (0.13")

CSI: TC=0.12/1.00 (A-I:1) , BC=0.58/1.00 (F-G:1) , WB=0.72/1.00 (D-F:1) , SSI=0.80/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.86 (D) (INPUT = 0.90) JSI METAL= 0.60 (F) (INPUT = 0.95)

CONTINUED ON PAGE 2

### 1732 19	JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON		DRWG NO.	
PACTES CAMPAN C		T73Z	1	3	TRUSS DESC.				
PACTES CAMPAN C	amarack Roof Truss, Burlington					Version 8.630 S Aug 30 ID:GRmyuh1dyQr3nydBfsTFcCy6OGI-PS	2023 MiT SgHU3E1	ek Industries, Inc. Tue Apr 2 ?rCcyACMQOJz3ifZrP7	10:55:04 2024 Page 2 /Nx6qz21sMQzUo2r
NOTES (1) 1) Latonal bickess (to bo a minimum of 2246 SPF \$2. Section 1 (1) Latonal bickess (to bo a minimum of 2246 SPF \$2.	A TMVW+p MT20 5.0 C TMW+w MT20 5.0 C TMW+w MT20 5.0 F BMWW+t MT20 5.0 F BMWW+t MT20 8.0 G BMWW+t MT20 8.0 I BMWV+t MT20 5.0 I BMV1+p MT20 6.0	0 6.0 2.50 2.75 0 4.0 0 8.0 2.50 2.25 0 9.0 0.50 Edge 0 9.0 4.25 2.00 0 8.0 4.25 2.50 1 0.0 5.50							
1) Lateral brases to to a minimate of 22/4 SPP 82. SP QROFESSION(A) A BP 82. SP QROFESSION(A) A BP 82.	Edge - INDICATES REFERENCE TOUCHES EDGE OF CHORD,	CORNER OF PLATE							
7) Lateral braces to be a militarum of 22/4 SPP #2.									
C. M. HEYENS	Lateral braces to be a minimum	of 2X4 SPF #2.							
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS		:							
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS						,			
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS			,						
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS									
C. M. HEYENS H. 100505065									
C. M. HEYENS THE 100505065									
Charles	100506	0000	·						
STRUCTURAL COMPONENT ONLY DWG # TR24040098	ROVINCE OF	ONTARIO							

JOB NAME TRUSS NAME JOB DESC. QUANTITY PLY **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. 436388 T74 Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:55:06 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-Lrn1vIGHXTTKCTMkYpMR87koDDrymp7QMWzRIzUo2p 1-3-8 2x4 II 10.00 12 4x6 // 4x6 || W2 G F 6x10 = 4x6 =10-8-8 5-3-8 10-4-8 10-8-8 TOTAL WEIGHT = 4 X 57 = 228 lb LUMBER N. L. G. A. RULES DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER **DESIGN CRITERIA** N. L. G. A. CHORDS A - D H - B H - E F - E BEARINGS FACTORED SIZE 2x4 2x4 LUMBER DESCR No.2 No.2 SPF DRY MAXIMUM FACTORED GROSS REACTION REQRD SPECIFIED LOADS: LL = DL = LL = DL = AD = 32.5 6.0 0.0 DRY DRY **GROSS REACTION** BRG BRG PSF HORZ 0 0 HORZ 0 DOWN 855 IN-SX 1-8 PSF PSF UPLIFT IN-SX BOT CH. 5-8 1-8 Ε 0 1-8 PSF ALL WEBS 2x3 DRY No.2 SPF 2x4 No.2 UNFACTORED REACTIONS SPACING = 24.0 IN. C/C | MAX./MIN. COMPONENT REACTIONS | SNOW LIVE | PERM.LIVE | V | 437 / 0 | 0 / 0 | 0 / 0 | 0 / 0 | 1ST L CASE DRY: SEASONED LUMBER. COMBINED SOIL 0/0 THIS TRUSS IS DESIGNED FOR RESIDENTIAL 160 / 0 OR SMALL BUILDING REQUIREMENTS OF PART 312/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H, E THIS DESIGN COMPLIES WITH:
 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 C
 TMWW-t
 MT20
 - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 LEN Y <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 4.0 4.0 2.0 6.0 Edge 6.0 - TPIC 2014 4.0 10.0 3.00 4.00 TMW+w MT20 BMWWW-t MT20 MT20 6.0 4.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. 6.0 RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED н BMV1+p MT20 3.0 4.0 1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-F. ROOF LIVE LOAD Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1) 1) Lateral braces to be a minimum of 2X4 SPF #2. END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

сно	RDS		WEBS					
MAX.	FACTORED	FACTORED				MAX, FACTO	RED	
MEMB.	FORCE	VERT, LOAD LO	C1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO	, ,		
A-B	0/50	-112.4 -112.	4 0.15 (1)	10.00	G-C	0 / 129	0.04 (4)	
B-C	-492 / 0	-112.4 -112.	4 0.52 (1)	6.25	C-F	-627 / 0	0.71 (1)	
C-D	-50 / 0	-112.4 -112.	4 0.49 (1)	6.25	B-G	0 / 424	0.10 (1)	
H-B	-830 / 0	0.0 0.	0 0.09 (1)	7.81	F- D	-197 / 0	0.10 (1)	
H- G	0/0	-18.5 -18.	5 0.18 (4)	10.00				
G-F	0/412	-18.5 -18.	5 0.48 (1)	10.00				
F-E	0/0	-18.5 <i>-</i> 18.	5 0.13 (1)	10.00				

ALLOWABLE DEFL.(LL)= L/360 (0.36")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.07")
ALLOWABLE DEFL.(TL)= L/360 (0.36") CALCULATED VERT. DEFL.(TL) = L/ 976 (0.13")

CSI: TC=0.52/1.00 (B-C:1) , BC=0.48/1.00 (F-G:1) , WB=0.71/1.00 (C-F:1) , SSI=0.24/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 MT20

PLATE PLACEMENT TOL. = 0,250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.52 (B) (INPUT = 0.90) JSI METAL= 0.33 (B) (INPUT = 0.95)

(T				1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	BAYVIEW WELLINGTON	DRWG NO.
436388	T74A	11	1	TRUSS DESC.		
Tamarack Roof Truss,	Burlington					2023 MiTek Industries, Inc. Tue Apr. 2 10:55:07 2024 Page 1 LQ65HvImbApdxx5XtggKH hcBZaJmGf0FWzIzUo2o

1				
LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
G - A	2x4	DRY	No.2	SPF
G - D	2x4	DRY	No.2	SPF
E - D	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
E - C	2x4	DRY	No.2	SPF
DRY: SEASO	ONED L	JMBER.		

PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Y X					
Α	TMVW+p	MT20	4.0	6.0	Edge					
В	TMWW-t	MT20	4.0	6.0	-					
С	TMW+w	MT20	2.0	4.0						
Е	BMWWW-t	MT20	6.0	10.0	3.00 3.50					
F	BMWW-t	MT20	4.0	6.0						
G	BMV1+p	MT20	3.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	_
BUILDING DESIGNER	
DOLDING DEGIGNER	
DEADINGS	

<u>BEAt</u>	RINGS						
	FACTOR	ED	MAXIMUN	1 FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS R	EACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
G	672	0	672	0	0	MECHANIC	AL
ם	611	0	611	0	0	1-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 1-8.

	1ST LCASE	MAX./MIN, COMPONENT REACTIONS					
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G	471	333 / 0	0/0	0/0	0/0	138 / 0	0/0
D	429	298 / 0	0/0	0/0	0/0	131/0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-E.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHO	ORDS					WE	BS		
MAX.	FACTORED	FACTO	RED				MAX.	FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC	1 MAX	MAX.	MEMB.	F	DRCE	MAX .
	(LBS)	(PI	LF)	CSI (LC)	UNBRAC	;	(L	BS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	-439/0	-112.4	-112.4	0.47 (1)	6.25	F-B	0/	118	0.04 (4)
B-C	-48 / 0	-112.4	-112.4	0.45 (1)	6.25	B-E	-586 /	0	0.66 (1)
G-A	-648 / 0	0.0	0.0	0.07 (1)	7.81	A-F	0/	388	0.09(1)
						E-C	-188 /	0	0.10 (1)
G-F	0/0	-18.5	-18.5	0.17 (4)	10.00				
F-E	0/369	-18.5	-18.5	0.45 (1)	10.00				
E-D	0/0	-18.5	-18.5	0.12 (1)	10.00				

DESIGN CRITERIA

SPEC	IFIED	LOA	DS:		
TOP	CH.	LL	=	32.5	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.4	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART

TOTAL WEIGHT = 11 X 55 = 600 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.34")
CALCULATED VERT. DEFL.(IL)= L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.34")
CALCULATED VERT. DEFL.(TL)= L/999 (0.12")

CSI: TC=0.47/1.00 (A-B:1) , BC=0.45/1.00 (E-F:1) , WB=0.66/1.00 (B-E:1) , SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.40 (A) (INPUT = 0.90) JSI METAL= 0.26 (A) (INPUT = 0.95)

JOB NAME	TRUSS NAME	QUANTITY PLY JOB DESC. BAYVIEW WELLINGTON	DRWG NO.
436388 Tamarack Roof Truss, Burlington	PB12	2 1 TRUSS DESC. Version 8.630 S A	ug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:15 2024 Page 1
		ID:GRmvuh1dyQr3nydBfsTFcCy6OGI	-5Ua4cowfgMU3NQNPX?sP8jeoXT0QKognva7b2EzUo4\
<u></u>	4	7-3 5-11-13	4x6 = Scale = 1:21.7
Ī		C T2	D .
·	10.00 12		
3-10-0		W1 W2	W3 & 6
]
I.I	В		
158 44-13		B1	
4 1 2	xxxxxxxxx	- -	* * * * * * * * * * * * * * * * * * *
	G 3x4 ==	F 4x6 =	3x4 E
		10-7-0	
0-0		4-7-3	10-7-0
LUMBER N. L. G. A. RULES		DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	TOTAL WEIGHT = 2 X 36 = 72 lb
CHORDS SIZE A - C 2x4 DRY	LUMBER DESCR. No.2 SPF	BUILDING DÉSIGNER <u>BEARINGS</u> FACTORED MAXIMUM FACTORED INPUT REQRD	DESIGN CRITERIA SPECIFIED LOADS:
C - D 2x4 DRY E - D 2x4 DRY B - E 2x4 DRY	No.2 SPF No.2 SPF	GROSS REACTION GROSS REACTION BRG BRG JT VERT HORZ DOWN HORZ UPLIFT IN-SX IN-SX	TOP CH. LL = 32.5 PSF DL = 6.0 PSF
B - E 2x4 DRY ALL WEBS 2x3 DRY	No.2 SPF	E 417 0 417 0 0 9-11-7 1-8 B 372 0 372 0 0 9-11-7 1-8 F 574 0 574 0 0 9-11-7 1-8	BOT CH. LL = 0.0 PSF DL = 7.4 PSF TOTAL LOAD = 45.9 PSF
DRY: SEASONED LUMBER.			<u>SPACING</u> = 24.0 IN. C/C
		UNFACTORED REACTIONS 1ST LCASE MAX./MIN. COMPONENT REACTIONS JT COMBINED SNOW LIVE PERM.LIVE WIND DEAD SOIL	LOADING IN FLAT SECTION BASED ON A SLOPE
	W LENY X	E 291 215/0 0/0 0/0 0/0 75/0 0/0 B 257 201/0 0/0 0/0 0/0 56/0 0/0	OF 2.00/12 MINIMUM
C TTW+h MT20	3.0 4.0 3.0 4.0 2.00 1.25 4.0 6.0	F 406 264/0 0/0 0/0 0/0 142/0 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, B, F	THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015
	3.0 4.0 4.0 6.0	BRACING TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.	THIS DESIGN COMPLIES WITH:
NOTES- (1)		MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIE	- PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14
Lateral braces to be a minimu	m of 2X4 SPF #2.	ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. <u>LOADING</u>	- TPIC 2014
		TOTAL LOAD CASES: (4)	(55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD
		CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED MEMB. FORCE VERT. LOAD LC1 MAX MAX. MEMB. FORCE MAX	CCI: TO-0 COM 00 (C DM), DG-0 POM PO (D OM)
		(LBS) (PLF) CSI (LC) UNBRAC (LBS) CSI (LC) FR-TO FROM TO LENGTH FR-TO	CSI: TC=0.69/1.00 (C-D:1), BC=0.20/1.00 (B-G:1), WB=0.10/1.00 (C-F:1), SSI=0.43/1.00 (B-G:1)
		A-B 0/17 -112.4 -112.4 0.02 (1) 10.00 F-C -452/0 0.10 (1) B-H 0/128 -112.4 -112.4 0.14 (1) 10.00 F-D 0/83 0.02 (1) H-C -127/0 -112.4 -112.4 0.21 (1) 6.25 G-H -570/0 0.00 (1)	DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10
		C-D -72/0 -112.4 -112.4 0.69 (1) 6.25 E-D -378/0 0.0 0.0 0.08 (1) 7.81	COMPANION LIVE LOAD FACTOR = 1.00
		B-G 0/86 -18.5 -18.5 0.20 (1) 10.00 G-F 0/86 -18.5 -18.5 0.20 (1) 10.00	TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE
		F-E 0/0 -18.5 -18.5 0.16 (4) 10.00	TRUSS MANUFACTURING PLANT . NAIL VALUES
			PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
			MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873
			PLATE PLACEMENT TOL. = 0.250 inches
250 PROFESS 250 4/02 C. M. H	SIONA		PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.53 (C) (INPUT = 0.90)
(B)	The last		JSI METAL= 0.07 (B) (INPUT = 0.95)
/ 1/02	2/24		
当 C.M.H	EYENS 第 05065		
10050	1000		
1 South	/ 10/		
VINCE	OF ONTARIO		
_			
DWG # TR	DMPONENT ONLY 124040019		

JOB DESC. JOB NAME TRUSS NAME QUANTITY **BAYVIEW WELLINGTON** DRWG NO. 436388 J4 TRUSS DESC Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:00 2024 Page 1 Tamarack Roof Truss, Burlington ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-1cAPSgkFClbC46kX9M5u1YWMfQyjJ1gaSi?l0czUo4n 1-3-8 Scale = 1:18.5 10.00 12 4x6 II В W1 E 2x4 \\ D 1-8-8 1-8-8 TOTAL WEIGHT = 2 X 9 = 19 lb LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER** N. L. G. A. RULES **DESIGN CRITERIA** DESCR. SPF SPF CHORDS LUMBER BEARINGS FACTORED DRY MAXIMUM FACTORED INPUT REQRD SPECIFIED LOADS: - B 2x4 No.2 No.2 LL = DL = LL = DRY **GROSS REACTION** 32.5 PSF 244 GROSS REACTION BRG BRG TOP CH. HORZ 0 DOWN 331 HORZ 0 UPLIFT IN-SX 1-8 1-8 6.0 0.0 7.4 PSF PSF SPF JТ VERT IN-SX -54 ALL WEBS DRY SPF PSF 2x3 No.2 33 33 1-8 DL = DRY: SEASONED LUMBER. n TOTAL LOAD SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D SPACING = 24.0 IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT
 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 E
 BMW+w
 MT20
 W 4.0 2.0 LEN Y 6.0 Ed 4.0 UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW 9. NBCC 2015 Edge (./MIN. COMPONENT REACTIONS

LIVE PERM,LIVE WIND THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 SOIL 0/0 0/0 0/0 LIVE 0/0 BMV1+p 3.0 228 182 / 0 0/0 0/0 46/0 19 / -36 0 / 0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF. NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= 1/360 (0.19")
CALCULATED VERT. DEFL.(LL)= 1/ 999 (0.00")
ALLOWABLE DEFL.(TL)= 1/360 (0.19")
CALCULATED VERT. DEFL.(TL)= 1/ 999 (0.00") LOADING TOTAL LOAD CASES: (5) FACTORED MAX. FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO CSI: TC=0.15/1.00 (A-B:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (B-C:1) MEMB. FORCE MAX CSI (LC) FR-TO F- B 0.0 0.0 0.03 (1) -112.4 -112.4 0.15 (1) -112.4 -112.4 0.15 (1) 7.81 10.00 -315 / 0 0/0 0.00(1)DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 A-B B-C COMP=1.10 SHEAR=1.10 TENS= 1.10 COMPANION LIVE LOAD FACTOR = 1.00 F-E E-D -18.5 -18.5 0.02 (4) 10.00 -18.5 -18.5 0.01 (4) 10.00 AUTOSOLVE RIGHT HEEL ONLY TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN TRUSS MANUFACTURING PLANT. NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PROFESSIONAL ENGINEERS PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.20 (B) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 0.95) 100505065 NOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040006

JOB DESC. JOB NAME TRUSS NAME QUANTITY PIV **BAYVIEW WELLINGTON** DRWG NO. TRUSS DESC. J6 436388 Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:53:01 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-Vokng0ltz3j3jGJjj3c7am3VKqHw2UwjhPksY2zUo4m Tamarack Roof Truss, Burlingtor 1-3-8 3-10-8 Scale = 1:32.6 10.00 12 4x6 || E D 3x4 || 3-10-8 0-0 1-6-0 TOTAL WEIGHT = 17 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY LUMBER N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER BEARINGS FACTORED DESIGN CRITERIA LUMBER DESCR. SIZE F - B A - C F - D 2x4 2x4 MAXIMUM FACTORED INPUT REORD SPECIFIED LOADS: DRY No 2 SPF LL = 32.5 DL = 6.0 LL = 0.0 DL = 7.4 AD = 45.9 DRY GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ U No.2 BRG TOP CH. PSF PSF PSF 2x4 No.2 BOT CH. 409 409 5-8 1-8 1-8 1-8 0 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF 218 218 PSF TOTAL LOAD SPACING = 24.0 IN. C/C SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 UNFACTORED REACTIONS W 4.0 2.0 LEN Y 6.0 E 4.0 COMPONENT REACTIONS
LIVE PERM.LIVE V
0/0 0/0 1ST LCASE COMBINED 9, NBCC 2015 MAX WIND Edge THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 216/0 0/0 BMW+w MT20 284 0/0 69/0 126/0 0/0 0/0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F - TPIC 2014 (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/399 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. LOADING TOTAL LOAD CASES: (5) CSI: TC=0.29/1.00 (B-C:1) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.13/1.00 (B-C:1) FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CS1 (LC) UNBF
FROM TO LENG
0.0 0.05 (1) 7.0.
-112.4 -112.4 0.16 (5) 10.
-112.4 -112.4 0.29 (1) 10.0 MAX. FACTORED MAX. FACTORED MEMB. FORCE мемв. FORCE CSI (LC) UNBRAC LENGTH FR-TO DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1,10 SHEAR=1.10 TENS= 1.10 (LBS) (LBS) CSI (LC) FR-TO F-B A-B B-C -374 / 0 7.81 B-E 0/0 0.00 (1) COMPANION LIVE LOAD FACTOR = 1.00 0/0 10.00 F-E -18.5 -18.5 0.07 (4) -18.5 -18.5 0.08 (4) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. NAIL VALUES CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PLATE PLACEMENT TOL. = 0.250 inches PROFESSIONAL ENGINEER

4/02/24

C. M. HEYENS PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.23 (B) (INPUT = 0.90) JSI METAL= 0.10 (B) (INPUT = 0.95) 100505065 NOVINCE OF ONTERIO STRUCTURAL COMPONENT ONLY DWG # TR24040007

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** DRWG NO. 436388 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.630 S Aug 30 2023 MiTek Industries, Inc. Tue Apr 2 10:52:54 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-CSp8CdgUcvq2MBGNp5 UnHGKA?vFvJBh4pX oyzUo4t 10.00 12 4x6 II Е D 2x4 \\ 1-10-8 0-0 1-6-0 1-9-7 1-10-8 TOTAL WEIGHT = 12 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER LUMBER N. L. G. A. RULES CHORDS SIZE BUILDING BEARINGS FACTORED **DESIGN CRITERIA** LUMBER DESCR SIZE F - B A - C F - D No.2 No.2 SPF MAXIMUM FACTORED GROSS REACTION INPUT DRY SPECIFIED LOADS: DRY LL = 32.5 PSF DL = 6.0 PSF LL = 0.0 PSF DL = 7.4 PSF DAD = 45.9 PSF **GROSS REACTION** BRG BRG TOP CH. SPF HORZ UPLIFT IN-SX No.2 VERT HORZ DOWN IN-SX 334 334 40 MECHANICAL ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF TOTAL LOAD A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8. SPACING = 24.0 IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 W LEN Y 4.0 6.0 Edge 2.0 4.0 SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D 9. NBCC 2015 BEF THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 BMW+w MT20 PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT UNFACTORED REACTIONS 1ST LCASE COMBINED Edge - INDICATES REFERENCE CORNER OF PLATE MAX TOUCHES EDGE OF CHORD. SOIL UVE 0/0 0/0 231 183 / 0 0/0 0/0 48/0 DESIGN ASSUMPTIONS
-OVERHANG NOT TO BE ALTERED OR CUT OFF. 23 / -35 NOTES- (1)

1) Lateral braces to be a minimum of 2X4 SPF #2. <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00") ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. LOADING TOTAL LOAD CASES: (5) CHORDS CSI: TC=0.15/1.00 (A-B:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (B-C:1) MAX FACTORED FACTORED MAX. FACTORED FACTORED
VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO
0.0 0.0 0.04 (1) 7.81 B-E
-112.4 -112.4 0.15 (1) 10.00
-112.4 -112.4 0.15 (1) 6.25 MEMB. FORCE (LBS) **FORCE** CSI (LC) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 (LBS) FR-TO F-B A-B B-C -317 / 0 0 / 50 0.00 (1) COMPANION LIVE LOAD FACTOR = 1.00 -39 / 0 F-E E-D -18.5 -18.5 0.02 (4) -18.5 -18.5 0.01 (4) 10.00 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 PROFESSIONAL ENGINEERS PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.20 (B) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 0.95) 100505065 BOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040001

JOB NAME TRUSS NAME QUANTITY JOB DESC. **BAYVIEW WELLINGTON** PLY DRWG NO 436388 C2 TRUSS DESC Version 8.630 S Aug 30 2023 MITEk Industries, Inc. Tue Apr 2 10:52:55 2024 Page 1 ID:GRmvuh1dyQr3nydBfsTFcCy6OGI-geNWPyg6NDyv LrZMoVjKVpVkPEWemQrlTHXLOzUo4s Tamarack Roof Truss, Burlington С 10.00 12 4x6 || 38 E 2x4 \\ D 1-11-4 1-11-4 0-0 1-6-0 1-11-4 3-10-8 TOTAL WEIGHT = 14 lb LUMBER N. L. G. A. RULES CHORDS SIZE F - B 2x4 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BUILDING BEARINGS FACTORED **DESIGN CRITERIA** SIZE LUMBER DESCR SPF DRY No.2 No.2 MAXIMUM FACTORED REQRD SPECIFIED LOADS: LL = DL = LL = DL = AD = GROSS REACTION DRY GROSS REACTION BRG BRG TOP CH. 32.5 PSF DOWN 352 HORZ 0 UPLIFT IN-SX 1-8 1-8 6.0 0.0 7.4 PSF PSF - D 2x4 DRY No.2 SPF JT VERT HORZ IN-SX 0 -51 BOT CH. ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF No.2 C 40 1-8 TOTAL LOAD SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C , D SPACING = 24.0 IN. C/C PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART PLATES (table is in inches)
JT TYPE PLATES W 4.0 2.0 3.0 LEN Y 6.0 E 4.0 UNFACTORED REACTIONS 9, NBCC 2015 TMVW+p MT20 COMPONENT REACTIONS
LIVE PERM,LIVE Ä Edge MA) SNOW COMBINED BMW+v JT SOIL 0/0 0/0 0/0 THIS DESIGN COMPLIES WITH: 183 / 0 62 / 0 4 / 0 29 / 0 BMV1+p MT20 245 0/0 0/0 0/0 - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) 23 / -35 0/0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. CSA 086-14 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F. C DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. NOTES- (1)
1) Lateral braces to be a minimum of 2X4 SPF #2. BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. (55 % OF 43.9 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 32.5 P.S.F. SPECIFIED ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01") LOADING TOTAL LOAD CASES: (5) CHORDS MAX. FACTORED FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO
0.0 0.0 0.04 (1) 7.81 B-E CSI: TC=0.17/1.00 (A-B:5) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.10/1.00 (A-B:5) MEMB. FORCE MAX CSI (LC) (LBS) (LBS) 0.0 0.0 0.04 (1) -112.4 -112.4 0.17 (5) -112.4 -112.4 0.16 (5) -317 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 F-B 0/0 0.00(1)10.00 A- B B- C 0 / 50 COMPANION LIVE LOAD FACTOR = 1.00 -18.5 -18.5 0.07 (4) -18.5 -18.5 0.08 (4) -18.5 -18.5 0.08 (4) F-E 10.00 10.00 0/0 G-D 0/0 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. SPECIFIED CONCENTRATED LOADS (LBS) TYPE MÀX+ FACE HEEL LC1 MAX-CONN. NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) BACK VERT TOTAL CONNECTION REQUIREMENTS (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. PROFESSIONAL ENGINEERS

4/02/24

C. M. HEYENS

REPROFESSIONAL ENGINEERS

C. M. HEYENS CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.20 (B) (INPUT = 0.90) JSI METAL= 0.08 (B) (INPUT = 0.95) 100505065 NOVINCE OF ONTARIO STRUCTURAL COMPONENT ONLY DWG # TR24040002

EWP DESIGN INC.

(905) 832-2250

FAX (905) 832-0286

RESPONSIBILITIES AND SPECIFICATIONS

RESPONSIBILITIES

- 1. EWP DESIGN INC. is responsible for the design of trusses as individual components.
- It is the responsibility of others to ascertain that the design loads utilized on each
 drawing meet or exceed the actual dead load imposed by the structure, the live load
 imposed by the intended use and the snow load imposed by local building code or
 authorities with jurisdictions.
- 3. All dimensions are to be verified by the owner, contractor, architect or other authorities with jurisdictions before truss fabrication.
- 4. EWP DESIGN INC. bears no responsibility for the erection of trusses. Persons erecting trusses are cautioned to seek professional advice regarding the temporary and permanent bracing for the system. Bracing shown on EWP DESIGN INC. drawing is specified for the truss as a component only and forms an integral part of the truss design.
- 5. It is the truss manufacturer's responsibility to ensure that trusses are manufactured in conformance with specifications of EWP DESIGN INC. as outlined below.

SPECIFICATIONS

- 1. Trusses designed by EWP DESIGN INC. conform to the relevant section of the Ontario Building Code of Canada (Part 9 or Part 4) or to the Canadian code for farm buildings, whichever applies to the building type, as indicated on the EWP DESIGN INC. drawings, and conform to the design procedures established by the Truss Plate Institute of Canada. Unit stresses used for truss designs are as per the edition of CSA-O86 shown on EWP DESIGN INC. drawings.
- 2. Lumber is to be the size, species and grade as specified on EWP DESIGN INC. drawings.
- 3. Moisture content of lumber shall not exceed 19% in service unless specified otherwise.
- 4. Metal connector plates shall be applied to both faces of truss at each joint and shall be positioned as specified.
- 5. Top chords of trusses are assumed to be continuously braced laterally by roof sheathing or by purlins at intervals not exceeding 12.5 times the thickness of top chord member.
- 6. Bottom chords shall be laterally braced at intervals not exceeding 3M (10') o.c., where rigid ceiling is not applied directly to the underside of chords.

THESE DRAWINGS CONSTITUTE THE PROPERTY OF EWP DESIGN INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY THE ALPA LUMBER GROUP, AND WILL BE RETRACTED BY EWP DESIGN INC. IF UTILIZED FOR ANY OTHER PURPOSE.

STANDARD DETAIL MSD2015-H

Issued: SEPTEMBER 22, 2020

Expiry: APRIL 30, 2022

TOE-NAIL CAPACITY DETAILS

LATERAL AND WITHDRAWAL RESISTANCE OF BEARING ANCHORAGE BY TOE-NAILS

			SPF	D. FIR	SPF	D. FIR
COMMON	3.00	0.144	. 122	139	30	42
WIRE	3.25	0.144	127	144	32	45
	3.50	0.160	152	173	38	52
COMMON	3.00	0.122	96	108	26	36
SPIRAL	3.25	0.122	97	108	28	40
JF IIIAL	3.50	0.152	142	161	36	50
3.25" Gun nail	3.25	0.120	94	105	28	39

Note: If using truss with D. Fir lumber and SPF bearing plate, use tabulated SPF values in table.

Nail typ	oe:	Common wire	Common spiral	Common wire	Common spiral	Gun Nail
Diamet	er (in.)	0.160	0.152	0.144	0.122	0.120
Length	(in.)	3.50	3.50	3.00	3.00	3.25
2x4 S	PF	2	2	3	3	3
2x6 S	PF	4	4	4	5	5
2x4 D	. FIR	2	2	2	2	2
2x6 D	. FIR	3	3	3	4	4

Figure 1: Toe-Nailing Rafter / Ceiling Member to Girder Truss

December 21, 2020

STANDARD DETAIL MSD2015-H

Issued: SEPTEMBER 22, 2020

Expiry: **APRIL 30, 2022**

TOE-NAIL CAPACITY DETAILS

Figure 2: Toe-Nail Anchorage to Bearing Plate for Uplift

NOTES:

- Rafter and ceiling members may be connected to top and bottom chords of girder truss by toe-nailing the members into
 the girder chords (see fig. 1), provided the factored vertical reactions of the supported members do not exceed the
 lateral resistance of the toe-nails. Mechanical connectors (hangers) are required if factored vertical reactions exceed
 the toe-nail capacity, or if the connection must resist horizontal loads (loads perpendicular to the face of girder or rafter).
- 2. Trusses, rafters or ceiling members may be anchored to the bearing plate with toe-nails (see fig. 2), provided that the factored uplift reactions due to wind or earthquake loads do not exceed the withdrawal resistance of the toe-nails. Mechanical anchors (tie-downs) are required for reactions that exceed the toe-nail withdrawal capacity. Toe-nail anchorage to bearing plates is NOT permitted if uplift reactions are generated from gravity loads (snow, floor live, dead).
- 3. Tabulated toe-nail resistances on page 1 are for **one** toe-nail. Multiply unit values by the number of nails used in the connection. Maximum number of nails in a connection shall not exceed the tabulated limits shown on page 1 for a given lumber size /species.
- 4. Nail values are based on specific gravity of G = 0.42 (SPF) and G = 0.49 (D. Fir).
- 5. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member.
- 6. For wind / earthquake loads, tabulated lateral resistances may be multiplied by 1.15 (K_D factor). No increases are permitted for tabulated withdrawal resistances.
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA 086-19, Clause 12.9.

Page 2 of 2

December 21, 2020

LUS — Double-Shear Joist Hangers

SIMPSON Strong-Tie

LUS28

Н

All LUS hangers have double-shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA O86-14 and CSA O86:19.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire
- Double-shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Options:

• These hangers cannot be modified

Typical LUS Installation

			Dimensi	one (in	1	Facts	eners	Fa	actored Re	sistance (l	b.)
Model				0113 (111	·/	, usu	JII (1) (1)	D.F	ir–L	S-I	P-F
No.	Ga.	w	н	_		F	1-:-4	Uplift	Normal	Uplift	Normal
		VV	П	В	d _e ¹	Face	Joist	(K _D =1.15)	$(K_D=1.00)$	(K _D =1.15)	$(K_D = 1.00)$
LUS24	18	1%16	31/8	13/4	1 15/16	(4) 10d	(2) 10d	710	1630	645	1155
LUS24-2	18	31/8	31/8	2	1 ¹³ / ₁₆	(4) 16d	(2) 16d	835	2020	590	1435
LUS26	18	19/16	4¾	13/4	3%	(4) 10d	(4) 10d	1420	2170	1290	1630
LUS26-2	18	31/8	4%	2	4	(4) 16d	(4) 16d	1720	2595	1545	1920
LUS26-3	18	45/8	43/16	2	31/4	(4) 16d	(4) 16d	1720	2595	1545	2340
LUS28	18	19/16	6%	13/4	3¾	(6) 10d	(6) 10d	1420	2520	1290	1790
LUS28-2	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575
LUS28-3	18	45/8	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375
LUS210	18	19/16	7 13/16	13/4	3%	(8) 10d	(4) 10d	1420	2785	1290	2210
LUS210-2	18	31/8	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195
LUS210-3	18	45/8	83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375

^{1.} de is the distance from the seat of the hanger to the highest joist nail.

Dome doubleshear nailing prevents tabs breaking off (available on some models).

US Patent 5,603,580

Doubleshear nailing top view.

This technical bulletin is effective until December 31, 2024, and reflects information available as of July 1, 2022. This information is updated periodically and should not be relied upon after December 31, 2024. Contact Simpson Strong-Tie for current information and limited warranty or see strongtle.com.

HUS/LJS — Double-Shear Joist Hangers

SIMPSON
Strong-Tie

All hangers have double-shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: See table Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA O86-14 and CSA O86:19.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Options:

- · Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- Double-shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

See current catalogue for options

LJS26DS

HUS210 (HUS26, HUS28, similar)

Typical HUS Installation

Typical HUS Installation (Truss designer to provide fastener quantity for connecting multiple members together)

		Di	mensi	ons (ii	1.)	Fas	teners		Factored Re	sistance (lb.)
84-4-1							····	D.F	ir–L	S-I	'-F
Model No.	Ga.	w	н	В	d _e ¹	Face	Joist	Uplift (K _D =1.15)	Normal (K _D =1.00)	Uplift (K _D =1.15)	Normal (K _D =1.00)
								lb.	lb.	lb.	lb.
LJS26DS	18	19/16	5	31/2	45/8	(16) 16d	(6) 16d	2055	4265	1460	4115
HUS26	16	1%	5%	3	315/16	(14) 16d	(6) 16d	2705	4940	2065	3875
HUS28	16	15/8	73/32	3	63/32	(22) 16d	(8) 16d	3605	5365	2675	4345
HUS210	16	15/8	93/32	3	731/32	(30) 16d	(10) 16d	4505	5795	4010	4740
HUS1.81/10	16	113/16	9	3	8	(30) 16d	(10) 16d	4505	6450	4010	5200

1. de is the distance from the seat of the hanger to the highest joist nail.

Dome doubleshear nailing prevents tabs breaking off (available on some models).

US Patent 5,603,580

Doubleshear nailing side view. Do not bend tab back.

Doubleshear nailing top view.

This technical bulletin is effective until December 31, 2024, and reflects information available as of July 1, 2022. This information is updated periodically and should not be relied upon after December 31, 2024. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

HGUS — Double-Shear Joist Hangers

All HGUS hangers have double-shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA O86-14 and CSA O86:19.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:

- · Use all specified fasteners
- Nails: 16d = 0.162" dia x 3½" long common wire
- Double-shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Options:

• See current catalogue for options

		г	Dimensi	one (in	١	Faste	nore	Fa	actored Re	sistance (II).)
Model			MINGHA!	una (m.	.,	1 4315	11019	D.Fi	r–L	S-	P-F
No.	Ga.			_	١	F	1-1-4	Uplift	Normal	Uplift	Normal
		W	Н	В	d _e ¹	Face	Joist	(K _D =1.15)	(K _D =1.00)	(K _D =1.15)	$(K_D=1.00)$
HGUS26	12	1%	5%	5	4 5/32	(20) 16d	(8) 16d	2685	6625	2685	5700
HGUS26-2	12	35/16	51/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-3	12	4 15/16	5½	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-4	12	6%	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS28	12	1%	7 1⁄8	5	61/8	(36) 16d	(12) 16d	3310	7675	3100	6900
HGUS28-2	12	35∕16	73/16	4	61/8	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS28-3	12	4 15/16	71/4	4	6%	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS28-4	12	6%	73/16	4	61/8	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS210-2	12	35/16	93/16	4	81/8	(46) 16d	(16) 16d	6840	14015	4855	10270
HGUS210-3	12	4 15/16	91/4	4	8%	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS210-4	12	6%16	93/16	4	81/8	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS212-4	12	6%	10%	4	101/8	(56) 16d	(20) 16d	7640	14995	5425	10645
HGUS214-4	12	6%16	12%	4	11 1/8	(66) 16d	(22) 16d	10130	16400	7195	11645

^{1.} de is the distance from the seat of the hanger to the highest joist nail.

Dome doubleshear nailing prevents tabs breaking off (available on some models).

US Patent 5,603,580

Doubleshear nailing side view. Do not bend tab back.

Doubleshear nailing top view.

Typical HGUS Installation (Truss designer to provide fastener quantity for connecting multiple members together)

This technical bulletin is effective until December 31, 2024, and reflects information available as of July 1, 2022. This information is updated periodically and should not be relied upon after December 31, 2024. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

H — Seismic and Hurricane Ties

The H connector series provides wind and seismic ties for trusses and rafters.

Material: 18 gauge Finish: G90 galvanized

Design:

- Factored resistances are in accordance with CSA 086-14 and CSA 086:19.
- Factored resistances have been increased 15%. No further increase is permitted.

- Use all specified fasteners
- Nails: 8d = 0.131" dia. x 2½" long common wire, 8d x 1½" = 0.131" x 1½ long, $10d \times 1½$ " = 0.146" x 1½" long
- H1 can be installed with flanges facing outwards
- · Hurricane ties do not replace solid blocking

Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows: Factored Shear/Resisting Shear + Factored Tension/Resisting Tension ≤ 1.0.

Hurricane Tie Installations to Achieve Twice the Load (Top View)

Nailing into both sides of a single ply 2x truss may cause the wood to split.

H2A Installation

H2.5T

H2.5T Installation (Nails into both top plates)

			Fasteners			Fac	tored Re	sistance	(lb.)	
84-1-1			rasiciicis			D.Fir-L			S-P-F	
Model No.	Ga.				Uplift	Nor	mal	Uplift	Nor	mal
NO.		To Rafter	To Plates	To Studs	Opini	F ₁	F ₂	Opini	F ₁	F ₂
						(K _D =1.15)			(K _D =1.15)	
H1	18	(6) 8d x 11/2"	(4) 8d	_	740	685	300	680	485	215
H2A	18	(5) 8d x 1½"	(2) 8d x 11/2"	(5) 8d x 11/2"	830	220	75	590	155	55
H2.5A	18	(5) 8d	(5) 8d	_	805	160	160	755	160	160
H2.5T	18	(5) 8d	(5) 8d	_	835	175	240	740	160	210
Н3	18	(4) 8d	(4) 8d	_	740	180	265	615	125	190
H10A	18	(9) 10d x 11/2"	(9) 10d x 11/2"		1735	795	410	1505	565	290

- 1. Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- 2. Factored resistances are for one anchor. A minimum rafter thickness of 21/2" must be used when framing anchors are installed on each side of the joist and on the same side of the plate.
- 3. When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- 4. Hurricane ties are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable. For a Continuous Load Path, connections must be on same side of the wall.

This technical bulletin is effective until December 31, 2024, and reflects information available as of July 1, 2022. This information is updated periodically and should not be relied upon after December 31, 2024. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com

TECH-NOTES

TN 15-001 Piggyback Bracing

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

Disclalmer:

OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technote are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to the information provided but has developed this technote to offer guidance where it is not currently readily available.

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x.y offsets are indicated.
Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0-1/2" from outside

required direction of slots in This symbol indicates the connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

width measured perpendicular to slots. Second dimension is the length parallel to slots. The first dimension is the plate

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

Industry Standards:

Truss Design Procedures and Specifications for Light Metal Plate Connected Wood Trusses

Design Standard for Bracing. Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses, DSB-89: BCSI:

Numbering System

dimensions shown in ft-in-sixteenths or mm (Drawings not to scale) 648

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO 꿅떋

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MITek® All Rights, Reserved

Milek Engineering Reference Sheet: Mil-7473C rev. 10-'08 POWER TO PERFORM."

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative T, I, or Eliminator bracing should be considered. 4
- Never exceed the design loading shown and never stack materials on inadequately braced trusses. mi
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties. पं
- Cut members to bear tightly against each other. ıç,
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by TPIC. ٠,
- Design assumes frusses will be suitably profected from the environment in accord with TPIC. 7
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. œi
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. ۶.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chards require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
 - 16. Do not cut or alter truss member or plate wilhout prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all partions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with TPIC Quality Criteria.

STANDARD DETAIL MSD2015-P

Issued: APRIL 27, 2022 Expiry: APRIL 30, 2024

ALTERNATIVE WEB BRACING SOLUTIONS

The scab brace detail shown on this page provides an alternative method of bracing compression webs of single ply trusses. Where the original exceed the tabulated values shown below. This detail applies to web lengths of 4.0 ft. to 10.0 ft. only. For intermediate web lengths, do not design calls for web bracing, the scab-brace is an acceptable alternative provided that the factored axial force in the web member does not interpolate, use the tabulated value of the longer length. (ex. For a 6.25 ft. web, use the tabulated values for a 6.5 ft. web)

Top Chord

		Maximu	m factored w	veb force, lb:	Maximum factored web force, lbs (1-Ply Truss)	(\$3
	Web	2x3	2x4	2x5	2x6	2x8+
4.0		4331	6064	7796	9529	12561
		3794	5312	6859	8347	11003
		3285	4599	5913	7227	9527
5.5		2823	3952	5081	6210	8186
		2415	3381	4347	5313	7003
		2063	2888	3713	4538	5982
		1763	2468	3174	3879	5113
18		1510	2114	2718	3322	4379
NE 8.0		1297	1816	2335	2854	3762
7 8.5		1117	1564	2011	2458	3240
9.0		996	1353	1740	2126	2803
9.5		840	1176	1512	1848	2436
10.0		733	1027	1320	1614	2127

Bottom Chord

NOTES:

- This detail CANNOT be used to repair damaged webs.
- Scab and web sizes must be equal (i.e. use a 2x6 scab on a 2x6 web, etc.).
- Scab & web lumber must be DRY (≤ 19% moisture content) at time of installation.
- Scab must cover minimum 90% of the entire length of web.

For 2x12 webs use 2x10 nail pattern, but with 5 rows of nails instead of 4 rows.

- This detail is for webs loaded axially only (not for axial/bending members). ဖ်
 - Web and scab lumber shall be SPF No. 2 (or better) grade.
- Tabulated resistances are for standard load duration only (K_D =1.0) and DRY service conditions ($K_S = 1.0$). Do not use detail for WET service applications.
- This detail shall be used only in conjunction with sealed MiTek truss drawings. o,

+ 0.122" dia. x 3.0" nail driven from front face o 0.122" dia. x 3.0" nail driven from back face

Note: Connect scabs to truss along their entire length.

SE 2022-05-03 AT SE Cordogiennis FE AOUNCE OF ONTRAIO 6.0 2.5"

.0.1 .0.

1.25"

1.25"

Page 1 of 2

©2021 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, www.mitek.ca

STANDARD DETAIL MSD2015-P

Expiry: APRIL 30, 2024 Issued: APRIL 27, 2022

ALTERNATIVE WEB BRACING SOLUTIONS

The scab brace detail shown on this page provides an alternative method of bracing compression webs of 2-PLY trusses. Where the original design calls for web bracing, the scab-brace is an acceptable alternative provided that the maximum factored axial force in the web member does not exceed the tabulated values shown below. This detail applies to web lengths of 4.0 Ft. to 10.0 Ft. only. For intermediate web lengths, do not interpolate, use the tabulated value of the longer length. (ex. For a 6.25 ft. web, use the tabulated values for a 6.5 ft. web)

Top Chord

		Maximur	n factored w	Maximum factored web force, lbs (2-Ply Truss	s (2-Ply Trus	ss)
	Web	2x3	2x4	2x5	2x6	2x8+
4.0		8663	12128	15593	19058	25122
4.5	10	7588	10623	13659	16694	22006
5.0		6570	9198	11826	14455	19054
H.)	10	5645	7903	10162	12420	16371
). H		4830	6762	8694	10626	14007
	10	4126	5776	7426	9077	11965
N =		3526	4937	6347	7758	10226
П1 11		3020	4228	5436	6644	8758
≅		2594	3632	4670	5708	7524
W ≅		2235	3128	4022	4916	6480
9.0	_	1933	2706	3479	4253	5606
3.6	10	1680	2352	3024	3696	4872
10.0	_	1467	2054	2640	3227	4254

Bottom Chord Scab Brace 90% Web Length (Back) Scab Brace SCAB CONNECTION: 2-PLY TRUSS (Front) SCAB BRACE DETAIL 2-PLY TRUSS

PEO Certificate No. 10889485

+ MITEK MIFLK006 Screw @ 8 in. cc

SO22-05-03 SO C. Cordogiannis and C. Cordogiannis POUNCE OF ONTRAIO Note: Connect scabs to truss along their entire length.

Page 2 of 2

10.

©2021 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, www.mitek.ca

Ensure scabs will not interfere with incoming trusses, prior to using this detail.

This detail is for webs loaded axially only (not for axial/bending members).

Tabulated resistances are for standard load duration only (KD=1.0) and DRY

service conditions ($K_S = 1.0$). Do not use detail for WET service applications.

This detail shall be used only in conjunction with sealed MiTek truss drawings.

Scabs must cover 90% of the entire length of web and installed on both faces.

This detail shall NOT apply to vertical webs used for girder load transfer.

Web & scab lumber to be SPF No. 2 (or better) grade.

Scab sizes must be equal to web size (i.e. use a 2x6 scab on a 2x6 web, etc.).

This detail CANNOT be used to repair damaged webs.

NOTES: