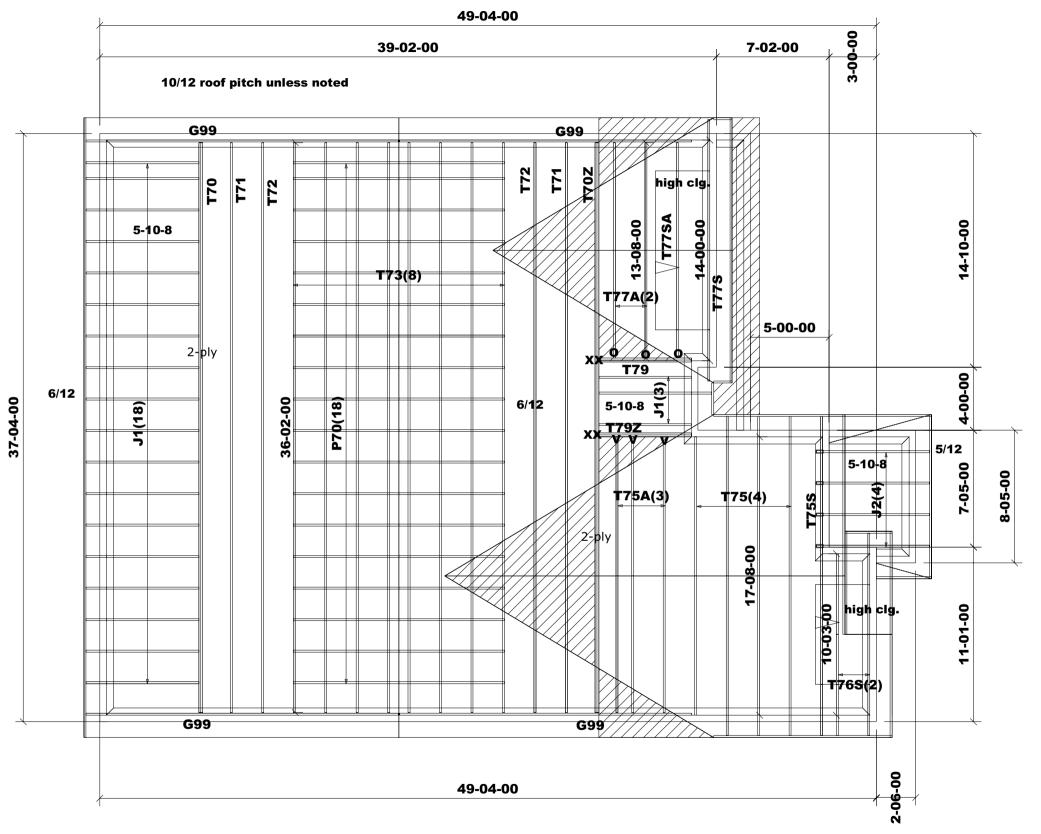


REVIEWED FOR COMPLIANCE WITH THE ONTARIO BUILDING CODE AND THE APPLICABLE ZONING BY-LAW

20.130034.000.00.CM


LAMPONE INVESTMENT INCONSTRUCTION SHALL COMPLY WITH THE ONTARIO BUILDING CODE.

CITY OF MARKHAM

ROOF TRUSS SHOP DRAWINGS

MODEL NAME: KIMBERLY 4

ELEV 1, 2 & 3

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

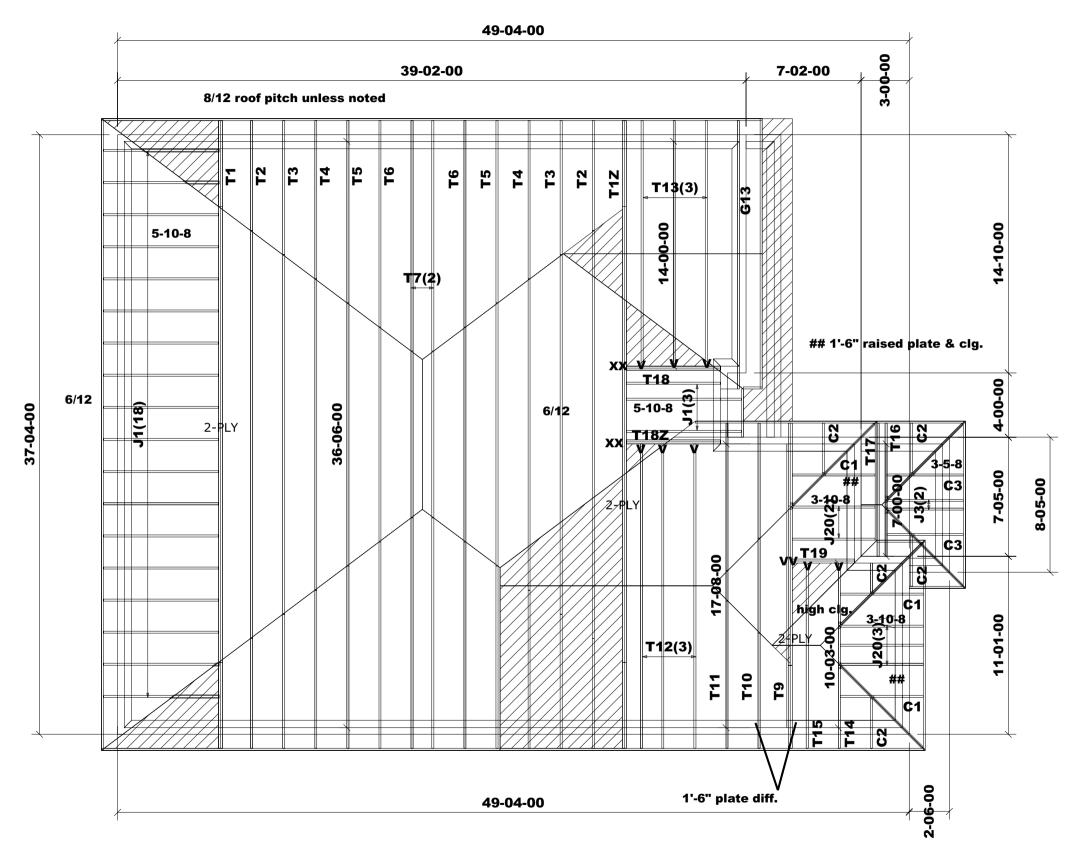
DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 31.35 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 25.6 psf TCDL = 6.0 psf

BCLL = 0.0 psf

BCDL = 7.4 psf


HARDWARE:

LUS24 - (**0**) LJS26DS - (**V**) HGUS26-2 - (**XX**)

\triangle	\searrow
TAMA ROOF TRU	

Job Track:	-4.50	Builder / Location:			Model / Elevation: Mitek ver 8.3.3.247
Job Track: 5			PARK HOMES	/ MARKHAM	KIMBERLY 4 / 1
Layout ID: 4	110045	Project: I AMDON	IE INVESTMENT	SINC	THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER
Plan Log: 2	00000	LAMIFON	IL HAAFO HAIFIAH	3 1140	THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED
	202866	Date: 2020-10-15	Designer: JG		TAMARACK ROUF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROUF TRUSSES INC IF UTLILZED FOR ANY OTHER PLIREPOSE

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 31.35 psf | Sr = 8.4 psf

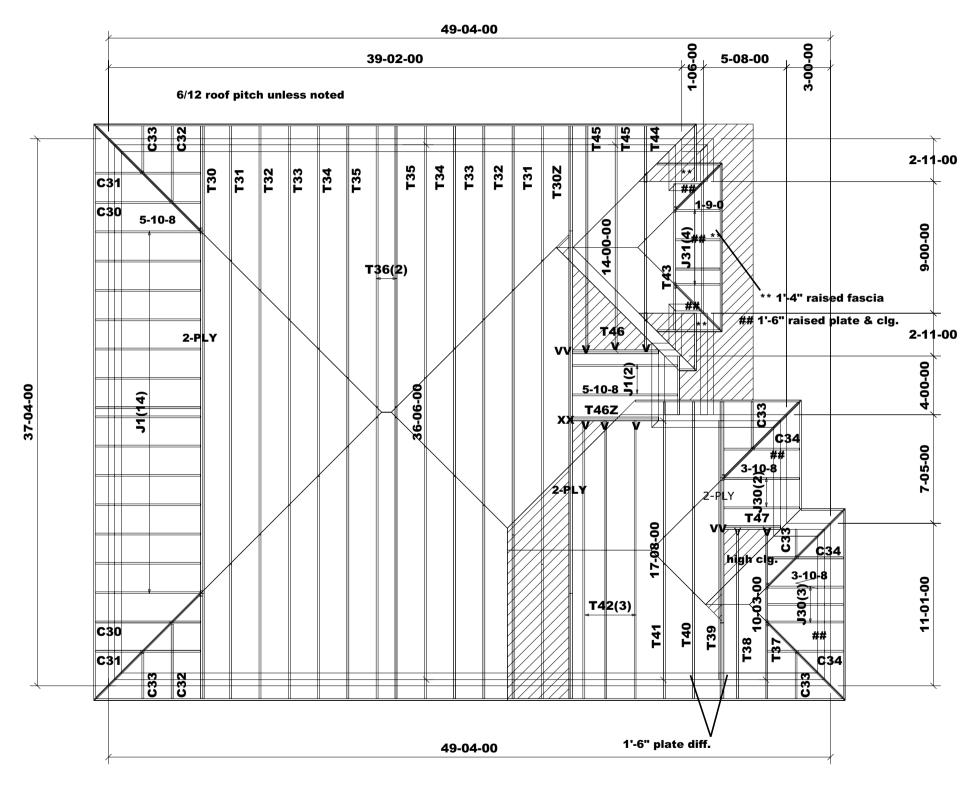
DESIGN LOADS:

TCSL = 25.6 psf TCDL = 6.0 psf

BCLL = 0.0 psf

BCDL = 7.4 psf

HARDWARE:


LJS26DS - (**V**) HGUS26-2 - (**XX**) LUS26-2 - (VV)

DENOTES:
CONVENTIONAL
FRAMING

TAMARACK ROOF TRUSSES INC.	

Job Track: 51453
Layout ID: 410046
Project: LAMPONE INVESTMENTS INC
Plan Log: 202866

Builder / Location: Model / Elevation: KIMBERLY 4 / 2
THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC IF UTLIZED FOR ANY OTHER PURPOSE.

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

All conventional framing to conform with Part 9 of O.B.C. 2012 (2019 amendment). Roof rafters that cross over or meet trusses to be min. 2x4 SPF #2 @ 24" o/c with a vertical post to the truss at each cross point. Vertical posts longer than 6' to have lateral bracing so that the distance between the post end points and lateral bracing does not exceed 6'.

DESIGN CONFORMS WITH OBC 2012 (2019 amendment) OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 31.35 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 25.6 psf TCDL = 6.0 psf

BCLL = 0.0 psf

BCDL = 7.4 psf

HARDWARE:

LJS26DS - (**V**) HGUS26-2 - (**XX**) LUS26-2- (VV)

^	Job Track: FAAFO	Builder / Location:	Model / Elevation: Mitek ver 8.3.3.247
	Job Track: 51453	GREEN PARK HOMES / MARKH	
	Layout ID: 410047	GREEN PARK HOMES / MARKH	THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE
TAMADACK	410047	Project: LAMPONE INVESTMENTS INC	REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER
TAMARACK	Plan Log: 202066	LAWIFONE INVESTIMENTS INC	THAN THE MANUFACTURE OF TRUSSES BY
ROOF TRUSSES INC.	Plan Log: 202866	Date: 2020-10-15 Designer: JG	TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTLILZED FOR ANY OTHER PURPOSE.

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

LAMPONE INVESTMENTS INC

Location:

MARKHAM KIMBERLY 4

1

Model: Lot #:

Elevation:

Job Track:

PlanLog:

51453 202866 410045

Layout ID: Ref#

Page:

1 of 2

Date:

08-06-2020

Designer:

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK				· - · ·	OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T70 Flat Girder	0 /12	36-02-00	4-01-04	2 x 6		4-01-04 4-01-04	371.88 226.00		
	1 2-ply	T70Z Flat Girder	0 /12	36-02-00	4-01-04	2 x 6		4-01-04 4-01-04	371.88 226.00		
	2	T71 Flat	0 /12	36-02-00	5-01-04	2 x 6		5-01-04 5-01-04	382.15 237.00		
	2	T72 Flat	0 /12	36-02-00	6-01-04	2 x 6		6-01-04 6-01-04	400.42 245.00		
	8	T73 Flat	0 /12	36-02-00	7-01-04	2 x 6		7-01-04 7-01-04	1677.13 1032.00		
	4	T75 Common	10 /12	17-08-00	9-00-00	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	344.65 217.33		
	3	T75A Common	10 /12	17-08-00	9-00-00	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	251.63 159.00		
	1	T75S Roof Special	10 /12	17-08-00	9-00-00	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	91.89 59.17		
	2	T76S Roof Special	10 /12	10-03-00	5-10-15	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	110.51 74.33		
	1	T77S Roof Special	10 /12	14-00-00	7-05-11	2 x 4	1-03-08 1-03-08	1-07-11 1-07-11	69.2 46.33		
	1	T77SA Roof Special	10 /12	13-08-00	7-05-11	2 x 4		1-09-05 1-09-05	64.3 43.67		
	2	T77A Common	10 /12	13-08-00	7-05-11	2 x 4		1-09-05 1-09-05	123.42 81.67		
	1 2-ply	T79 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		
	1 2-ply	T79Z Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

LAMPONE INVESTMENTS INC

Location: Model:

MARKHAM KIMBERLY 4

1

Lot #:

Elevation:

Job Track:

PlanLog:

Layout ID:

51453 202866

410045

Ref#

Page:

2 of 2

Date:

08-06-2020

Designer:

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK	_		• • •		OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	4	G99 GABLE	6 /12	18-06-08	10-05-04	2 x 4	1-03-08	1-02-00 10-05-04	374.35 229.33		
	18	P70 Common	6 /12	13-04-12	3-04-04	2 x 4		0-01 0-01	684.81 435.00		
	21	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	352.68 224.00		
	4	J2 Jack-Open	5 /12	5-10-08	3-05-15	2 x 4	1-03-08	1-00-09 3-05-15	65.32 40.00		

TOTAL #TRUSS= 81

TOTAL BFT OF ALL TRUSSES= 3651.17

BFT.

TOTAL WEIGHT OF ALL TRSSES 5853

LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
3	Hardware	LJS26DS	
3	Hardware	LUS24	

TOTAL NUMBER OF ITEMS= 8

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

LAMPONE INVESTMENTS INC

Location: Model: MARKHAM KIMBERLY 4

2

Lot #:

Elevation:

Job Track: PlanLog: 51453 202866

Layout ID:

410046

Ref#

Page:

1 of 3

Date:

08-06-2020

Designer:

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T1 Hip Girder	8 /12	36-06-00	4-01-06	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	387.89 238.00		
	1 2-ply	T1Z Hip Girder	8 /12	36-06-00	4-01-06	2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	387.89 238.00		
	2	T2 Hip	8 /12	36-06-00	5-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	345.94 215.67		
	2	T3 Hip	8 /12	36-06-00	6-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	356.75 222.00		
	2	T4 Hip	8 /12	36-06-00	7-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	363.18 224.33		
	2	T5 Hip	8 /12	36-06-00	8-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	378.65 233.00		
	2	T6 Hip	8 /12	36-06-00	9-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	383.87 235.67		
	2	T7 Hip	8 /12	36-06-00	10-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	397.28 244.00		
	1 2-ply	T9 Hip Girder	8 /12	17-08-00	3-11-13	2 x 4 2 x 6	1-03-08 1-03-08	1-04-13 1-04-13	167.33 104.00		
	1	T10 Hip	8 /12	17-08-00	6-09-13	2 x 4	1-03-08 1-03-08	2-10-13 2-10-13	79.44 50.50		
	1	T11 Hip	8 /12	17-08-00	8-01-13	2 x 4	1-03-08 1-03-08	2-10-13 2-10-13	92.28 59.33		
	3	T12 Common	8 /12	17-08-00	8-09-08	2 x 4	1-03-08 1-03-08	2-10-13 2-10-13	263.4 166.00		
	3	T13 Common	8 /12	14-00-00	6-00-13	2 x 4	1-03-08	1-04-13 1-04-13	176.22 111.00		
	1	G13 GABLE	8 /12	14-00-00	6-00-13	2 x 4	1-03-08 1-05-00	1-04-13 1-04-13	61.57 40.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

LAMPONE INVESTMENTS INC

Location:

MARKHAM KIMBERLY 4

2

Model: Lot #:

Elevation:

Job Track:

PlanLog:

51453 202866

Layout ID:

410046

Ref#

Page:

2 of 3

Date:

08-06-2020

Designer:

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T14 Hip Girder	8 /12	10-03-00	3-11-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	46.14 30.00		
	1	T15 Common	8 /12	10-03-00	4-09-13	2 x 4	1-03-08 1-03-08	1-04-13 1-04-13	43.15 26.83		
	1	T16 Hip Girder	8 /12	7-00-00	3-08-08	2 x 4	1-03-08	1-04-13 1-09-08	32.21 21.33		
	1	T17 Common	8 /12	7-00-00	3-11-02	2 x 4	1-03-08	1-04-13 1-09-08	32.49 22.00		
	1 2-ply	T18 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		
	1 2-ply	T18Z Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		
	1 2-ply	T19 Jack-Closed Girder	8 /12	3-10-08	3-11-13	2 x 4 2 x 6		1-04-13 3-11-13	40.7 26.00		-
	21	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	352.68 224.00		
	2	J3 Jack-Open	8 /12	3-05-08	3-08-08	2 x 4	1-03-08	1-04-13 3-08-08	27.01 17.67		
	5	J20 Jack-Open	8 /12	3-10-08	3-11-13	2 x 4	1-03-08	1-04-13 3-11-13	72.77 47.50		
	3	C1 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 2-01-01	1-04-13 2-07-02	33.56 21.00		
	5	C2 Jack-Open	8 /12	1-10-08	2-07-02	2 x 4	1-03-08	1-04-13 2-07-13	44.32 28.33		
TOTAL #TPI	2	C3 Jack-Open	8 /12	1-09-07	2-07-02	2 x 4	1-03-08 1-08-01	1-04-13 2-07-02	21.42 14.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

LAMPONE INVESTMENTS INC

Location:

MARKHAM

Model:

KIMBERLY 4

2

Lot #:

Elevation:

Job Track:

51453

PlanLog: Layout ID: 202866 410046

Ref#

Page:

3 of 3

Date:

08-06-2020

Designer:

Sales Rep:

Mario DiCano

HARDWARE

QTY	TYPE	MODEL	LENGTH
2	Hardware	HGUS26-2	
8	Hardware	LJS26DS	
1	Hardware	LUS26-2	

TOTAL NUMBER OF ITEMS= 11

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

LAMPONE INVESTMENTS INC

Location: Model: MARKHAM KIMBERLY 4

3

Lot #:

Elevation:

Job Track: PlanLog: 51453 202866

Layout ID:

410047

Ref#

Page:

1 of 3

08-06-2020

Date:

Designer: Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T30 Hip Girder	6 /12	36-06-00	4-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	396.1 242.00		
	1 2-ply	T30Z Hip Girder	6 /12	36-06-00	4-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	396.1 242.00		
	2	T31 Hip	6 /12	36-06-00	5-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	337.16 210.33		
	2	T32 Hip	6 /12	36-06-00	6-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	345.25 213.33		
	2	T33 Hip	6 /12	36-06-00	7-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	342.76 208.33		
	2	T34 Hip	6 /12	36-06-00	8-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	355.98 218.00		
	2	T35 Hip	6 /12	36-06-00	9-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	354.56 220.00		
	2	T36 Hip	6 /12	36-06-00	10-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	351.52 212.67		-
	1	T37 Hip Girder	6 /12	10-03-00	3-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	42.34 27.67		
	1	T38 Common	6 /12	10-03-00	3-08-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	40.29 26.33		
	1 2-ply	T39 Hip Girder	6 /12	17-08-00	3-01-04	2 x 4 2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	157.1 98.33		
	1	T40 Hip	6 /12	17-08-00	5-07-04	2 x 4	1-03-08 1-03-08	2-08-00 2-08-00	74.52 48.00		-
	1	T41 Hip	6 /12	17-08-00	6-07-04	2 x 4	1-03-08 1-03-08	2-08-00 2-08-00	83.91 54.50		
	3	T42 Common	6 /12	17-08-00	7-01-00	2 x 4	1-03-08 1-03-08	2-08-00 2-08-00	239.77 153.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

LAMPONE INVESTMENTS INC

Location:

MARKHAM KIMBERLY 4

3

Model: Lot #:

Elevation:

Job Track:

PlanLog:

51453 202866

Layout ID:

410047

Ref#

Page:

2 of 3

Date:

08-06-2020

Designer:

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T43 Hip Girder	6 /12	8-08-00	1-10-08	2 x 4	1-03-08 1-03-08	1-00-00 1-00-00	33.7 23.17		
	1	T44 Hip	6 /12	14-00-00	4-04-08	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	60.44 38.00		
	2	T45 Common	6 /12	14-00-00	4-08-00	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	111.1 73.00		
	1 2-ply	T46 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		
	1 2-ply	T46Z Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67		-
	1 2-ply	T47 Jack-Closed Girder	6 /12	3-10-08	3-01-04	2 x 4 2 x 6		1-02-00 3-01-04	36.77 24.67		
	16	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	268.71 170.67		
	5	J30 Jack-Open	6 /12	3-10-08	3-01-04	2 x 4	1-03-08	1-02-00 3-01-04	59.82 36.67		
	4	J31 Jack-Open	6 /12	1-09-00	1-10-08	2 x 4	1-03-08	1-00-00 1-10-08	26.57 18.67		
	2	C30 Jack-Open	6 /12	3-09-07	3-00-12	2 x 4	1-03-08 2-01-01	1-02-00 3-00-12	28.26 17.33		
	2	C31 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 4-01-01	1-02-00 2-00-12	23.16 14.67		
	2	C32 Jack-Open	6 /12	1-10-08	3-00-12	2 x 4	1-03-08 1-10-15	1-02-00 2-01-04	19.14 12.00		
	5	C33 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 1-01	1-02-00 2-00-12	35.1 23.33		
	3	C34 Jack-Open	6 /12	1-09-07	2-00-12	2 x 4	1-03-08 2-01-01	1-02-00 2-00-12	27.9 18.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

LAMPONE INVESTMENTS INC

Location:

MARKHAM

KIMBERLY 4

Model: Lot#:

Elevation:

Job Track:

JOD HACE

51453

PlanLog: Layout ID: 202866 410047

Ref#

Page:

3 of 3

Date:

08-06-2020

Designer:

Sales Rep:

Mario DiCano

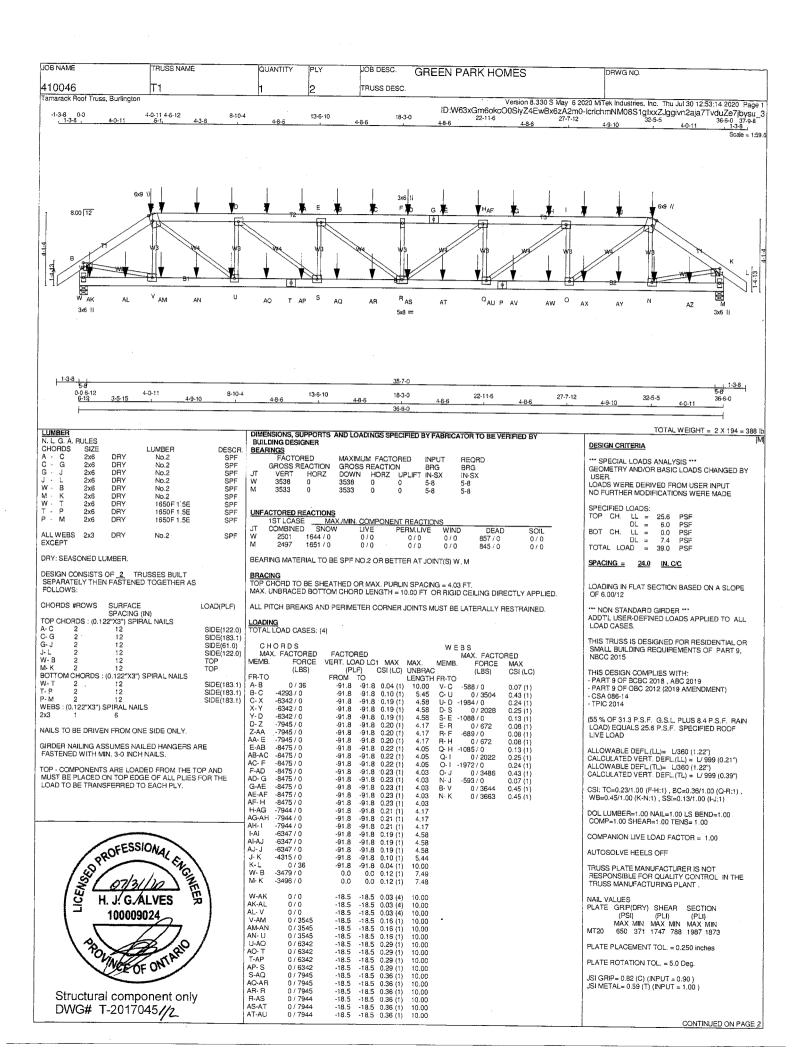
Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LB\$.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS

TOTAL #TRUSS= 74

TOTAL BFT OF ALL TRUSSES= 2720.01

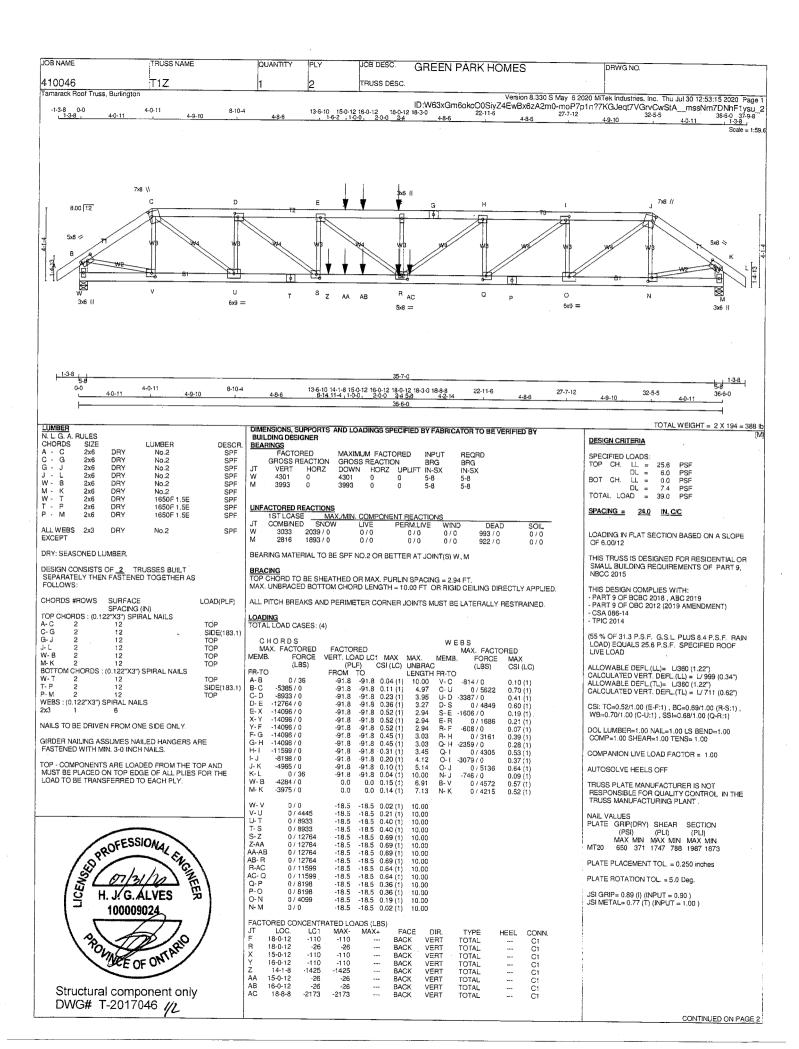
3

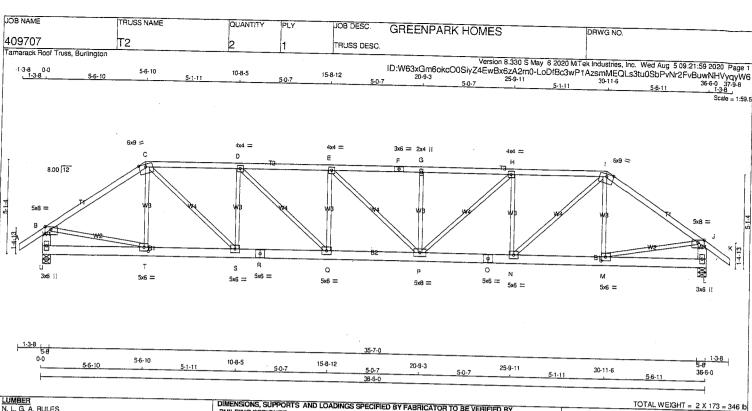

BFT.

TOTAL WEIGHT OF ALL TRSSES 4364.85 LBS

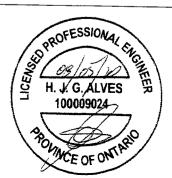
HARDWARE

QTY	TYPE	LENGTH	
1	Hardware	HGUS26-2	
8	Hardware	LJS26DS	
2	Hardware	LUS26-2	


TOTAL NUMBER OF ITEMS= 11


JOB NAME TRUSS NAME	QUANTITY PLY	JOB DESC. GREEN PARK HOMES	DRWG NO.
410046 T1	1 2	TRUSS DESC.	
Tamarack Roof Truss, Burlington		Version 8.330 S M ID:W63xGm6nkcO0Siv74FwBys	tay 6 2020 MiTek Industries, Inc. Thu Jul 30 12:53:14 2020 Page 2 zA2m0-icrichmNM08S1g1xxZJggivn2aja7TvduZe7jbysu 3
PLATES (table is in inches) JT TYPE PLATES W LEN Y X B TMVWp MT20 5.0 6.0 1.50 3.00 C TTWW+m MT20 5.0 6.0 F TMW+w MT20 3.0 6.0 G TS-t MT20 5.0 6.0 J TTWW-m MT20 3.0 6.0 K TMVW-p MT20 3.0 6.0 K TMVW-p MT20 3.0 6.0 K TMVW-p MT20 3.0 6.0 N,O, Q, S, U, V N BMWW-t MT20 3.0 6.0 R BMWW-t MT20 5.0 6.0	(LBS)		
	FACTORED CONCENTRA JT LOC LC1 C 4-0-11 -260 D 8-6-12 -110 J 32-5-5 -51 J 32-5-5 -260 N 32-5-5 -260 N 32-5-5 -260 N 32-6-12 -26 U 8-6-12 -110 AA 12-6-12 -110 AB 14-6-12 -110 AC 16-6-12 -110 AG 24-6-12 -100 AG 18-6-12 -26 AG 14-6-12 -26 AN 6-6-12 -26 AN 6-6-12 -26 AN 16-6-12 -26 AN 24-6-12 -26 AN 30-6-12 -26	MAX	

Structural component only DWG# T-2017045 72


JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC.	GREEN PARK HO	DMES	DRWG NO.	
410046 Tamarack Roof Truss, Burlington	T1Z	1 2	TRUSS DESC.				
Tamarack Hoor Truss, Burstigton				ID:W63xGm6akcO0SiyZ	Version 8.330 S May 6 2020 M 4EwBx6zA2m0-moP7p1n?	iTek Industries, Inc. Thu Jul 30 12:53 7KGJegt7VGrvCwStA mssNm	:15 2020 Page 2 :7DNhF1ysu 2
C TTWW+m MT20 5 D TMWW+t MT20 5 E TMWW+t MT20 3 G TS-t MT20 5 H TMWW+t MT20 5 I TMWW+t MT20 5 J TTWW+m MT20 5 J TTWW+m MT20 5 M BMW1+p MT20 5 M BMW1+p MT20 5 N BMWV+t MT20 5	V LEN Y X 0 8.0 2.50 3.75 0 8.0 3.25 1.75 0 6.0 2.50 2.25 0 6.0 0 0 6.0 0 6.0 0 6.0 0 6.0 0 6.0 0 8.0 3.25 1.75 0 8.0 3.25 1.75 0 8.0 3.25 3.75 0 8.0 3.50 2.50 0 6.0 0 6.0 0 6.0	CONNECTION REQUIREMENTS 1) C1: A SUITABLE HANGER/W	ECHANICAL CONI	NECTION IS REQUIRED.			-
P BS-t MT20 5. Q BMWW-t MT20 5. R BMWWW-t MT20 5. S BMWW-t MT20 5. T BS-t MT20 5. U BMWW-t MT20 6. V BMWW-t MT20 6.	0 6.0						
PROFESSI PROFESSI 97/3/ H. J. G/A 1000099	ONTARIO						
Structural compo DWG# T-20170	onent only 46 m						

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - F	2x4	DRY	No.2	SPF
F - 1	2x4	DRY	No.2	SPF
- I - K	2x4	DRY	No.2	SPF
U - B	2x6	DRY	No.2	SPF
L - J	2x6	DRY	No.2	SPF
U - R	2x6	DRY	No.2	SPF
R - O	2x6	DRY	No.2	SPF
O - L	2x6	DRY	No.2	SPF
				_
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				- }

PL	PLATES (table is in inches)								
JT	TYPE	PLATES	w	LÉN	Y X				
B	TMVW-p	MT20	5.0	8.0	Edge				
C	TTWW-m	MT20	6.0	9.0	Edge				
	E, H				9-				
D	TMWW-t	MT20	4.0	4.0					
F	TS-t	MT20	3.0	6.0					
G	TMW+w	MT20	2.0	4.0					
j I	TTWW-m	MT20	6.0	9.0	Edge				
J	TMVW-p	MT20	5.0	8.0	Edge				
L	BMV1+p	MT20	3.0	6.0	7				
M	BMWW-t	MT20	5.0	6.0	2.50 2.75				
	Q, S								
N	BMWW-t	MT20	5.0	6.0					
0	BS-t	MT20	5.0	6.0					
Р	BMWWW-t	MT20	5.0	8.0					
R	BS-t	MT20	5.0	6.0					
T	BMWW-t	MT20	5.0	6.0	2.50 2.75				
U	BMV1+p	MT20	3.0	6.0					
ì									

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2017331

DIMENSIONS, SUPPORTS BUILDING DESIGNER BEARINGS	AND LOADINGS SPECIFIED	BY FABRI	CATOR TO BE VER	IFIED B
FACTORED GROSS REACTION	MAXIMUM FACTORED GROSS REACTION	INPUT	REQRD	

	MINUS				
IT J	FACTO GROSS R VERT 2138 2138	MAXIMU GROSS DOWN 2138 2138		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNFACTORED REACTIONS							
	1ST LCAS		./MIN. COMPON	ENT REACTION	us.		
JT	COMBINE	SNOW	LIVE	PERMLIVE	WIND		
U	1510	1004 / 0	0/0	0/0	0/0		
L	1510	1004 / 0	0/0	0/0	0 / 0		

0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.09 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

DEAD 506 / 0 506 · 0

SOIL

0.0

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					W.	EBS	
MA	X. FACTORED	FACTO	RED				MAX. FACTO	250
MEMB.	FORCE	VERT. LC		MAY	MAX.	MEMB		
	(LBS)	(PI		CSI (LC)				MAX
FR-TO		FROM		001(10)			(LBS)	CSI (LC)
A-B	0 / 35	-91.8		0.40(4)	LENGTH			
B-C	-2437 / 0	-91.8		0.12(1)		T-C	-241 / 4	0.09(1)
C-D	-3265 0			0.73 (1)		C-S		0.38(1)
D- E	-3843 . 0	-91.8	-91.8				-1058 / 0	0.38 (1)
E-F		-91.8	-91.8				0 / 792	0.18(1)
F- G	-3835 / 0	-91.8		0.52 (1)		Q-E	-444 / 0	0.16(1)
	-3835 / 0	-91.8	-91.8	0.52 (1)		Ę-P	-11 / 0	0.01 (1)
G-H	-3835 / 0	-91.8	-91.8		3.09	P-G	446 / 0	0.16(1)
H- 1	-3267 / 0	-91.8		0.56 (1)	3.41	P-H	0 · 779	0.18 (1)
I- J	-2436 0	-91.8	-91.8	0.73 (1)	3.67		-1051 / 0	0.38 (1)
J- K	0 / 35	-91.8	-91.8	0.12(1)	10.00	N- !	0 / 1693	0.38 (1)
U-B	-2093 0	0.0	0.0	0.14(1)	7.02	M- I	-243 / 4	0.09(1)
L- J	-2092 / 0	0.0		0.14(1)		B- T	0 2056	0.46 (1)
				` '			0 2056	
U-T	0 / 0	-18.5	-18.5	0.06 (4)	10.00		0 2000	0.46 (1)
T-S	0 2019	-18.5	-18.5	0.27(1)	10.00			
S-R	0 : 3265	-18.5	-18.5	0.43 (1)				
R-Q	0 / 3265	-18.5		0.43 (1)				
Q-P	0 : 3843	-18.5		0.51 (1)	10.00			
P-0	0 : 3267	-18.5	-18.5	0.44 (1)	10.00			
O- N	0 / 3267	-18.5		0.44 (1)				
N-M	0 / 2019			0.27 (1)				
M-L	0 / 0	-18.5						
	• •	0.5	-10.3	0.06 (4)	10.00			

DESIGN CRITERIA

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	25.6	PSF
			=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF

TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/999 (0.22")
ALLOWABLE DEFL.(TL)= L/360 (1.22")
CALCULATED VERT. DEFL.(TL) = L/999 (0.40")

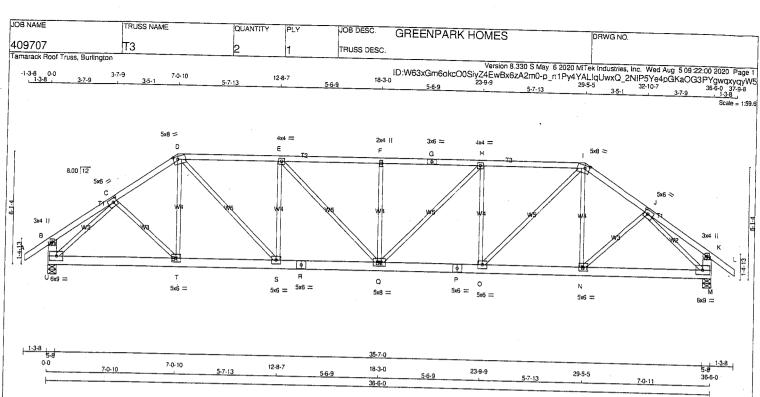
CSI: TC=0.73/1.00 (B-C:1) , BC=0.51/1.00 (P-Q:1) . WB=0.46/1.00 (B-T:1) , SSI=0.22/1.00 (H-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.


NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.83 (T) (INPUT = 0.90) JSI METAL= 0.60 (O) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
G - 1	2x4	DRY	No.2	SPF
I - L	2x4	DRY	No.2	SPF
U - B	2x6	DRY	No.2	SPF
M - K	2x6	DRY	No.2	SPF
U - R	2x6	DRY	No.2	SPF
R - P	2x6	DRY	No.2	SPF
P - M	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

ı	PL	ATES (table					
	JT	TYPE	PLATES	W	LEN	Υ	х
ì	В	TMV+p	MT20	3.0	4.0		
ļ	С	1-WWMT	MT20	5.0	6.0	2.50	2.50
I	D	TTWW-m	MT20	5.0	8.0	1.75	3.00
ļ	Ė	TMWW-t	MT20	4.0	4.0		
ļ	F	TMW+w	MT20	2.0	4.0		
ĺ	G	TS-t	MT20	3.0	6.0		
1	Н	TMWW-t	MT20	4.0	4.0		
ł	1	TTWW-m	MT20	5.0	8.0	1.75	3.00
l	J	TMWW-t	MT20	5.0	6.0	2.50	2.50
ļ	к	TMV+p	MT20	3.0	4.0		
١	M	BMVW1-t	MT20	6.0	9.0		
ĺ		O, S, T					
İ	N	BMWW-t	MT20	5.0	6.0		
l	Р	BS-t	MT20	5.0	6.0		
	Q	1-WWWMB	MT20	5.0	8.0		
Į	R	BS-t	MT20	5.0	6.0		
ľ	Ų	BMVW1-t	MT20	6.0	9.0		

· · · · · · · · · · · · · · · · · · ·	
/	OROFESSIONAL
ENSE,	PROFESSIONAL FIRE THE PROPERTY OF THE PROPERTY
TIC	H. J. G. ALVES 岩 100009024
13	ONNOE OF ONT AND
\	NOE OF ONTH

Structural component only DWG# T-2017332

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BEARINGS	

BEA	RINGS					
JT J	FACTO GROSS F VERT 2138 2138	RED EACTION HORZ 0 0	MAXIMU GROSS DOWN 2138 2138		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

| UNFACTORED REACTIONS | 1ST LCASE | MAX./MIN. | COMPONENT REACTIONS | SOIL | OF 10 |

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, M

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 3.28 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ļ		,							
		ORDS C. FACTORED	C4070				w	EBS		
ı	MEMB.		FACTO					MAX. FACTO	RED	
	IVICIVIB.	FORCE	VERT. LC				MEMB	FORCE	MAX	
ı	FR-TO	(LBS)	(PI	_F)	CSI (LC)	UNBRAC		(LBS)		
j	A- B	0.00					FR-TO		(=0)	
1		0 / 35	-91.8		0.12 (1)		C- T	0 - 126	0.03 (4)	
İ	B- C	0 / 18	-91.8				T- D	0 93	0.03 (4)	
ĺ	C-D	-2445 : 0	-91.8		0.24 (1)	4.19	D-S	0 : 1347	0.30(1)	
Ì	D-E	-2963 / 0	-91.8		0.65 (1)		S-E	-859 0	0.47 (1)	
ı	E-F	-3234 / 0	-91.8	-91.8			E-Q	0 / 389	0.09(1)	
ł	F- G	-3234 / 0	-91.8		0.68 (1)		Q-F	-468 / 0	0.26 (1)	
Į	G-H	-3234 : 0	-91.8	-91.8		3.28	Q-H	0 / 389	0.09(1)	
1	H- I	-2963 / 0	- 9 1.8	-91.8		3.45	O- H		0.47(1)	
1	ŀ J	-2445 / 0	-91.8		0.24 (1)	4.19	0-1	0 1347	0.30(1)	
İ	J- K	0 / 18	-91.8	-91.8		10.00	N- 1	0 93	0.03 (4).	
ł	K-L	0 / 35	· 9 1.8	-91.8			N- J	0 126	0.03 (4)	
1		255 0	0.0		0.02 (1)		U- C	-2651 0	0.93 (1)	
l	M-K	-255 / 0	0.0	0.0	0.02(1)	7.81		-2651 0	0.93(1)	
Į									0.00 ()	
ı	U- T T- S	0 / 1922			0.29(1)	10.00				
İ	1- S S- R	0 / 2016		-18.5		10.00				
I		0 / 2963		-18.5		10.00				
1	R-Q	0 / 2963		-18.5		10.00				
l	Q-P	0 / 2963	-18.5	-18.5	0.40 (1)	10.00				
l	P-0	0 / 2963	-18.5	-18.5		10.00				
l	O- N	0 / 2016	-18.5	-18.5		10.00				
ı	N- M	0.1922	-18.5	-18.5	0.29(1)	10.00				

TOTAL WEIGHT = 2 X 178 = 357 lb

DESIGN CRITERIA

SPECIFIED LOADS:

 SPECIFIED LOADS:

 TOP
 CH.
 LL
 =
 25.6
 PSF

 DL
 =
 6.0
 PSF

 BOT
 CH.
 LL
 =
 0.0
 PSF

 DL
 =
 7.4
 PSF

 TOTAL
 LOAD
 =
 39.0
 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

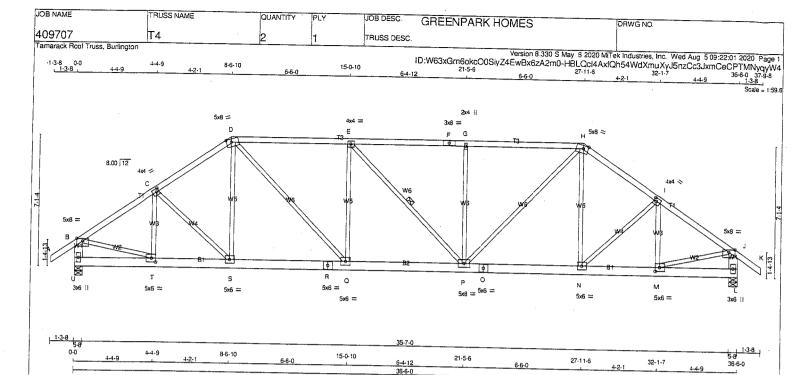
ALLOWABLE DEFL.(LL)= L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/999 (0.16")
ALLOWABLE DEFL.(TL)= L/360 (1.22")
CALCULATED VERT. DEFL.(TL) = L/999 (0.30")

CSI: TC=0.68/1.00 (F-H:1) , BC=0.40/1.00 (O-Q:1) , WB=0.93/1.00 (J-M:1) , SSI=0.24/1.00 (H-I:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

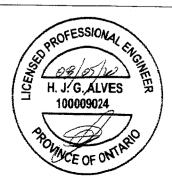
AUTOSOLVE HEELS OFF


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

| NAIL VALUES | PLATE | GRIP(DRY) | SHEAR | SECTION (PLI) | (P

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.84 (D) (INPUT = 0.90) JSI METAL= 0.60 (C) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	RUES			
CHORDS	SIZE			
			LUMBER	DESCR.
] A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - K	2x4	DRY	No.2	SPF
U - B	2x6	DRY	No.2	SPF
L - J	2x6	DRY	No.2	SPF
U - R	2x6	DRY	No.2	SPF
R - O	2x6	DRY	No.2	SPF
0 - L	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

PLATES (table is in inches)										
JT		PLATES	W	LEN	Y X					
В	TMVW-p	MT20	5.0	8.0	Edge					
C	TMWW-t	MT20	4.0	4.0	2.00 1.50					
D	TTWW-m	MT20	5.0	8.0	2.00 3.25					
E	TMWW-t	MT20	4.0	4.0						
F	TS-t	MT20	3.0	8.0						
G	TMW+w	MT20	2.0	4.0						
H	∏WW-m	MT20	5.0	8.0	2.00 3.25					
1	TMWW-t	MT20	4.0	4.0	2.00 1.50					
J	q-WVMT	MT20	5.0	8.0	Edge					
L	BMV1+p	MT20	3.0	6.0	-					
M	BMWW-t	MT20	5.0	6.0	2.50 2.50					
	Q, S									
N	BMWW-t	MT20	5.0	6.0						
0	BS-t	MT20	5.0	6.0						
P	BMWWW-t	MT20	5.0	8.0						
R	BS-t	MT20	5.0	6.0						
T	BMWW-t	MT20	5.0	6.0	2.50 2.50					
U	BMV1+n	MT20	3.0	6.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2017333

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	AND COMBINED SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BEARINGS	
EAGTORER	****

<u> 3EAF</u>	RINGS				
IT J	FACTO GROSS R VERT 2138 2138	MAXIMUI GROSS DOWN 2138 2138		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNE	ACTORED R	EACTIONS					
	1ST LCASE		MIN. COMPO	NENT REACTION	vs.		
J i	COMBINED 1510	1004 / 0	LIVE 0/0	PERMLIVE	WIND	DEAD	SOIL
Ĺ	1510	1004 / 0	0/0	0/0 0/0	0.0	506 ∄0 506 ∄0	0.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U. L.

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.42 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-P.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

		. ,							
		ORDS C. FACTORED	FACTO	RED.			WE		
i	MEMB.	FORCE	VERT. LO		1 MAY	MAX.	MEMB.	MAX. FACTO	
ı		(LBS)			CSI (LC)				MAX
1	FR-TO	()	FROM		001(20)	LENGTH		(LBS)	CSI (LC)
ì	A-B	0 : 35	-91.8		0.12(1)	10.00	T-C	447 0	
i	B-C	-2399 / 0	-91.8	-91.8	0.38 (1)	4.09	C-S	417 0	0.11(1)
ļ	C- D	-2398 / 0	-91.8	-91.8			S-D		0.03(1)
İ	D-E	-2706 0	-91.8		0.80 (1)	3.42	D- Q		0.04 (4)
I	E-F	-2701 : 0	-91.8		0.79 (1)		Q-E	0 · 1053 -639 · 0	0.24(1)
J	F- G	-2701 - 0	-91.8	-91.8	0.79 (1)		E-P		0.52(1)
3	G- H	-2701 - 0	-91.8		0.79 (1)	3.44	P-G	-641 0	(1) 00.0
ĺ	H- I	-2399 / 0	-91.8		0.37 (1)		P-H	0 · 1045	0.53 (1)
Ì	I- J	-2398 / 0	-91.8	-91.8	0.38 (1)	4.09	N- H	0 177	0.24 (1)
l	J- K	0 35	-91.8	-91.8	0.12(1)	10.00	N- 1	-59 · 0	0.05 (4)
ļ	U- B	-2086 - 0	0.0		0.14 (1)		M- I	-419:0	0.03(1)
Ì	L-J	-2086 0	0.0		0.14 (1)		B-T	0 / 2068	0.11(1)
l							M- J	0 2067	0.47 (1)
l	U- T	0 / 0	-18.5	-18.5	0.05 (1)	10.00		0 2007	0.47 (1)
l	T-S	0 ' 2016	-18.5		0.28 (1)	10.00			
ŀ	S-R	0 - 1973	-18.5		0.28 (1)	10.00			
ı	R-Q	0 - 1973	-18.5		0.28 (1)	10.00			
ı	Q-P	0 / 2706	-18.5		0.37 (1)	10.00			
İ	P- O	0 1974	-18.5	-18.5	0.28 (1)	10.00			
	0- N	0 / 1974	-18.5	-18.5	0.28 (1)	10.00			
l	N- M	0 2016			0.29 (1)	10.00			
ı	M- L	0 / 0	-18.5	-18.5	0.05 (1)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = CH. 25.6 6.0 0.0 7.4 PSF PSF BOT CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

TOTAL WEIGHT = 2 X 182 = 363 I

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

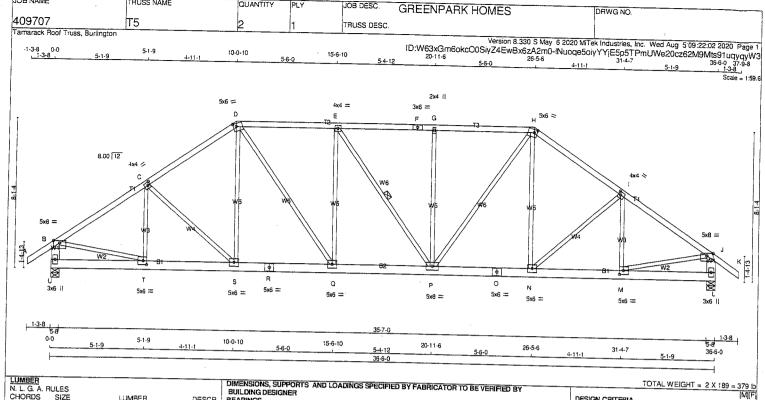
ALLOWABLE DEFL.(LL)= L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/999 (0.13")
ALLOWABLE DEFL.(TL)= L/360 (1.22")
CALCULATED VERT. DEFL.(TL) = L/999 (0.24")

CSI: TC=0.80/1.00 (D-E:1) , BC=0.37/1.00 (P-Q:1) , WB=0.53/1.00 (G-P:1) , SSI=0.28/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

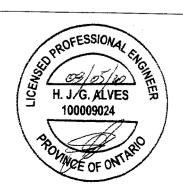
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.82 (T) (INPUT = 0.90) JSI METAL= 0.46 (T) (INPUT = 1.00)

		_		
CHORDS A - D D - F F - H H - K U - B L - J U - R	SULES SIZE 2x4 2x4 2x4 2x4 2x6 2x6 2x6	DRY DRY DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF SPF SPF
U - R R - O O - L	2x6 2x6 2x6	DRY DRY DRY	No.2 No.2 No.2	SPF SPF SPF
0 - L				
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

JOB NAME


TRUSS NAME

QUANTITY

PIY

PL	PLATES (table is in inches)								
JT		PLATES	₩	LEN	Y	Χ			
8	TMVW-p	MT20	5.0	8.0	Edge				
C	TMWW-t	MT20	4.0	4.0	2.00	1.50			
D	TTWW-m	MT20	5.0	6.0	2.00	2.00			
E	TMWW-t	MT20	4.0	4.0					
F	TS-t	MT20	3.0	6.0					
G	TMW+w	MT20	2.0	4.0					
H	TTWW-m	MT20	5.0	6.0	2.00	2.00			
1	TMWW-t	MT20	4.0	4.0	2.00	1.50			
J	TMVW-p	MT20	5.0	8.0	Edge				
L	BMV1+p	MT20	3.0	6.0	-				
M	BMWW-t	MT20	5.0	6.0	2.50	2.50			
	Q, S								
Ν	BMWW-t	MT20	5.0	6.0					
O	BS-t	MT20	5.0	6.0					
P	BMWWW-t	MT20	5.0	8.0					
R	BS-t	MT20	5.0	6.0					
Т	BMWW-I	MT20	5.0	6.0	2.50	2.50			
U	BMV1+p	MT20	3.0	6.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2017334

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	AND EDABATICS STEELINED BY PABRICATOR TO BE VERIFIED BY
BEARINGS	

BEAL	RINGS				
- T	FACTO GROSS R VERT 2138 2138	MAXIMU GROSS DOWN 2138 2138		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNF	UNFACTORED REACTIONS 1ST LCASE MAX MIN COMPONENT REACTIONS								
,-				VENT REACTION	48				
JT	COMBINED		LIVE	PERM.LIVE	WIND	DEAD	SOIL		
U	1510	1004 / 0	0 / 0	0/0	0/0	506 0			
L,	1510	1004 / 0	0 / 0	0/0	0 / 0	506 0	0 / 0		
				0.0	0.0	306 U	0 - 0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.05 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-P.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

}		(-)						
	HORDS AX. FACTORED	FACTO	0.5			WE		
MEMB		FACTO					MAX. FACTO	RED
MICIVID		VERT. LC				MEMB.	FORCE	MAX
CD TO	(LBS)		LF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM			LENGTH	FR-TO		,
A-B	0 · 35	-91.8		0.12(1)		T- C	-328 . 0	0.11(1)
B- C	-2451 / 0	-91.8	-91.8	0.40 (1)	4.05	C-S	-213 / 0	0.17(1)
C-D	-2322 0	-9 1.8	-91.8	0.38 (1)	4.16	S-D	0 : 257	0.06(1)
D-E	-2362 / 0	- 9 1.8	-91.8	0.39(1)	4.10	D- Q	0 - 783	0.18 (1)
E-F	2357 0	-91.8	-91.8	0.37 (1)		Q- Ē		0.64 (1)
F-G	-2357 / 0	-91.8	-91.8	0.37 (1)		Ē-P	-8 / 0	0.04 (1)
G-H	-2357 0	-91.8	-91.8	0.39 (1)	4.11	P-G	-539 0	0.64 (1)
H- I	-2323 / 0	-91.8	-91.8	0.38 (1)		P-H	0 773	0.64 (1)
l- J	-2451 0	-91.8	-91.8	0.40 (1)		N- H	0 265	0.17 (1)
J- K	0 / 35	·91.8		0.12(1)		N- I	-211 / 0	
U-B	-2085 / 0	0.0		0.14(1)		M- I	-330 / 0	0.17 (1)
L-J	-2085 0	0.0		0.14 (1)		B-T	0 2102	0.11(1)
İ						M- J	0 2102	0.47 (1)
U-T	0.0	-18.5	-18.5	0.06 (4)	10.00	101- 0	0.2102	0.47 (1)
T-S	0 / 2064	-18.5	-18.5	0.28 (1)	10.00			
S-R	0 : 1907		-18.5	0.26 (1)	10.00			
R-Q	0 1907	-18.5		0.26 (1)	10.00			
Q-P	0 2362	-18.5		0.32 (1)	10.00			
P- O	0 1909	-18.5		0.26 (1)	10.00			
0- N	0 : 1909	-18.5		0.26 (1)	10.00			
N- M	0 2063	-18.5		0.28 (1)	10.00			
M- L	0 / 0	-18.5		0.06 (4)	10.00			
	- 0	10.5	, 0.0	0.00 (4)	10.00			

DESIGN CRITERIA

PECIFIED LOADS: PSF PSF PSF CH. 25.6 6.0 0.0 7.4 BOT CH. DΙ TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

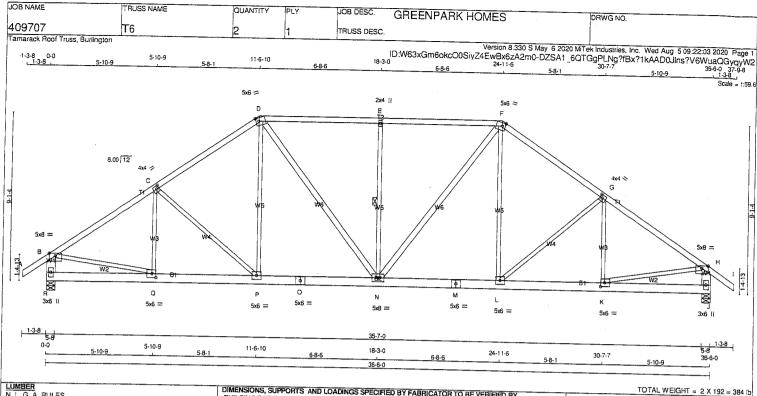
ALLOWABLE DEFL.(LL)= L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/999 (0.11")
ALLOWABLE DEFL.(TL)= L/360 (1.22")
CALCULATED VERT. DEFL.(TL) = L/999 (0.21")

CSI: TC=0.40/1.00 (B-C:1) , BC=0.32/1.00 (P-Q:1) . WB=0.64/1.00 (G-P:1) , SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

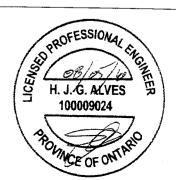
AUTOSOLVE HEELS OFF


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.80 (T) (INPUT = 0.90) JSI METAL= 0.47 (T) (INPUT = 1.00)

L				
LUMBER N. L. G. A. F	RILES			
CHORDS	SIZE		LUMBER	DESCR.
A - D D - F	2x4	DRY	No.2	SPF
	2x4	DRY	No.2	SPF
F · I	2x4	DRY	No.2	SPF
R - B	2x6	DRY	No.2	SPF
7 - H	2x6	DRY	No.2	SPF
R - O	2x6	DRY	No.2	SPF
O - M	2x6	DRY	No.2	SPF
M - J	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
D - N	2x4	DRY	No.2	SPF
N - F	2x4	DRY	No.2	SPF

PL	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	X			
В	TMVW-p	MT20	5.0	8.0	Edge				
С	TMWW-t	MT20	4.0	4.0	2.00	1.50			
D	TTWW-m	MT20	5.0	6.0	2.25	2.00			
Ε	TMW+w	MT20	2.0	4.0					
F	∏WW-m	MT20	5.0	6.0	2.25	2.00			
G	TMWW-t	MT20	4.0	4.0	2.00	1.50			
Н	TMVW-p	MT20	5.0	8.0	Edge				
J	BMV1+p	MT20	3.0	6.0	~				
K	BMWW-t	MT20	5.0	6.0	2.50	2.75			
L	BMWW-t	MT20	5.0	6.0					
M	BS-t	MT20	5.0	6.0					
Ν	BMWWW-t	MT20	5.0	8.0					
0	BS-t	MT20	5.0	6.0					
₽	8MWW-t	MT20	5.0	6.0					
Q	BMWW-t	MT20	5.0	6.0	2.50	2.75			
R	BMV1+p	MT20	3.0	6.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2017335

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BEARINGS	

BEA	RINGS				
JT JT	FACTO GROSS R VERT 2138 2138	MAXIMU GROSS DOWN 2138 2138		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNF	UNFACTORED REACTIONS						
	1ST LCASE	7911 0 111	MIN. COMPO	NENT REACTION	NS		
JT	COMBINED		LIVE	PERM.LIVE	WIND	DEAD	SOIL
J	1510 1510	1004 / 0	0/0	0/0	0.0	506 / 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 3.89 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTO	8ED			W E		
MEMB. FR-TO	FORCE (LBS)	VERT. LO	AD LC .F)	CSI (LC)	UNBRAC		MAX. FACTO FORCE (LBS)	MAX CSI(LC)
A-B B-C	0 / 35 -2479 / 0			0.12 (1) 0.53 (1)		Q-C		0.10(1)
C-D D-E	-2234 / 0 -2165 / 0	-91.8 -91.8	-91.8 -91.8	0.49 (1) 0.62 (1)	4.10 3.91	C- P P- D D- N	-347 0 0 : 355 0 : 549	0.39 (1) 0.08 (1) 0.09 (1)
E-F F-G G-H	-2165 : 0 -2234 / 0 -2479 / 0	-91.8 -91.8 -91.8	-91.8	0.62 (1) 0.49 (1) 0.53 (1)	4.10	N- E N- F	-754 0 0 · 549	0.39 (1) 0.09 (1)
H- 1	0 / 35 -2082 / 0	-91.8 0.0	-91.8	0.12 (1) 0.14 (1)	10.00	L-F L-G K-G	0 : 355 -347 : 0 -261 : 6	0.08 (1) 0.39 (1) 0.10 (1)
J- H R- Q	-2082 : 0 9 / 0	0.0		0.14 (1)		8- Q K- H	0 2121 0 2121	0.48 (1) 0.48 (1)
Q- P P- O	0 / 2091 0 / 1831		-18.5	0.07 (4) 0.29 (1) 0.26 (1)	10.00 10.00 10.00			
O- N N- M M- L	0 / 1831 0 / 1831 0 / 1831	-18.5	-18.5 -18.5	0.26 (1) 0.26 (1)	10.00 10.00			
L-K	0 / 2091	-18.5 -18.5		0.26 (1) 0.29 (1)	10.00 10.00			

-18.5 -18.5 0.29 (1) -18.5 -18.5 0.07 (4)

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = 25.6 PSF 6.0 PSF 6.0 0.0 7.4 BOT CH. PSF DL PSF TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9.

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

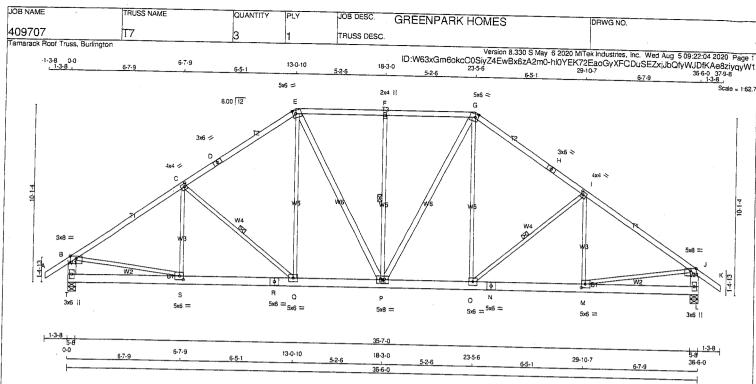
ALLOWABLE DEFL.(LL) = L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/999 (0.10")
ALLOWABLE DEFL.(TL) = L/360 (1.22")
CALCULATED VERT. DEFL.(TL) = L/999 (0.19")

CSI: TC=0.62/1.00 (D-E:1), BC=0.29/1.00 (K-L:1), WB=0.48/1.00 (H-K:1) , SSI=0.30/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (Q) (INPUT = 0.90) JSI METAL= 0.48 (Q) (INPUT = 1.00)

	LUMBER				
	N. L. G. A. F	RULES			
	CHORDS	SIZE		LUMBER	DESCR
	A - D	2x4	DRY	No.2	SPF
	D · E	2x4	DRY	No.2	SPF
	E · G	2x4	DRY	No.2	SPF
	G · H	2x4	DRY	No.2	SPF
	н - к	2x4	DRY	No.2	SPF
	Т - В	2x6	DRY	No.2	SPF
	L · J	2x6	DRY	No.2	SPF
	T - R	2x6	DRY	No.2	SPF
	R - N	2x6	DRY	No.2	SPF
	N - L	2x6	DRY	No.2	SPF
		LAG	J	140.2	255
	ALL WEBS	2x3	DRY	No.2	SPF
	EXCEPT			140.2	SFF
	E P	2x4	DRY	No.2	SPF
ĺ	P · G	2x4	DRY	No.2	
			٠	140.2	SPF

PL	ATES (table	is in inches)			
JT	TYPE	PLATES	W	LEN	Y X
В	TMVW-p	MT20	5.0	8.0	Edge
C	1-WWMT	MT20	4.0	4.0	2.00 1.50
D	TS-t	MT20	3.0	6.0	
E	TTWW-m	MT20	5.0	6.0	2.25 2.00
F	TMW+w	MT20	2.0	4.0	
G	TTWW-m	MT20	5.0	6.0	2.25 2.00
H	TS-t	MT20	3.0	6.0	
1	TMWW-t	MT20	4.0	4.0	2.00 1.50
J	q-WVMT	MT20	5.0	8.0	Edge
L	BMV1+p	MT20	3.0	6.0	
M	BMWW-t	MT20	5.0	6.0	2.50 2.75
N	BS-t	MT20	5.0	6.0	
0	BMWW-t	MT20	5.0	5.0	
P	BMWWw-t	MT20	5.0	8.0	
Q	BMWW-t	MT20	5.0	6.0	
R	BS-t	MT20	5.0	6.0	
S	BMWW-t	MT20	5.0	6.0	2.50 2.75
T	BMV1+p	MT20	3.0	6.0	

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2017336

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	AND CONDINGO OF ECIFIED BY FABRICATOR TO BE VERIFIED BY
BEARINGS	
DEARINGS	

EΑ	RINGS				
Т	FACTO GROSS R VERT 2138 2138	MAXIMU GROSS DOWN 2138 2138		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

| UNFACTORED REACTIONS | 1ST LCASE | MAX.MIN. COMPONENT REACTIONS | | 1ST LCASE | SNOW LIVE | PERM.LIVE | WIND | T | 1510 | 1004 / 0 | 0 / 0 | DEAD 506 0 506 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T. L

 $\frac{\textbf{BRACING}}{\textbf{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 3.66 \text{ FT.} \\ \textbf{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\ \end{cases}$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-Q, F-P, I-O.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

MA MEMB. FR-TO	ORDS X. FACTORED FORCE (LBS)	FACTOREL VERT. LOAD (PLF) FROM TO	LC1 MAX CSI(LC)	MAX. UNBRAC LENGTH	мемв.	B S MAX. FACTO FORCE (LBS)	PRED MAX CSI (LC)
4 8 C D E F G H -	0 · 35 -2492 / 0 -2132 / 0 -2132 / 0 -1920 / 0 -1920 / 0 -2132 / 0 -2132 / 0 -2492 / 0 -2492 / 0 -2080 / 0 -2080 / 0	-91.8 -9 -91.8 -9 -91.8 -9 -91.8 -9 -91.8 -9 -91.8 -9 -91.8 -9 -91.8 -9 -91.8 -9 -91.8 -9	1.8 0.12 (1) 1.8 0.71 (1) 1.8 0.64 (1) 1.8 0.64 (1) 1.8 0.36 (1) 1.8 0.36 (1) 1.8 0.36 (1) 1.8 0.64 (1) 1.8 0.64 (1) 1.8 0.12 (1) 0.0 0.14 (1)	10.00 3.66 3.98 3.98 4.49 4.49 3.98 3.98 3.66 10.00 7.03	0 0 E P F G G 0 J	197 43 479 0 0 425 0 375 580 0 0 375 580 0 0 425 479 0 -197 43 0 2131 0 2131	0.10 (1) 0.23 (1) 0.10 (1) 0.06 (1) 0.39 (1) 0.06 (1) 0.10 (1) 0.23 (1) 0.10 (1) 0.48 (1) 0.48 (1)
T- S R- Q P O N M L	0 0 0 2107 0 2107 0 1743 0 1743 0 2107 0 2107 0 0	-18.5 -18 -18.5 -18 -18.5 -18 -18.5 -18 -18.5 -18	3.5 0.24 (1) 3.5 0.29 (1)	10.00 10.00 10.00 10.00 10.00 10.00			

TOTAL WEIGHT = 3 X 199 = 596

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = TOP CH. PSF PSF 6.0 BOT CH. 0.0 7.4 PSF PSF TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

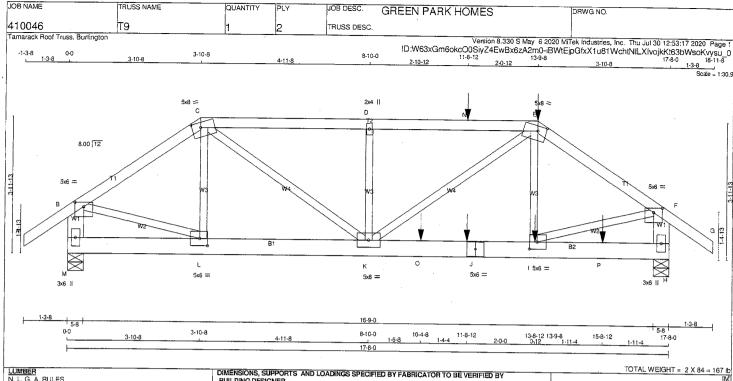
ALLOWABLE DEFL.(LL)= L/360 (1.22")
CALCULATED VERT. DEFL.(LL)= L/999 (0.10")
ALLOWABLE DEFL.(TL)= L/360 (1.22")
CALCULATED VERT. DEFL.(TL)= L/999 (0.18")

CSI: TC=0.71/1.00 (I-J:1) , BC=0.29/1.00 (Q-S:1) , WB=0.48/1.00 (B-S:1) , SSI=0.24/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

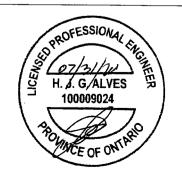
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.84 (M) (INPUT = 0.90) JSI METAL= 0.48 (S) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
E-G	2x4	DRY	No.2	SPF
M - B	2x6	DRY	No.2	SPF
H - F	2x6	DRY	No.2	SPF
M - J	2x6	DRY	No.2	SPF
J - H	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:


CHORE	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CE	ORDS: (0.1	22"X3") SPIRAL NAI	I.S.
A-C	1	12	TOP
C-E	1	12	SIDE(61.0)
Ē-Ğ	1	12	SIDE(61.0)
M-B	2	12	TOP
H-F	2	12	TOP
вотто	MICHORDS	: (0.122"X3") SPIRAL	
M-J	2	12	SIDE(0.0)
J- H	2	12	SIDE(183.1)
WEBS:	(0.122"X3")	SPIRAL NAILS	5.52(156.1)
2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

Structural component only DWG# T-2017047 //2

	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
ı	BUILDING DESIGNER

BEA	RINGS						
	FACTO GROSS R		MAXIMUI GROSS			INPUT	REQRD
JT	VERT	HORZ	DOWN	HORZ		BRG	BRG
M	1588	nonz		HOHZ	UPLIFT	IN-SX	IN-SX
		Ü	1588	0	U	5-8	5-8
Н	1953	O	1953	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	<u>VIN. COMPO</u>	VENT REACTION	NS.		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
M	1118	763 / 0	0/0	0/0	0/0	355 / 0	0/0
Н	1375	937 / 0	0/0	0/0	0/0	437 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) M, H

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.39 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE	BS	
	C. FACTORED						MAX. FACTO	RED
MEMB.		VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	2	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		(-0)
A-B	0 / 35	- 9 1.8	-91.8	0.07 (1)	10.00	L- C	-336 / 0	0.04(1)
B-C	-1616 / 0	-91.8	-91.8	0.14(1)	6.25		0 / 1501	0.19(1)
	-2547 / 0	-91.8	-91.8	0.25 (1)	5.39	K- D	-591 / 0	0.07(1)
	-2548 / 0	-91.8	-91.8	0.25(1)	5.39	K-E	0 / 898	0.11(1)
	-2548 / 0	-91.8	-91.8	0.25 (1)	5.39	I- E	0 / 105	0.02(4)
E-F	-2191 / 0	-91.8	-91.8	0.15(1)	5.85	B- L	0 / 1384	0.17(1)
	0 / 35	-91.8	-91.8	0.07(1)	10.00	l- F	0 / 1876	0.23(1)
M-B	-1540 / 0	0.0	0.0	0.06 (1)	7.81			(.,
H-F	-1980 / 0	0.0	0.0	0.07 (1)	7.81			
M- L	0/0	-18.5						
Ł-K	0 / 1333			0.20(1)				
K-0	0 / 1821			0.40(1)				
O-1	0 / 1821			0.40 (1)				
J-I	0 / 1821			0.40 (1)				
I-P	0/0			0.11 (1)				
P-H	0/0	-18.5	-18.5	0.11 (1)	10.00			
FACTO	DED CONOENT							

FAC	TORED COM	CENTR	ATED LO	ADS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
=	13-9-8	-253	-253		FRONT	VERT	TOTAL		C1
ł	13-8-12	-17	-17		FRONT	VERT	TOTAL		C1
J	11-8-12	-17	-17		FRONT	VERT	TOTAL		C1
N	11-8-12	-86	-86		FRONT	VERT	TOTAL		C1
0	10-4-8	-950	- 9 50		FRONT	VERT.	TOTAL		C1
Р	15-8-12	-17	-17		FRONT	VERT	TOTAL		Č1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	## IED	LOAL)\$:		
TOP	CH.	LL	=	25.6	PSF
		DL		6.0	PSF
BOT	CH.			0.0	PSF
		DL		7.4	PSF
TOTA	1 10	AD	=	39 N	PSE

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.08")

CSI: TC=0.25/1.00 (D-E:1) , BC=0.40/1.00 (I-K:1) , WB=0.23/1.00 (F-I:1) , SSI=0.23/1.00 (I-K:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.42 (E) (INPUT = 0.90) JSI METAL= 0.29 (J) (INPUT = 1.00)

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	CDEEN DADICHONSO		· · ·
410046	Т9	1	2	TRUSS DESC.	GREEN PARK HOMES	DRWG NO.	
Tamarack Roof Truss, Burlington			_ -		Version 8.330 S May ID:W63xGm6okcO0SiyZ4EwBx6zA2r	/ 6 2020 MiTek Industries, Inc. 1	hu Jul 30 12:53:17 2020 Page 2
B TM/W'-p MT20 C TTWW-m MT20 E TMW-w MT20 E TMW-w MT20 E TMW-p MT20 E TMW-p MT20 E TMW-p MT20 E TMW-p MT20 E TMW-p MT20 E TMW-t MT20 E	W LEN Y X 5.0 6.0 1.50 3.00 5.0 8.0 1.75 3.00 5.0 8.0 1.75 3.00 5.0 8.0 1.75 3.00 6.0 6.0 1.50 3.00 6.0 6.0 2.50 2.75 6.0 8.0 1.0 6.0 6.0 6.0 2.50 2.75 6.0 6.0 2.50 2.75				- STATE OF THE STA	WEDGIA JIBO WATE	uLAIVOJKAI63BWSOKVYSU 0
						t	
PROFESSI PROFESSI 100009 PROFESSI 100009	777						
Structural compo DWG# T-20170							

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK HOMES	DRWG NO.
10046	T10	4	1	TRUSS DESC.		
marack Roof Trus		! <u></u>	1.		V 0.000	
	-1-3-8 0-0	<u>5</u> -10-8	5-10-8	5-11-(ID:W63xGm6okcO0SiyZ4EwBx6zA	S May 6 2020 MiTek Industries, Inc. Thu Jul 30 12:53:17 2020 Pag 2m0-iBWtEjpGfxX1u81WchtNiLXFMomsKuS3bWsoKvysu 17:8-0 13-8 13-18
			5x6 \\		4x4 =	5-10-8 1-3-8 Scale = 1:
	ı		С		D	
	8.00 [12]			12		
	C 4x4 II	*/		W4		71. 4x4 C2
	2.10.13 P				WS	F
	•	Wg B1			32	W: W: W: W: W: W: W: W: W: W: W: W: W: W
			J 4x4 =		1 H 3x6 = H 4x9 ==	
	3x4 II : 1-3-8		**			3x4 II
	0.0		5-10-8	16-9-0	11.0.0	5.8
		5-10-8		5-11-0 17-8-0		5-10-8 17-8-0
	,					

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
К - В	2x4	DRY	No.2	SPF
G - E	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF.
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
DRY: SEAS	ONED L	UMBER.		

PLATES (table is in inches)								
JŤ	TYPE	PLATES	W	LEN	Y	Х		
В	TMVW+p	MT20	4.0	4.0	1.25	2.00		
C	TTWW+m	MT20	5.0	6.0	2.00	1.50		
D	TTW-m	MT20	4.0	4.0				
E	TMVW+p	MT20	4.0	4.0	1.25	2.00		
G	BMV1+p	MT20	3.0	4.0				
Н	BMWWW-t	MT20	4.0	9.0				
l i	BS-t	MT20	3.0	6.0				
j	BMWW-t	MT20	4.0	4.0				
К	BMV1+p	MT20	3.0	4.0				

Ī	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
Ĺ	TIME TO THE AND LOADINGS SPECIFIED BY PABRICATOR TO BE VEHIFIED BY
ł	BUILDING DESIGNER
	BEADINGS

	LDING DES RINGS	IGNER				
JT K G	FACTO GROSS F VERT 1100 1100	REACTION HORZ 0	MAXIMUI GROSS DOWN 1100 1100		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNF	UNFACTORED REACTIONS									
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	VS.					
JT :	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
K	775	522 / 0	0/0	0/0	0/0	253 / 0	0/0			
G	775	522 / 0	0/0	0/0	0/0	253 / 0	0/0			

BÉARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K, G

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS		WEBS					
	C. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	LF)	CSI (LC)	UNBRAC	3	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	(/	00,(00)
A-B	0 / 35	-91.8	-91.8	0.12(1)	10.00	J- C	-140 / 42	0.11(1)
B-Ç	-721 / 0	-91.8	-91.8	0.42(1)	6.25	C- H	0/0	0.00(1)
C-D	-596 / 0	- 9 1.8	-91.8	0.42(1)	6.25	H- D	-140 / 42	0.11(1)
D-E	-720 / 0	-91.8	-91.8	0.42(1)	6.25	B- J	0 / 652	0.15(1)
Ê-F	0 / 35	-91.8	-91.8	0.12(1)	10.00	H- E	0 / 652	0.15(1)
K-B	-1055 / 0	0.0	0.0	0.16(1)	7.66			
G-E	-1054 / 0	0.0	0.0	0.16(1)	7.66			
K-J	0/0	-18.5	-185	0.15 (4)	10.00			
J- I	0 / 597	-18.5		0.20 (4)				
I- H	0 / 597			0.20 (4)				
H-G	0/0	-18.5		0.15 (4)	10.00			

DESIGN CRITERIA								
SPECIFIED LOADS:								
TOP	CH.	LL	=	25.6	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LL	22	0.0	PSF			
		DL	=	7.4	PSF			
TOTA	TOTAL LOAD = 39.0 PSF							

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.42/1.00 (B-C:1) , BC=0.20/1.00 (H-J:4) , WB=0.15/1.00 (B-J:1) , SSI=0.21/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

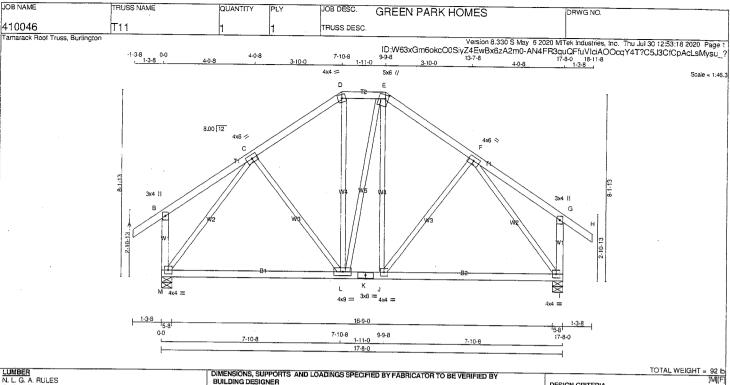

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.71 (B) (INPUT = 0.90) JSI METAL= 0.21 (B) (INPUT = 1.00)

	LUMBER				
	N. L. G. A. F	ULES			
	CHORDS	SIZE		LUMBER	DESCR
	A - D	2x4	DRY	No.2	SPF
	D · E	2x4	DRY	No.2	SPF
	E - H	2x4	DRY	No.2	SPF
	M - B	2x4	DRY	No.2	SPF
	1 - G	2x4	DRY	No.2	SPF
	M - K	2x4	DRY	No.2	SPF
į	K - 1	2x4	DRY	No.2	SPF
					=
	ALL WEBS	2x3	DRY	No.2	SPF
İ	EXCEPT				
ı					
	DRY: SEASO	ONED LI	JMBER.		
ľ					

PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	X			
В	TMV+p	MT20	3.0	4.0					
С	TMWW-t	MT20	4.0	6.0					
D	TTW-m	MT20	4.0	4.0					
E	TTWW+m	MT20	5.0	6.0	2.00	1.50			
F	TMWW-t	MT20	4.0	6.0					
G	TMV+p	MT20	3.0	4.0					
ŧ	BMVW1-t	MT20	4.0	4.0					
J	BMWW-t	MT20	4.0	4.0					
K	BS-t	MT20	3.0	8.0					
Ł	BMWWW-t	MT20	4.0	9.0					
M	BMVW1-t	MT20	4.0	4.0					

	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BUILDING DESIGNER								
i	BEA	RINGS FACTO	RED	MAXIMU	м васто	ORED	INPUT	REORD	
		GROSS R		GROSS			BRG	BRG	
	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX	
	M	1100	0	1100	0	0	5-8	5-8	
	1	1100	0	1100	0	0	5-8	5-8	

UNF	UNFACTORED REACTIONS									
	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	NS					
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
M	775	522 / 0	0/0	0/0	0/0	253 / 0	0/0			
1	775	522 / 0	0/0	0/0	0/0	253 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) M, I

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

LC)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
,
((((

25.6 6.0 0.0 7.4 39.0

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/999 (0.12")

CSI: TC=0.23/1.00 (F-G:1) , BC=0.31/1.00 (J-L:4) , WB=0.72/1.00 (C-M:1) , SSI=0.15/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR ≈ 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

 NAIL VALUES

 PLATE
 GRIP/DRY
 SHEAR
 SECTION (PLI)

 (PSI)
 (PLI)
 (PLI)
 (PLI)

 MAX
 MIN
 MAX MIN
 MAX MIN

 MT20
 650
 371
 1747
 788
 1987
 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.72 (M) (INPUT = 0.90) JSI METAL= 0.56 (K) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY GREEN PARK HOMES PLY JOB DESC. DRWG NO. 410046 TRUSS DESC Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Jul 30 12:53:19 2020 Page 1
ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-eaeefPqWBYni7RBvk6vrNmddmbSOoc0M2qLuOoysu_
4:3-12 4:6-4 17-8-0 18:11-8
1-9-8 1-9-8 Tamarack Roof Truss, Burlington -1-3-8 ___1-3-8 0-0 4x6 II Scale = 1:49.: 8.00 12 5-8 0-0 11-8-8 17-8-0 5-11-8 5-9-0 5-11-8 TOTAL WEIGHT = 3 X 88 = 263 ii

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
L - B	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 C
 TMWW-t
 MT20
 LEN Y X 4.0 4.0 2.00 1.50 3.0 4.0 4.0 4.0 4.0 4.0 TTWW+n MT20 TMWW-t TMV+p BMVW1-t MT20 4.0 6.0 4.0 4.0 BMWW-t MT20 4 0 MT20 MT20 MT20 MT20 3.0 4.0 4.0 BMWW-t BMVW1-t

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

ì	DIMENSIONS OF THE PARTY OF THE
	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	BUILDING DESIGNER
į	
i	REARINGS

	RINGS	IGNER					
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REORD
	GROSS F	REACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
L	1100	0	1100	0	0	5-8	5-8
Н	1100	0	1100	0	0	MECHAN	

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8.

UNFACTORED REACTIONS

	1ST LCASE		MN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
H	775 775	522 / 0 522 / 0	0/0	0/0	0/0	253 / 0	0/0
13	773	52210	0/0	0/0	0/0	253 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS		WEBS					
	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO		MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)			CSI (LC)	UNBRAC	2	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	·	,,
A-B	0 / 35	-91.8	-91.8	0.12(1)	10.00	D- I	0 / 253	0.06(1)
B-C	0 / 26	-91.8	-91.8	0.29 (1)	10.00	ŀΕ	-127 / 22	0.07(1)
C-D	-732 / 0	-91.8	-91.8	0.23 (1)	6.25	K- D		0.06(1)
D- E	-732 / 0	-91.8		0.23 (1)		. C- K	-127 / 22	0.07(1)
E-F	0 / 26	-91.8	-91.8	0.29(1)			-988 / 0	0.91 (1)
F- G	0 / 35	-91.8	-91.8	0.12(1)	10.00		-988 / 0	0.91 (1)
L- 3	-284 / 0	0.0		0.04 (1)				0.0. (.)
H- F	-284 / 0	0.0	0.0	0.04 (1)	7.81			
L- K	0 / 620	-18.5	-18.5	0.19 (4)	10.00			
K-J	0 / 506			0.19 (4)				
J- I	0 / 506	-18.5		0.19 (4)				
l- H	0 / 620	-18.5		0.19 (4)	10.00			

DESIGN CRITERIA SPECIFIED LOADS:
TOP CH. LL =
DL =
BOT CH. LL =
DL =
TOTAL LOAD = 25.6 6.0 0.0 7.4 39.0

SPACING = <u>24.0</u> IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL)= L/399 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL)= L/399 (0.05")

CSI: TC=0.29/1.00 (B-C:1) , BC=0.19/1.00 (H-I:4) , WB=0.91/1.00 (C-L:1) , SSI=0.16/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT .

 NAIL VALUES

 PLATE
 GRIP(DRY)
 SHEAR
 SECTION

 (PS)
 (PLI)
 (PLI)
 (PLI)

 MAX
 MIN
 MAX
 MIN

 MT20
 650
 371
 1747
 788
 1987
 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (C) (INPUT = 0.90) JSI METAL= 0.34 (E) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK HOMES	DRWG NO.
410046	T13	3	1	TRUSS DESC.		
Tamarack Roof Truss, Burlington	-1-3-8 0-0 1-3-8	3-7-4	3-7-4	3-4-12	7-0-0 10-4-12 3-4-12	6 2020 MiTek Industries, Inc. Thu Jul 30 12:53:21 2020 Page 1 n0-aymO44smj91TMIKHrXxJSBi_6P75GiffV8q?Shystzy 3-7-4
	3x4 B W 4x4 = 1.3.8 5.8 0.0	8.00 12 4 ₀ 4	7-9-9	Ma	H 4x9 = 13-6-8 7-0-0 14-0-0	Scale = 1:34.6 WZ F G 14-0-0
LUMBER .		DIMENSIONS SI	IDDODTO AND I	O A DINOC ODECIE	ED DV FADRICATION TO DE L'ESCATA	TOTAL WEIGHT = 3 X 59 ≈ 176 lt

| N. L. G. A. RULES | CHORDS | SIZE | A - D | 2x4 | D - F | 2x4 | I - B | 2x4 | G - F | 2x4 | DESCR. SPF SPF SPF SPF SPF LUMBER No.2 No.2 No.2 No.2 DRY DRY DRY DRY No.2 No.2 - G ALL WEBS 2x3 EXCEPT

DRY: SEASONED LUMBER.

ATES (table)	ie in inchae)				
TYPE	PLATES	W	LEN	Υ	X
TMV+p	MT20	3.0	4.0		
TMWW-t	MT20	4.0	4.0		
TTW-p	MT20	4.0	4.0	2.25	2.00
TMWW-t	MT20	4.0	4.0		
TMV+p	MT20	3.0	4.0		
BMVW1-t	MT20	4.0	4.0		
BMWWW-t	MT20	4.0	9.0		
BMVW1-t	MT20	4.0	4.0		
	TYPE TMV+p TMWW-t TTW-p TMWW-t TMV+p BMVW1-t BMWWW-t	TMV+p MT20 TMWW-t MT20 TTW-p MT20 TMWW-t MT20 TMV+p MT20 BMVW1-t MT20 BMWWW-t MT20	TYPE PLATES W TMV+p MT20 3.0 TMWW-t MT20 4.0 TTW-p MT20 4.0 TMW+p MT20 4.0 TMV+p MT20 3.0 BMVW1-t MT20 4.0 BMWWW-t MT20 4.0	TYPE	TYPE PLATES W LEN Y TMV+p MT20 3.0 4.0 TMW+l MT20 4.0 4.0 TTW-p MT20 4.0 4.0 2.25 TMW+p MT20 3.0 4.0 MWV+p MT20 3.0 4.0 BMVW1-t MT20 4.0 4.0 BMWWW+t MT20 4.0 9.0

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS -						
	FACTO	RED	MAXIMUI	M FACTO	DRED	INPUT	REORD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
1	898	0	898	0	0	5-8	5-8
G	772	0	772	0	0	MECHAN	ICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 3-8.

DEAD SOIL 204 / 0 188 / 0 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS FACTORED	FACTO	RED			WE	BS MAX. FACTO	oen.
MEMB.	FORCE (LBS)	VERT. LC	AD LC	MAX	MAX, UNBRAC	МЕМВ.	FORCE (LBS)	MAX CSI (LC)
FR-TO	(,		TO	00.(20)	LENGTH		(500)	CSI (EC)
A-B	0 / 35	-91.8	-91.8	0.12(1)	10.00	C-H	-174 / 0	0.07(1)
B-C	0 / 20	-91.8	-91.8	0.18 (1)	10.00	H- D	0 / 401	0.09 (1)
C-D	-607 / 0	-91.8		0.14 (1)		H- E	-173 / 0	0.07 (1)
D- E	-607 / 0	-91.8		0.14(1)		F C	-856 / 0	0.32 (1)
E-F	0 / 20	-91.8		0.18 (1)		E-G	-856 / 0	0.32 (1)
I- B	-250 / 0	0.0	0.0	0.03(1)	7.81			3.02 (1)
G-F	-124 / 0	0.0	0.0	0.01 (1)	7.81			
I- H	0/613	-18.5	-18.5	0.31 (4)	10.00			
H- G	0 / 613	-18.5		0.31 (4)	10.00			

DESIGN CRITERIA								
SPEC	IFIED	LOAI	0\$:					
TOP	CH.	LL	=	25.6	PS			
		DŁ		6.0	PS			
BOT	CH.	LŁ	=	0.0	PS			
		DL		7.4	PS			
TOTA	AL LO	AD	=	39.0	PS			

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

[M][F]

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.47")
CALCULATEO VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.47")
CALCULATED VERT. DEFL.(TL)= L/999 (0.06")

CSI: TC=0.18/1.00 (B-C:1) , BC=0.31/1.00 (H-i:4) , WB=0.32/1.00 (C-I:1) , SSI=0.13/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR = 1.00

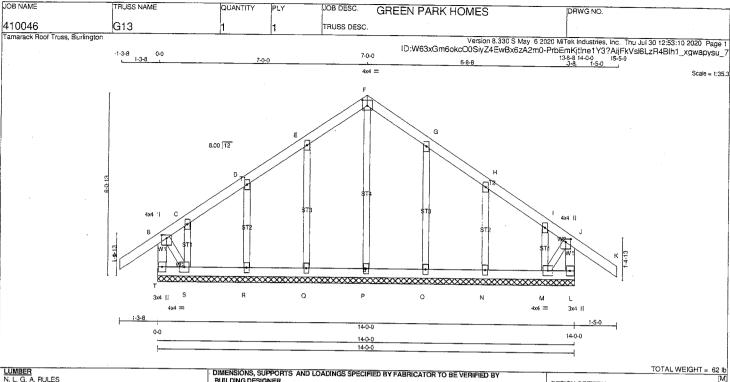

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.70 (E) (INPUT = 0.90) JSI METAL= 0.27 (E) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR
T - B	2x4	DRY	No.2	SPF
A - F	2x4	DRY	No.2	SPF
F - K	2x4	DRY	No.2	SPF
L - J	2x4	DRY	No.2	SPF
Т - L	2x4	DRY	No.2	SPF
ALL WEBS ALL GABLE	2x3 WEBS	DRY	No.2	SPF
	2x3	DRY	No.2	SPF
DRY: SEAS	DNED LI	JMBER.		

GABLE STUDS SPACED AT 2-0-0 OC.

PL	PLATES (table is in inches)							
JΤ	TYPE	PLATES	W	LEN	Y	X		
₿	TMVW+p	MT20	4.0	4.0	1.25	2.00		
	D, E, G, H, I							
С	TMW+w	MT20	2.0	4.0				
F		MT20	4.0	4.0	2.25	2.00		
	TMVW+p	MT20	4.0	4.0	1.25	2.00		
L,	BMV1+p	MT20	3.0	4.0				
M	BMWW1-t	MT20	4.0	4.0				
N, (O, P, Q, R							
N	BMW1+w	MT20	2.0	4.0				
s	BMWW1-t	MT20	4.0	4.0				
Ť	BMV1+p	MT20	3.0	4.0				

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

		ORDS					WE	BS	
		FACTORED	FACTO					MAX. FACTO	RED
1	MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.		MAX
-		(LBS)	(PI	-F) ·	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
1	FR-TO		FROM	TO		LENGTH	FR-TO		(/
1	T-B	-271 / 0	0.0	0.0	0.03(1)	7.81	P- F	-150 / 0	0.08(1)
-	A-B	0 / 35	-91.8	-91.8	0.12 (1)	10.00	Q-E	-206 / 0	0.07(1)
į	B-C	-60 / 0	-91.8	-91.8	0.12(1)	6.25	R-D	-187 / 0	0.04(1)
Ì	C-D	-8/0	-91.8	-91.8	0.04(1)	10.00	S-C	-43 / 0	0.01(1)
ı	D- E	-6/0	-91.8	-91.8	0.05 (1)	10.00	O- G	-206 / 0	0.07(1)
J	E-F	-13 / 0	-91.8	-91.8	0.05(1)	6.25	N- H	-188 / 0	0.04(1)
-	F-G	-13 / 0	-91.8		0.05(1)		M- I	-22 / 0	0.00(1)
1	G-H	-6/0	-91.8		0.05 (1)		B- S	0 / 20	0.00 (1)
1	H-1	-8 / 0	-91.8	-91.8	0.04 (1)	10.00	M- J	0 / 18	0.00(1)
١	l- J	-70 / 0	-91.8		0.14(1)				
ĺ	J- K	0 / 38	-91.8		0.15(1)				
	L-J	-301 / 0	0.0	0.0	0.03 (1)	7.81			
ł									
-	T-S	0/0	-18.5		0.01 (4)				
í	S-R	0/11	-18.5		0.02 (4)				
ı	R-Q	0/6	-18.5		0.02 (4)	10.00			
ı	Q-P	0/3	-18.5		0.01 (4)	10.00			
ļ	P-0	0/3	-18.5		0.01 (4)	10.00			
١	0- N	0/6	-18.5		0.02 (4)	10.00			
١	N- M	0 / 11 -	-18.5						
1	M- L	0 / 0	-18.5	-18.5	0.01 (4)	10.00			
í									

DESIGN CRITERIA

SPECIFIED LOADS: 25.6 6.0 0.0 7.4 TOP CH. LL =

BOT CH. LL =

DL =

TOTAL LOAD =

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

39.0

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

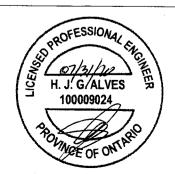
DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.15/1.00 (J-K:1) , BC=0.02/1.00 (M-N:4) , WB=0.08/1.00 (F-P:1) , SSI=0.09/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR ≈ 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

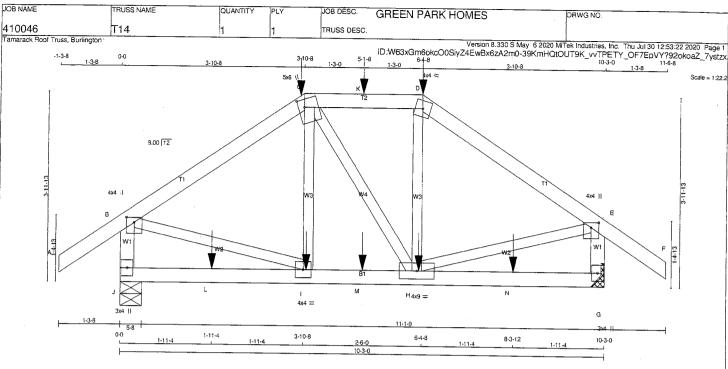

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.20 (B) (INPUT = 0.90) JSI METAL= 0.11 (E) (INPUT = 1.00)

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR. SPF SPF SPF A -CDF 2x4 DRY No 2 DRY DRY DRY No.2 No.2 SPF E DRY No.2 ALL WEBS EXCEPT

DRY: SEASONED LUMBER.

 PLATES (table is in inches)

 JT TYPE PLATES

 B TMVW+p MT20
 LEN Y X 4.0 1.25 2.00 6.0 2.00 1.50 4.0 4.0 1.25 2.00 4.0 9.0 4.0 TTWW+m MT20 5.0 4.0 4.0 3.0 4.0 TTW-m MT20 TMVW+p BMV1+p BMWWW-t MT20 MT20 MT20 MT20 BMWW-t MT20 BMV1+p

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BUILDING BEARINGS
FACTORED
GROSS REACTION
VERT HORZ MAXIMUM FACTORED GROSS REACTION INPUT REORD DOWN HORZ 0 0 UPLIFT IN-SX 0 5-8 0 G MECHANICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 3-8.

SOIL 0/0 0/0 DEAD

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.14 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS MAX. FACTORED WEBS MAX. FACTORED FORCE MA: FACTORED CTORED FACTORED FORCE (LBS) (PLF) CSI (LC) FROM TO 91.8 91.8 0.14 (1) 87.7 (1) 91.8 91.8 0.20 (1) 77.0 91.8 91.8 0.20 (1) 77.0 91.8 91.8 0.20 (1) 0.7 91.8 91.8 0.20 (1) 0.7 91.8 91.8 0.20 (1) 0.7 91.8 91.8 0.20 (1) 0.7 91.8 91.8 0.28 (1) 0.7 91.8 91.8 MEMB MAX. UNBRAC (LBS) CSI (LC) FR-TO LENGTH FR-TO 10.00 6.15 6.25 6.25 6.14 A-B-C-K-D-E-F -91.8 0.14 (1) -91.8 0.28 (1) -91.8 0.20 (1) -91.8 0.20 (1) -100 / 45 0 / 2 -98 / 47 0.03 (1) -878 / 0 0.00 (4) 0.03 (1) -727 / 0 -727 / 0 -880 / 0 B- (0 / 756 0.19 (1 -91.8 0.28 (1) -91.8 0.14 (1) 0.0 0.11 (1) 0.0 0.11 (1) H- E 0 / 35 10.00 J- B -991 / 0 -18.5 0.10 (4) -18.5 0.10 (4) -18.5 0.16 (1) -18.5 0.16 (1) -18.5 0.10 (4) -18.5 0.10 (4) -18.5 -18.5 -18.5 -18.5 10.00 0/0 0/727 0/727 0/0 L- I I- M M- H H- N N- G 10.00 -18.5 -18.5 10.00 0/0

FACTORED CONCENTS TED LOADS (LBS) FACE FRONT FRONT FRONT FRONT LOC. 3-10-8 MAX--253 TYPE HEEL GONN. C1 C1 C1 C1 C1 C1 C1 TOTAL TOTAL TOTAL VERT -253 -17 -17 -253 -17 -17 6-4-8 6-3-12 3-11-4 5-1-8 1-11-4 VERT TOTAL -86 -17 -17 -86 -17 FRONT VERT TOTAL FRONT FRONT FRONT TOTAL VERT 5-1-8 -17 -17

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 46 I DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 PSF 6.0 0.0 7.4 PSF PSF PSF BOT CH. TOTAL LOAD 39.0

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

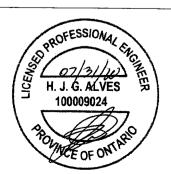
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.34")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.34")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02")

CSI: TC=0.28/1.00 (D-E:1) , BC=0.16/1.00 (H-I:1) , WB=0.19/1.00 (E-H:1) , SSI=0.14/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

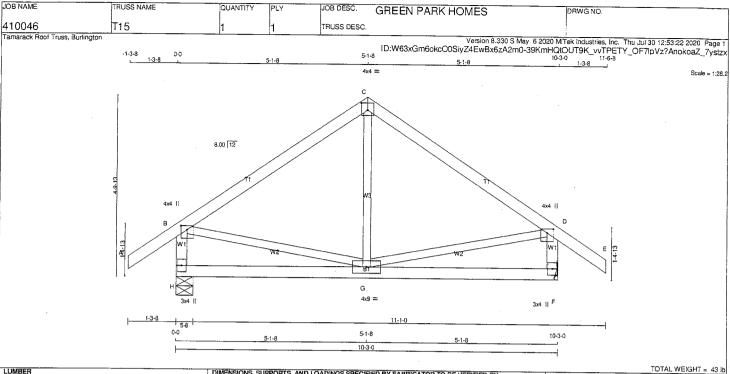

| NAIL VALUES | SHEAR | SECTION (PSI) | (PLI)

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.86 (I) (INPUT = 0.90) JSI METAL= 0.25 (I) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
H - B	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	x		
В	TMVW+p	MT20	4.0	4.0	1.25	2.00		
С	TTW-p	MT20	4.0	4.0	2.25	2.00		
D	TMVW+p	MT20	4.0	4.0	1.25	2.00		
F	BMV1+p	MT20	3.0	4.0				
G	BMWWW-t	MT20	4.0	9.0				
Н	BMV1+p	MT20	3.0	4.0				

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REORD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
H	691	0	691	0	0	5-8	5-8
F	691	0	691	0	0	MECHANIC	AL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8.

JT H F	1ST LCASE COMBINED 486 486
BE/	RING MATE
200	0010

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.
ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE	BS	
	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	I MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	F)	CSI(LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO	, ,	LENGTH	FR-TO	,	00. (20)
A-B	0 / 35	-91.8	-91.8	0.12 (1)		G-C	-25 / 79	0.03 (4)
B- C	-402 / 0	-91.8		0.31 (1)		B- G	0/342	0.08 (1)
C-D	-402 / 0	-91.8		0.31 (1)		G- D	0 / 342	0.08 (1)
D- E	0 / 35	-91.8					0 / 0 1/2	0.00 (1)
H- B	-654 / 0	0.0		0.07 (1)				
F- D	-654 / 0	0.0	0.0					
H- G	0/0	-18.5	-18.5	0.14 (4)	10.00			
G-F	0 / 0	-18.5	-18.5	0.14 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS:

TOP CH. LL = 25.6 PS

DL = 6.0 PS

BOT CH. LL = 0.0 PS

DL = 7.4 PS

TOTAL LOAD = 39.0 PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

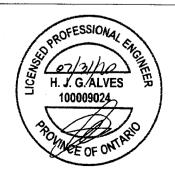
THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.34")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.34")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.31/1.00 (B-C:1) , BC=0.14/1.00 (G-H:4) , WB=0.08/1.00 (D-G:1) , SSI=0.15/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10


COMPANION LIVE LOAD FACTOR = 1.00

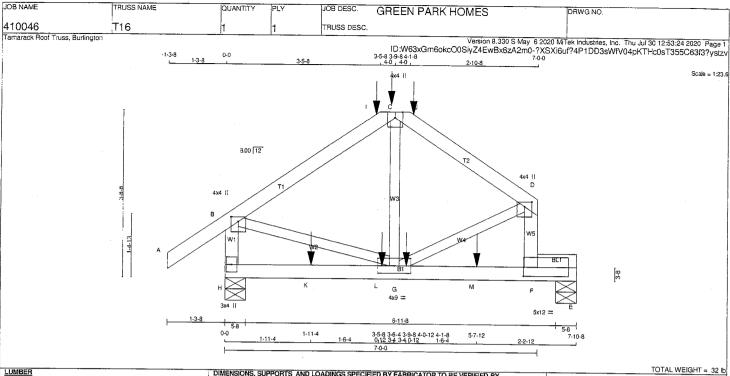

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.46 (D) (INPUT = 0.90) JSI METAL= 0.13 (D) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
н - в	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
H - E	2x4	DRY	No.2	SPF
BEARING BL BL1	OCKS 2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 LEN Y 4.0 1.25 2.00 4.0 Edge 4.0 1.25 2.00 12.0 2.25 3.75 4.0 4.0 4.0 5.0 MT20 MT20 MT20 MT20 MT20 TMTMW+p TMVW+p TMVW+p BMVKm BMWWW-t 4.0 BMV1+p MT20

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS A	ND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	_
BUILDING DESIGNER	TO DE VERNILLE BY	
DOILDING DESIGNER		

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REORD
	GROSS F	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Н	849	0	849	0	0	5-8	5-8
E	630	0	630	0	0	5-8	5-8

UNF	ACTORED REA	CTIONS		
	1ST LCASE	MAX./MIN.	COME	ONENT RE
JT	COMBINED	SNOW	LIVE	DEDI

	1ST LCASE	MAX./I	AIN. COMPO	NENT REACTION	VS.		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
H	596	414/0	0/0	0/0	0/0	182 / 0	0/0
Ξ	445	294 / 0	. 0/0	0/0	0/0	:52 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H. E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE	BS	
MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC	TAM 1	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC	3	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	/	()
A-B	0 / 35	-91.8	-91.8	0.14 (1)	10.00	8- G	0 / 579	0.14(1)
B-I	-629 / 0	-91.8	-91.8	0.31(1)		G-D		0.15(1)
i- C	-629 / 0	-91.8	-91.8	0.31(1)		G-C	-54 / 84	0.03 (4)
C- J	-629 / 0			0.23(1)				0.00 (1)
J- D	-629 / 0	-91.8		0.23(1)				
{ H- B	-842 / 0	0.0	0.0	0.10(1)	7.81			
F-D	-802 / 0	0.0	0.0	0.10(1)	7.81			
H-K	0/0	-18.5	-18.5	0.22 (1)	10.00			
K-L	0/0	-18.5	-18.5	0.22(1)	10.00			
L-G	0/0	-18.5	-18.5	0.22 (1)	10.00			
G-M	0/0	-18.5	-18.5	0.81 (1)	10.00			
M-F	0/0	-18.5	-18.5	0.81 (1)	10.00			
F-E	0/0	-18.5	-18.5	0.81(1)	10.00			
1								

FAU	I OUED COL	ACEIA 1 LA	ALED LO.	ADS (FRS)					
Τį	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
С	3-9-8	-145	-145		BACK	VERT.	TOTAL		C1
G	4-0-12	-13	-13		BACK	VERT	TOTAL		C1
I	3-5-8	-183	-183		BACK	VERT	TOTAL		C1
J	4-1-8	-183	-183		BACK	VERT	TOTAL		C1
K	1-11-4	-13	-13		BACK	VERT	TOTAL		C1
L	3-6-4	-13	-13		BACK	VERT	TOTAL		C1
M	5-7-12	-13	-13		BACK	VERT	TOTAL		Ct

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 6.0 0.0 7.4 PSF PSF BOT CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.26")
CALCULATED VERT. DEFL.(LL) = L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (0.26")
CALCULATED VERT. DEFL.(TL) = L/623 (0.15")

CSI: TC=0.31/1.00 (B-C:1) , BC=0.81/1.00 (F-G:1) , WB=0.15/1.00 (D-G:1) , SSI=0.54/1.00 (E-F:1)

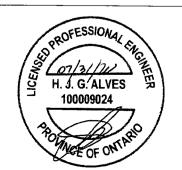
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)


MAX MIN MAX MIN MAX MIN

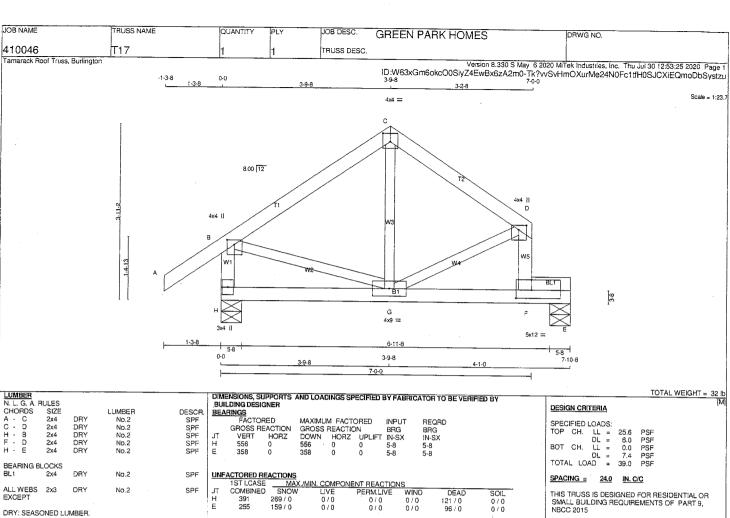

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.63 (B) (INPUT = 0.90) JSI METAL= 0.19 (B) (INPUT = 1.00)

PLATES (table is in inches)
JT TYPE PLATES
B TMVW+p MT20 LEN Y X 4.0 1.25 2.00 4.0 2.25 2.00 4.0 1.25 2.00 12.0 2.25 4.25 4.0 MT20 MT20 MT20 MT20 MT20 MT20 TTW-p TMVW+p BMVKm BMWWW-t 4.0 4.0 5.0

BMV1+p

9.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H, E

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHU	כטחיי			WEBS							
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED			
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX			
	(LBS)	(PL		CSI (LC)	UNBRAC		(LBS)	CSI (LC)			
FR-TO		FROM	TO		LENGTH	FR-TO	, ,	. (/			
A- B	0 / 35	-91.8	-91.8	0.12(1)	10.00	G-C	0 / 68	0.02 (4)			
	-309 / 0	-91.8	-91.8	0.23 (1)	6.25	B- G	0 / 267	0.06(1)			
C-D	-310 / 0	-91.8	-91.8	0.16(1)	6.25	G-D	0 / 286	0.06(1)			
	-543 / 0	0.0	0.0	0.06(1)	7.81			()			
F- D	-442 / 0	0.0	0.0	0.05 (1)	7.81						
H- G	0/0	-18.5	~18.5	0.12(1)	10.00						
G-F	0/0	-18.5	-18.5	0.42 (1)	10.00						
F-E	0/0	-18.5	-18.5	0.42 (1)	10.00						

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

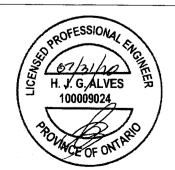
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.26")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.26")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.09")

CSI: TC=0.23/1.00 (B-C:1) , BC=0.42/1.00 (F-G:1) , WB=0.06/1.00 (D-G:1) , SSI=0.28/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

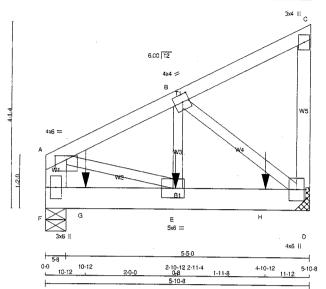
COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.37 (B) (INPUT = 0.90) JSI METAL= 0.11 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES 410046 T18 TRUSS DESC Tamarack Roof Truss, Burlington

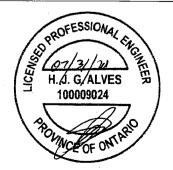
Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Jul 30 12:53:26 2020 Page 1 ID:W63xGm6okcO0SiyZ4Ew8x6zA2m0-xwZH7owvXiflTWDFe4XU9EPtfQrJxzJ0fQYm7uystzt 5:10-8

2-11-4

LUMBER N. L. G. A. RULES
CHORDS SIZE
F - A 2x6
A - C 2x4
D - C 2x4
F - D 2x6 DESCR. SPF SPF - A - C - C No.2 No.2 DRY DRY ALL WEBS DRY 2x3 No.2 SPE DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

	CHORD	S #ROWS	SURFACE SPACING (IN	,	LOAD(PLF)
	TOP CH	ORDS : (0.1	22"X3") SPIRAL		
į	F-A	2	12		TOP
	A-C	1	12		TOP
	C- D	1	12		TOP
	BOTTO	MICHORDS	: (0.122"X3") SF	PIRAL NAILS	
	F- D	2	12		SIDE(183.1)
	WEBS:	(0.122"X3")	SPIRAL NAILS		, ,
	B- E	1	6		SIDE(13.4)
	2x3	1	6		


NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NALING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL.	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Y	Χ						
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00						
В	TMWW-t	MT20	4.0	4.0	2.00	1.75						
C	TMV+p	MT20	3.0	4.0								
D	BMVW1+p	MT20	4.0	6.0								
Ε	BMWW-t	MT20	5.0	6.0								

Structural component only DWG# T-2017056 1/2

ļ	DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
i	BUILDING DESIGNER	
	BEARINGS	

<u>BEA</u>	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REORD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	NWOG	HORZ	UPLIFT	IN-SX	IN-SX
F	1465	0	1465	0	0	5-8	5-8
D	1443	0	1443	0	0	MECHANI	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4.0.

UNFACTORED REACTIONS

0.0

	1ST LCASE	MAX./A	AIN. COMPO	NENT REACTION	IS.		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	1034	693 / 0	0/0	0/0	0/0	341 / 0	0/0
D	1018	683 / 0	0/0	0/0	0/0	336 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS FACTORED	FACTO	RED			W E	BS MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB		
	(LBS)	(PI	F)	CSI (LC)	UNBRAC	:	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		()
F- A	-973 / 0	0.0	0.0	0.03(1)	7.81	A-E	0 / 1169	0.14(1)
A-B	-1253 / 0	-91.8	-91.8	0.06(1)	6.25	E- 8	0 / 1110	0.14(1)
B-C	-11 / 0	-91.8	-91.8	0.05 (1)	6.25	B- D	-1422 / 0	0.17(1)
D-C	-110 / 0	0.0		0.01 (1)	7.81			(-7
F- G	0/0	-18.5	-18.5	0.16 (1)	10.00			
G-E	0/0	-18.5	-18.5	0.16 (1)	10.00			
E-H	0 / 1131	-18.5	-18.5	0.24 (1)	10.00			
H- D	0 / 1131	-18.5	-18.5	0.24 (1)	10.00			
FACTO	RED CONCENT	BATEDIO	ADS (I	RS)				

LOC. MAX-CONN. C1 C1 C1 LC1 -753 MAX+ FACE DIR. TYPE HEEL -753 -754 -753 VERT VERT 2-10-12 FRONT 10-12 4-10-12

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOAI	OS:		
TOP	CH.	LL	=	25.6	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL		7.4	PSF
TOTA	L LO	AD	25	39.0	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

TOTAL WEIGHT = 2 X 29 = 58 lb

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.24/1.00 (D-E:1) , WB=0.17/1.00 (B-D:1) , SSI=0.16/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

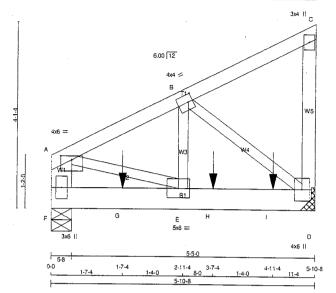
JSI GRIP= 0.72 (B) (INPUT = 0.90) JSI METAL= 0.25 (D) (INPUT = 1.00)

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK HOMES		DRWG NO.	
410046 Famarack Roof Truss, Burling	T18		2	TRUSS DESC.	Version 8.330 S May 6 ID:W63xGm6okcO0SiyZ4EwBx6zA2m0	5 2020 Mi	iTek Industries, Inc. Thu	Jul 30 12:53:26 2020 Page 3
					ID:W63xGm6qkcO0SiyZ4EwBx6zA2m0	xwZH7	owvXiflTWDFe4XU9	EPtfQrJxzJOfQYm7uystz
PLATES (table is in inches) JT TYPE PLATES F BMV1+p MT20	W LEN Y X 3.0 6.0							
	0.0							
			*					
					· -			
		3						
		E						
•								
			*					
OFES	SSIONA							
in PRO	SSIONAL ENGLANDERS SIONAL ENGL							
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	31/10							
일 H. J. G	KALVES > > 09024,					:		
1 —	77							
18	OF ONTARIO							
WEE	OF ON I							
Structural con DWG# T-201	7056			,				

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. GREEN PARK HOMES

410046 T18Z 1 2 TRUSS DESC.


Tamarack Roof Truss, Burlington

2-11-4

Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Jul 30 12:53:27 2020 Page 1 ID:W63xGm6okcO0SiyZ4EwBx8zA2m0-P67fK8xXI?nc4goRCn2jnSy1Jq8FgPLXu4HJfKystzs

2-11-4 5-10-8 2-11-4 5-10-8

Scale = 1:23.

| LUMBER | N. L. G. A. RULES | CHORDS SIZE | LUMBER | DESCR. | F - A 2x6 DRY No.2 SPF. | D - C 2x4 DRY No.2 SPF. | D - C 2x4 DRY No.2 SPF. | D - C 2x4 DRY No.2 SPF. | D 2x6 DRY No.2 SPF. | D 2x6 DRY No.2 SPF. | D 2x6 DRY No.2 SPF. | D 2x6 DRY No.2 SPF. | DRY: SEASONED LUMBER. | SEASONED LUMBER. | SEASONED LUMBER. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER. | DESCR. | DEVISEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE SPACING (IN)

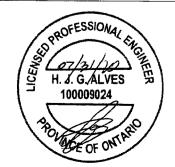
TOP CHORDS : (0.122"X3") SPIRAL NAILS

F-A 2 12 TOP
A-C 1 12 TOP
C-D 1 12 TOP
BOTTOM CHORDS : (0.122"X3") SPIRAL NAILS

F-D 2 12

WEBS : (0.122"X3") SPIRAL NAILS

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.


GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)
JT TYPE PLATES

JT	TYPE	PLATES	W	LEN	Υ	Х
JT A	TMVW-p	MT20	4.0	6.0	1.00	3.00
ворши	TMWW-t	MT20	4.0	4.0	2.00	1.25
С	TMV+p	MT20	3.0	4.0		
D	BMVW1+p	MT20	4.0	6.0		
Ε	BMWW-t	MT20	5.0	6.0		
F	BMV1+n	04T'20	3.0	6.0		

Structural component only DWG# T-2017057

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

<u>EA</u>	RINGS						
	FACTO GROSS R		MAXIMU GROSS			INPUT BRG	REQRD BRG
Ī	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	1701	0	1701	0	0	5-8	5-8
	2192	0	2192	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

١	0141	ACTORED N	ACTIONS.								
ı		1ST LCASE	MAX./	MAX./MIN. COMPONENT REACTIONS							
į	JT	COMBINED	SNOW	LIVE	PERM.LIVE	MIND	DEAD	SOIL			
	F	1197	815/0	0/0	0/0	0/0	382 / 0	0/0			
	D	1543	1052 / 0	0/0	0/0	0/0	491 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX MEMB.	ORDS (FACTORED FORCE (LBS)		AD LC1		MAX. UNBRAC	MEMB	(LBS)	PRED MAX CSI (LC)		
FR-TO	1070 (0	FROM			LENGTH					
	-1373 / 0	0.0		0.05 (1)	7.81	A-E	0 / 1704	0.21(1)		
A-B	-1833 / 0	-91.8	-91.8	0.07(1)	6.25	€- В	0 / 1772	0.22(1)		
B-C	-9/0	-91.8	-91.8	0.05(1)	10.00	B- D	-2073 / 0	0.25 (1)		
D- C	-114 / 0	0.0		0.01 (1)				0.20(1)		
F- G	0/0	18.5	-18.5	0.21 (1)	10.00					
G-E	0/0	-18.5	-18.5	0.21 (1)	10.00					
E- H	0 / 1648	-18.5	-18.5	0.39 (1)						
H- (0 / 1648			0.39 (1)						
I- D	0 / 1648			0.39 (1)	10.00					

FACT	FACTORED CONCENTRATED LOADS (LBS)											
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN			
G	1-7-4	-1081	-1081		BACK	VERT	TOTAL		C1			
H	3-7-4	-1081	-1081		BACK	VERT	TOTAL		Č1			
I	4-11-4	-1082	-1082	***	BACK	VERT	TOTAL		01			

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

| SPECIFIED LOADS: | TOP | CH. | LL | = | 25.6 | PSF | CH. | LL | = | 0.0 | PSF | CH. | CH

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 29 = 58 ib

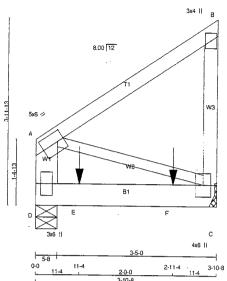
THIS DESIGN COMPLIES WITH:
PART 9 OF BCBC 2018, ABC 2019
PART 9 OF OBC 2012 (2019 AMENDMENT)
CSA 086-14
TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.39/1.00 (D-E:1) , WB=0.25/1.00 (B-D:1) , SSI=0.46/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00


COMPANION LIVE LOAD FACTOR = 1:00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

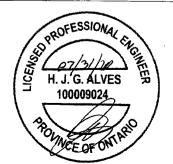
JSI GRIP= 0.85 (B) (INPUT = 0.90) JSI METAL= 0.37 (D) (INPUT = 1.00) JOB NAME TRUSS NAME QUANTITY **GREEN PARK HOMES** DRWG NO. 410046 T19 TRUSS DESC amarack Roof Truss, Burlington Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Jul 30 12:53:28 2020 Page 1 ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-tlh1YUx93JvTiqNdlVZyEfUB4EVMPvSg6k1tCnystzr 3-10-8

N. L. G. A. RULES
CHORDS SIZE
D - A 2x6
A - B 2x4
C - B 2x4
D - C 2x6 DESCR SPF SPF LUMBER DRY DRY No.2 No.2 No.2 No.2 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

(CHORDS	#ROWS	SURFACE	LOAD(PLF)
ļ			SPACING (IN)	
1	OP CHO	RDS: (0.12	22"X3") SPIRAL NAILS	
E)- A	2	12	TOP
	4- B	1	12	TOP
Ε	3- C	1	12	TOP
E	MOTTOR	CHORDS:	(0.122"X3") SPIRAL NA	ILS
)- C	2	12	SIDE(0,0)
V	VEBS: (0).122"X3") §	SPIRAL NAILS	
	x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.


GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)

	JT	TYPE TMVW-t	PLATES	W	LEN	Y	Х	
	Α	TMVW-t	MT20	5.0	6.0	2.50	1.75	
ļ	В	TMV+p	MT20	3.0	4.0			
i	BCD	BMVW1+p	MT20	4.0	6.0			
	D	BMV1+p	MT20	3.0	6.0			

Structural component only DWG# T-2017058

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BUILDING DESIGNER	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VEHIFIED BY

BE	ARINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPLIT	REORD
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	8RG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	1144	0	1144	0	0	5-8	5-8
С	969	0	969	0	Ô	MECHANIC	CΔI

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C = 2-0.

UNEACTORED REACTIONS

3111	ACTORILED HE	ACTIONS.					
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	VS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
D	804	554 / 0	0/0	0/0	0/0	250 / 0	0/0
С	681	471-/ 0	0/0	0/0	0/0	210 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

С	HORDS							WE	BS		
M. MEME	AX. FACTO		FACTO						MAX. FAC		
	(LE	3S)	VERT. LC (Pl			MAX ONU (C		MEMB.	FORCE (LBS)	MAX CSI	
FR-TC			FROM	TO	•	LEN	GTH I	FR-TO	(===)	00.	,
D- A	-178 / (0.0	0.0	0.01 (1) 7	.81	A- C	0/0	0.00	(1)
A-B	0/0		-91.8	-91.8	0.13 (1) 10	.00				,
C-B	-178 / 0	3	0.0	0.0	0.02 (1) 7	.81				
D-E	0/6	1	-18.5	-185	0.33 (1) 10	.00				
E-F	0/0		-18.5		0.33 (.00				
F- C	0/6	}	-18.5		0.33 (.00				
FACT	ORED CON	NCENTE	RATEDIO	ADS (I	BS)						
JT	LOC.	LC1	MAX-	MAX		FACE	DI	D	TYPE	HEEL	000
	11-4	-1012	-1012			ACK	VEF		TOTAL	neeL	CON
E F	2-11-4	673	-673	-		ACK	VEF		TOTAL	***	C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 20 = 41 I

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = 25.6 6.0 0.0 7.4 TOTAL LOAD 39.0

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

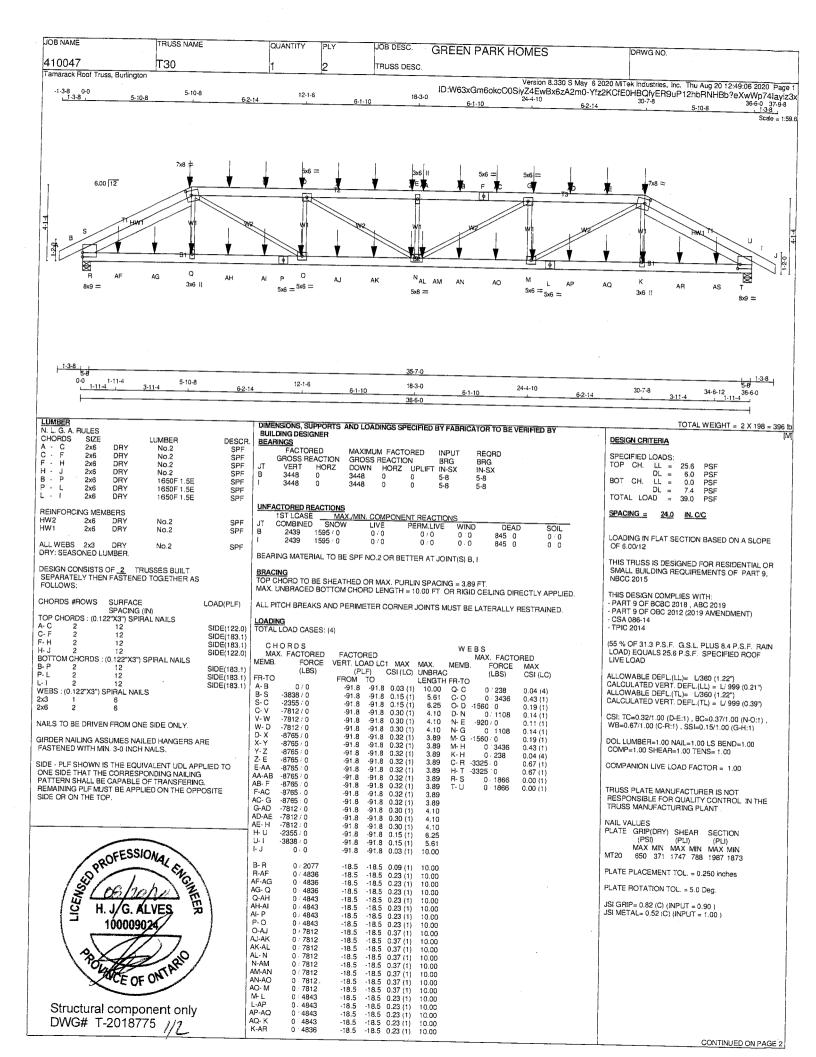
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSI: TC=0.13/1.00 (A-B:1) , BC=0.33/1.00 (C-D:1) , WB=0.00/1.00 (A-C:1) , SSI=0.32/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS=1.00

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

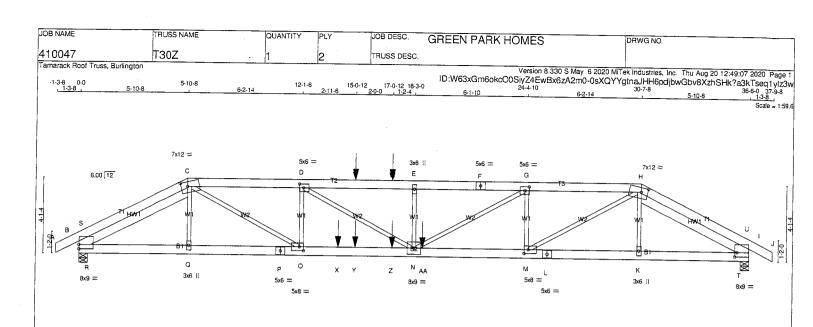
NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.04 (B) (INPUT = 0.90) JSI METAL= 0.03 (B) (INPUT = 1.00)

I HUSS NAME	QUANTITY PLY JOB DESC. GREEN PARK HOMES	DRWG NO.
110047 T30	1 2 TRUSS DESC.	
### Paramatack Roof Truss, Burlington PLATES (table is in inches)	Version 8.330 S May 6 202 ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-Yfz2k LOADING TOTAL LOAD CASES: (4) C HO R D S MAX. FACTORED MEMB. FORCE VERT. LOAD LC1 MAX MEMB. FORCE VERT. LOAD LC1 MAX (LBS) (PLF) CSI (LC) UNBRAC (LBS) CSI (LC) FR-TO FROM TO LENGTH FR-TO AR-AS 0 / 4836 -18.5 -18.5 0.23 (1) 10.00 AS-T 0 / 4836 -18.5 -18.5 0.09 (1) 10.00 FACTORED CONCENTRATED LOADS (LBS)	0 MTek Industries, Inc. Thu Aug 20 12:49:06 2020 Pa CCFE0HBQfyER9uP12hbRNHBb?eXwWp74lay
N BMWWW-t MT20 5.0 8.0 D BMWW-t MT20 5.0 6.0 P BS-t MT20 5.0 6.0 D BMW+w MT20 3.0 6.0	JT LOC. LC1 MAX- MAX+ FACE DIR. TYPE HEEL CONN. C 5-10-8 -409 -409	


T- I 0 : 2077 -18.5 -18.5 0.09 (1) 10.00 DIR. VERT VERT VERT VERT FACE FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT TYPE
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL HEEL $\overset{\mathbf{Z}}{\mathbf{C}}$ $\overset{\mathbf{C}}{\mathbf{C}}$ T VERT VERT VERT VERT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT FRONT VERT VERT VERT VERT VERT VERT VERT VERT VERT VERT VERT VERT FRONT FRONT FRONT

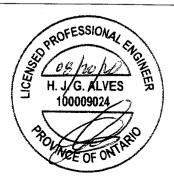
CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOP NAME

11-3-8	35-7-0	
5-10-8 5-10-8 6-2-1	12-1-6 14-1-8 15-0-12 17-0-12 18-3-0 18-8-8 24-4-10 12-13-6 14-1-8 15-0-12 18-3-0 18-8-8 5-8-2 11-4, 2-0-0 1-2-4 5-8 5-8-2 36-6-0	6-2-14 30-7-8 36-6-0

	LUMBER				
	N. L. G. A. F	RULES			
	CHORDS	SIZE		LUMBER	DESCR.
	A - C	2x6	DRY	No.2	SPF
	C - F	2x6	DRY	No.2	SPF
	F - H	2x6	DRY	No.2	SPF
	H - J	2x6	DRY	No.2	SPF
	B - P	2x6	DRY	2100F 1.8E	SPF
į	P · L	2x6	DRY	2100F 1.8E	SPF
	L - I	2x6	DRY	2100F 1.8E	SPF
	REINFORCE	NG MEN	1BERS		
i	HW2	2x6	DRY	No.2	SPF
	HW1	2x6	DRY	No.2	SPF
	ALL WEBS	2x3	DRY	No.2	SPF
	DRY: SEAS	ONEDLI	JMBER.		


DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE	LOAD(PLF)
		SPACING (IN)	
TOP C	HORDS: (0.1	22"X3") SPIRAL NAILS	
A-C	2	12	TOP
C-F	2	12	SIDE(0.0)
F-H	2	12	TOP
H1	2	12	TOP
BOTTO	M CHORDS	(0.122"X3") SPIRAL NAILS	101
	01.101.100		
B- P	2	12	TOP
P-L	2	12	SIDE(0.0)
L-I	2	12	TOP
WEBS:	(0.122"X3")	SPIRAL NAILS	
2x3	1	6	
246	2	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

Structural component only DWG# T-2018776 //2

DIMENSIONS, SUPPORTS	AID LOADINGS COTO	WIED DV ELDOVE LEG	
Difficitorotto, Jorronio	いっし たいみいいいほう うとだい	IFIED BY FABRICATOR	IO BE VERIFIED RV
BUILDING DESIGNER			
DOILDING DESIGNER			
REARINGS			
BEARINGS			

<u></u>	i ilitaco				
г	FACTOR GROSS RE VERT 4354 4012	MAXIMUI GROSS I DOWN 4354 4012		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNFACTORED REACTIONS

	101 LUMBE		WILLY, COMPO	NEINT REACTION	VS.		
JT	COMBINED	SNOW C	LIVE	PERM.LIVE	WIND	DEAD	SOIL
В	3068	2075 / 0	0/0	0/0	0 / 0	993 0	0 / 0
1	2828	1910 / 0	0 / 0	0/0	0 / 0	919 0	0.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B. I.

В

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 2.88 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	HORDS AX. FACTORED	FACTO	350		WEBS			
MEMB					MAX. FACTORED			
INITINID					MAX.	MEME		MAX
FR-TC	(LBS)			CSI (LC)	UNBRAC		(LBS)	CSI (LC)
A-B		FROM			LENGTH			
B-S	0 / 0			0.03 (1)		Q-C	. 0 - 93	0.02 (4)
S- C	-4878 / 0	-91.8		0.18 (1)		C-O	0.6644	0.82(1)
C- D	-2936 / 0 -12050 / 0	-91.8		0.17 (1)			-2055 / 0	0.25(1)
D- V		-91.8		0.40 (1)		D- N	0 / 2652	0.33 (1)
V-W	-14330 / 0	-91.8		0.59 (1)		N-E	-637 / 0	0.08(1)
W-E	-14330 / 0	-91.8	-91.8	0.59 (1)		N- G	0 / 4180	0.52(1)
	-14330 / 0	-91.8		0.59 (1)			-2751 : 0	0.33(1)
E-F	-14330 / 0	-91.8	-91.8	0.50 (1)	2.98	M- H	0 5709	0.71(1)
F- G	-14330 / 0	-91.8		0.50 (1)		K- H	0 183	0.03(4)
G-H	-10736 / 0	-91.8		0.35 (1)			-4477 - 0	0.90(1)
H-U	-2671 0	-91.8	-91.8	0.16 (1)			-4147 0	0.83(1)
U-I	-4379 : 0	-91.8		0.17(1)		R-S	0 2503	0.00(1)
I- J	0 / 0	-91.8	-91.8	0.03 (1)	10.00	T- U	0 - 2182	0.00(1)
8- R	0 / 2593	-18.5		0.07 (1)	10.00			
R-Q	0 / 6308	-18.5	-18.5	0.18 (1)	10.00			
Q-P	0 6308	-18.5	-18.5	0.28 (1)	10.00			
P-0	0 / 6308	-18.5	-18.5	0.28 (1)	10.00			
O- X	0 - 12050	-18.5	-18.5	0.66(1)	10.00			
X-Y	0 / 12050	-18.5		0.66 (1)	10.00			
Y-Z	0 / 12050	-18.5		0.66 (1)	10.00			
Z- N	0 / 12050	-18.5	-18.5	0.66 (1)	10.00			
N-AA	0 : 10736	-18.5	-18.5	0.42 (1)	10.00			
AA- M	0 / 10736	-18.5	-18.5	0.42 (1)	10.00			
M-L	0 : 5803	-18.5	-18.5	0.18(1)	10.00			
L- K	0 / 5803	-18.5	-18.5	0.18(1)	10.00			
K-T	0 5798	-18.5		0.18(1)	10.00			
T- I	0 2357	-18.5	-18.5	0.08 (1)	10.00			

FACTORED CONCENTRATED LOADS (LBS)										
	JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
	٧	15-0-12	-110	-110		BACK	VERT	TOTAL		C1
	W	17-0-12	-110	-110		BACK	VERT	TOTAL		C1
	Х	14-1-8	-1610	-1610		BACK	VERT	TOTAL		C1
	Y	15-0-12	-26	-26		BACK	VERT	TOTAL		C1
Į	Z	17-0-12	-26	-26		BACK	VERT	TOTAL		C1
i	AA	18-8-8	-2203	-2203		BACK.	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 198 = 396 lb DESIGN CRITERIA

ODE OFFICE	
SPECIFIED	L()ADS

TOP	CH.	LL	=	25.6	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	72	0.0	PSF
		DL		7.4	PSF
TOTA	L LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH-PART 9 OF BCBC 2018 , ABC 2019
PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/999 (0.35")
ALLOWABLE DEFL.(TL)= L/360 (1.22") CALCULATED VERT. DEFL.(TL) = 1/ 695 (0.63")

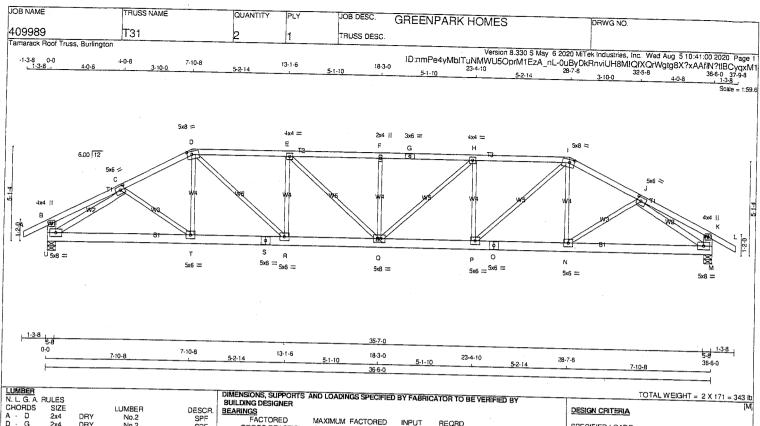
CSI: TC=0.59/1.00 (D-E:1) , BC=0.66/1.00 (N-O:1) , WB=0.90/1.00 (C-R:1) , SSI=0.73/1.00 (M-N:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (C) (INPUT = 0.90) JSI METAL= 0.73 (C) (INPUT = 1.00)

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC.	GREEN PARK HOMES	DRWG NO.
410047	T30Z	1 2	TRUSS DESC.		
Tamarack Roof Truss, Bur	lington				
_	3			Version 8.330 S May	6 2020 MiTek Industries, Inc. Thu Aug 20 12:49:07 202
			···	ID:W63xGm6okcO0SiyZ4EwBx6zA2m	0-0sXQYYgtnaJHH6pdjbwGbv8XzhSHk?a3kTse
PLATES Itable is in inchem	S W LEN Y X 8.0 9.0 2.75 7.0 12.0 3.00 4.25 5.0 6.0 2.50 2.75 3.0 6.0 5.0 6.0 2.50 2.75 7.0 12.0 3.00 4.25 8.0 9.0 2.75 1.50	CONNECTION REQUIREMENT 1) C1: A SUITABLE HANGE	-		

LUMBER									
N. L. G. A. F	RULES								
CHORDS	SIZE		LUMBER	DESCR.					
ÍA - D	2x4	DRY	No.2						
D · G	2x4	DRY		SPF					
			No.2	SPF					
G - 1	2x4	DRY	No.2	SPF					
]	2x4	DRY	No.2	SPF					
U · B	2x6	DRY	No.2	SPF					
M - K	2x6	DRY	No.2	SPE					
U · S	2x6	DRY	No.2						
1 5				SPF					
	2x6	DRY	No.2	SPF					
O - M	2x6	DRY	No.2	SPF					
ALL WEBS	2x3	DRY	No.2	SPF					
EXCEPT		5	. 40.2	arr					
U - C	2x4	DRY							
			No.2	SPF					
J - M	2x4	DRY	No.2	SPF					
DRY: SEASO	ONED LL	IMBER.							
	OTTO SERVICE LOWIDE, I.								

PL	ATES (table	is in inches)						
JT		PLATES	W	LEN	Υ	х		
В	TMV+p	MT20	4.0	4.0				
C	TMWW-t	MT20	5.0	6.0	2.50	2.75		
D	TTWW-m	MT20	5.0	8.0	2.00	3.25		
E	TMWW-t	MT20	4.0	4.0				
F	TMW+w	MT20	2.0	4.0				
G	TS-t	MT20	3.0	6.0				
Н	TMWW-t	MT20	4.0	4.0				
1	∏WW-m	MT20	5.0	8.0	2.00	3.25		
J	TMWW-t	MT20	5.0	6.0	2.50	2.75		
К	TMV+p	MT20	4.0	4.0				
M	BMVW1-t	MT20	5.0	8.0				
N, I	P, R, T							
N	BMWW-t	MT20	5.0	6.0				
0	BS-t	MT20	5.0	6.0				
Q	BMWWW-t	MT20	5.0	8.0				
S	BS-t	MT20	5.0	6.0				
U	BMVW 1 -t	MT20	5.0	8.0				

LICENSES	PROFESSIONAL THE H. J. G. ALVES TO 100009024
19	ON ARIO

Structural component only DWG# T-2017369

BEA	RINGS				
IT J A	FACTO GROSS R VERT 2137 2137	MAXIMUS GROSS I DOWN 2137 2137		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNF	ACTORED RE	ACTIONS					
	1ST LCASE		IN. COMPO	NENT REACTION	NS		
U U M	1509 1509	SNOW 1003 / 0 1003 / 0	0/0 0/0	PERM.LIVE 0 / 0 0 / 0	WIND 0 ' 0 0 : 0	DEAD 505 · 0 505 · 0	SOIL 0 0 0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U, M

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.03 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	:									
		ORDS C. FACTORED	T. CTO				W 8	BS		
			FACTO					MAX. FACTO	RED	
	MEMB.	FORCE	VERT. LO		1 MAX	MAX.	MEMB		MAX	
		(LBS)	(PL	.F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
	FR-TO		FROM	TO		LENGTH	FR-TO	12007	OOI (LC)	
	A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	C- T	0 / 87	0.03 (4)	
	B-C	0 / 17	-91.8	-91.8			T-D	0 '118	0.03 (4)	
	C-D	-2978 ' 0	-91.8	-91.8	0.34 (1)	3.76	D-R	0 / 1314		
	D-E	-3625 / 0	-91.8	-91.8			R-E	-797 : 0	0.30 (1) 0.29 (1)	
	E-F	-3907 : 0	- 9 1.8	-91.8	0.66 (1)		E-Q	0 383		
	F-G	-3907 0	-91.8				Q-F	-433 0	0.09(1)	
	G-H	-3907 : 0	-91.8	-91.8		3.03	ФH	0 / 383	0.16(1)	
	H-1	-3625 / 0	-91.8	-91.8			P-H	-797 0	0.09(1)	
ı	I- J	-2978 0	-91.8	-91.8	0.34 (1)	3.76	P-I	0 1314	0.29 (1)	
ļ	J-K	0 17	-91.8	-91.8	0.20 (1)	10.00	N- I	0 118	0.30 (1)	
ı	K-L	0 · 28	-91.8	-91.8			N- J		0.04 (4)	
	U-B	-269 0	0.0	0.0		7.81		-3157 0	0.03 (4)	
-	M-K	-269 . 0	0.0	0.0		7.81	1-84	-3157 0 -3157 0	0.80(1)	
1					0.02 (1)	1.01	U- 101	313/ 0	0.80 (1)	
į	U- T	0 2592	-18.5	-18.5	0.38 (1)	10.00				
ĺ	T-S	0 : 2649	-18.5	-18.5	0.36 (1)	10.00				
ł	S-R	0 / 2649	-18.5	-18.5		10.00				
ļ	R-Q	0 3626	-18.5	-18.5		10.00				
1	Q-P	0 3626		-18.5	0.48 (1)	10.00				
ļ	P-Q	0 2649	-18.5	-18.5						
l	O- N	0 2649			0.36 (1)	10.00				
ļ	N- M	0:2592	-18.5		0.38 (1)	10.00				

SPECIFIED LOADS: 25.6 LL DL LL PSF PSF PSF CH. 6.0 вот сн. DΙ TOTAL LOAD 39.0 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

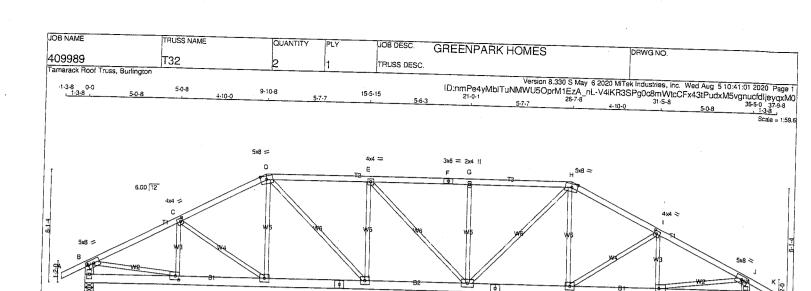
ALLOWABLE DEFL.(LL)= L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/999 (0.21")
ALLOWABLE DEFL.(TL)= L/360 (1.22")
CALCULATED VERT. DEFL.(TL)= L/999 (0.40")

CSI: TC=0.66/1.00 (E-F:1) , BC=0.48/1.00 (Q-R:1) . WB=0.80/1.00 (J-M:1) . SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.86 (D) (INPUT = 0.90) JSI METAL= 0.72 (C) (INPUT = 1.00)

1-3-8 1 5-8 35-7-0	
0-0 5-0-8 9-10-8 15-5-15 21-0-1 5-0-8 1-10-0 5-7-7 5-6-3 36-6-0	5.7.7 26-7-8 4-10-0 31-5-8 5-0-8 36-6-0

Ω

5x8 =

5x6 =

5x6 =

	LUMBER				
	N. L. G. A. F	RUES			
	CHORDS	SIZE		1194050	
	A - D			LUMBER	DESCR.
		2x4	DRY	No.2	SPF
	D - F	2x4	DRY	No.2	SPF
	F · H	2x4	DRY	No.2	SPF
ı	H - K	2x4	DRY	No.2	SPF
i	U - B	2x6	DRY	No.2	
ı	L · J	2x6	DRY		SPF
Į	Ü - B			No.2	SPF
ł		2x6	DRY	No.2	SPF
Į	R - O	2x6	DRY	No.2	SPF
ì	0 · L	2x6	DRY	No.2	SPF
ļ					31-1-
Į	ALL WEBS	2x3	DRY	No.2	
Į	EXCEPT	LAG	Di ti	140.2	SPF

5x6 =

DRY: SEASONED LUMBER.

3x6 ||

PL	PLATES (table is in inches)						
JT	TYPE	PLATES	W	LEN	Υ	Х	
В	TMVW-t	MT20	5.0	8.0		^	
C	TMWW-t	MT20	4.0	4.0	2.00	1.75	
D	TTWW-m	MT20	5.0	8.0		3.75	
E	TMWW-t	MT20	4.0	4.0		0.70	
F	TS-t	MT20	3.0	6.0			
G	TMW+w	MT20	2.0	4.0			
Н	TTWW-m	MT20	5.0	8.0	2.25	3.75	
1	TMWW-t	MT20	4.0	4.0	2.00	1.75	
J	TMVW-t	MT20	5.0	8.0			
L	BMV1+p	MT20	3.0	6.0			
M	BMWW-t	MT20	5.0	6.0	2.50	2.25	
	Q,S						
Ν	BMWW-t	MT20	5.0	6.0			
0	BS-t	MT20	5.0	6.0			
Р	BMWWW-t	MT20	5.0	8.0			
R	BS-t	MT20	5.0	6.0			
T	BMWW-t	MT20	5.0	6.0	2.50	2.25	
U	8MV1+p	MT20	3.0	6.0			

(35)	PROFESSIONAL CITY OF THE PROPERTY OF THE PROPE
LICEA	H. J. G. ALVES 100009024
19	SOLVACE OF ONT ARIO

Structural component only DWG# T-2017370

	AND LOADINGS SPECIFIED	BY FABRIC	ATOR TO BE VERIFIED !
BEARINGS FACTORED	MAYIMI IM EACTORED		

<u>sea</u>	<u>HINGS</u>				
T J	FACTO GROSS R VERT 2137 2137	MAXIMUI GROSS I DOWN 2137 2137		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

Ω

5x6 = 5v6 -

UNFACTORED REACTIONS

ıT	IST LCASE		MIN. COMPON	VENT REACTION	vs.			
JT	1509 1509	1003 / 0	0/0	PERM.LIVE 0/0	WIND 0 / 0	DEAD 505 0	SOIL	
-	1309	1003 / 0	0/0	0 / 0	0 · 0	505 0	0 0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U. L

s

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.52 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

		ORDS	EACTORE			WE	BS	
	MA) MEMB. FR-TO A-BC-D-E-F-G-H-I-J-K	C. FACTORED FORCE (LBS) 0 28 -3003 / 0 -2866 / 0 -3175 / 0 -3175 / 0 -3175 / 0 -2867 / 0 -3002 / 0 0 / 28	VERT. LOAD (PLF) FROM TO -91.8 -91 -91.8 -91 -91.8 -91	LC1 MAX CSI (LC) 1.8 0.12 (1 1.8 0.39 (1) 1.8 0.39 (1) 1.8 0.49 (1) 1.8 0.45 (1) 1.8 0.49 (1) 1.8 0.30 (1) 1.8 0.41 (1)	UNBRAC LENGTH 10.00 3.70 3.79 3.52 3.56 3.56 3.56 3.79 3.70	MEMB. TO C S D Q E P G H H	MAX. FACTO FORCE (LBS) -366 · 0 -199 · 0 0 · 243 0 · 908 -550 · 0 -9 · 0 -552 · 0 0 · 897 0 · 250	MAX CSI (LC) 0.08 (1) 0.12 (1) 0.05 (1) 0.20 (1) 0.30 (1) 0.30 (1) 0.30 (7) 0.20 (1)
-	Ľ- J U- B	-2075 0 -2074 0	0.0		7.03	N-I M-I B-T	196 / 0 -368 · 0 0 · 2738	0.12 (1) 0.08 (1) 0.62 (1)
	U-T S-R Q-P Q-P O-N M-L	0 · 0 0 : 2706 0 : 2545 0 · 2545 0 · 3182 0 : 2547 0 · 2547 0 · 2705 0 · 0	-18.5 -18 -18.5 -18 -18.5 -18 -18.5 -18 -18.5 -18 -18.5 -18 -18.5 -18 -18.5 -18	.5 0.34 (1) .5 0.34 (1) .5 0.43 (1) .5 0.35 (1) .5 0.35 (1) .5 0.38 (1)	10.00 10.00 10.00 10.00 10.00 10.00 10.00	M- J	0 2737	0.62 (1)

TOTAL WEIGHT = 2 X 173 = 345 lb

3x6 II

DESIGN CRITERIA

SPECIFIED LOADS: DL TT PSF PSF PSF CH. 25.6 6.0 SOT CH. TOTAL LOAD 39.0 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

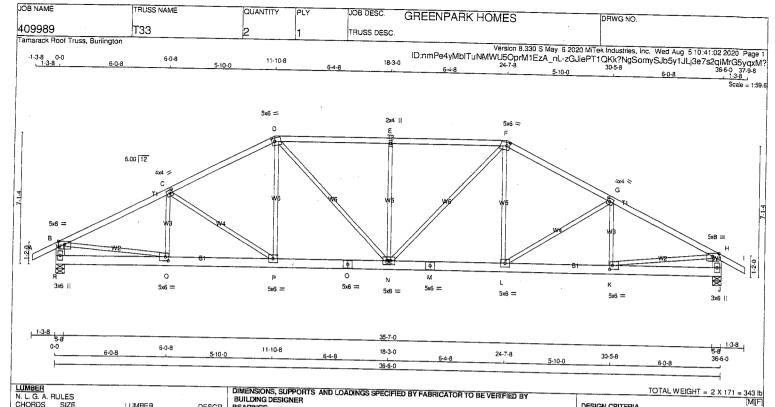
ALLOWABLE DEFL.(LL)= L/360 (1.22")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.18")
ALLOWABLE DEFL.(TL)= L/360 (1.22")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.33")

CSI: TC=0.49/1.00 (D-E:1) , BC=0.43/1.00 (P-Q:1) , WB=0.62/1.00 (B-T:1) , SSI=0.24/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (B) (INPUT = 0.90) JSI METAL= 0.62 (T) (INPUT = 1.00)

LUMBER N. L. G. A. F CHORDS A - D D - F F - I R - B J - H R - O O - M M - J	SIZE 2x4 2x4 2x4 2x6 2x6 2x6 2x6 2x6 2x6	DRY DRY DRY DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	DESCR SPF SPF SPF SPF SPF SPF SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

PLATES (table is in inches)						
JT	TYPE	PLATES	W	LEN	Y X	
В	TMVW-p	MT20	5.0	8.0	Edge	
C	TMWW-t	MT20	4.0	4.0	2.00 1.75	
D	TTWW-m	MT20	5.0	6.0	2.25 2.00	
ĮΕ	TMW+w	MT20	2.0	4.0		
F	TTWW-m	MT20	5.0	6.0	2.25 2.00	
G	TMWW-t	MT20	4.0	4.0	2.00 1.75	
Н	TMVW-p	MT20	5.0	8.0	Edge	
J	BMV1+p	MT20	3.0	6.0	•	
K	BMWW-t	MT20	5.0	6.0	2.50 2.00	
L	BMWW-t	MT20	5.0	6.0		
M	BS-t	MT20	5.0	6.0		
N	BMWWW-t	MT20	5.0	8.0		
0	BS-t	MT20	5.0	6.0		
₽	BMWW-t	MT20	5.0	6.0		
Q	BMWW-t	MT20	5.0	6.0	2.50 2.00	
R	BMV1+p	MT20	3.0	6.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

OCESSION
ED PROVIDENCE INC.
H. J. G. ALVES
100009024
720
30 MCE OF ONT ARIO

Structural component only DWG# T-2017371

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BEARINGS	

BEA	RINGS					
JT R J	FACTO GROSS R VERT 2137 2137	RED REACTION HORZ 0 0	MAXIMU GROSS DOWN 2137 2137		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNFACTORED REACTIONS										
	1ST LCASEMAX./N	AIN. COMPO	NENT REACTION	NS						
JT R	COMBINED SNOW 1509 1003 / 0	LIVE 0/0	PERM.LIVE	WIND	DEAD	SOIL				
J	1509 1003 / 0	0/0	0/0 0/0	0/0	505 0 505 0	0 0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 3.47 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX MEMB.		VERT. LO	AD LC			MEMB.	MAX. FACTO FORCE	MAX
FR-TO A-BCDDEFGH E-GH	(LBS) 0 · 28 -3058 / 0 -2720 · 0 -2796 / 0 -2796 / 0 -2790 / 0 -3058 · 0 0 · 28	(PL FROM -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8	-F) TO -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8	O.12 (1) 0.60 (1) 0.60 (1) 0.54 (1) 0.62 (1) 0.62 (1) 0.62 (1) 0.64 (1) 0.60 (1) 0.13 (1) 0.13 (1) 0.08 (4) 0.08 (1) 0.34 (1)	UNBRAC LENGTH 10.00 3.47 3.70 3.53 3.53 3.70 3.47 10.00 7.04 7.04	FR-T C P D N N L L K B	(LBS) -271 6 -421 0 0 / 372 0 559 -718 0 0 559 0 372 -421 0 -271 6 0 2783	MAX CSI (LC) 0.07 (1) 0.39 (1) 0.13 (1) 0.13 (1) 0.13 (1) 0.13 (1) 0.13 (1) 0.08 (1) 0.39 (1) 0.07 (1) 0.63 (1) 0.63 (1)
N- M M- L L- K K- J	0 / 2411 0 / 2411 0 / 2760 0 0	-18.5 -18.5	-18.5 -18.5 -18.5	0.34 (1) 0.34 (1) 0.38 (1)	10.00 10.00 10.00			
	MAX MEMB. O FRABCDEFGH-BH QPOXMLK	MEMB. FORCE (LBS) FR-TO A-B 028 B-C 03058 0 C-D 2720 0 D-E 2796 0 E-F 2796 0 F-G 2720 0 H-I 028 R-B -2073 0 J-H -2073 0 R-Q 0 0 Q-P 0 2760 P-O 0 2411 N-M 0 2411 N-M 0 2411 N-M 0 2411 N-M 0 2411 N-M 0 2460	MAX. FACTORED (PRACTO MEMB. FACTORED (LBS) (PI FR-M FR-M FR-M FR-M FR-M FR-M FR-M FR-M	MAX. FACTORED FACTORED VERT. LOAD LC (LBS) FR-CO CLBS) FROM TO CLBS 0 -91.8 91.8 91.8 6.5 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.	MAX	MAX. FACTORED MEMB. FACTORED CROCE (CBS) FACTORED CRET. LOAD LCT MAX (CBS) MAX MAX. MAX. CST MAX (CBS) MAX MAX. CST MAX (CBS) MAX MAX. CST MAX (CBS) MAX MAX. CST MAX (CBS) MAX MAX. CST MAX (CBS) MAX MAX. CST MAX.	MAX	MAX. FACTORED FACTORED FACTORED MEMB. FORCE MAX. FACTORED MEMB. FORCE ME

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = CH. 25.6 PSF 6.0 0.0 7.4 PSF PSF BOT CH. LL DL TOTAL LOAD BOT CH. PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

39.0 PSF

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) **TPIC 2014**

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

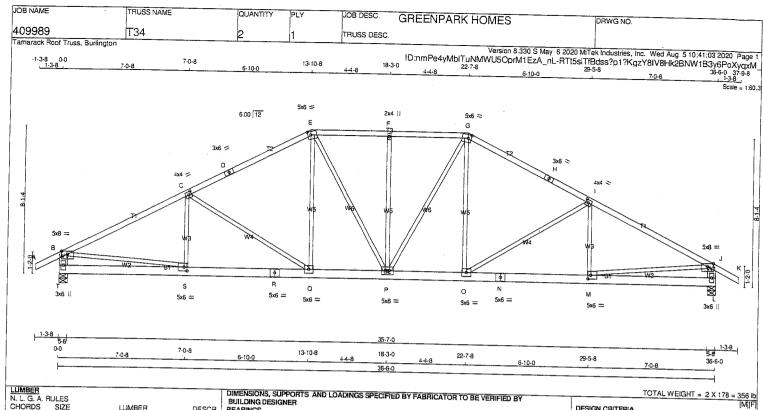
ALLOWABLE DEFL.(LL) = L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/999 (0.16")
ALLOWABLE DEFL.(TL) = L/360 (1.22")
CALCULATED VERT. DEFL.(TL) = L/999 (0.29")

CSt: TC=0.62/1.00 (D-E:1) , BC=0.38/1.00 (P-Q:1) . WB=0.63/1.00 (B-Q:1) , SSI=0.28/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (B) (INPUT = 0.90) JSI METAL= 0.63 (K) (INPUT = 1.00)

LUMBER				
N. L. G. A. F				
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
Ė G	2x4	DRY	No.2	SPF
G - H	2x4	DRY	No.2	SPF
H - K	2x4	DRY	No.2	SPF
Т - В	2x6	DRY	No.2	SPF
L - J	2x6	DRY	No.2	SPF
T - R	2x6	DRY	No.2	SPF
R - N	2x6	DRY	No.2	SPF
N - L	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Y X					
В	TMVW-p	MT20	5.0	8.0	Edge					
C	TMWW-t	MT20	4.0	4.0	2.00 1.75					
D	TS-t	MT20	3.0	6.0						
E	TTWW-m	MT20	5.0	6.0	2.25 2.00					
F	TMW+w	MT20	2.0	4.0						
G	TTWW-m	MT20	5.0	6.0	2.25 2.00					
Н	TS-t	MT20	3.0	6.0						
1	TMWW-t	MT20	4.0	4.0	2.00 1.75					
J	TMVW-p	MT20	5.0	8.0	Edge					
L	BMV1+p	MT20	3.0	6.0	•					
M	BMWW-t	MT20	5.0	6.0	2.50 2.00					
N	BS-t	MT20	5.0	6.0						
0	BMWW-t	MT20	5.0	6.0						
P	BMWWW-t	MT20	5.0	8.0						
Q	BMWW-t	MT20	5.0	6.0						
R	BS-t	MT20	5.0	6.0						
S	BMWW-I	MT20	5.0	6.0	2.50 2.00					
Ŧ	BMV1+p	MT20	3.0	6.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

Structural component only DWG# T-2017372

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	TO SE VEHICLED BY LABRICATOR TO BE VEHICLED BY
BEARINGS	

BEA	RINGS				
JT T	FACTO GROSS R VERT 2137 2137	MAXIMU GROSS DOWN 2137 2137		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNFACTORED REACTIONS

	131 LUASE		MIN. COMPO	VENT REACTION	٧S		
JΤ	COMBINED		LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ŧ	1509	1003 / 0	0 / 0	0/0	0/0	505 0	SOIL
L.	1509	1003 / 0	0/0	0 / 0	0.0		υυ
				0 0	0.0	505 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T. L.

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.14 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX	ORDS CFACTORED	FACTOR				W E	BS MAX. FACTO	IRED .
MEMB. FR-TO	FORCE (LBS)	VERT. LOA (PLF FROM T		CSI (LC)	MAX. UNBRAC LENGTH		FORCE (LBS)	MAX CSI (LC)
4-B-C-O-E-E-G-H	0 / 28 -3079 / 0 -2545 / 0 -2545 / 0 -2400 / 0 -2400 / 0 -2545 / 0 -2545 / 0 -3079 / 0 0 28 -2071 / 0	-91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8	-91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8	0.12 (1) 0.86 (1) 0.74 (1) 0.74 (1) 0.28 (1) 0.28 (1) 0.74 (1) 0.74 (1) 0.86 (1) 0.12 (1) 0.13 (1)	10.00 3.14 3.53 3.53 4.19 4.19 3.53 3.53 3.14		-188 / 54 -635 / 0 0 / 467 0 / 302 -484 / 0 0 / 302 0 / 467 -635 / 0 -188 / 54 0 / 2801 0 / 2801	0.06 (1) 0.89 (1) 0.11 (1) 0.07 (1) 0.58 (1) 0.07 (1) 0.11 (1) 0.89 (1) 0.06 (1) 0.63 (1)
L-J T-S S-R R-Q Q-P P-O N-M M-L	0 0 0 0 2784 0 2251 0 2284 0 / 2784 0 / 2784 0 / 2784 0 / 2784 0 / 2784 0 / 0 / 0	-18.5 -18.5 -18.5 -18.5 -18.5 -18.5	-18.5 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5	0.13 (1) 0.10 (4) 0.39 (1) 0.39 (1) 0.31 (1) 0.31 (1) 0.39 (1) 0.39 (1) 0.10 (4)	7.05 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00			,

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = PSF PSF PSF 25.6 6.0 0.0 7.4 DL TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 · TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

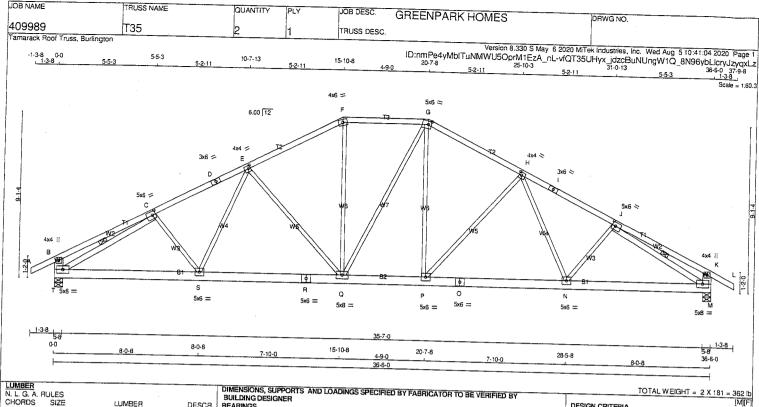
ALLOWABLE DEFL.(LL)= L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/999 (0.15")
ALLOWABLE DEFL.(TL)= L/360 (1.22")
CALCULATED VERT. DEFL.(TL) = L/999 (0.27")

CSI: TC=0.86/1.00 (I-J:1) , BC=0.39/1.00 (M-O:1) , WB=0.89/1.00 (C-Q:1) , SSI=0.28/1.00 (I-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.86 (B) (INPUT = 0.90) JSI METAL= 0.63 (S) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F-G	2x4	DRY	No.2	SPF
G - I	2x4	DRY	No.2	SPF
1 - L	2x4	DRY	No.2	SPF
T - B	2x6	DRY	No.2	SPF
M - K	2x6	DRY	No.2	SPF
T - R	2x6	DRY	No.2	SPF
R - O	2x6	DRY	No.2	SPF
O - M	2x6	DRY	No.2	
	LAG	5	140.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
T - C	2x4	DRY	No.2	SPF
J - M	2x4	DRY	No.2	SPF
DRY: SEASO	MEDIL	MBED		
שנווו. שבאשנ	ハベビリ しし	HVIDER.		

DRY: SEASONED	LUMBER.

i	PL	ATES (table	is in inches)				
	JT	TYPE	PLATES	W	LEN	Υ	Х
İ	В	TMV+p	MT20	4.0	4.0		
1	С	TMWW-t	MT20	5.0	6.0	2.50	2.25
ĺ	D	1-ST	MT20	3.0	6.0		
1	Ε	1-WWMT	MT20	4.0	4.0	2.00	1.50
1	F	TTW-m	MT20	4.0	6.0		
l	G	TTWW-m	MT20	5.0	6.0	2.25	2.00
ĺ	Н	TMWW-t	MT20	4.0	4.0	2.00	1.50
ĺ	1	TS-t	MT20	3.0	6.0		
Į	J	1-WWMT	MT20	5.0	5.0	2.50	2.25
l	K	TMV+p	MT20	4.0	4.0		
l	M	BMVW1-l	MT20	5.0	8.0		
ł	N, F						
Ì	N	BMWW-t	MT20	5.0	6.0		
Ì	0	BS-t	MT20	5.0	6.0		
Ì	Q	BMWWw-t	MT20	5.0	8.0		
	R	BS-t	MT20	5.0	6.0		
1	Τ	BMVW1-t	MT20	5.0	0.8		

25		

S-R-Q-P Q-P O-N N-M

2517 2704 0

-18.5

-18.5

-18.5

OFESSIONA,	
PKO	S. \
18/11/1	(G)
1 8 1 DB/02/12	7 范 1
H. J. G. ALVES	另
100009024	1
	, /
12/	/ /
ROUNCE OF ONTA	\$10 /
MEE UE ONLY	
	~

Structural component only DWG# T-2017373

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADIN	IGS SPECIFIED	BY FABRICA	TOR TO BE VERIFIED BY
BEARINGS				
FACTORED	MAXIMI IM	FACTORED	IAIDLIT	

BEA.	rings				
JT T VI	FACTO GROSS R VERT 2137 2137	MAXIMU GROSS DOWN 2137 2137		INPUT BRG IN-SX 5-8 5-8	REQRO BRG IN-SX 5-8 5-8

UNF	ACTORED REA	CTIONS			
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTIO	NS
JТ	COMBINED	SNOW	111/5	DEDMINE	.40

177	001101100			ENT MEACHON	15		
JT T M	1509 1509	SNOW 1003 / 0 1003 / 0	0/0 0/0	PERM.LIVE 0 / 0 0 / 0	WIND 0 / 0 0 / 0	DEAD 505 0 505 0	SOIL 0 0 0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T, M

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX.}} \text{ PURLIN SPACING} = 3.75 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF C-T, J-M.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	СН	ORDS					14/ 0	BS	
		(. FACTORED	FACTOR	RED			44 0		
	MEMB.	FORCE	VERT. LO	AD LC:	MAX	MAX.	MEMB	MAX. FACTO	
į		(LBS)	(PL						MAX
	FR-TO		FROM		00.(20)	LENGTH		(LBS)	CSI (LC)
	A-B	0 / 28			0.12 (1)	10.00	C-S		
ì	8- C	0 / 20	-91.8	-91.8	0.32 (1)	10.00	S-E		0.04(1)
	C- D	-2933 / 0	-91.8	-91.8	0.42 (1)	3.75			, 0.06 (1)
	D- E	-2933 0	-91.8		0.42 (1)		Q-F	-678 / 0	0.93(1)
	E-F	-2339 / 0	-91.8	-91.8	0.38 (1)	4.16	Q-G	0 629	0.14(1)
	F- G	-2079 / 0			0.32 (1)		P-G	0 : 6 0 : 622	0.00(1)
	G-H	-2335 - 0			0.38 (1)		P-H	-681 0	0.14(1)
	H- I	-2935 0	-91.8	-91.8	0.42 (1)	3.75	H- N	0 / 277	0.93(1)
l	l- J	-2935 / 0			0.42 (1)		N-J	-125 32	0.06(1)
I	J- K	0 · 20			0.32 (1)			-3217 0	0.04(1)
	K-L	0 : 28			0.12 (1)	10.00		-3217 0	0.61(1)
	T- B	-324 0	0.0		0.02 (1)	7.81	J- 141	-J210 U	0.61(1)
	M-K	-324 0	0.0		0.02 (1)	7.81			
	T-S	0 / 2702	-18.5	-18.5	0.40 (1)	10.00			
	S-R	0 : 2517	-18.5	-18.5	0.35 (1)	10.00			
	R-Q	0 2517	-18.5	-18.5	0.35 (1)	10.00			
	O- P	0.2076			0.00				

-18.5 0.36 (1) -18.5 0.36 (1) -18.5 0.36 (1)

-18.5 0.40 (1)

10.00

10.00

DESIGN CRITERIA

SPECIFIED LOADS: 25.6 PSF 6.0 PSF 0.0 PSF LL = DL = LL = TOP CH. 6.0 0.0 7.4 80T CH. DL TOTAL LOAD 39.0 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/999 (0.13")
ALLOWABLE DEFL.(TL) = L/360 (1.22")
CALCULATED VERT. DEFL.(TL) = L/999 (0.25")

CSI: TC=0.42/1.00 (H-J:1) , BC=0.40/1.00 (S-T:1) , WB=0.93/1.00 (H-P:1) , SSI=0.20/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (J) (INPUT = 0.90) JSI METAL= 0.72 (J) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. GREEN PARK HOMES DRWG NO. 410047 T36 TRUSS DESC Tamarack Roof Truss, Burlington ·1·3·8 0·0 11-11-13 5-10-11 6x9 = 6.00 12 G 3x6 ≥ 4x4 > • Q s . Ο 荟 М 5x6 = 5x6 = 5x6 = 5x6 = 5x8 = 5x6 = 3x6 II 1-3-8 35-7-0 5-8 0-0 6-1-3 11-11-13 17-10-8 18-3-0 18-7-8 4-8 4-8 6-1-3 24-6-3 5-10-11 5-10-11 36-6-0 5-10-11 36-6-0

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - H	2x4	DRY	No.2	SPF
H - K	2x4	DRY	No.2	SPF
Т - В	2x6	DRY	No.2	SPF
L - J	2x6	DRY	No.2	SPF
T - Q	2x6	DRY	No.2	SPF
Q - O	2x6	DRY	No.2	SPF
0 - L	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

F	LA	TES (table	is in inches)				
] .	ΙT	TYPE	PLATES	W	LEN	Υ	X
E		TMVW-t	MT20	5.0	8.0		
		, G, I					
10		TMWW-t	MT20	4.0	4.0	2.00	1.75
[TS-t	MT20	3.0	6.0		
F		TMTMWWW		6.0	9.0	1.50	4.50
1		TS-t	MT20	3.0	6.0		
j J		TMVW-t	MT20	5.0	8.0		
L		BMV1+p	MT20	3.0	6.0		
1		BMWW-t	MT20	5.0	6.0	2.50	2.25
N		BMWW-t	MT20	5.0	6.0		
C		BS-t	MT20	5.0	6.0		
F		BMWWW-t	MT20	5.0	8.0		
C		BS-t	MT20	5.0	6.0		
F		BMWW-t	MT20	5.0	6.0		
S		BMWW-t	MT20	5.0	6.0	2.50	2.25
Т		BMV1+p	MT20	3.0	5.0		

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REORD
	GROSS R		GROSS	REACTIC	N.	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Ŧ	2137	0	2137	0	0	5-8	5-8
L	2137	0	2137	0	0	5-8	5-8

UNFACTORED REACTIONS
1ST LCASE MAI
JT COMBINED SNOW MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMANAGEMENT DEAD 1509 1003 / 0 0/0 505 · 0 505 · 0 0 / 0 1003 / 0 0/0 0:0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) T, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.49 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-P. G-P.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E	BS	
MA)	K. FACTORED	FACTO	RED				MAX. FACTO	DED
MEMB.	FORCE	VERT. LO		1 MAX	MAX.	MEMB.		
	(LBS)			CSI (LC)				MAX
FR-TO		FROM		00. (20)	LENGTH		(LBS)	CSI (LC)
A-B	0 / 28			0.12 (1)	10.00	S- C	000 : 44	
B- C	-3045 / 0	-91.8	-91.8				-253 11	0.06(1)
C-D	-2734 : 0	-91.8		0.52 (1)		C-R	-353 / 0	0.33 (1)
D- E	-2734 0		-91.8			R-E	0 / 308	0.07(1)
E-F	-2106 : 0	-91.8	-91.8			E-P	-862 0	0.50 (1)
F- G	-2106 / 0			0.52 (1)		P-G	-862 / 0	0.50 (1)
G-H	2734 / 0		-91.8			N-G	0 / 308	0.07 (1)
H- 1	-2734 / 0	-91.8	-91.8	0.52 (1)		N- 1	353 0	0.33(1)
i- J		-91.8	-91.8			M- I	-253 . 11	0.06(1)
	-3045 / 0	-91.8	-91.8	0.61 (1)	3.49	B-S	0 : 2766	0.62(1)
J- K	0 / 28	-91.8				M- J	0 / 2766	0.62(1)
T-B	-2075 0	0.0	0.0	0.13 (1)	7.03	P- F	0 1395	0.31 (1)
L-J	-2075 / 0	0.0	0.0	0.13(1)	7.03			
T-S	0 / 0	-18.5	-18.5	0.08 (4)	10.00			
S-R	0 / 2744	-18.5	-18.5	0.38 (1)	10.00			
R-Q .	0 / 2447	-18.5	-18.5	0.34 (1)	10.00			
Q-P	0 / 2447	-18.5	-18.5	0.34 (1)				
P-O	0 / 2447	-18.5	-18.5		10.00			
Q- N	0 : 2447	-18.5	-18.5	0.34 (1)	10.00			
N- M	0 2744		-18.5		10.00			
M- L	0 / 0	-18.5		0.08 (4)	10.00			

TOTAL WEIGHT = 2 X 177 = 354 IL DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = 25.6

PSF PSF 6.0 0.0 7.4 BOT CH. DL PSF TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

SOII

0 0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

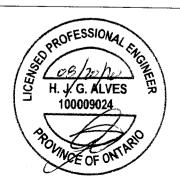
ALLOWABLE DEFL.(LL)= L/360 (1.22")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.15")
ALLOWABLE DEFL.(TL)= L/360 (1.22")
CALCULATED VERT. DEFL.(TL) ≈ L/ 999 (0.28")

CSI: TC=0.61/1.00 (I-J:1) , BC=0.38/1.00 (R-S:1) , WB=0.62/1.00 (B-S:1) , SSI=0.24/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

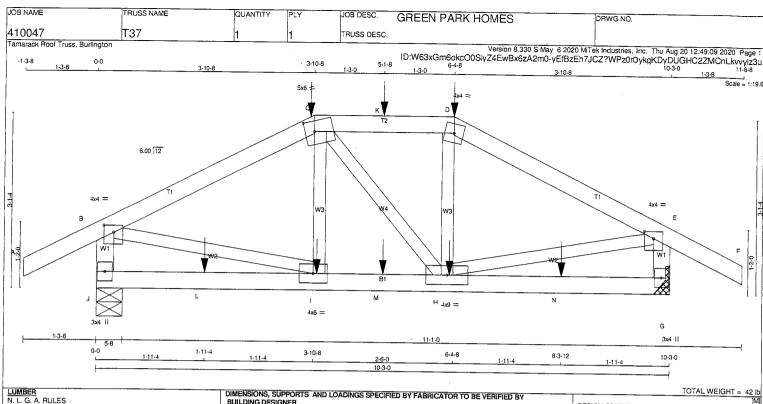

NAIL VALUES | NAIL | VALUES | START | SECTION | (PSI) | (PLI) | (PLI) | (PLI) | (PLI) | (MAX MIN MAX MIN MT20 | 650 | 371 | 1747 | 788 | 1987 | 1873 |

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (B) (INPUT = 0.90) JSI METAL= 0.62 (S) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
J - B	2x4	DRY	No.2	SPF
G · E	2x4	DRY	No.2	SPF
J · G	2x4	DRY	No.2	SPF -
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

<u> PL</u>	PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Y	X			
В	TMVW-p	MT20	4.0	4.0	1.50	2.00			
С	TTWW-m	MT20	5.0	6.0	2.25	2.00			
Ď	TTW-m	MT20	4.0	4.0					
Е	TMVW-p	MT20	4.0	4.0	1.50	2.00			
G	BMV1+p	MT20	3.0	4.0					
Н	BMWWW-t	MT20	4.0	9.0					
1	BMWW-t	MT20	4.0	6.0					
J	BMV1+p	MT20	3.0	4.0					

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

<u>BEA</u>	<u>rings</u>						
	FACTO		MAXIMU			INPUT	REQRE
	GROSS R	EACHON	GROSS	REACTIC)N	BRG	BRG
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	949	C	949	C	0	5-8	5-8
à	948	О	948	0	0	MECHAN	IICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 3-8

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./M	IIN, COMPO	NENT REACTION	us.		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
J	668	455 / 0	0/0	0/0	0/0	213 / 0	0/0
G	668	455 / 0	0/0	0 / 0	0/0	213 - 0	0 0
8EA	RING MATER	IAL TO BE SF	PF NO.2 OR	BETTER AT JOIN	IT(S) J		

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 5.96 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING
TOTAL LOAD CASES: (4

CHC	DRDS			WEBS				
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.		MAX
	(LBS)	(Pl	_F) ·	CSI(LC)	UNBRAC	3	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	0 / 28	-91.8	-91.8	0.13(1)	10.00	I- C	-100 / 37	0.02(1)
B- C	-950 / 0	-91.8	-91.8	0.28 (1)	5.96	C- H	0 / 2	0.00(4)
C- K	-846 / 0	-91.8	-91.8	0.16(1)	6.25	H- D	-97 : 39	0.02(1)
K-D	-846 / 0	-91.8			6.25		0 / 868	0.21(1)
D- E	-953 : 0	-91.8	-91.8	0.28 (1)	5.96	H- E	0 - 871	0.22(1)
E-F	0 / 28	-91.8	-91.8	0.13 (1)	10.00			
J- B	-912 / 0	0.0	0.0	0.10(1)	7.81			
G-E	-911 / 0	0.0	0.0	0.10 (1)	7.81			
J- L	0 / 0	-18.5		0.09 (4)				
L-1	0 - 0	-18.5		0.09 (4)				
i- M	0 845			0.17(1)				
M- H	0 / 845	-18.5		0.17 (1)				
H- N	0.0	-18.5		0.10 (4)				
N-G	0 / 0	-18.5	-18.5	0.10 (4)	10.00			

AC.	TORED CO	NCENTRA	ATED LO	ADS (LBS)					
JΤ	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN
2	3-10-8	-212	-212		FRONT	VERT	TOTAL	***	C1
)	6-4-8	-212	-212		FRONT	VERT	TOTAL		C1
-1	6-3-12	-12	-12		FRONT	VERT	TOTAL	***	Ĉ1
	3-11-4	-12	-12		FRONT	VERT	TOTAL		C1
<	5-1-8	-42	-42	***	FRONT	VERT	TOTAL		C1
	1-11-4	-8	-10		FRONT	VERT	TOTAL		C1
٧ŧ	5-1-8	-12	-12		FRONT	VERT	TOTAL	***	C1
Ŋ	8-3-12	-8	-10		FRONT	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPEC	IFIED	LOA)S:		
TOP	CH.	LL	=	25.6	PSF
				6.0	PSF
BOT	CH.			0.0	
		DL	=	7.4	PSF
TOTA	L LO	AD	==	39.0	PSE

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.34")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.34")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03")

CSI: TC=0.28/1.00 (D-E:1) , BC=0.17/1.00 (H-I:1) , WB=0.22/1.00 (E-H:1) , SSI=0.14/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (E) (INPUT = 0.90) JSI METAL= 0.30 (E) (INPUT = 1.00)

3 NAME	TRUSS NAME	QUANTITY	PLY JOB DESC.	GREEN PARK HOMES	DRWG NO.
0047	Т38	1	1 TRUSS DESC.		
narack Roof Truss, Burlingt	on		1	Versing 2 222 C Ma	
-1-3-8 1. 1-3	0-0	5-1-8	5-1	ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-	y 6 2020 MiTek Industries, Inc. Thu Aug 20 12:49:10 2020 Pa RRDZAail4Vhs8ZYCOkUzCXm7Uuc7xXcWQR5IRM 10·3-0 1:48 11-6-8
		3-1-0	- Ay	5-1-8 4 =	
				. –	Scale =
			_		
Ī			C	_	
				* /	
ĺ			///		
	6.	00 12			
	- -		/ /		
2		11		Ti	
4		/ /			
۳	4x4 //		w	3	
	/_/	•	1	1	4x4 >
١,	B /4		İ		0
	/ ()	_			
AV	/ WI	AAO		NO.	W1 E 0
17		***		W	50.0
			B		——————————————————————————————————————
1 1					
	н		G		1
	\times		4x5) =	
	3x4				F
1-3-6	<u> </u>			11-1-0	
'	5-8				
		5-1-8	5-1-	5-1-8	10-3-0
			10-3	-0	
	,				
MBER					TOTAL WEIGHT =
. G. A. RULES		DIMENSIONS, SUI BUILDING DESIG	PPORTS AND LOADINGS SPECIF	IED BY FABRICATOR TO BE VERIFIED BY	PECION CHITTER'S

110000				
LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - E	2x4	DRY	No.2	SPF
H - B	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

PL/	ATES (table)	is in inches)					
JT	TYPE	PLATES	W	LEN	Y	Χ	
В	TMVW-t	MT20	4.0	4.0	2.00	1.25	
	TTW-p	MT20	4.0	4.0			
		MT20	4.0	4.0	2.00	1.25	
F		MT20	3.0	4.0			
G	BMWWW-t	MT20	4.0	9.0			
Н	BMV1+p	MT20	3.0	4.0			
C D F G	TTW-p TMVW-t BMV1+p BMWWW-t	MT20 MT20 MT20 MT20 MT20	4.0 4.0 3.0 4.0	4.0 4.0 4.0 9.0			

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	DRED	INPUT	REORD
	GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Н	690	0	690	0	0	5-8	5-8
F	690	0	690	0	0	MECHAN	ICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 3-8.

UNI	UNFACTORED REACTIONS								
	1ST LCASE	MAX./I	MIN. COMPO	NENT REACTION	1S				
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
Н	485	332/0	0 / 0	0/0	0/0	154 / 0	0,0		
F	485	332 / 0	0/0	0 / 0	0/0	154 0	0.0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING}} = 6.25 \, \text{FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \, \text{FT. OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	ORDS				WEBS			
	FACTORED	FACTO					MAX. FACTO	RED
MEMB.	FORCE	VERT. LO			MAX.	MEMB.	FORCE	MAX
	(LBS)	(Pt		CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO			TO		LENGTH	FR-TO		
A-B	0 / 28	-91.8		0.12 (1)		G-C	-32 / 77	0.03(4)
B-C	-490 / 0	-91.8		0.31 (1)		B-G	0 445	0.10(1)
C- D	-490 / 0	-91.8		0.31 (1)		G- D	0 445	0.10(1)
D- E	0 / 28	-91.8	-91.8	0.12 (1)	10.00			
H- B	-652 / 0	0.0	0.0	0.07 (1)	7.81			
F- D	-652 / 0	0.0	0.0	0.07 (1)	7.81			
H- G	0 0	-18.5		0.14 (4)	10.00			
G-F	0 / 0	-18.5	-18.5	0.14 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS:								
TOP	CH.	LL	3	25.6	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LĻ	=	0.0	PSF			
		DL	=	7.4	PSF			
TOTAL LOAD = 39.0 PSF								

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

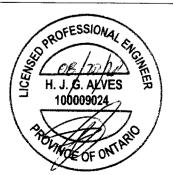
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.34")
CALCULATED VERT. DEFL.(LL) = L' 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.34")
CALCULATED VERT. DEFL.(TL) = L' 999 (0.02")

CSI: TC=0.31/1.00 (C-D:1) , BC=0.14/1.00 (G-H:4) , WB=0.10/1.00 (B-G:1) , SSI=0.16/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR ≈ 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

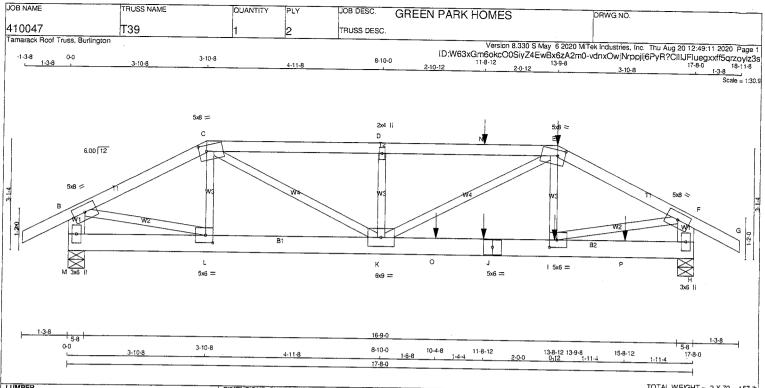

NAŁL VALUES

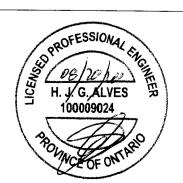
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.76 (D) (INPUT = 0.90) JSI METAL= 0.22 (D) (INPUT = 1.00)

COMPER				
N. L. G. A. F	IULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C · E	2x4	DRY	No.2	SPF
E-G	2x4	DRY	No.2	SPF
M - B	2x6	DRY	No.2	SPF
H - F '	2x6	DRY	No.2	SPF
M - J	2x6	DRY	No.2	SPF
J - H	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:


CHORDS #ROWS	S SURFACE SPACING (IN)	LOAD(PLF)
TOP CHORDS : (0	0.122"X3") SPIRAL NAILS	
A-C 1	12	TOP
C- E 1	12	SIDE(61.0)
E-G 1	12	SIDE(61.0)
M-B 2	12	TOP
H-F 2	12	TOP
BOTTOM CHORD	S: (0.122"X3") SPIRAL NA	AILS
M- J 2	12	SIDE(0.0)
J- H 2	12	SIDE(183.1)
WEBS: (0.122"X3	I") SPIRAL NAILS	= =,
22	•	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NALING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE CORPORATION OF THE PROPERTY OF SIDE OR ON THE TOP

Structural component only DWG# T-2018780 //

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
Dimendiono, Soft On 13	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DOILDING DESIGNER	
READIMOR	

BEAF	RINGS					INPUT	
	FACTORED			MAXIMUM FACTORED			REORD
	GHUSS I	REACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
M	1550	0	1550	0	0	5-8	5-8
Н	1862	0	1862	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE		IN. COMPO	NENT REACTION	vs.		
JŢ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
M	1091	744/0	0/0	0/0	0/0	347 - 0	0 0
Н	1311	894 : 0	0 / 0	0:0	0 / 0	417 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) M. H

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 4.94 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

C H O R D S W E B S MAX. FACTORED MAX. FACTORED MAX. FACTORED							RED	
MEMB.	FORCE	VERT. LO	AD LC	MAX	MAX.	MEMB.		MAX
	(LBS)				UNBRAC		(LBS)	
FR-TO		FROM	TO	, ,	LENGTH			001 (00)
A-B	0 - 28	-91.8	-91.8	0.07(1)				0.03(1)
B- C	-1926 / 0		-91.8				0:1719	0.21 (1)
C- D	-3216 / 0	-91.8	-91.8	0.25 (1)	4.94	K- D	-563 / 0	0.05(1)
D- N	-3216 / 0	-91.8	-91.8				0 / 1072	0.13 (1)
N- E	-3216 / 0	-91.8	-91.8	0.25 (1)	4,94		0 94	0.02 (4)
E-F	-2545 / 0	-91.8	-91.8	0.16(1)	5.51		0 / 1754	0.22 (1)
F- G	0 / 28	-91.8	-91.8	0.07 (1)	10.00	I- F		0.29(1)
M-B	-1502 / 0	0.0	0.0	0.05(1)	7.81			5.25 (1)
H-F	-1887 0	0.0	0.0	0.07 (1)	7.81			
M- L	0 / 0	-18.5	-185	0.02 (1)	10.00			
L-K	0:1709			0.20 (1)				
K-0	0 / 2276	-18.5		0.44 (1)				
O- J	0 2276	-18.5		0.44 (1)				
J- I	0 2276			0.44 (1)				
I-P	0 / 0			0.10(1)				
P-H	0 / 0			0.10 (1)				
EACTO	DED CONCENT	DATEDIO	ADC //	001				

FAC	TORED CO	NCENTRA	ATED LO	ADS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
E	13-9-8	-212	-212		FRONT	VERT	TOTAL		C1
1	13-8-12	-12	-12	~~~	FRONT	VERT	TOTAL	***	Č1
J	11-8-12	-12	-12		FRONT	VERT	TOTAL		C1
Ņ	11-8-12	-42	-42		FRONT	VERT	TOTAL		Č1
0	10-4-8	-929	-929		FRONT	VERT	TOTAL		Ĉ1
Р	15-8-12	-8	-10		FRONT	VERT	TOTAL		Č1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 79 = 157 ib DESIGN CRITERIA

					_
SP	ECI.	FIE	וח	$\Omega \Lambda$	ne

J, L	W 150	LUAL	<i>J</i> O.		
TOP	CH.	LL	=	25.6	PS
				6.0	PSF
BOT	CH.	LŁ	=	0.0	PSF
		DL		7.4	PSF
TOTA	L LO	AD	==	39.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9.

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL) = L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/999 (0.10")

CSI: TC=0.25/1.00 (D-E:1) , BC=0.44/1.00 (I-K:1) , WB=0.29/1.00 (F-I:1), SSI=0.22/1.00 (I-K:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS=1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PLI)

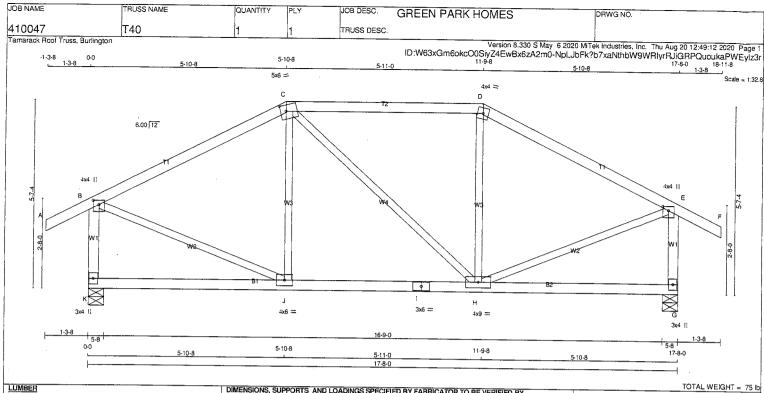

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.43 (C) (INPUT = 0.90) JSI METAL= 0.34 (J) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREE	N PARK HOMES	DRWG NO.
410047 Tamarack Roof Truss, Burlington	T39	1 2 TR		TRUSS DESC.			
Tanalack Hoof Hoss, Buildigion				· · · · · · · · · · · · · · · · · · ·		Version 8.330 S May 6 2020 ID:W63xGm6okcO0SiyZ4EwBx6zA2r	NiTek Industries, Inc. Thu Aug 20 12:49:11 2020 Page 2 n0-vdnxOwjNrppjlj6PyR?CllIJF[uegxxff5grzoyiz3s
B TMVW+ MT20 5.0 D TMW+w MT20 2.0 E TTWW-m MT20 2.0 F TMW-w MT20 5.0 F TMVW-t MT20 5.0 H BMV1+p MT20 5.0 J BS-t MT20 5.0 J BS-t MT20 5.0 SMWW-t MT20 5.0 L BMWW-t MT20 5.0	LEN Y X						
					,		
PROFESSION OF LAND OF	ONTARIO						
Structural compor	nent only						

LUMBER				
N. L. G. A. FI	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
К - В	2x4	DRY	No.2	SPF
G-E	2x4	DRY	No.2	SPF
K - 1	2x4	DRY	No.2	SPF
I - G	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
LAUCE				

ļ									
PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Y	Х			
В	TMVW+p	MT20	4.0	4.0	1.50	2.00			
С	∏WW-m	MT20	5.0	6.0	2.25	2.00			
D	TTW-m	MT20	4.0	4.0					
Ε	TMVW+p	MT20	4.0	4.0	1.50	2.00			
G	BMV1+p	MT20	3.0	4.0					
н	BMWWW-t	MT20	4.0	9.0					
1	BS-t	MT20	3.0	6.0					
J	BMWW-t	MT20	4.0	6.0					
K	BMV1+p	MT20	3.0	4.0					

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTO GROSS R		MAXIMU	M FACTO	INPUT BBG	REQRD BRG	
JT K	VERT 1098	HORZ 0	DOWN 1098	HORZ 0	UPLIFT 0	IN-SX 5-8	IN-SX 5-8
G	1098	0	1098	0	0	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	NS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
K	774	521 / 0	0/0	0/0	0.0	253 0	0.0
G	774	521 / 0	0/0	0 / 0	0 0	253 0	0.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K, G

 $\frac{\textbf{BRACING}}{\textbf{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 6.12 \, \text{FT.} \\ \textbf{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \, \text{FT. OR RIGID CEILING DIRECTLY APPLIED.} \\ \end{cases}$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CH	ORDS	WEBS						
	C. FACTORED	FACTO					MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL		CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A- B	0 / 28	-91.8		0.12 (1)		J- C	-172 31	0.08(1)
B-C	-823 / 0	-91.8		0.42 (1)		C- H	0 - 0	0.00(1)
C-D	-732 / 0	-91.8	-91.8	0.42 (1)	6.25	H- D	-172 / 31	0.08(1)
D- E	-823 / 0	-91.8		0.42 (1)		B-J	0 / 791	0.18 (1)
E-F	0 / 28	-91.8		0.12 (1)		H- E	0 790	0.18(1)
K-B	-1053 / 0	0.0		0.15 (1)				
G-E	-10 53 / 0	0.0	0.0	0.15 (1)	7.67			
K- J	0 / 0	-18.5		0.14 (4)				
J- 1	0 / 732	-18.5		0.21 (4)				
I- H	0.732	-18.5	-18.5	0.21 (4)	10.00			
H- G	0 : 0	-18.5	-18.5	0.15 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL =
DL =
LL =
DL =
AD ≈ PSF PSF PSF TOP CH. 25.6 6.0 0.0 7.4 PSE TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.42/1.00 (C-D:1), BC=0.21/1.00 (H-J:4), WB=0.18/1.00 (B-J:1) . SSI=0.21/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

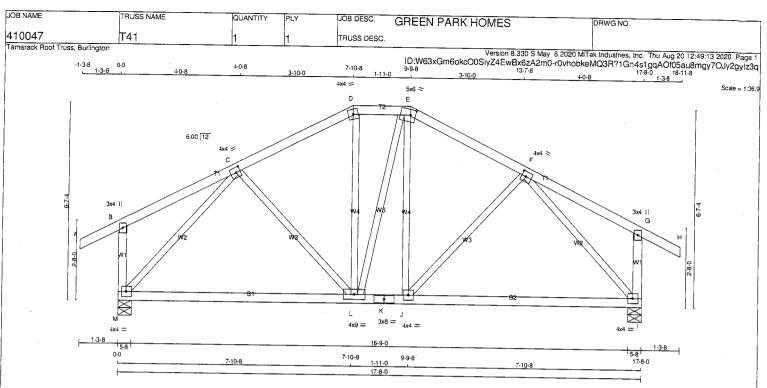

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.75 (B) (INPUT = 0.90) JSI METAL= 0.25 (B) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
E - H	2x4	DRY	No.2	SPF
M - B	2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF
M - K	2x4	DRY	No.2	SPF
K - 1	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

PLATES (table is in inches)										
JT	TYPE				Y	Х				
В	TMV+p	MT20	3.0	4.0						
С	TMWW-t	MT20	4.0	4.0	2.00	1.75				
D	TTW-m	MT20	4.0	4.0						
Ε	TTWW-m	MT20	5.0	6.0	2.25	2.00				
F	TMWW-t	MT20	4.0	4.0	2.00	1.75				
G	TMV+p	MT20	3.0	4.0						
1	BMVW1-t	MT20	4.0	4.0						
J	BMWW-t	MT20	4.0	4.0						
K	BS-t	MT20	3.0	8.0						
Ĺ	BMWWW-t	MT20	4.0	9.0						
M	BMVW1-t	MT20	4.0	4.0						

ì	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	SINCHOLONG, SUFFORTS AND COADINGS SPECIFIED BY FABRICATOR TO RE VERIFIED BY
Į	BUILDING DESIGNER
١	BEARINGS

FACTORED GROSS REACTION JT VERT HORZ M 1098 0 1 1098 0	MAXIMUM FACTOR GROSS REACTION DOWN HORZ (1098 0 (1098 0 (BRG JPLIFT IN-SX J 5-8	REQRD BRG IN-SX 5-8 5-8
--	---	------------------------	-------------------------------------

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MIN. COMPO	NENT REACTION	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
M	774	521 / 0	0/0	0/0	0 0	253 0	0:0
ı	774	521 0	0 - 0	0.0	0.0	253 0	0.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) M, I

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS CFACTORED	FACTO	RED			wı	EBS MAX. FACTO	ORED	
MEMB.	FORCE	VERT. LO	AD LC	MAX	MAX.	MEMB		MAX	
	(LBS)	(PL	.F)	CSI(LC)	UNBRA(3	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A- 8	0 - 28	- 9 1.8	-91.8	0.12 (1)	10.00	C-L	-23 45	0.02 (4)	
B-C	0 / 19	-91.8	-91.8			L- D	0 - 120	0.03 (4)	
C-D	-791 / 0	-91.8	-91.8	0.18(1)	6.25	L-E	0 · 2	0.00 (4)	
D- E	-692 / 0	-91.8	-91.8			J- E	0 118	0.03 (4)	
E-F	-790 / 0	-91.8	-91.8			J-F	-23 45	0.02(4)	
F- G	0 / 19	-91.8	-91.8			M- C	-1048 / 0	0.59(1)	
G-H	0 - 28	-91.8		0.12(1)		F- I	-1048 0	0.59(1)	
M-B	-263 / 0	0.0	0.0	0.04(1)	7.81			()	
I- G	-263 / 0	0.0	0.0	0.04 (1)	7.81				
M- L	0 / 705	-18.5	-185	0.32 (4)	10.00				
L- K	0 : 691	-18.5		0.32 (4)	10.00				
K-J	0 : 691	-18.5		0.32 (4)	10.00				
J- 1	0 705	-18.5			10.00				

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	===	25.6	PSF
		DL		6.0	PSF
BOT	CH.			0.0	PSF
		DL		7.4	PS
TOTA	L LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

TOTAL WEIGHT = 84 Ib

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9.

THIS DESIGN COMPLIES WITH:
-PART 9 OF BCBC 2018, ABC 2019
-PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/999 (0.12")

CSI: TC=0.23/1.00 (F-G:1) , BC=0.32/1.00 (J-L:4) , WB=0.59/1.00 (C-M:1) , SSI=0.16/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10


COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.80 (M) (INPUT = 0.90) JSI METAL= 0.58 (K) (INPUT = 1.00)

TRUSS NAME JOB NAME QUANTITY JOB DESC. **GREEN PARK HOMES** DRWG NO 410047 T42 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Thu Aug 20 12:49:14 2020 Page 1 4-3-12 4x6 II Scale = 1:39 F 6.00 12 4x6 = 3x4 II 3x4 || 4x6 || 3x6 = 4x6 II 1-3-8 15-8 18-6-0 0-0 11-8-8 17-8-0 5-11-8 5-11-8 17-8-0 TOTAL WEIGHT = 3 X 80 = 240 Ib

LUMBER N. L. G. A. RULES DESCR SPF SPF SPF SPF CHORDS LUMBER A D 2x4 DRY No.2 DRY DRY DRY Ğ 2x4 No.2 2x4 2x4 No.2 2x4 DRY No.2 SPF Н ALL WEBS DRY 2x3 No 2 SPE EXCEPT

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 LEN Y 3.0 4.0 4.0 BCD TMWW-t 6.0 MT20 Edge 6.0 4.0 4.0 TMWW-i MT20 TMV+p BMVW1-3.0 BMWW+t MT20 4.0 6.0 3.0 4.0 4.0 MT20 MT20 BS-I BMWW+t BMVW1-t 4.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

<u>BEA</u>	RINGS				
JT L H	FACTO GROSS R VERT 1098 1098	MAXIMU GROSS DOWN 1098 1098		INPUT BRG IN-SX 5-8 MECHANI	REQRE BRG IN-SX 5-8 CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8.

UNFACTORED REACTIONS

	1ST LCASE		IIN. COMPO	NENT REACTION	1S		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
L	774	521 / 0	0/0	0/0	0/0	253 ' 0	0.0
Н	774	521 / 0	0 / 0	0/0	0 / 0	253.0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	HUS					W E	EBS	
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB		MAX
	(LBS)			CSI(LC)	UNBRAC	2	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	, ,	,
A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	D- I	0 : 227	0.05(1)
B- C	0 / 21	-91.8	-91.8	0.29 (1)	10.00	I- E	-96 / 35	0.04(1)
C- D	-828 / 0	-91.8	-91.8	0.23 (1)	6.25	K- D	0 : 227	0.05(1)
D- E	-828 / 0	-91.8	-91.8	0.23 (1)	6.25	C-K	-96 / 35	0.04(1)
E-F	0 / 21	-91.8	-91.8	0.29 (1)	10.00	L-C	-1075 0	0.75(1)
F- G	0.28	-91.8	-91.8	0.12(1)	10.00	E-H	-1075 / 0	0.75 (1)
L-B	-283 / 0	0.0	0.0	0.04 (1)	7.81			
H- F	-283 / 0	0.0	0.0	0.04 (1)	7.81			
L- K	0 / 750	-18.5	-18.5	0.21 (4)	10.00			
K-J	0 / 632	-18.5	-18.5	0.20 (4)	10.00			
J- I	0 / 632	-18.5	-18.5	0.20 (4)	10.00			
I- H	0 750	-18.5	-18.5	0.21 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = CH. 25.6 6.0 0.0 7.4 PSF PSF BOT CH. PSF TOTAL LOAD 39.0 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

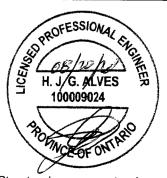
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.29/1.00 (B-C:1) , BC=0.21/1.00 (H-I:4) , WB=0.75/1.00 (C-L:1) , SSI=0.18/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

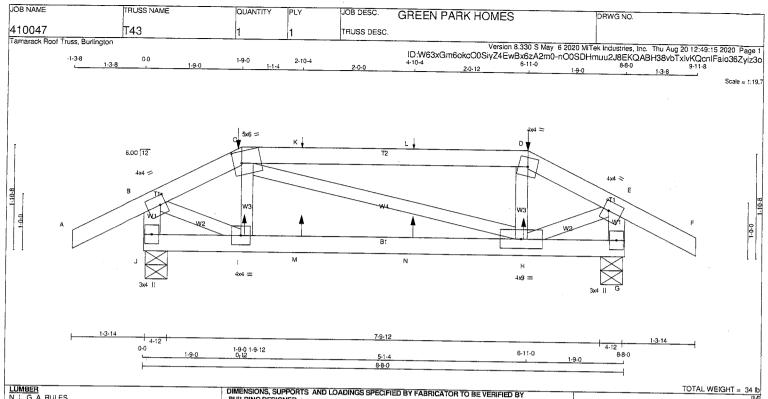

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.84 (L) (INPUT = 0.90) JSI METAL= 0.26 (H) (INPUT = 1.00)

LUMBER N. L. G. A. F	ULES			
CHORDS A - C C - D D - F J - B G - E	SIZE 2x4 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2	DESCR SPF SPF SPF SPF SPF
J - G ALL WEBS EXCEPT	2x4 2x3	DRY	No.2 No.2	SPF SPF

PL	ATES (table)	s in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Х
В	TMVW-t	MT20	4.0	4.0	2.00	1.25
С	TTWW-m	MT20	5.0	6.0	2.50	1.75
D	TTW-m	MT20	4.0	4.0		
Ε	TMVW-t	MT20	4.0	4.0	2.00	1.25
G	BMV1+p	MT20	3.0	4.0		
н	BMWWw-t	MT20	4.0	9.0		
ŧ	BMWW-t	MT20	4.0	4.0		
	D 0 15 / 4 .	1.570.0	~ ~			

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER
DEADING

BEA	RINGS						
	FACTO GROSS R		MAXIMUI GROSS			INPUT BRG	REQRD
JT J G	VERT 613 615	HORZ 0 0	DOWN 613 615	HORZ 0	UPLIFT 0 0	IN-SX 4-12 4-12	BRG IN-SX 4-12 4-12

UNFACTORED REACTIONS
1ST LCASE MA MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND COMBINED DEAD SOIL 136 / 0 136 0 0 0 0/0 296 / 0 0.0 070

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J. G.

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

	DRDS	F4070				W E	BS.		
	FACTORED						MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO			MAX.			MAX	
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC	2	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO		(/	
A- B	0 / 28	-91.8	-91.8	0.13(1)		I- C	-93 30	0.01(1)	
B-C	-473 / 0	-91.8		0.13(1)			-5 28	0.01 (5)	
C- K	-396 0	-91.8		0.47 (1)			-98 27	0.01 (3)	
K-L	-396 / 0	-91.8					0 : 430	0.02 (1)	
L- D	-396 / 0	-91.8	-91.8	0.47 (1)	6.25	H. E	0 / 425		
D- E	-462 / 0	-91.8		0.13 (1)		11- 5	0 - 425	0.11(1)	
E-F	0 / 28	-91.8		0.13 (1)					
J- B				0.13 (1)					
G-E	-611 0							,	
G- L	-011 0	0.0	0.0	0.07 (1)	7.81				
1.1									
J-]	0 · 0			0.08 (4)					
I- M	0 / 397			0.13 (4)					
M- N	0 - 397	-18.5	-18.5	0.13(4)	10.00				
N- H	0 / 397			0.13 (4)					
H- G	0 / 0	-18.5		0.08 (4)	10.00				
					. 5.00				

FACTORED CONCENTRATED LOADS (LBS) JT LOC. LC1 MAX- MAX+ FACE DIR. TYPE HEF	EEL CONN.	
JT LOC, LC1 MAX- MAX+ FACE DIR TYPE HE		
	Ct	
H 6-10-4 8 1 14 EPONT VERT TOTAL	C1	
1-9-12 8 1 14 FRONT VERT TOTAL	C1	
2-10-4 1 1 103 FRONT VERT TOTAL	C1	
4-10-4 1 1 102 EPONT VERT TOTAL	C1	
M 2-10-4 8 1 14 FRONT VERT TOTAL	C1	
N 4-10-4 8 1 14 FRONT VERT TOTAL _	01	

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: LL =
DL =
LL ≈
DL =
AD = 25.6 PSF 6.0 0.0 7.4 PSF PSF PSF BOT CH. TOTAL LOAD 39.0 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

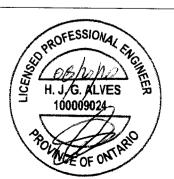
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.29")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.29")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.47/1.00 (C-D:1) , BC=0.13/1.00 (H-I:4) , WB=0.11/1.00 (B-I:1) , SSI=0.20/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

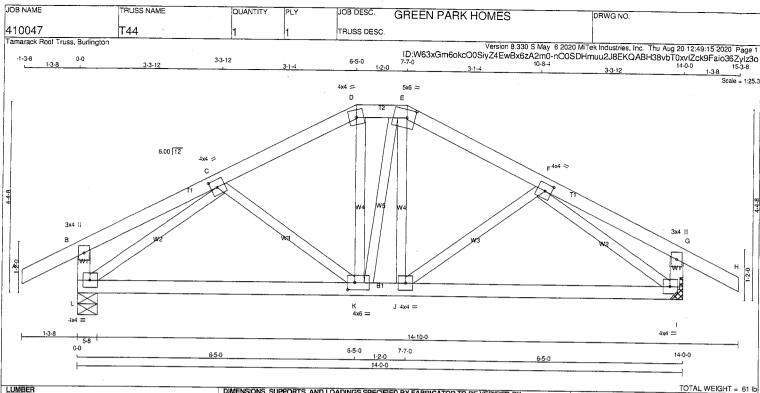

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.65 (B) (INPUT = 0.90) JSI METAL= 0.19 (B) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
E - H	2x4	DRY	No.2	SPF
L · B	2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF
L - 1	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

PL	ATES_(table	is in inches)				
JT	TYPE	PLATES	W	LEN	Y	X
В	TMV+p	MT20	3.0	4.0		
С	TMWW-t	MT20	4.0	4.0	2.00	1.75
D	TTW-m	MT20	4.0	4.0		
Ε	TTWW-m	MT20	5.0	6.0	2.25	2.25
F	TMWW-t	MT20	4.0	4.0	2.00	1.75
G	TMV+p	MT20	3.0	4.0		
!	BMVW1-t	MT20	4.0	4.0		
J	BMWW-t	MT20	4.0	4.0		
K	BMWWW-t	MT20	4.0	6.0	2.00	2.00
L	BMVW1-t	MT20	4.0	4.0		

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	DRED	INPUT	REORD
	GROSS F	GROSS REACTION			BRG	BBG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
L	896	0	896	0	0	5-8	5-8
1	896	0	896	0	0	MECHANI	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT I. MINIMUM BEARING LENGTH AT JOINT I = 3-8.

UNFACTORED REACT	ONS

	1ST LCASE	MAX./I	VIN. COMPO	NENT REACTION	NS		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
L	631	428 / 0	0/0	0/0	0/0	204 0	0 0
1	631	428 / 0	0/0	0/0	0/0	204 / 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS FACTORED					WE		
		FACTO					MAX. FACTO	RED
MEMB.	FORCE	VERT. LO			MAX.	MEMB.	FORCE	MAX
ED 70	(LBS)	(PL		CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM			LENGTH	FR-TO		
A-B	0 - 28	-91.8		0.12 (1)		C- K	-148 : 0	0.04(1)
B-C	0 / 14	-91.8	-91.8	0.14 (1)	10.00	K-D	0 / 169	0.04 (1)
C- D	-767 : 0	-91.8	-91.8	0.11 (1)	6.25	K-E	0.6	0.00(1)
D- E	677 : 0	-91.8	-91.8	0.02(1)	6.25	J- E	0 / 163	0.04(1)
E-F	-765 / 0	-91.8	-91.8	0.11(1)	6.25	J-F	-148 · 0	0.04(1)
F- G	0 / 14	-91.8	-91.8	0.14(1)	10.00	L-C	997 0	0.27 (1)
G- H	0 / 28	-91.8	-91.8	0.12(1)	10.00	F- I	-995 0	0.27(1)
L-B	-241 / 0	0.0	0.0	0.02 (1)			000	0.27 (1)
i- G	-241 0	0.0	0.0	0.02 (1)				
L- K	0.791	-18.5	105	0.05 (4)	40.00			
K-J				0.25 (4)				
	0 / 675	-18.5		0.25 (4)				
J- 1	0 / 790	-18.5	-18.5	0.24 (4)	10.00			

SPEC	IFIED	LOAI	DS:		
TOP	CH.	LL	=	25.6	PSF
				6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL		7.4	
TOTA	L LO	AD	=	39.0	PSE

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

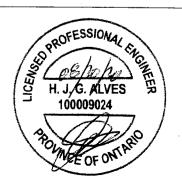
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.47")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.47")
CALCULATED VERT. DEFL.(TL) = L/999 (0.06")

CSI: TC=0.14/1.00 (F-G:1), BC=0.25/1.00 (J-K:4). WB=0.27/1.00 (C-L:1), SSI=0.12/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

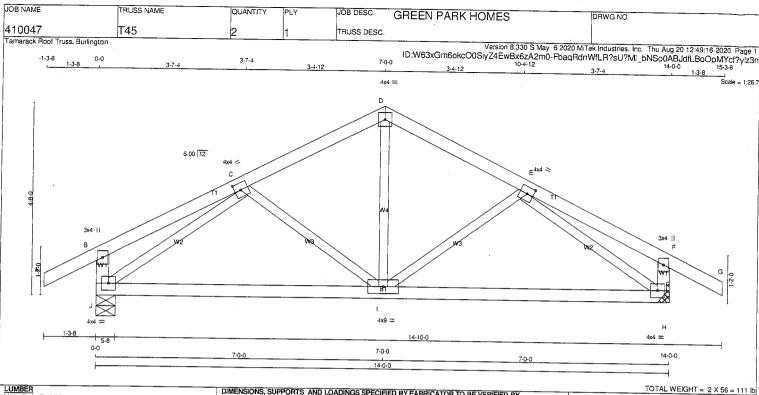

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.85 (L) (INPUT = 0.90) JSI METAL= 0.31 (C) (INPUT = 1.00)

LUMBER				
N. L. G. A. F	ULES			
CHORDS A - D D - G J - B H - F	SIZE 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2	DESCR SPF SPF SPF SPF
J - H	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Y	X				
В	TMV+p	MT20	3.0	4.0						
С	TMWW-t	MT20	4.0	4.0	2.00	1.75				
D	TTW-p	MT20	4.0	4.0						
Ε	TMWW-t	MT20	4.0	4.0	2.00	1.75				
F	TMV+p	MT20	3.0	4.0						
Н	BMVW1-t	MT20	4.0	4.0						
1	BMWWW-t	MT20	4.0	9.0						
J	BMVW1-t	MT20	4.0	4.0						

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
BEARINGS	

UT REORD
BBG
X IN-SX
5-8
CHANICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 3-8.

UN	FACTORED RE	ACTIONS					
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT	COMBINED 631 631	SNOW 428 / 0 428 / 0	0/0 0:0	PERM.LIVE 0 / 0 0 / 0	WIND 0 · 0 0 · 0	DEAD 204 0 204 0	SOIL 0 / 0 0 - 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E	BS	
	. FACTORED	FACTO				_	MAX. FACTO	RED
MEMB.	FORCE	VERT. LO		MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL		CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	I- D	0 - 394	0.09(1)
B-C	0 / 16	-91.8	-91.8	0.17(1)	10.00	I- E	-196 / 0	0.06(1)
C- D	735 0	-91.8	-91.8	0.13(1)	6.25	C- I	-196 0	0.06 (1)
D-E	-735 / 0	- 9 1.8	-91.8	0.13(1)	6.25	J- C	-997 0	0.31 (1)
E-F	0 : 16	- 9 1.8	-91.8	0.17(1)	10.00	E-H	-997 0	0.31 (1)
F- G	0 28	-91.8	-91.8	0.12(1)	10.00			0.07 (1)
J- B	-251 0	0.0	0.0	0.03(1)	7.81			
H- F	-251 : 0	0.0	0.0	0.03 (1)	7.81			
	0.000							
J- i	0 · 800	-18.5		0.32 (4)	10.00			
I- H	0 / 800	-18.5	-18.5	0.32 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = CH.

6.0 0.0 7.4 PSF PSF PSF BOT CH TOTAL LOAD 39.0 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

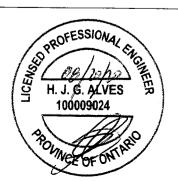
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.47")
CALCULATED VERT. DEFL.(LL)= L/399 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.47") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.07")

CSI: TC=0.17/1.00 (B-C:1) , BC=0.32/1.00 (I-J:4) , WB=0.31/1.00 (E-H:1) , SSI=0.14/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

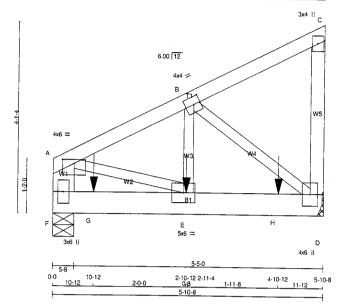
COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATÉ MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.85 (J) (INPUT = 0.90) JSI METAL= 0.30 (E) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO 410047 T46 TRUSS DESC Tamarack Boof Truss Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Thu Aug 20 12:49:17 2020 Page 1

ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-jn8Cezo8QfZsTeaYJi6c?0YNgjza4gwY10HABSylz3m 0-0

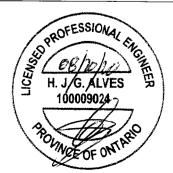
Scale - 1:23

LUMBER N. L. G. A. RULES SIZE 2x6 CHORDS F A LUMBER DESCR ACCD No.2 SPF SPF SPF SPF 2x4 DRY No 2 No.2 ALL WEBS 2x3 No.2 SPF DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CH	ORDS : (0.1	22"X3") SPIRAL NAILS	
F- A	2	12	TOP
A- C	1	12	TOP
C-D	1	12	TOP
BOTTO	M CHORDS :	(0.122"X3") SPIRAL NAILS	_
F-D	2	12	SIDE(183.1)
WEBS:	(0.122"X3")	SPIRAL NAILS	
B- E	1	6	SIDE(45.9)
2x3	1	6	

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.


GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING.
REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PLATES (table is in inches)

JΤ	TYPE	PLATES	W	LEN	Υ	Х
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00
В	TMWW-t	MT20	4.0	4.0	2.00	1.75
С	TMV+p	MT20	3.0	4.0		
D	BMVW1+p	MT20	4.0	6.0		
Ε	BMWW-t	MT20	5.0	6.0		

Structural component only DWG# T-2018787

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	_
DIMENSIONS, SOFFORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY	
BUILDING DESIGNER	
BOILDING DESIGNER	
READINGS	

<u>BEA</u>	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPLIT	REORD
	GROSS R	EACTION	GROSS	REACTIC		BRG	
JŦ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	1654	0	1654	0	0 .	5-8	5-8
D	1628	0	1628	0	0	MECHAN	ICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./\	IIN. COMPO	NENT REACTION	JS		
J₹	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	1163	7 98 / 0	0/0	0.0	0 / 0	366 / 0	0 / 0
D	1146	786 / 0	0 / 0	0 / 0	0.0	360 : 0	0.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

С	HORDS					W	EBS		
M	AX. FACTORED	FACTO	RED				MAX. FACT	ORED	
MEMI	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEME			
	(LBS)			CSI (LC)			(LBS)		
FR-TO	o ' '	FROM		(,	LENGTH			COL	(LU)
F- A	-1086 / 0	0.0		0.04 (1)		A- E		0.16	(4)
A-B	-1416 / 0			0.06 (1)					
B-C	-10 / 0						-1606 0	0.19	
D- C	-111 / 0	0.0	0.0	0.01 (1)	7.81		1000 0	0.15	(1)
				(,	,,,,,,				
F- G	0 / 0	-18.5	-18.5	0.18 (1)	10.00				
G- E	0 / 0			0.18(1)					
E-H	0 : 1276			0.28 (1)					
H- D	0 - 1276	-18.5		0.28 (1)					
				1					
FACT	ORED CONCEN	TRATED LC	ADS (L	BS)					
JT	LOC. LO		MAX		ACE I	DIR.	TYPE	HEEL	CONN
E	2-10-12 -87	78 -878				ERT	TOTAL	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C1
G	10-12 -87					ERT	TOTAL		Ci

FRONT VERT

TOTAL

CONNECTION REQUIREMENTS

-878

-878

4-10-12

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 29 = 58 lb DESIGN CRITERIA

SPECIFIED LOADS: CH. LL = DL = LL = 25.6 DL = 6.0 PSF PSF BOT CH. PSF

SPACING = 24.0 IN. C/C

TOTAL LOAD

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

39.0 PSF

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 . ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL) = L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.28/1.00 (D-E:1) , WB=0.19/1.00 (B-D:1) , SSI=0.19/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.84 (B) (INPUT = 0.90) JSI METAL= 0.29 (D) (INPUT = 1.00)

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	CREEN DADICHOMEO	les de la constant de la constant de la constant de la constant de la constant de la constant de la constant de
410047	T46		2	TRUSS DESC.	GREEN PARK HOMES	DRWG NO.
Tamarack Roof Truss, Burlington					Version 8.330 S May 6 20 ID:W63xGm6okc00SiyZ4EwBx6zA2m0-jn	20 MiTek Industries, Inc. Thu Aug 20 12:49:17 2020 Page 2 8Cezo8QfZsTeaYJi6c?0YNgjza4gwY10HABSylz3m
PLATES (table is in inches) JT TYPE PLATES W F BMV1+p MT20 3.0	LEN Y X					
H. J/G. AL 10000902	37 /					
Structural compor DWG# T-201878	nent only 7. H2					

JOB NAME TRUSS NAME QUANTIT JOB DESC. **GREEN PARK HOMES** DRWG NO. 410047 T46Z TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Thu Aug 20 12:49:18 2020 Page 1 ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-CziasJomBzhj5o9lsPdrXD5XK6Hbp6PhGg1jjuylz3l 2-11-4

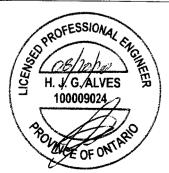
> 3x4 || C 6.00 12 4x4 = W5 G 5x6 -4x6 || 5-5-0 5-8 2-11-4 3-7-4 5-1-4 5-10-8

> 8-0 1-6-0 5-10-8

LUMBER N. L. G. A. RULES CHORDS F - A SIZE 2x6 LUMBER DESCR DRY SPF SPF SPF No.2 A C C D DRY No.2 No.2 2×4 2x6 No.2 SPF ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS LOAD(PLF) SPACING (IN) TOP CHORDS: (0.122"X3") SPIRAL NAILS F- A A- C C- D TOP 12 12 BOTTOM CHORDS : (0.122"X3") SPIRAL NAILS F- D 2 12 SIDE(0.0) WEBS: (0.122"X3") SPIRAL NAILS


NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

PLATES (table is in inches)									
ĴΤ	TYPE	PLATES	W	LEN	Y	X			
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00			
В	TMWW-t	MT20	4.0	4.0	2.00	1.25			
С	TMV+p	MT20	3.0	4.0					
Ď	BMVW1+p	MT20	4.0	6.0					
Ε	BMWW-t	MT20	5.0	6.0					
F	BMV1+p	MT20	3.0	6.0					

Structural component only DWG# T-2018788

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	The second of the second secon

BEA	RINGS						
	FACTO	ORED REACTION	MAXIMU	M FACTO		INPUT	REQRD
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	BRG IN-SX	BRG IN-SX
F	1668	0	1668	0	0	5-8	5-8
D	2221	0	2221	0	0	MECHANI	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = $4 \cdot 0$.

UNFACTORED REACTIONS

	1ST LCASE		AIN. COMPO	NENT REACTION	NS.		
JΤ	COMBINED		LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	1175	799 / 0	0 / 0	0/0	0 - 0	375 0	0.0
D	1564	1066 / 0	0/0	0/0	0 / 0	498 0	0 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTO	3ED			W E	BS MAX. FACTO	.DED		
MEMB.	FORCE	VERT. LO		MAX 1	MAX.	MEMB		MAX		
	(LBS)				UNBRAC		(LBS)	CSI (LC)		
FR-TO		FROM			LENGTH			001 (20)		
F- A	-1332 / 0	0.0	0.0	0.05 (1)			0 / 1650	0.20(1)		
A-B	-1774 / 0	-91.8	-91.8	0.06 (1)	6.25			0.21 (1)		
B-C	-9 i O	-91.8	-91.8	0.05(1)	10.00	B-D	-2007 : 0	0.24(1)		
D- C	-114 / 0	0.0		0.01 (1)			400.	0.24(1)		
F- G	0 / 0	-18.5	-18.5	0.20 (1)	10.00					
G-E	0 / 0	-18.5	-18.5	0.20 (1)	10.00					
E- H	0 - 1595	-18.5	-18.5	0.35(1)	10.00					
H- I	0 / 1595			0.35 (1)						
I- D	0 / 1595	-18.5	-18.5	0.35 (1)						
EACTO	ACTORED CONCENTRATER LOADS (LDS)									

FACT	ORED CO	NCENTR	ATED LO.	ADS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN
G	1-7-4	-1080	-1080		BACK	VERT	TOTAL		C1
H	3-7-4	-1080	-1080		BACK	VERT	TOTAL		G1
1	5-1-4	-1082	-1082		BACK	VERT	TOTAL	***	C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TOTAL WEIGHT = 2 X 29 = 58 lb

Scale = 1:23.4

DESIGN CRITERIA SPECIFIED LOADS

TOP	CH.	LL	=	25.6	PSF
				6.0	PSF
BOT	CH.	LL.	=	0.0	PSF
		DL		7.4	PSF
TOTA	L LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.35/1.00 (D-E:1) , WB=0.24/1.00 (B-D:1) , SSI=0.44/1.00 (D-E:1)

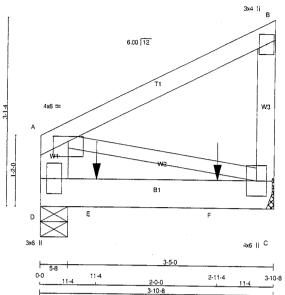
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.82 (B) (INPUT = 0.90) JSI METAL= 0.36 (D) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **GREEN PARK HOMES** DRWG NO 410047 T47 TRUSS DESC

Tamarack Roof Truss, Burlington

Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Aug 20 12:49:19 2020 Page 1 ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-g9Gy3fpOyGpajykxQ7844Reh4WeXYcOqVKmGFKylz3k

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR D -2x6 DRY No.2 No.2 SPF A B B C ACD 2x4 2x4 DRY No.2 SPF 2x6 DRY No.2 SPF ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPE

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)						
TOP CH	ORDS: (0.1	22"X3") SPIRAL NAILS							
D- A	2	12	TOP						
A- B	1	12	TOP						
B- C	1	12	TOP						
BOTTON	A CHORDS	(0.122"X3") SPIRAL NAILS							
D- C	2	12	SIDE(0.0)						
WEBS:	WEBS: (0.122"X3") SPIRAL NAILS								
2-2		e							

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NALING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOTAL SIDE OR ON THE TOP

PLATES (table is in inches)

JΤ	TYPE	PLATES	W	LEN	Υ	Χ	
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00	
В	TMV+p	MT20	3.0	4.0			
С	BMVW1+p	MT20	4.0	6.0			
n	BMV1+n	MT20	3.0	6.0			

Structural component only DWG# T-2018789

DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
DUIL DINC DECIONED	THE TOTAL TO BE VERIFIED BY
BUILDING DESIGNER	

BEA	RINGS						
	FACTO		MAXIMU			INPUT	REQRE
	GROSS R		GROSS			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	1082	0	1082	0	0	5-8	5-8
С	948	0	948	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT C. MINIMUM BEARING LENGTH AT JOINT C \simeq 1-8.

UNFACTORED REACTIONS

1ST LCASE <u>MAX./MIN. COMPONENT</u> REACTIONS	
JT COMBINED SNOW LIVE PERM.LIVE WIND DEAD D 761 524 / 0 0 / 0 0 / 0 0 0 236 / 0 C 666 460 / 0 0 / 0 0 / 0 0 / 0 206 / 0	SOIL 0 : 0 0 : 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

		ORDS . FACTOR	RED E	ACTOR	FD				W E	BS MAX. FACT	ropen	
	MEMB.	FOR (LBS	CE VE	RT. LOA	D LC1			MAX.	мемв.	FORCE	MAX	
	FR-TO			(PLF ROM	ľО	CSI (L		UNBRAC LENGTH		(LBS)	CSI	(LC)
i	D- A A- B	-178 / 0 0 / 0		0.0		0.01		7.81	A- C	0 · 0	0.00	(1)
i	C-B	-178 / 0		-91.8 0.0		0.13		10.00 7.81				
	D- E	0 0		-18.5	105	0.21	1+1	10.00				
	E-F	0 / 0			-18.5 -18.5			10.00 10.00				
	F- C	0 / 0		-18.5	-18.5	0.31	(1)	10.00				
	FACTOR	RED CONC		ED LOA	NDS (LI	BS)						
Į	JT E	LOC. 11-4	LC1 -930	MAX- -930	MAX-				DIR.	TYPE	HEEL	CONN.
		2-11-4	-672	-672			BAC BAC		RT	TOTAL TOTAL		C1 C1
1												٥.

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

TOTAL WEIGHT = 2 X 18 = 37 lb

DESIGN CRITERIA SPECIFIED LOADS

0,			J.J.		
TOP	CH.	LL	=	25.6	PS
				6.0	
BOT	CH.	LL	=	0.0	PS
				7.4	
TOTA	L LO	AD	=	39.0	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 TPIC 2014

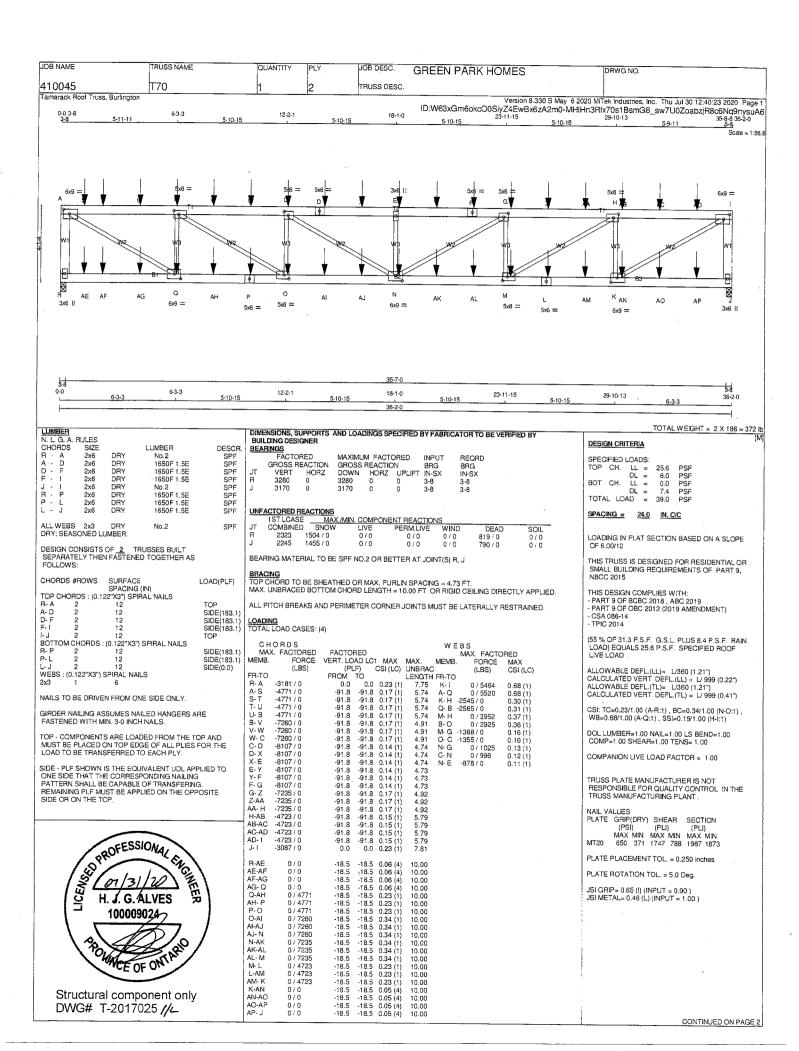
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL) = L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSI: TC=0.13/1.00 (A-B:1) , BC=0.31/1.00 (C-D:1) , WB=0.00/1.00 (A-C:1) , SSI=0.30/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

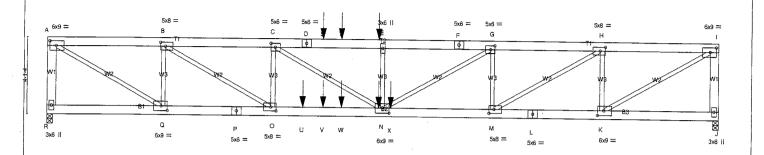

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.04 (A) (INPUT = 0.90) JSI METAL= 0.02 (B) (INPUT = 1.00)



B NAME TRUSS NAME	QUANTITY	PLY	JOB DESC. GREEN PARK HOMES DRWG NO.	
0045 T70	1	2	TRUSS DESC.	
marack Roof Truss, Burlington			Version 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jul 3	0 12:40:23 2020 Page
ATTO Mahla is to look as			The state of the s	auz nocolvijenysu
TYPE PLATES W LEN Y X TMWW-! MT20 5.0 8.0 2.50 3.25 TS-! MT20 5.0 6.0 TMWW-! MT20 5.0 6.0 TMWW-I MT20 5.0 6.0 TMWW-I MT20 5.0 6.0 TMWW-I MT20 5.0 6.0 TMWW-I MT20 5.0 6.0 TMWW-I MT20 5.0 6.0 2.50 2.75 TMWW-I MT20 5.0 8.0 2.50 3.25 TMWW-I MT20 5.0 8.0 2.50 3.25 TMWW-I MT20 6.0 9.0 3.00 4.00 BMW1-I MT20 5.0 6.0 BMWW-I MT20 5.0 6.0	FACTORED CON JT LOC. B 6-3-4 C 12-3-4 D 14-3-4 E 18-3-4 G 24-3-4 N 18-3-4 N 18-3-4 O 12-3-4 P 10-3-4 Q 6-3-4 S 1-3-4 U 4-3-4 V 10-3-4 X 16-3-4 X 16-3-4 X 20-3-4 A 23-3-4 A 30-3-4 A 3	LG1 MAX	LOADS (LBS)	abziR8c6Nq9nyst

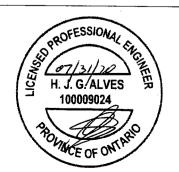
Structural component only DWG# T-2017025 1/2

JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO 410045 T70Z TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jul 30 12:40:24 2020 Page 1 Version 8.330 5 way 6 2020 will rex industries, inc. Ind Jul 30 12:40.24 2020 1939 ii ID:W63xGm6okcOSb,74EwBx6zA2:m0-q7Jf?PSO:iR8jeLRyqrV5SK0A6Bpci6iHrm6OhDysuA5 23-11-15 29-10-13 29-10-13 35-88 36-2-0 6-3-3 12-2-1 18-1-0 5-10-15 35-8-8 36-2-0 5-8 5-10-15 5-9-11

4-						35-7-0						
0-0	6-3-3	6-3-3	5-10-15	12-2-1 13-9-8	4.9.8	18-1-0 18-6-8		23-11-15	_	29-10-13		3-8 36-2-0
<u> </u>						36-2-0	3-3-7		5-10-15		6-3-3	

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
R - A	2x6	DRY	No.2	SPF
A - D	2x6	DRY	1650F 1.5E	SPF
D - F	2x6	DRY	1650F 1.5E	SPF
F - I	2x6	DRY	1650F 1.5E	SPF
J - I	2x6	DRY	No.2	SPF
R - P	2x6	DRY	1650F 1.5F	SPF
P - L	2x6	DRY	1650F 1.5E	SPE
L - J	2x6	DRY	1650F 1.5E	SPF
				٥, ,
ALL WEBS	2x3	DRY	No 2	SPF
DRY: SEAS	ONEDL	UMBER		011
- · · · · · · -				

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:


ſ											
CHORE	S #ROWS	SURFACE	LOAD(PLF)								
		SPACING (IN)	, -,								
TOP CHORDS: (0.122"X3") SPIRAL NAILS											
R-A	2	12	TOP								
A-D	2	12	TOP								
D-F	2	12	SIDE(183.1)								
F-1	2	12	TOP								
1- J	2	12	TOP								
вотто	M CHORDS	: (0.122"X3") SPIRAL NAILS									
R-P	2	12	TOP I								
P-L	2	12	SIDE(183.1)								
L-j	2	12	TOP								
WEBS:	(0.122"X3")	SPIRAL NAILS									
2x3	1	6	i								

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

Structural component only DWG# T-2017026 1/2

	DIME	NSIONS, S DING DESI	UPPORTS GNER	AND LOAD	INGS SP	ECIFIED	BY FABRIC	CATOR TO BE	VERIFIED BY
	BEAL	RINGS							
		FACTO	RED	MAXIMU	MAXIMUM FACTORED			REORD	
į		GROSS R	EACTION	GROSS	GROSS REACTION			BRG	
	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX	
İ	R	4133	0	4133	0	0	3-8	3-8	
	J	3815	0	3815	0	0	3-8	. 3-8	

UNF	ACTORED RE	ACTIONS				
	1ST LCASE	MAX.	/MIN. COMPON	NENT REACTION	(S	
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEA
B	2916	1950 / 0	0/0	0/0	0/0	967 / 0
j	2692	1799 / 0	0/0	0 / 0	0/0	894 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R, J

BRACING
TOP CHÖRD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.67 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

894 / 0

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	HORDS AX. FACTORED	FACTO	RED			W	EBS MAX. FAC	TOPEN	
MEME	FORCE	VERT. LC		1 MAY	MAX.	MEMB			
	(LBS)			CSI (LC)			(LBS)		
FR-TO		FROM	ΤĆ		LENGT		(600)	COI	(LC)
R-A	-4052 / 0	0.0		0.30 (1)				0.00	. /+1
A-B	-6535 / 0			(0.13 (1)					
B-C	-11728 / 0			0.18 (1)			-3405/0		
C-D	-13889 / 0	-91.8	-91.8	0.31 (1)	3.67		-3403 / 0	0.41	
D-S	-13889 / 0	-91 8	-91.8	0.31 (1)	3.67			0.46	
S-T	-13889 / 0	-91 R	-91.8	0.31 (1) 0.31 (1)	3.67				
T-E	-13889 / 0	-91.8	-91.8	0.31 (1)	3.67		-2595 / 0		
E-F	-13889 / 0	-91.8		0.24 (1)			-1979 / 0	0.31	
F-G	-13889 / 0	-91.8		0.24 (1)	3.74	N- G			
G-H	-10531 / 0	-91.8			4.25				
H-1	-6025 / 0	-91.8		0.12(1)			-753 / 0		(1)
J-1	-3752 / 0			0.27 (1)		14- [-73370	0.09	(1)
		0.0	0.0	0.2. (1)	7.20				
R-Q	0/0	-18.5	-18.5	0.04 (1)	10.00				
Q-P	0 / 6535	-18.5		0.38 (1)					
P-0	0 / 6535	-18.5							
0-U	0 / 11728	-18.5							
U-V	0 / 11728	-18.5		0.80 (1)					
V-W	0 / 11728		-18.5	0.80 (1)	10.00				
W-N	0 / 11728	-18.5	-18.5	0.80(1)	10.00				
N-X	0 / 10531			0.58 (1)					
X-M	0 / 10531	-18.5		0.58 (1)					
M-L	0 / 6025	-18.5		0.27(1)					
L-K	0 / 6025	-18.5	-18.5	0.27(1)	10.00				
K-J	0/0	-18.5		0.03 (4)					
[
FACT	ORED CONCENT	RATED LC							
JΤ	LOC. LC1		MAX	+ F/	ACE I	DIR.	TYPE	HEEL	CO
	7-10-12 -110	-110	-	BA	CK VI	ERT	TOTAL		Č

17-10-12 17-10-12 TOTAL TOTAL TOTAL TOTAL 田 NST じゝw C1 C1 C1 C1 C1 C1 C1 -26 -110 -110 -26 -110 -110 BACK BACK BACK BACK VERT VERT 14-10-12 15-10-12 13-9-8 VERT -1398 -1398 VERT TOTAL 14-10-12 -26 -26 BACK VERT 15-10-12

VERT

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

TOTAL WEIGHT = 2 X 186 = 372 lb

DESIGN	CRI	TÉR	ΙÁ

SPECIFIED LOADS: LL =
DL =
LL =
DL =
AD = 6.0 PSF PSF BOT CH. TOTAL LOAD

SPACING = 24.0 IN, C/C

SOIL

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , ABC 2019
PART 9 OF OBC 2012 (2019 AMENDMENT)
CSA 086-14 **TPIC 2014**

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.21")
CALCULATED VERT. DEFL.(LL) = L/999 (0.37")
ALLOWABLE DEFL.(TL)= L/360 (1.21")
CALCULATED VERT. DEFL.(TL) = L/636 (0.68")

CSI: TC=0.31/1.00 (C-E:1) , BC=0.30/1.00 (N-O:1) , WB=0.94/1.00 (A-Q:1) , SSI=0.71/1.00 (M-N:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIF VALUES ALUES
GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.90 (I) (INPUT = 0.90) JSI METAL= 0.63 (P) (INPUT = 1.00)

CONTINUED ON PAGE 2

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN DARK HOMEO	lemus :	
	T70Z	1	2	TRUSS DESC.	GREEN PARK HOMES	DRWG NO.	
amarack Roof Truss, Burlington					Version 8.330 S ID:W63xGm6okcO0SiyZ4EwBx6zA	May 6 2020 MiTek Industries	Inc. Thu Jul 30 12:40:24 2020 Page
					ID.W63XGITIBOKCOUSIYZ4EWBX6ZA	42m0-gTJf?PSOiR8jeLRy	grV5SK0A6Bpci6lHrm6OhDysuA
PLATES (table is in inches) IT TYPE PLATES W A TMVW-t MT20 6.0	LEN Y X					.	
B TMWW-t MT20 5.0	9.0 3.00 4.00 8.0 2.50 3.25 6.0 2.50 2.75						
D TS-t MT20 5.0 E TMW+w MT20 3.0	6.0 6.0						
TMWW-t MT20 5.0	6.0						
TMWW-t MT20 5.0 TMVW-t MT20 6.0	9.0 3.00 4.00						
BMV1+p MT20 3.0 BMWW-t MT20 6.0 BS-t MT20 5.0	6.0 9.0 3.00 4.00 6.0						
M BMWW-t MT20 5.0 BMWWW-t MT20 6.0	8.0 2.50 3.25 9.0 3.25 4.50 8.0 2.50 3.25						
BS-1 M120 5.0	6.0						
BMWW-t MT20 6.0 BMV1+p MT20 3.0	. 9.0 3.00 4.00 6.0						
		İ					
							·
						:	
			÷				
					•		
4							
		1					
-ESSIO							
PROFESSIO	MALE						
18	18						
3 (97/21/1							
PROFESSIO 10000902	VE3 7						•
1000030	$\frac{2}{2}$						
13/1/	\@ /						
ROWCE OF	MIAN						
						ļ 1	
						f .	
Structural compor DWG# T-201702	ent only						

		Y: SEASONE	No.2									
PLATES (table is in inches)												
ł	JT	TYPE	PLATES	W	LEN	Y	Х					
Į	Α	TMVW-t	MT20	5.0	8.0	2.50	2.75					
ļ		D, G										
ĺ	В	TMWW-t	MT20	5.0	6.0							
İ	С	TS-t	MT20	5.0	6.0							
l	Ε	TMW+w	MT20	3.0	6.0							
١	F	TS-t-	MT20	5.0	6.0							
į	Н	TMVW-t	MT20	5.0	8.0	2.50	2.75					
ı	I	8MV1+p	MT20	3.0	6.0							
ĺ	J	BMWW-t	MT20	5.0	8.0	2.50	2.75					
ı	K	BS-t	MT20	5.0	6.0							
ı	L	BMWWW-t	MT20	5.0	8.0							
1	M	BMWW-t	MT20	5.0	6.0							
Ì	N	BS-t	MT20	5.0	6.0							
Į	0	BMWW-t	MT20	5.0	8.0	2.50	2.75					
١	Р	BMV1+p	MT20	3.0	6.0							

BUIL	NSIONS, SU DING DESIG RINGS	PPORTS A	AND LOAD	INGS SP	ECIFIED	BY FAE	RICAT	OR TO BE VERIF	TEO BY			
	FACTORED GROSS REACTION							REQRD BRG				
JT P	VERT 1994	HORZ 0	DOWN 1994	HORZ 0	UPLIFT	IN-SX	[N-SX				
1	1994	0	1994	0	0	3-8 3-8		-8 -8				
	UNFACTORED REACTIONS 1ST LCASEMAX/MIN. COMPONENT REACTIONS											
JT P	COMBINED 1410	SNOW 925 / 0	' LIV		PERM.LI 0 / 0		WIND 0/0	DEAD 485 / 0	SOIL			
ì	1410	925/0	0/		0/0		0/0	485 / 0	0/0 0/0			
8EAF	RING MATER	MAL TO BE	SPF NO.	2 OR 8E	TTER AT	JOINT	(S) P, I					
BRACING TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.03 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED												

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 1 LATERAL BRACE(S) AT 1/2 LENGTH OF D-L. END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS				WEBS					
	C. FACTORED	FACTO					MAX. FACTO	RED		
MEMB.		VERT. LO			MAX.	MEMB	. FORCE	MAX		
	(LBS)	(Pt	_F) ·	CSI (LC)	UNBRAC			CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO)	()		
P-A	-1933 / 0	0.0		0.46 (1)		J- H	0 / 3125	0.70(1)		
A-B	-2650 / 0	-91.8		0.39 (1)		A-O	0/3124	0.70(1)		
B-C	-3805 / 0	-91.8	-91.8	0.45 (1)	4.03	J-G	-1505 / 0	0.50(1)		
C-D	-3805 / 0			0.45 (1)		O- B	-1507 / 0	0.50(1)		
D- E	-3801 / 0	-91.8		0.34 (1)		L-G	0 / 1374	0.31(1)		
E-F	-3801 / 0			0.45 (1)		B-M	0 / 1380	0.31(1)		
F- G	-3801 / 0	-91.8		0.45 (1)		L- E	-627 / 0	0.21(1)		
G-H	-2651 / 0	-91.8		0.39 (1)			-628 / 0	0.21 (1)		
I- H	-1933 / 0	0.0	0.0	0.46 (1)	7.23	D- F	-5 / 0	0.00 (1)		
P-0	0/0	-18.5	10.5	0.40.40						
0- N	0 / 2650			0.10 (4)	10.00					
N- M	0 / 2650			0.36 (1)	10.00					
M- L				0.36 (1)						
L- K	0 / 3805 0 / 2651			0.51 (1)	10.00					
K-J				0.37 (1)						
J- I	0 / 2651			0.37 (1)						
J- (0/0	-18.5	-18.5	0.10 (4)	10.00					

OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086.14 - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.21")
CALCULATED VERT. DEFL.(LL) = L/399 (0.21")
ALLOWABLE DEFL.(TL) = L/360 (1.21")
CALCULATED VERT. DEFL.(TL) = L/999 (0.40")

CSI: TC=0.46/1.00 (H-I:1) , BC=0.51/1.00 (L-M:1) , WB=0.70/1.00 (H-J:1) , SSI=0.24/1.00 (G-H:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (J) (INPUT = 0.90) JSI METAL= 0.52 (K) (INPUT = 1.00)

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK	HOMES	DRWG No	D	
10045	T72	2	1	TRUSS DESC.					
amarack Roof Truss, Bu 0-0	riington 7-5-6 7-5-6	7-1-2	14-6-7	7-1-2	ID:W63xGm6okcO	Version 8.330 S I 0SiyZ4EwBx6zA2n 7-1-2	May 6 2020 MiTek Industri n0-Jgt1CiT0TkGZGV0 28-8-10	es, Inc. Thu Jul 30 1 BOYOL?YZEsbFff 7-5-6	RbcQ3QsxDfys 36-2-0
A 6x9 ==	3x6 = B	5x6 = C	3x6 D W8	W2 W2	5x6 = E	5x6 = F	5x6 == G	yth /	Scale = 6x9 = H W1 3x6 []
3.8	7-5-6 ⁷⁻⁵ -6	7-1-2	14-6-7	35-7-0 7-1-2 36-2-0	21-7-9	7-1-2	28-8-10	7-5-6	3x6 11 3-8 36-2-0
JMBER L. G. A. RULES HORDS SIZE - A 2x6 DF - C 2x6 DF - F 2x6 DF	RY No.2 RY No.2	SCR. BEARINGS SPF FACTO	RED MA)		ED BY FABRICATOR TO E INPUT REQRD BRG BRG	BE VERIFIED BY	DESIGN CRITER SPECIFIED LO	RIA	T = 2 X 200 = 4

G - F F - H I - H P - N N - K K - I	2x6 2x6 2x6 2x6 2x6 2x6	DRY DRY DRY DRY DRY DRY		No.2 No.2 No.2 No.2 No.2 No.2		
ALL WEB DRY: SEA	S 2x3 SONED L	DRY UMBER.		No.2		
PLATES JT TYPE A TMVV B, E, G	PL	inches) ATES AT20	W 6.0	LEN 9.0	Y	х
B TMW C TS-t D TMW F TS-t H TMVV I BMV1 J BMW K BS-t L BMW	****	MT20 MT20 MT20 MT20 MT20 MT20 MT20 MT20	5.0 5.0 5.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	6.0 6.0 6.0 9.0 6.0 9.0 6.0 8.0 6.0 9.0 6.0		

DESCR. SPF SPF SPF SPF SPF SPF SPF SPF

SPF

DIM	ENSIONS, SU	PPORTS A	MOLOAD	INGS SP	FCIFIED	RVEAD	DICA	TOR TO BE VERIF	EB 504	
BUI	LDING DESIG	NER			LON ILD	311AL	JAICA	ION TO BE VEHIL	ED 51	
	RINGS									
JT P i	FACTOR GROSS RE VERT 1994 1994		MAXIMUI GROSS DOWN 1994 1994			INPUT BRG IN-SX 3-8 3-8		REQRD BRG IN-SX 3-8 3-8		
	UNFACTORED REACTIONS 1ST LCASE MAX./MIN. CCMPONENT REACTIONS									
JT	COMBINED	SNOW	' Lh	/É	PERM.LI	VE.	WIND	DEAD	SOIL	
Ρ	1410	925 / 0	0	/0	0/0		0/0	485 / 0	0/0	
f	1410	925 / 0	0	/0	0/0		0/0	485 / 0	0/0	
BEA	BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P. I									
TOP	BRACING TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.38 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT. OR BYGID CELLING DIRECTLY ABBUTCH.									

UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. 1 LATERAL BRACE(S) AT 1/2 LENGTH OF E-M. END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTO	RED			W E	BS MAX. FACTO	-BED
MEMB.		VERT. LO						MAX
FR-TO	(LBS)			CSI (LC)	UNBRAC		(LBS)	CSI (LC)
		FROM			LENGTH			
P-A	-1935 / 0	0.0		0.76 (1)		J- H	0 / 2742	0.62(1)
A- B	-2186 / 0	-91.8	-91.8	0.38 (1)		A-O	0 / 2743	0.62 (1)
B-C	-3131 / 0	-91.8			4.38	J- G	-1508 / 0	0.77(1)
C-D	-3131 / 0	-91.8	-91.8	0.42(1)	4.38	O-B	-1506 / 0	0.77(1)
D- E	-3131 / 0		-91.8	0.31(1)		L-G	0 / 1214	0.27(1)
E-F	-3135 / 0	-91.8	-91.8	0.42 (1)	4.38	B- M	0 / 1208	0.27(1)
F-G	-3135 / 0	-91.8	- 9 1.8	0.42 (1)	4.38	L-E	-628 / 0	0.32(1)
G-H	-2185 / 0	-91.8	-91.8	0.37 (1)	5.10		-626 / 0	0.32 (1)
I- H	1935 / 0	0.0	0.0	0.76 (1)	7.23		-5/0	0.00(1)
P-0	0/0			0.11 (4)				
O- N	0 / 2186	-18.5	-18.5	0.31 (1)	10.00			
N- M	0 / 2186	-18.5	-18.5	0.31 (1)	10.00			
M- L	0 / 3135	-18.5	-18.5	0.43 (1)	10.00			
L-K	0 / 2185	-18.5	-18.5	0.31 (1)	10.00			
K-J	0 / 2185			0.31 (1)				
J- I	0/0	-18.5		0.11 (4)				

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
-PART 9 OF BCBC 2018, ABC 2019
-PART 9 OF OBC 2012 (2019 AMENDMENT)
-CSA 086-14
-TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.21")
CALCULATED VERT. DEFL.(LL) = L/999 (0.16")
ALLOWABLE DEFL.(TL)= L/360 (1.21")
CALCULATED VERT. DEFL.(TL) = L/999 (0.31")

CSI: TC=0.76/1.00 (A-P:1) , BC=0.43/1.00 (L-M:1) , WB=0.77/1.00 (G-J:1) , SSI=0.24/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

 NAIL VALUES

 PLATE
 GRIP(DRY)
 SHEAR
 SECTION

 (PSI)
 (PLI)
 (PLI)

 MAX
 MIN
 MAX
 MIN

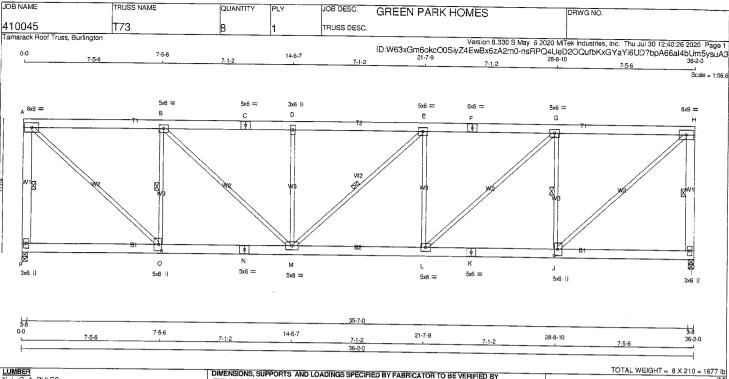

 MT2
 788
 1987
 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.76 (A) (INPUT = 0.90) JSI METAL= 0.43 (N) (INPUT = 1.00)

LUMBER					
N. L. G. A. RU	LES				
CHORDS :	SIZE		LUMBER	í	DESCR.
P - A :	2x6 [OFIY	No.2		SPF
A - C	2x6 [DRY	No.2		SPF
C - F :	2x6 [DRY	No.2		SPF
F - H :	2x6 E	DRY	No.2		SPF
I - H :	2x6 [PY	No.2		SPF
P-N	2x6 C	DRY	No.2		SPF
N · K	2x6 E	ΡŔΥ	No.2		SPF
K - 1	2x6 🗜	PRY	No.2		SPF
		PRY	No.2		SPF
DRY: SEASON	JED LUME	BER.			

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Y	Х
A	TMVW-t	MT20	6.0	9.0		
	E, G					
В	TMWW-t	MT20	5.0	6.0		
C	TS-t	MT20	5.0	6.0		
D	TMW+w	MT20	3.0	6.0		
F	TS-t	MT20	5.0	6.0		
H	TMVW-t	MT20	6.0	9.0		
1	BMV1+p	MT20	3.0	6.0		
J	BMWW+t	MT20	5.0	8.0	4.00	2.00
K	BS-t	MT20	5.0	6.0		
L	BMWW-t	MT20	5.0	6.0		
M	BMWWW-t	MT20	5.0	8.0		
N	BS-t	MT20	5.0	6.0		
0	BMWW+t	MT20	5.0	8.0	4.00	2.00
Р	BMV1+p	MT20	3.0	6.0		

Ī	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
	BUILDING DESIGNER
	BEARINGS

BEA	RINGS				
JT P	FÄCTOF GROSS RE VERT 1994 1994	MAXIMUI GROSS I DOWN 1994 1994		INPUT BRG IN-SX 3-8 3-8	REQRD BRG IN-SX 3-8 3-8

UNF	UNFACTORED REACTIONS										
_	1ST LCASE		MIN. COMPO	VENT REACTION	NS_						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
P	1410	925 / 0	0/0	0/0	0/0	485 / 0	0/0				
1	1410	925 / 0	0/0	0/0	0/0	485 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P, I

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.59 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF A-P, H-I, G-J, B-O, E-M.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	ORDS			WEBS					
MAX	C. FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB		MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH			()	
P-A	-1936 / 0	0.0	0.0	0.26 (1)	5.79	J- H	0 / 2491	0.56(1)	
A-B	-1859 / 0	-91.8		0.37 (1)		A- O		0.56 (1)	
B-C	-2661 / 0	-91.8	-91.8	0.40 (1)	4.69		-1508 / 0	0.44 (1)	
C-D	-2661 / 0	-91.8		0.40 (1)			-1506 / 0	0.44 (1)	
D-E	-2661 / 0	-91.8		0.29 (1)			0 / 1106	0.25 (1)	
E-F	-2665 / 0	-91.8	-91.8	0.40 (1)	4.69		0 / 1099	0.25 (1)	
F-G	-2665 / 0	-91.8	-91.8	0.40 (1)		L-E		0.48 (1)	
G- H	-1858 / 0	-91.8	-91.8	0.36 (1)	5.43	M- D	-626 / 0	0.48 (1)	
1- H	-1936 / 0	0.0	0.0	0.26 (1)	5.79		-6/0	0.00(1)	
								,	
P- O	0/0	-18.5	-18.5	0.11 (4)	10.00				
O- N	0 / 1859	-18.5	-18.5	0.28 (1)	10.00				
N-M	0 / 1859	-18.5	-18.5	0.28 (1)	10.00				
M- L	0 / 2665	-18.5	-18.5	0.37 (1)	10.00				
L-K	0 / 1858	-18.5	-18.5	0.27 (1)	10.00				
K-J	0 / 1858	-18.5	-18.5	0.27 (1)	10.00				
J- 1	0/0	-18.5		0.11 (4)					

SPECIFIED LOADS: TOP CH. LL =

DL =

BOT CH. LL =

DL =

TOTAL LOAD = 25.6 6.0 0.0 7.4 39.0

SPACING = <u>24.0</u> IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF 8CBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (1.21")
CALCULATED VERT. DEFL.(LL) = L/999 (0.14")
ALLOWABLE DEFL.(TL) = L/360 (1.21")
CALCULATED VERT. DEFL.(TL) = L/999 (0.26")

CSI: TC=0.40/1.00 (B-D:1) , BC=0.37/1.00 (L-M:1) , WB=0.56/1.00 (A-O:1) , SSI=0.25/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

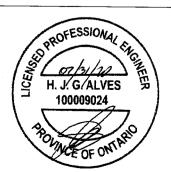
COMPANION LIVE LOAD FACTOR ≈ 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

 NAIL VALUES

 PLATE
 GRIP(DRY)
 SHEAR
 SECTION (PLI)

 (PSI)
 (PLI)
 (PLI)


 MAX
 MIN
 MAX
 MIN

 MT20
 650
 371
 1747
 788
 1987
 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (O) (INPUT = 0.90) JSI METAL= 0.67 (O) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO. 410045 T75 TRUSS DESC Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Jul 30 12:40:27 2020 Page 1

ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-F2?ndQUG_MWHWoAXVz3p4zehdPzhvVTjXkL2lYysuA2

8:10-0
4:3-12
4:6-4
17:8-0
18:1-8 Tamarack Roof Truss, Burlington -1-3-8 0-0 1-3-8 10.00 12 4x6 // 4x6 [] 3x6 = 4x6 II 1-3-8 16-9-0 1-3-8 17-8-0 5-11-8 11-8-8 5-11-8 5-11-8 TOTAL WEIGHT = 4 X 86 = 345 lb [M][F]

LUMBER N. L. G. A. RULES CHORDS SIZE DESCR SPF SPF LUMBER A - D D - G L - B H - F DRY DRY DRY DRY No.2 DRY - H ALL WEBS EXCEPT No.2 SPF

DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 C
 TMWW-t
 MT20
 LEN Y 3.0 4.0 MT20 MT20 MT20 TTWW+p TMWW-t Edge 4.0 4.0 6.0 6.0 TMV+p BMVW1-t 3.0 4.0 4.0 3.0 4.0 4.0 MT20 BMWW+t BS-t BMWW+t MT20 MT20 MT20 MT20 MT20 BMVW1-t 4.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER MAXIMUM FACTORED REORD

GROSS REACTION VERT HORZ 1101 0 1101 0 GROSS REACTION BRG
DOWN HORZ UPLIFT IN-SX
1101 0 0 5-8
1101 0 0 5-8 BRG IN-SX 5-8

UNFACTORED REACTIONS
1ST LCASE MAX
UT COMBINED SNOW MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE \(\) WIND DEAD 0/0 253 / 0 253 / 0 523 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) L, H

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS FACTORED	FACTO	RED			W E	BS MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB		MAX
l	(LBS)	(Pt		CSI (LC)			(LBS)	CSI (LC)
FR-TO		FROM		()	LENGTH			001 (20)
A-B	0/41	-91.8	-91.8	0.13(1)	10.00	D- I	0 / 370	0.08(1)
B-C	0/31	-91.8	-91.8	0.29 (1)	10.00	1- E	-245 / 0	0.12(1)
C-D	-825 / 0	-91.8	-91.8	0.23 (1)	6.25	K-D	0 / 370	0.08(1)
D-E	-825 / 0	-91.8		0.23 (1)		C- K	-245 / 0	0.12(1)
E-F	0/31	-91.8		0.29 (1)		L-C	-1036 / 0	0.81(1)
F-G	0/41	-91.8		0.13(1)		E- H	-1036 / 0	0.81(1)
L-B	-279 / 0			0.03(1)				
H-F	-279 / 0	0.0	0.0	0.03 (1)	7.81			
	0.000							
L-K	0 / 686	-18.5		0.20 (4)				
K-J	0 / 494	-18.5		0.19 (4)				
J-1	0 / 494			0.19 (4)	10.00			
I- H	0 / 686	-18.5	-18.5	0.20 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL =
DL =
LL =
DL =
AD = 25.6 6.0 0.0 7.4 TOP CH. BOT CH. TOTAL LOAD 39.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= U360 (0.59")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.05")

CSI: TC=0.29/1.00 (E-F:1) , BC=0.20/1.00 (K-L:4) , WB=0.81/1.00 (C-L:1) , SSI=0.15/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.80 (H) (INPUT = 0.90) JSI METAL= 0.25 (E) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO 410045 T75A TRUSS DESC Tamarack Roof Truss, Burlington 8-10-0 10.00 12 4x6 // 2x4 II 4x6 || 3x6 = 4x6 I 4x4 = 1-3-8 17-0-8 0.0 11-8-8 17-6-0 17-8-0 2-0 5-11-8 5-9-8

LUMBER
N. L. G. A. RULES
CHORDS SIZE
A - D 2x4
D - F 2x4
K - B 2x4
K - I 2x4 LUMBER DESCR No.2 No.2 No.2 No.2 DRY DRY DRY DRY G Nn 2 ALL WEBS DRY DRY No.2

DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20
 LEN Y TMV+p TMWW-t 3.0 MT20 TTWW+p Edge TMWW-t TMW+w BMWW1-t 4.0 4.0 BMWW+t MT20 MT20 MT20 MT20 MT20 6.0 BMVW1-t 4.0 4.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEARINGS
FACTORED
GROSS REACTION
JT VERT HORZ MAXIMUM FACTORED REORD GROSS REACTION DOWN HORZ U 1084 0 0 965 0 0 BRG IN-SX 0 MECHANICAL.

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 3-8.

WIND DEAD 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT. OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX.	FACTORED	FACTO					BS MAX. FACTO	RED
MEMB.	FORCE	VERT. LO			MAX.	MEMB		MAX
-D -C	(LBS)	(PL		CSI (LC)			(LBS)	CSI (LC)
FR-TO		FROM			LENGTH	FR-TO		
A-B	0 / 41	-91.8	-91.8	0.13(1)	10.00	D- H	0/319	0.07(1)
B-Ç	0/31	-91.8	-91.8	0.29 (1)	10.00	H-E	-199 / 0	0.09(1)
C- D	-804 / 0	-91.8	-91.8	0.23(1)	6.25	J- D	0 / 375	0.08 (1)
D-E	-780 / 0	-91.8		0.22 (1)		C- J	-249 / 0	0.12(1)
E-F	0 / 42	-91.8		0.28 (1)	10.00		-1013 / 0	0.79 (1)
K-B	-279 / 0	0.0		0.03(1)	7.81		-135 / 0	0.01 (1)
				,			-1019/0	0.76 (1)
K-J	0 / 671	-18.5	-18.5	0.20 (4)	10.00		10.5.0	0.70(1)
J-i	0 / 476	-18.5		0.19 (4)	10.00			
I- H	0 / 476	-18.5		0.19 (4)	10.00			
H- G	0 / 638	-18.5		0.18 (4)	10.00			

TOTAL WEIGHT = 3 X 84 = 252 lb [M][F DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 6.0 BOT CH. TOTAL LOAD 39.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.58")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.58")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.29/1.00 (B-C:1) , BC=0.20/1.00 (J-K:4) , WB=0.79/1.00 (C-K:1) , SSI=0. $\tilde{1}$ 5/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (E) (INPUT = 0.90) JSI METAL= 0.25 (C) (INPUT = 1.00)

TRUSS NAME QUANTITY PLY JOB DESC. GREEN PARK HOMES DRWG NO T75S TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MTek industries, Inc. Thu Jul 30 12:40:29 2020 Page 1 ID:W63xGm6okc00SiyZ4EwBx6zA2m0-BR6Y26WWWzm?l6Jvd05H9OkznCddNR10_1q9NQysuA0 15:8-8 17:4-8 17:8-0 18:11-8 18:40 38 15:8-8 15:8-8 16:8 -1-3-8 0-0 __1-3-8_, 4-6-4 4x6 : ם 10.00 12 4x4 // 4x4 ∃ E 4x6]] WA WZ M 5x8 = 2x4 3x4 II 5.8 0.0 4-6-4 8-10-0 9-4-8 .6-8, 15-8-8 17-8-0 4-3-12 6-4-0 1-11-8 17-8-0

LUMBER				
N. L. G. A. F	RULES			1
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
O - B	2x4	DRY	No.2	SPF
H - F	2x4	DRY	No.2	SPF
0 - L	2x4	DRY	No.2	SPF
K - J	2x4	DRY	No.2	SPF
1 - E	2x4	DRY	No.2	SPF
1 - H	2x4	DRY	No.2	SPF
				!
	2x3	DRY	No.2	SPF
EXCEPT				
J - H	2x4	DRY	No.2	SPF
M - D	2x4	DRY	No.2	SPF
N - K	2x4	DRY	No.2	SPF
	CHORDS A - D D - G O - B H - F O - L K - J I - E I - H ALL WEBS EXCEPT J - H M - D	N. L. G. A. RULES CHORDS SIZE A - D 2x4 D - G 2x4 O - B 2x4 O - L 2x4 I - E 2x4 I - E 2x4 I - E 2x4 ALL WEBS 2x3 EXCEPT J - H 2x4 M - D 2x4	N. L. G. A. RULES CHORDS SIZE A - D	N. L. G. A. RULES CHORDS SIZE

DRY: SEASONED LUMBER.

JOB NAME

410045

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 C
 TMWW-t
 MT20
 LEN 6.0 4.0 6.0 4.0 4.0 4.0 W 4.0 4.0 TYPE TMVW+p TMWW-! TTW+p TMVW+p TMVW+p BMVW1-t Y X Edge 2.00 1.25 WI.50 4.0 4.0 5.0 4.0 3.0 6.0 2.0 5.0 Edge 1.00 2.00 MT20 MT20 MT20 MT20 MT20 BMV+p BVMWW-I 9.0 4.00 6.00 12.0 Edge 4.50 4.0 MT20 BWMWWW*-I BMW+w BMWWW-t MT20 MT20 MT20 MT20 K M N O BMV1+p MT20 3.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

	RINGS	JILI				
JT O H	FACTOR GROSS RE VERT 1102 1112		MAXIMUN GROSS F DOWN 1102 1112		INPUT BRG IN-SX 5-8 5-8	REQRD BRG IN-SX 5-8 5-8

UNFACTORED REACTIONS
1ST LCASE MAX COMBINED DEAD SOIL 0/0 0/0 257 / 0 526 / 0 0/0 0/0 258 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O, H

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.97 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT OR RIGID CEILING DIRECTLY APPLIED.

MAX. UNBRACED INTERIOR CHORD LENGTH = 10.00 FT

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS				WEBS					
MAX. FACTORED		FACTORED		MAX. FACTORED					
MEMB.	FORCE	VERT. LO	AD LC:	MAX	MAX.	MEMB.		MAX	
	(LBS)				UNBRAC		(LBS)		
FR-TO		FROM			LENGTH			301 (20)	
A-B	0 / 41	-91.8	-91.8	0.13(1)	10.00	N- C	-265 / 0	0.12(1)	
B-C	-869 / 0	-91.8		0.24 (1)		K-E	-604 / 0	0.61 (1)	
C- D	765 / 0	- 9 1.8			6.25		0 / 722	0.16 (1)	
	-768 / 0	-91.8			5.98		-38 / 0	0.00(1)	
E-F	-1345 / 0	-91.8		0.47 (1)			0 / 1130	0.25(1)	
F- G	0 / 41	-91.8	-91.8	0.13 (1)	10.00	M-K	0 / 47	0.02(1)	
O- B	-1070 / 0	0.0	0.0	0.11 (1)	7.62	K- D		0.10(1)	
H- F	-1075 / 0	0.0	0.0	0.11 (1)	7.61	N-K	0 / 709	0.11(1)	
						C-K	-190 / 0	0.11(1)	
O- N	0/0	-18.5	-18.5	0.10 (4)	10.00			3(1)	
N- M	0/9	-18.5	-18.5	0.10 (4)	10.00				
M- L	0/0	-18.5	-18.5	0.01 (4)	10.00				
K-J	0 / 1146	-18.5	-18.5	0.36 (4)	10.00				
l- J	0/19	0.0	0.0	0.05(1)	10.00				
J- E	-31 / 56	0.0	0.0	0.04 (4)	7.81				
l- H	0 / 32	-18.5	-18.5	0.02 (4)	10.00				

SPECIFIED LOADS: LUAUS.

LL =

DL =

LL =

DL =

AD = TOP CH. 6.0 0.0 7.4 PSF PSF BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 92 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.59")
CALCULATED VERT. DEFL.(LL) = L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.59")
CALCULATED VERT. DEFL.(TL) = L/999 (0.15")

CSI: TC=0.57/1.00 (D-E:1) , BC=0.36/1.00 (J-K:4) , WB=0.61/1.00 (E-K:1) , SSI=0.23/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE LEFT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (F) (INPUT = 0.90) JSI METAL= 0.49 (F) (INPUT = 1.00)

TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO. T76S TRUSS DESC Tamarack Roof Truss, Burlington Version 8:330 S May 6:2020 MTek Industries, Inc. Thu Jul 30:12:40:30:2020 Page 1
ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-fdgwFSX8HHusNGu6A6cWibGFSc1p60AADhZivtysuA?
3-2-0
3-2-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0
1-8-0 5-1-8 1-11-8 4x6 II Scale = 1:33.5 10.00 12 4x4 | 5x12 = 5y12 4x9 == 3x4 II 15.8 1-3-8 5.8 0-0 5-1-8 8-3-8 10-3-0 1-11-8 3-2-0 3-2-0 1-11-8 10-3-0

	LUMBER				
	N. L. G. A. F	RULES			
	CHORDS	SIZE		LUMBER	DESCR.
	A - D	2x4	DRY	No.2	SPF
	D - G	2x4	DRY	No.2	SPF
	N - B	2x4	DRY	No.2	SPF
	H - F	2x4	DRY	No.2	SPF
ı	N - M	2x4	DRY	No.2	SPF
	M - C	2x4	DRY	No.2	SPF
	Ł-J	2x4	DRY	No.2	SPF
	1 - E	2x4	DRY	No.2	SPF
	1 - H	`2x4	DRY	No.2	SPF
i					
	ALL WEBS	2x3	DRY	No.2	SPF
	EXCEPT				
	N - L	2x4	DRY	No.2	SPF
	J - H	2x4	DRY	No.2	SPF

DRY: SEASONED LUMBER.

JOB NAME

410045

PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	X			
В,	C, E, F								
В	TMVW+p	MT20	4.0	4.0	1.00	2.00			
۵	TTW+p	MT20	4.0	6.0	Edge				
Н	BMVW1-t	MT20	4.0	4.0	-				
1	BMV+p	MT20	3.0	4.0					
J	BVMWW-I	MT20	5.0	12.0	3.50	7.50			
K	BMWWW-t	MT20	4.0	9.0					
L	BVMWW-I	MT20	5.0	12.0	3.50	7.50			
M	BMV+p	MT20	3.0	4.0					
N	BMVW1-t	MT20	4.0	4.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUP BUILDING DESIGN BEARINGS	PORTS AND LO	ADINGS SPECIFI	ED BY FABRIC	CATOR TO BE	VERIFIED BY
FACTORE GROSS REA JT VERT		UM FACTORED S REACTION HORZ UPL	BRG	REQRD BRG IN-SX	•

5-8 5-8

 UNFACTORED REACTIONS

 1ST LCASE
 MAX./MIN. COMPONENT REACTIONS

 JT
 COMBINED
 SNOW
 LIVE
 PERM.LIVE
 WIND
 333 / 0 0/0

0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) N, H

333 / 0

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

DEAD

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

487

CHORDS			WEBS					
	K. FACTORED	FACTOR	RED			_	MAX. FACTO	RED
MEMB.		VERT. LO		MAX	MAX.	MEMB.		MAX
	(LBS)	(PL	.F) :	CSI (LC)	UNBRAC		(LBS)	
FR-TO		FROM			LENGTH	FR-TO	, ,	
A-B	0 / 41			0.13(1)		K-D	0 / 240	0.05(1)
B-C	-626 / 0			0.10(1)		K-E	-209 / 0	0.05 (1)
C-D	-406 / 0		-91.8	0.12(1)	6.25	C-K	-209 / 0	0.05(1)
D-E	-406 / 0	-91.8		0.12(1)		N-L	-18 / 0	0.00(1)
E-F	-626 / 0	-91.8		0.10(1)		B-L	0 / 478	0.11(1)
F-G	0 / 41	-91.8		0.13(1)		J- Hi	-18 / 0	0.00(1)
N-B	-666 / 0	0.0	0.0	0.07(1)	7.81	J- F	0 / 478	0.11(1)
H-F	-666 / 0	0:0	0.0	0.07(1)	7.81			
N-M	0 / 15			0.02 (4)				
M- L	0/19	0.0		0.03(1)				
L-C	0/31	0.0	0.0	0.02 (1)				
L-K	0 / 486			0.11 (1)				
K-J	0 / 486	-18.5		0.11 (1)				
I-J	0/19		0.0	0.03(1)				
J-E	0/31			0.02 (1)				
I-H	0/15	-18.5	-18.5	0.02 (4)	10.00			
1								

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 6.0 0.0 7.4 39.0 PSF PSF PSF BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
-PART 9 OF BCBC 2018, ABC 2019
-PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

DESIGN ASSUMPTIONS OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.34")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.34")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.13/1.00 (A-B:1) , BC=0.11/1.00 (J-K:1) , WB=0.11/1.00 (F-J:1) , SSI=0.10/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.69 (B) (INPUT = 0.90) JSI METAL= 0.19 (B) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. **GREEN PARK HOMES** DRWG NO 410045 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Jul 30 12:40:30 2020 Page T ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-fdgwFSX8HHusNGu6A6cWibGEmc_46yBADhZivtysuA? 10-1-12 13-8-0 4x6 II c 10.00 12 n 3x4 i! E 0.0 6-10-0 13-8-0 6-10-0 6-10-0 13-8-0 TOTAL WEIGHT = 2 X 62 = 123 li

LUMBER
N. L. G. A. RULES
CHORDS SIZE
A · C 2x4
C · E 2x4
H · A 2x4
F · E 2x4
H · F 2x4 LUMBER DESCR SPF DRY DRY DRY DRY DRY No.2 No 2 No.2 SPE ALL WEBS 2x3 DRY No.2 EXCEPT

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES W 3.0 4.0 4.0 4.0 LEN Y 4.0 4.0 6.0 TMV+p TMWW-TTW+p TMWW-t MT20 Edge MT20 TMV+p BMVW1-t BMWWW-t BMVW1-t MT20 MT20 MT20 3.0 4.0 4.0 4.0 4.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

	.DING DESI <u>RINGS</u>	IGNER					
	FACTO GROSS F	RED	MAXIMU	M FACTO		INPUT BBG	REQRD BBG
JŤ H	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
F	753 753	0	753 753	0	0	MECHAN 3-8	JICAL 3-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 1.8.

UNFACTORED REACTIONS

1ST LCASE MAX./MIN. COMPONENT REACTIONS

_			THE COLUMN C	TATE OF THE PARTY OF	<u> </u>		
JΤ	COMBINED		LIVE	PERM.LIVE	WIND	DEAD	SOIL
Н	533	⁻ 350 / 0	0/0	0/0	0/0	183 / 0	0/0
F	533	350 / 0	0/0	0/0	0/0	183 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS MAX. FACTORED WEBS FACTORED MAX. FACTORED FORCE MA FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH
91.8 91.8 0.17 (1) 10.00
91.8 91.8 0.13 (1) 6.25
91.8 91.8 0.13 (1) 6.25
91.8 91.8 0.17 (1) 10.00
0.0 0.0 (.01 (1) 7.81 MEMB. FORCE MAX CSI (LC) (LBS) (LBS) FR-TO LENGTH FR-TO A-B B-C C-D D-E H-A F-E GG B B F D 0.09 (1) 0.07 (1) 0.07 (1) 0 / 380 0/23 -511/0 -511/0 0/23 -119/0 -119/0 -144/0 -144/0 -748/0 0.36 (1) 0.0 0.01 (1) 748/0 0.0 H- G G- F 0 / 465 -18.5 -18.5 0.28 (4) -18.5 -18.5 0.28 (4)

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 6.0 0.0 7.4 PSE BOT CH. LL DL TOTAL LOAD 39.0

SPACING = 24.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.46")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL) = L/360 (0.46")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.17/1.00 (D-E:1) , BC=0.28/1.00 (G-H:4) , WB=0.36/1.00 (D-F:1) , SSI=0.12/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.83 (B) (INPUT = 0.90) JSI METAL= 0.25 (D) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTIT JOB DESC. GREEN PARK HOMES DRWG NO. 410045 T77S TRUSS DESC Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Jul 30 12:40:31 2020 Page 1
ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-7qEiToXn2a0j_QTlkp7lFppNV0LVrR5JSLJFRJysuA
5.0-8 1:11-8 14-0-13-8 15-3-8
Scales 1:43-8 Tamarack Roof Truss, Burlington -1-3-8 1-3-8 7-0-0 10.00 12 4x6 [] 4x6 II 4x9 = 3x4 1-3-8 1-3-8 0-0 7-0-0 12-0-8 1-11-8 5-0-8 5-0-8 1-11-8 14-0-0

LUMBER
N. L. G. A. RULES
CHORDS SIZE
A · D 2x4
D · G 2x4
N · B 2x4
H · F 2x4
M · C 2x4
L · L · 2x4 DESCR SPF SPF LUMBER DRY DRY DRY DRY No.2 - M - C - J No 2 DRY DRY DRY No.2 SPF No.2 ALL WEBS EXCEPT N - L J - H DRY 2x3 SPF DRY No.2

DRY: SEASONED LUMBER

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 C
 TMVW+p
 ATTCC
 LEN 4.0 4.0 4.0 4.0 6.0 4.0 6.0 4.0 6.0 Edge 1.00 2.00 Edge 1.00 2.00 TMVW+p TTW+p TMVW+p MT20 MT20 TMVW+p BMVW1-t MT20 4.0 4.0 4.0 12.0 4.00 7.50 9.0 12.0 4.00 7.50 4.0 MT20 BMV+p BVMWW-I BMWWW-I MT20 MT20 3.0 6.0 MT20 4.0 6.0 MT20 BMV+p BMVW1-t MT20 3.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER MAXIMUM FACTORED REORD

GROSS REACTION VERT HORZ 899 0 899 0 GROSS REACTION BRG
DOWN HORZ UPLIFT IN-SX
899 0 0 5-8
899 0 0 5-8 BRG IN-SX 5-8 5-8

UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW

MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE DEAD CIADA 429 / 0 0/0 0/0 429 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) N. H.

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 8.05 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT. OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI(LC) UNBRAC
FROM TO LENGTH MAX. FACTORED MAX. FACTORED FORCE (LBS) MEMB. MEMB. FORCE (LBS) FR-TO LENGTH FR-TO 10.00 K-D -91.8 -91.8 -91.8 -91.8 -91.8 0.13 (1) -91.8 0.23 (1) -91.8 0.30 (1) -91.8 0.30 (1) 0 / 331 -377 / 0 -377 / 0 -27 / 0 0 / 780 K-K-C-N-B-J-A-B-C-D-E-G-B-F-R-H-0 / 41 0.07 (1) -967 / 0 -593 / 0 0.19 (1) 0.19 (1) 0.19 (1) 0.00 (1) 6.05 6.25 6.25 6.05 10.00 -593 / 0 -91.8 -91.8 -91.8 0.0 91.8 0.23 (1) 91.8 0.23 (1) 91.8 0.13 (1) 0.0 0.09 (1) 0.0 0.09 (1) -967 / 0 0.18(1)-27 / 0 0 / 780 0.00 (1) N- M M- L 0.02 (4) 0.04 (1) 0.03 (1) 0.21 (1) 10.00 10.00 7.81 0/23-18.5 -18.5 0.0 0.0 -18.5 0.0 -21 / 35 0 / 791 0 / 791 -18.5 10.00 -18.5 0.0 0.0 0.21 (1) 0.04 (1) 0.03 (1) 10.00 10.00 7.81 -18.5 0.0 0.0 -18.5 0/19 J- ⊑

-18.5 0.02 (4)

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = .OADS: LL = LL = DL = DL = 25.6 6.0 0.0 DL LL DL TOTAL LOAD 39.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 69 I

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSLIMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.47")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.47")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04")

CSI: TC=0.30/1.00 (D-E:1) , BC=0.21/1.00 (J-K:1) , WB=0.19/1.00 (E-K:1) , SSI=0.17/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

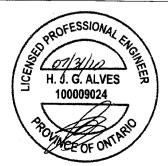

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.82 (F) (INPUT = 0.90) JSI METAL= 0.46 (F) (INPUT = 1.00)

TRUSS NAME QUANTIT JOB DESC. GREEN PARK HOMES DRWG NO. T77SA TRUSS DESC Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Jul 30 12:40:32 2020 Page 1 ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-b00gg8YPpu8aca2UIXe_n0MYPQgkauKSg?2pylysu9z 6-10-0 1-9-8 10.00 12 G 3x4 II 13-4-8 1-9-8 6-10-0 5-0-8 13-8-0

	LUMBER				
	N. L. G. A. F	RULES			
	CHORDS	SIZE		LUMBER	DESCR.
	A - C	2x4	DRY	No.2	SPF
	C - E	2x4	DRY	No.2	SPF
	L - A	2x4	DRY	No.2	SPF
	F - E	2x4	DRY	No.2	SPF
	L - K	2x4	DRY	No.2	SPF
	K - B	2x4	DRY	No.2	SPF
	J - H	2x4	DRY	No.2	SPF
	G - D	2x4	DRY	No.2	SPF
į	G - F	2x4	DRY	No.2	SPF
İ					0
	ALL WEBS	2x3	DRY	No.2	SPF
ı	EXCEPT	-//-			311
ĺ	L - J	2x4	DRY	No.2	SPF
	Ĥ - F	2x4	DRY	No.2	SPF
i		444	Ditti	INU.Z	357
	DRV: SEASO	וו משוער	MEED		

JOB NAME

410045

Tamarack Roof Truss, Burlington

PLATES (table is in inches)										
	ĴΤ	TYPE	PLATES	W	LEN	Υ	X			
	Α, Ι	B, D, E								
	Α	TMVW+p	MT20	4.0	4.0	1.00	2.00			
	С	TTW+p	MT20	4.0	6.0	Edge				
	F	BMVW1-t	MT20	4.0	4.0	•				
	G	BMV+p	MT20	3.0	4.0					
	Н	BVMWW-I	MT20	5.0	12.0	3.75	7.50			
	1	BMWWW-t	MT20	4.0	9.0					
	J	BVMWW-I	MT20	5.0	12.0	3.75	7.50			
	K	BMV+p	MT20	3.0	4.0					
	1	1244//A/+ +	MAT'OO	4.0	4.0					

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

	DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER									
BEA	RINGS									
JT L F	FACTO GROSS R VERT 753 753		MAXIMUN GROSS I DOWN 753 753			INPUT BRG IN-SX MECHANIC 3-8	REGRD BRG IN-SX AL 3-8			

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT L. MINIMUM BEARING LENGTH AT JOINT L = 1-8.

UNF	UNFACTORED REACTIONS										
	1ST LCASE		MIN. COMPO	NENT REACTION	NS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
L	533	350 / 0	0/0	0/0	0/0	183 / 0	0/0				
F	533	350 / 0	0/0	0/0	0/0	183 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.14 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 7.81 FT. OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1	
LOADING	AD CASES: (4)
LUADING	
I TOTAL LO	AR CACEC, W

CHO	ORDS				WEBS			
MAX.	FACTORED	FACTORED			MAX. FACTORED			
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.		MAX
	(LBS)	(PL		CSI (LC)			(LBS)	CSI (LC)
FR-TO		FROM		. ,				001 (20)
A-B	-919 / 0	-91.8	-91.8	0.24(1)	6.14	I- C	0 / 326	0.07(1)
B-C	-586 / 0			0.29(1)		I- D	-379 / 0	0.19(1)
C- D	-586 / 0			0.29(1)		8-1	-379 / 0	0.19(1)
D-E	-919 / 0	-91.8		0.24 (1)			-25 / 0	0.00(1)
L-A	-724 / 0	0.0	0.0	0.08(1)	7.81		0 / 786	0.18 (1)
F-E	-724 / 0	0.0	0.0	0.08(1)	7.81		-25/0	0.00(1)
						H- E	0 / 786	0.18(1)
L- K	0 / 21	-18.5	-18.5	0.02(4)	10.00			
K-J	0/17	0.0	0.0	0.03(1)	10.00			
J-B	-82 / 16	0.0	0.0	0.02(1)	7.81			
1 -ل	0 / 787	-18.5	-18.5	0.21 (1)	10.00			
I- H	0 / 787	-18.5	-18.5	0.21 (1)	10.00			
G-H	0/17	0.0	0.0	0.03(1)	10.00			
H- D	-82 / 16	0.0		0.02(1)				
G-F	0 / 21	-18.5	-18.5	0.02 (4)	10.00			

			_						
SPECIFIED LOADS:									
TOP	CH.	LL	=	25.6	PS				
		DL		6.0	PS				
BOT	CH.	LŁ	=	0.0	PS				
		DL		7.4	PS				
TOTA	L LO	AD	=	39.0	PS				

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 64 II

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.46")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL) = L/360 (0.46")
CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSi; TC=0.29/1.00 (C-D:1) , BC=0.21/1.00 (H-I:1) , WB=0.19/1.00 (D-I:1) , SSI=0.17/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

 $\begin{array}{c|ccccc} \text{NAIL VALUES} & & & & & & & & \\ \text{PLATE} & & \text{GRIP}(DRY) & & & & & & & \\ & & \text{(PLI)} & & & \text{(PLI)} & & & \\ & & \text{(PLI)} & & & \text{MAX MIN} \\ \text{MT20} & & & \text{650} & & 371 & & 147 & & 788 & & 1987 & 1873 \\ \end{array}$

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (A) (INPUT = 0.90) JSI METAL= 0.24 (A) (INPUT = 1.00)

JOB NAME TRUSS NAME GREEN PARK HOMES QUANTITY PLY JOB DESC. DRIVIGNO 410045 TRUSS DESC T79 Tamarack Roof Truss, Burlington

Version 8.330 S May 6 2020 MiTek Industries, Inc. Thu Jul 30 12:40:33 2020 Page 1 ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-4CM3uUZ1aCGREjdhsEADKEunjq0YJM?cvfoMVCysu9y 5:10-8

3x4 || 6.00 12 4x4 = 1.2.0 Bt н 5x6 = D 5-5-0 5-8 0-0 2-10-12 2-11-4 0-8 4-10-12 5-10-8 10-12 2-0-0 11-12

LUMBER N. L. G. A. RULES CHORDS SIZE F - A 2x6 LUMBER DESCR. SPF SPF No.2 No.2 No.2 No.2 DRY DRY DRY DRY SPF 2x6 No.2 ALL WERS 243 nev DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE SPACING (IN)	LOAD(PLF)
TOP CH	ORDS : (0.1	22"X3") SPIRAL NAILS	
F-A	2	12	TOP
A- C	1	12	TOP
C-D	1	12	TOP
BOTTO	M CHORDS:	(0.122"X3") SPIRAL NAILS	
F-D	2	12	SIDE(183.1)
WEBS:	(0.122"X3")	SPIRAL NAILS	
B- E	1	6	SIDE(8.6)
243	1	6	(0.07

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE ON DATE: TOTAL SIDE OR ON THE TOP.

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	X					
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00					
В	TMWW-t	MT20	4.0	4.0	2.00	1.25					
С	TMV+p	MT20	3.0	4.0							
D	BMVW1+p	MT20	4.0	6.0							
Ε	BMWW-t	MT20	5.0	6.0							

Structural component only DWG# T-2017037 //2

BUIL	NSIONS, SU DING DESIG	PPORTS	AND LOAD	INGS SP	ECIFIED	3Y FABRICA	ITOR TO BE VERIFIED BY
JT F D	FACTOR GROSS RE VERT 1437 1416		MAXIMUI GROSS I DOWN 1437 1416			INPUT BRG IN-SX 5-8 MECHANIO	REQRD BRG IN-SX 5-8 CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

WIND DEAD SOIL 0/0 334 / 0 329 / 0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

ERACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

_										
	HORDS						WE	BS		
M.	AX. FACTO	RED	FACTO	RED				MAX. FACT	OBED	
MEME	FO	RCE	VERT. LO	AD LC1	MAX	MAX.	MEMB			
	(LE		(PL		CSI (LC)			(LBS)		
FR-TO		,	FROM		901 (20)		H FR-TO		CSI	(LU)
F- A	-957 / 0				0.00 /41					
			0.0		0.03(1)					
A-B	-1229 / 0		-91.8		0.06(1)		E-B		0.13	(1)
B-C	-11 / 0		-91.8	-91.8	0.05(1)	6.25	B- D	-1395 / 0	0.17	(1)
D- C	-110 / 0	l.	0.0	0.0	0.01(1)	7.81				' '
F- G	0/0		-18.5	-185	0.16(1)	10.00				
G-E	0/0				0.16 (1)					
Ē-H		109								
H- D					0.23 (1)					
m- U	0 / 1	109	-18.5	-18.5	0.23 (1)	10.00				
	ORED CON		RATED LO	ADS (L	BS)					
JT	LOC.	LC1	MAX-	MAX-	+ F.	ACE	DIR.	TYPE	HEEL	CONN
E	2-10-12	-735	-735		- FR	V TNC	ERT	TOTAL		C1
		-736	-736				ERT	TOTAL		
H	4-10-12	-735	-735	~-			ERT	TOTAL		C1
• •	7 10 12	-, 33	-/30	~**		DINI A	EL!	LOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = DL = LL = DL = AD = 25.6 6.0 0.0 7.4 PSF PSF PSF PSF BOT CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 29 = 58 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BOBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.23/1.00 (D-E:1) , WB=0.17/1.00 (B-D:1) , SSI=0.16/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS=1.00

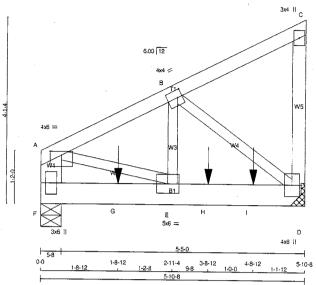
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.55 (B) (INPUT = 0.90) JSI METAL= 0.25 (D) (INPUT = 1.00)

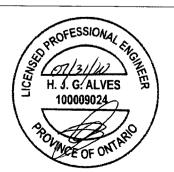
CONTINUED ON PAGE 2

### 10045 T79 1 2 TRUSS DESC. Tamarack Roof Truss, Burlington TRUSS DESC. Version 8.330 S May 6 2020 MiTek Industries, Inc. ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-4CM3uUZ1aCGREjdhsEA PLATES (table is in inches)	c. Thu Jul 30 12:40:33 2020 Page 2 DKEunig0YJM?cvfoMVCysu9 ₎
PLATES (table is in inches) JT TYPE PLATES W LEN Y X F BMV1+p MT20 3.0 6.0	a. Thu Juli 30 12:40:33 2020 Page 2 DKEuniq0YJM?evfoMVCysu9)
	·
	·
·	
ROFESSIONA	,
	·
(3 (01/31/12) E)	
PROFESSIONAL ENGLISH CONTROL OF THE PROPERTY O	
100009024	
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	
POWNCE OF ONT AND	
TOE OF US	
Structural component only DWG# T-2017037 202	

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK HOMES	DRWG NO.	
410045	T79Z	1	2	TRUSS DESC.			,

Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Jul 30 12:40:34 2020 Page 1 ID:W63xGm6okcOOSiyZ4Ew8k6zA2m0-YPwR5pafLVOIrtCtPxhSsRRxNDJn2otl8JXv1eysu9x 0-0

LUMBER
N. L. G. A. RULES
CHORDS SIZE
F - A 2x6 LUMBER DRY - A - C 2x6 2x4 No.2 No.2 SPF SPF DRY - Ď ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF


DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFACE SPACING (LOAD(PLF)					
TOP CH	HORDS : (0	.122"X3") SPIR						
F- A	2	12	TOP					
A- C	1	12	TOP					
C-D	1	12	TOP					
BOTTO	BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS							
F-D	2	12	TOP					
WEBS: (0.122"X3") SPIRAL NAILS								
2x3	1	6						

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

PLATES (table is in inches)								
JT	TYPE	PLATES	W	LEN	Υ	X		
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00		
В	TMWW-t	MT20	4.0	4.0	2.00	1.25		
С	TMV+p	MT20	3.0	4.0				
D	BMVW1+p	MT20	4.0	6.0				
Ε	BMWW-t	MT20	5.0	6.0				
F	BMV1+p	MT20	3.0	6.0				

Structural component only DWG# T-2017038

DIMENSIONS, SUPPORTS BUILDING DESIGNER BEARINGS	AND LOADINGS SPECIFIED	BY FABRI	CATOR TO BE \	ÆRIFIED B
FACTORED GROSS REACTION	MAXIMUM FACTORED	INPUT	REQRD	

	FACTO GROSS R		MAXIMUI GROSS			INPUT BBG	REQRD BBG
T	VERT	HORZ	DOWN		UPLIFT		IN-SX
-	1672	0	1672	0	0	5-8	5-8
)	2171	0	2171	0 .	0	MECHAN	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	(S		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	1178	802/0	0/0	0/0	0/0	375 / 0	0/0
D	1528	1043 / 0	0/0	0.70	0.70	40E (0	0.0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTO	RED			W E	BS MAX. FACTO	NRED.
MEMB.	FORCE	VERT. LC	AD LC	MAX	MAX.	MEMB		MAX
	(LBS)			CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
F- A	-1411/0	0.0	0.0	0.05 (1)	7.81	A-E	0 / 1755	0.22(1)
A-B	-1889 / 0		-91.8	0.07 (1)	6.25	E-B	0 / 1835	0.23 (1)
B-C	-9/0					B-D	-2136 / 0	0.25 (1)
D-C	-115/0	0.0	0.0	0.01 (1)	7.81			
F-G G-E	0/0 0/0	-18.5		0.22 (1)	10.00			
E-H	0 / 1697			0.22 (1) 0.43 (1)				
H-I	0 / 1697			0.43 (1)	10.00 10.00			
I- D	0 / 1697			0.43 (1)				
	3. 1007	.0.5	.0.5	0.43 (1)	10.00			
FACTORED CONCENTRATED LOADS (LBS)								

FACT	ACTORED CONCENTRATED LOADS (LBS)								
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
G	1-8-12	-1065	-1065		TOP	VERT	TOTAL		C1
Н	3-8-12	-1065	-1065		TOP	VERT	TOTAL		Č1
ì	4-8-12	-1065	-1065	***	TOP	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

			_					
SPECIFIED LOADS:								
TOP	CH.	LL	=	25.6	PS			
		DL		6.0	PSI			
BOT	CH.	LL	=	0.0	P\$I			
		DL		7.4	PS			
TOTA	L LO	AD	=	39.0	PS			

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 2 X 29 = 58 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03")

CSI: TC=0.07/1.00 (A-B:1) , BC=0.43/1.00 (D-E:1) , WB=0.25/1.00 (B-D:1) , SSI=0.47/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (B) (INPUT = 0.90) JSI METAL= 0.38 (D) (INPUT = 1.00)

JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO 410045 G99 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MTek Industries, Inc. Thu Jul 30 12:40:18 2020 Page 1 ID:W63xGm6okcO0SiyZ4EwBx6zA2m0-0KyOkLNd6bNZwQ_oTaOhD3rriCbnyLla1 PSqf3UZysuAB 18-9-8 -1-3-8 0-0 1-3-8 600 12 3x6 = U т 5 Q 3x4 II 3x4 [] 1-3-8 18-6-8 0-0 18-6-8 18-6-8 TOTAL WEIGHT = 4 X 94 = 374 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER DESIGN CRITERIA

	LUMBER				
	N. L. G. A. F	ULES			
	CHORDS	SIZE		LUMBER	DESCR.
	W - B	2x4	DRY	No.2	SPF I
	A - I	2x4	DRY	No.2	SPF
	1 - L	2x4	DRY	No.2	SPF
	M - L	2x4	DRY	No.2	SPF !
	W - O	2x4	DRY	No.2	SPF
	O - M	2x4	DRY	No.2	SPF
	ALL WEBS	2x3	DRY	No.2	005
į	ALL GABLE		DHY	NO.2	SPF
i	ALL GADEL	2x3	DRY	No.2	SPF
	DRY: SEASO			140.2	355
ı					

GABLE STUDS SPACED AT 2-0-0 OC.

1										
PLATES (table is in inches)										
JΤ	TYPE	PLATES	W	LEN	Y					
В	TMV+p	MT20	3.0	4.0						
C,	D, E, F, G, H	, J, K								
С	TMW+w	MT20	2.0	4.0						
1	TS-t	MT20	3.0	6.0						
L	TMV+p	MT20	3.0	4.0						
M	BMV1+p	MT20	3.0	4.0						
N,	P, Q, R, S, T	. U, V								
N	BMW1+w	MT20	2.0	4.0						
0	BS-t	MT20	3.0	6.0						
W	BMV1+p	MT20	3.0	4.0						

BEARINGS

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF L-M, K-N, J-P.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

		DRDS FACTORED	FACTO	RED			W E	BS MAX. FACTO	DEN.
	MEMB.	FORCE	VERT. LO	AD LC	MAX	MAX.	MEMB.	FORCE	MAX
		(LBS)			CSI (LC)			(LBS)	CSI (LC)
	FR-TO		FROM			LENGTH		(,	001 (20)
	W-B	-255 / 0	0.0	0.0	0.01(1)	7.81	N- K	-198/0	0.12(1)
	A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	P. J	-182 / 0	0.08 (1)
	B-C	-28 / 0	-91.8	-91.8	0.07 (1)	6.25	Q-H	-183 / 0	0.18(1)
	C-D	-21 / 0	-91.8		0.05(1)		R- G	-183 / 0	0.12(1)
	D- E	-14 / 0	-91.8		0.04(1)	6.25	S-F	-182 / 0	0.08(1)
	E-F	-12/0	-91.8		0.04 (1)	6.25	T-E	-183 / 0	0.05(1)
	F-G	-9/0	-91.8	-91.8	0.04 (1)	10.00	U-D	-176 / 0	0.04 (1)
	G-H	-7/0	-91.8	-91.8	0.04(1)	10.00	V-C	-201 / 0	0.03(1)
- 1	H- I	-5/0	-91.8	-91.8	0.04 (1)	10.00			
Į	I- J	-5/0	-91.8	-91.8	0.04 (1)	10.00			
1	J- K	-3/0	-91.8	-91.8	0.04 (1)	10.00			
	K-L	-7 / 0	-91.8		0.04(1)	10.00			
	M- L	-83 / 0	0.0	0.0	0.01(1)	6.25			
	144 14		_						
Į	W-V	0 / 23	-18.5		0.02 (4)	10.00			
Į	V- U U- T	0 / 17	-18.5		0.02 (4)	10.00			
Ì	T-S	0 / 13	-18.5		0.02 (4)	10.00			
١	S-R	0 / 10	-18.5		0.02 (4)	10.00			
١	S-R R-Q	0/8	-18.5	-18.5	0.01 (4)	10.00			-
١	Q-P	0/6 0/4	-18.5		0.01 (4)	10.00			
4	P-0	0/4	-18.5		0.01 (4)	10.00			
i	O- N	0/3	-18.5		0.02 (4)	10.00			
١	N-M		-18.5	-18.5	0.02 (4)	10.00			
١	14-101	0/1	-18.5	-18.5	0.02 (4)	10.00			

			_		
SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	==	25.6	PS
			=	6.0	PS
BOT	CH.	LŁ	-	0.0	PS
			=	7.4	PS
TOTA	L LO	AD	=	39.0	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR OUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.12/1.00 (A-B:1) , BC=0.02/1.00 (V-W:4) , WB=0.18/1.00 (H-Q:1) , SSI=0.09/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

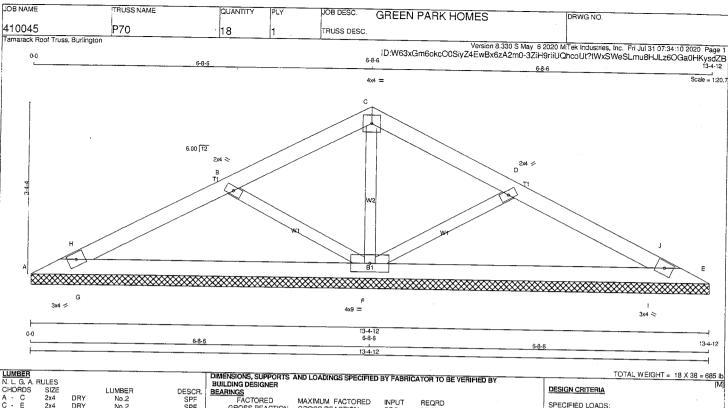

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.38 (F) (INPUT = 0.90) JSI METAL= 0.08 (C) (INPUT = 1.00)

DESCR. SPF SPF No.2 No.2 No.2 No.2 CE DRY SPF ALL WEBS 2x3 DRY No.2 SPF DRY: SEASONED LUMBER

INPUT BRG IN-SX 13-4-12 13-4-12 MAXIMUM FACTORED GROSS BEACTION GROSS REACTION
DOWN HORZ UPLIFT HORZ 0 DOWN 137 VERT 0 137 ñ

1202

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 A
 TBM1-h
 MT20

 B
 TMW+w
 MT20
 4.0 4.0 4.0 4.0 4.0 3.0 2.0 MT20 MT20 MT20 MT20 MT20 4.0 TTW-p TMW+w TBM1-h BMWWW1-t 3.0 4.0

UNFACTORED REACTIONS
1ST LCASE MA COMBINED DEAD SOIL AEF 25 / 0 25 / 0 308 / 0 545 / 0

BRG IN-SX

13-4-12 13-4-12 13-4-12

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, E, F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

1202

	RDS					W E		
MEMB.	FACTORED FORCE (LBS)	FACTOR VERT. LO (PL	AD LC1		UNBRAC		MAX. FACTO FORCE (LBS)	RED MAX CSI (LC)
FR-TO A- H	0./100	FROM			LENGTH		. ,	(/
H- B	0 / 123 0 / 184	-91.8 -91.8		0.12 (1) 0.20 (1)		F-C B-F	-641 / 0 -393 / 0	0.12(1) 0.08(1)
B-C	0 / 511	-91.8		0.25 (1)		F- D	-393 / 0	0.08(1)
C-D D-J	0 / 511 0 / 184	-91.8	-91.8		10.00	G-H	-24 / 51	0.00(1)
J- E	0 / 123	-91.8 -91.8		0.20 (1) 0.12 (1)		1- J	-24 / 51	0.00 (1)
A-G G-F	-144 / 0 -137 / 0	-18.5 -18.5		0.06 (1)	6.25 6.25			
F-1 I-E	-137 / 0 -144 / 0	-18.5 -18.5	-18.5	0.18 (4) 0.06 (1)	6.25 6.25			

SPECIFIED LOADS LL = DL = LL = DL = 6.0 0.0 7.4 PSF BOT CH. PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

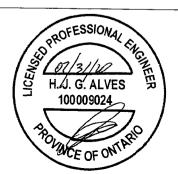
THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.25/1.00 (B-C:1) , BC=0.18/1.00 (F-G:4) , WB=0.12/1.00 (C-F:1) , SSI=0.14/1.00 (B-H:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

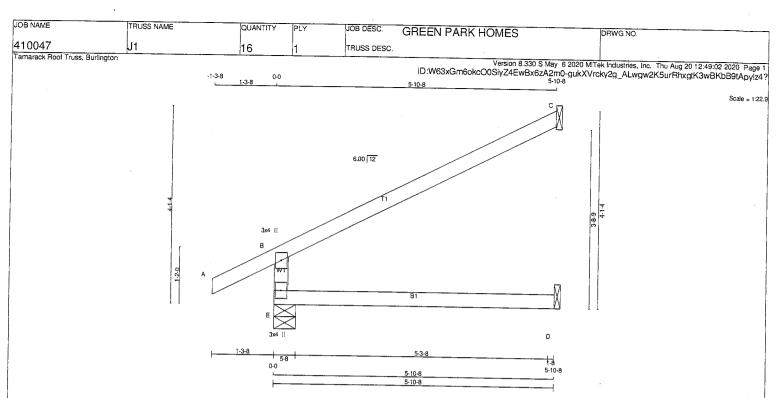

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.40 (C) (INPUT = 0.90) JSI METAL= 0.19 (C) (INPUT = 1.00)

LUMBER N. L. G. A. CHORDS E - P DESCR. SPF SPF SPF LUMBER SIZE No.2 No.2 244 DRY DRY No.2 DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 w LEN Y 3.0 4.0 BMV1+p MT20 3.0 4.0

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

<u>BEA</u>	RINGS					
JT E C D	FACTO	RED REACTION HORZ 0 0	MAXIMU GROSS DOWN 525 202 50		INPUT BRG IN-SX 5-8 1-8 1-8	REQRD BRG IN-SX 5-8 1-8 1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS MIN. COMPONENT REACTIONS
LIVE PERMITIVE ___MAX SNOW COMBINED WIND DEAD 369 257 / 0 0/0 0/0 0/0 111 0 26 / 0 0/0 C 139 113/0 0/0 0/0 0/0 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS MAX. FACTORED WEBS FACTORED MAX. FACTORED FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNSRAC
FROM TO LENGTH I
0.0 0.0 0.13 (4) 7.81
-91.8 -91.8 0.54 (1) 6.25 FORCE (LBS) MEMB. MEMB. FORCE FR-TO LENGTH FR-TO 7.81 E-B -461 / 0 A- B B- C -30 / 0 E-D 0 0 -18.5 -18.5 0.13 (4) 10.00

TOTAL WEIGHT = 16 X 17 = 269 lb DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = 25.6 DL = 6.0 BOT CH. LL = 0.0 DL = 7.4 TOTAL LOAD = 39.0 PSF

PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

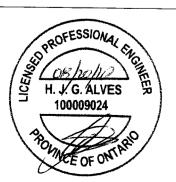
ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.03")

CSI: TC=0.54/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.24/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

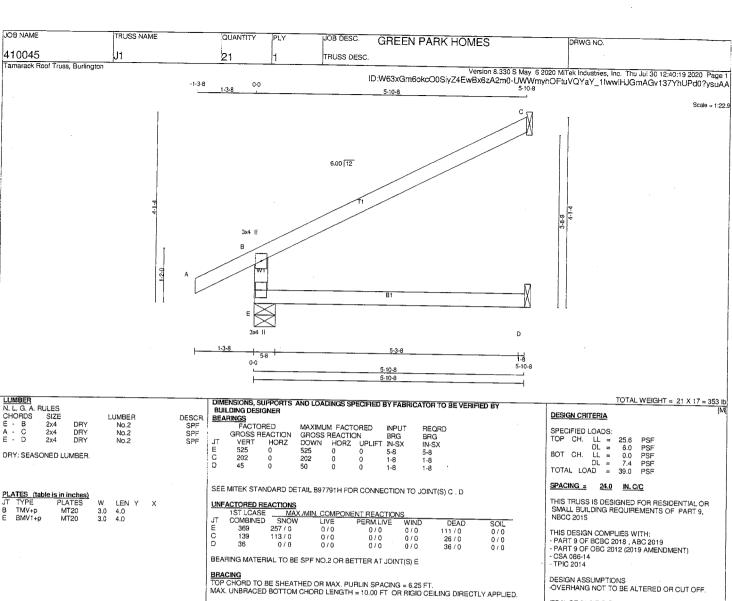

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.18 (E) (INPUT = 0.90) JSI METAL= 0.13 (B) (INPUT = 1.00)

LOADING TOTAL LOAD CASES: (4)

CHORDS MAX. FACTORED EMB. FORCE (LBS) FACTORED VERT. LOAD LC1 MAX MAX (PLE) CS1 (LC) UNBRAC FROM TO LENGTH 0.0 0.0 0.13 (4) 7.81 91.8 91.8 0.54 (1) 6.25 MAX. FACTORED MEMB. MEMB FORCE FR-TO LENGTH FR-TO E-B -461 / 0 A-B B-C E-D 0/0 -18.5 -18.5 0.13 (4) 10.00

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

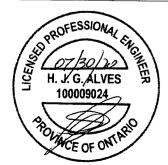
ALLOWABLE DEFL.(LL) = L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03")

CSI: TC=0.54/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.24/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

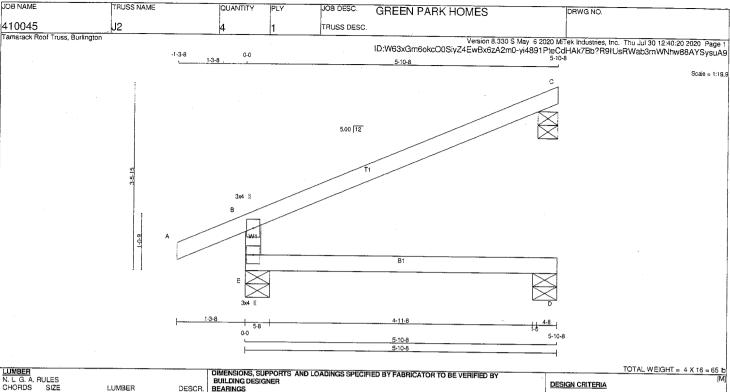

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.18 (E) (INPUT = 0.90) JSI METAL= 0.13 (B) (INPUT = 1.00)

	CHORDS	SIZE		1	UMBE	R		DES
	E - B	2x4	DRY		No.2			S
	A - C	2x4	DRY		No.2			SF
i	E D	2x4	DRY		No.2			SI
l	DRY: SEAS	ONED LL	MBER.					
ł								
1								
1								
ı								
i	PLATES (ta	able is in i	nches)					
ł	JT TYPE	PLA	\TES	W	LEN	Υ	Χ	
-	B TMV+p	M	T20	3.0	4.0			

BMV1+p

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACT	ORED	INPUT	REORD
	GROSS R	EACTION	GROSS	REACTIO	NO.	BRG	88G
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	525	0	525	0	0	5-8	5-8
C	202	0	202	0	0	4-8	4-8
D	44	0	50	0	0	5-8	5-8

BEVELED PLATE OR SHIM REQUIRED TO PROVIDE FULL BEARING SURFACE WITH TRUSS CHORD AT JT(S): C

K			

LINEACTORED DEACTIONS

	1ST LCASE	MAX./\	IN. COMPO	VENT REACTION	IS		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ε	368	257/0	0/0	0/0	0/0	112/0	0/0
Č	139	113/0	0/0	0/0 -	0/0	26 / 0	0/0
D	36	0/0	0/0	0/0	0/0	36 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C, D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

1								
	ORDS					WE	3 S	
	(. FACTORED	FACTO	RED			i	MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	_F)	CSI (LC)	UNBRA		(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGT	FR-TO	(/	()
€-8	-461 / 0	0.0	0.0	0.14 (4)	7.81			
A-B	0 / 24	-91.8	-91.8	0.12(1)	10.00			
B-C	-26 / 0	-91.8	-91.8	0.54(1)	6.25			
E-D	0/0	-18.5	-18.5	0.14 (4)	10.00			

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 6.0 0.0 7.4 TOP CH. PSF PSF PSF TOTAL LOAD 39.0

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATEO VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.03")

CSI: TC=0.54/1.00 (B-C:1) , BC=0.14/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.24/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

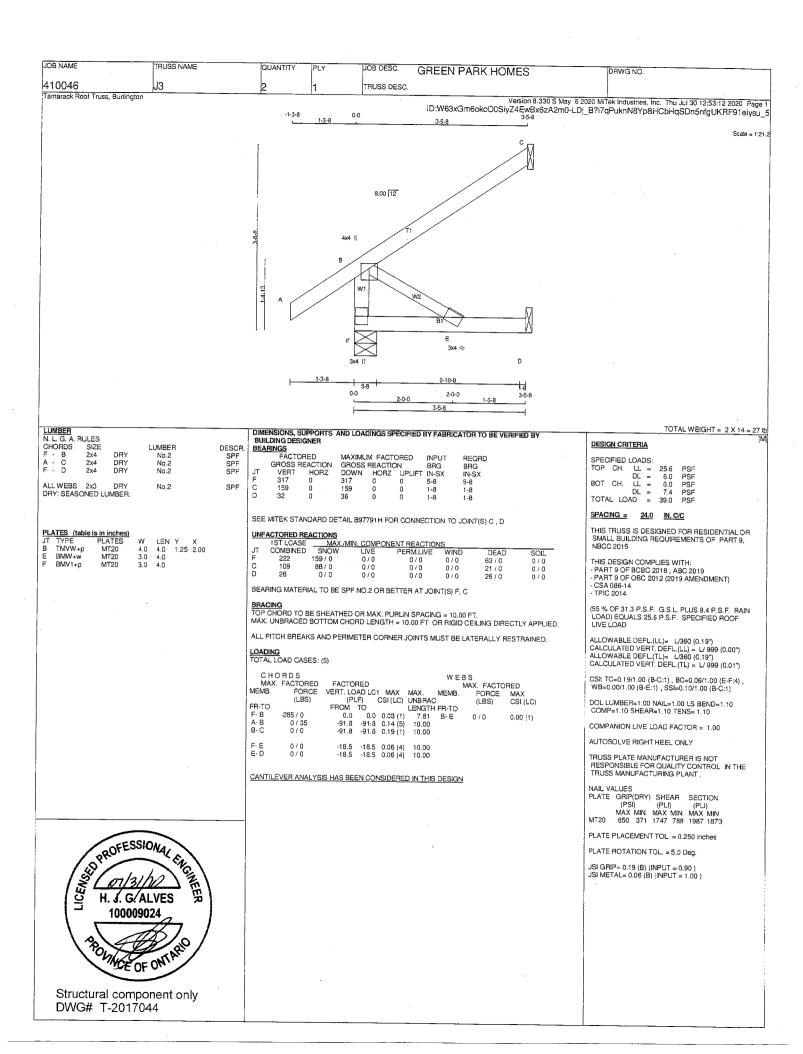

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.18 (E) (INPUT = 0.90) JSI METAL= 0.11 (B) (INPUT = 1.00)

TRUSS NAME JOB NAME OUANTITY JOB DESC. GREEN PARK HOMES DRWG NO 410046 J20 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.330 S May 6 2020 MiTek Industries, Inc. Thu Aug 20 12:32:13 2020 Page 1 ID:W63xGm6okcOOSiyZ4EwBx6zA2m0-inG5kqOqa1Z9dHilJekUU38LLxW18aOpZiEzFoylzJm -1-3-8 0-0 8.00 12 D 5-8 0.0 3-10-8 3-10-8

 PLATES (table is in inches)

 JT
 TYPE
 PLATES
 W
 LEN
 Y
 X

 B
 TMVW+p
 MT20
 4.0
 1.25
 2.00

 E
 BMV1+p
 MT20
 3.0
 4.0
 1.25
 2.00

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS

DEA	ININGS						
	FACTO GROSS R		MAXIMU GROSS	M FACTO	INPUT BRG	REQRD BRG	
JΤ	VERT	HORZ	DOWN	HORZ	UPLIET	N-SX	IN-SX
F	340	0	340	0	0	5-8	5-8
С	178	0	178	Ó	0	1-8	1-8
D	36	0	40	0	Ö.	1-8	1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

 UNFACTORED REACTIONS

 1ST LCASE
 MAX/MIN. COMPONENT REACTIONS

 COMBINED
 SNOW
 LIVE
 PERMLIVE
 WIND
 DEAD
 SOIL

 F
 238
 169 0
 0 / 0
 0 / 0
 68 / 0
 0 / 0

 C
 122
 99 / 0
 0 / 0
 0 / 0
 0 / 0
 29 / 0
 0 / 0

 D
 29
 0 / 0
 0 / 0
 0 / 0
 0 / 0
 29 / 0
 0 / 0

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	RDS FACTORED	FACTO	RED			W E	BS MAX. FACTO	DEN
MEMB.	FORCE	VERT. LO		1 MAX	MAX.	MEMB.	FORCE	MAX
ED TO	(LBS)	(PL		CSI(LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
F-B	-304 / 0	0.0	0.0	0.03 (1)	7.81	B-E	0/0	0.00(1)
A-B	0 / 35	-91.8	-91.8	0.14 (5)	10.00		0.0	0.00 (1)
B- C	0 / 0	-91.8	-91.8	0.23 (1)				
F- E E- D	0 · 0	-18.5 -18.5		0.08 (4) 0.08 (4)	10.00 10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

TOTAL WEIGHT = 5 X 14 ≈ 71 II DESIGN CRITERIA

SPECIFIED LOADS:

TOP CH. LL = 25.6 PSF DL = 6.0 PSF BOT CH. LL = 0.0 PSF DL = 7.4 PSF TOTAL LOAD = 39.0 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

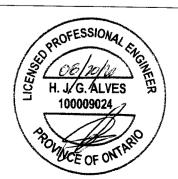
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.23/1.00 (B-C:1) , BC=0.08/1.00 (D-E:4) , WB=0.00/1.00 (B-E:1) , SSI=0.12/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


AUTOSOLVE RIGHT HEEL ONLY

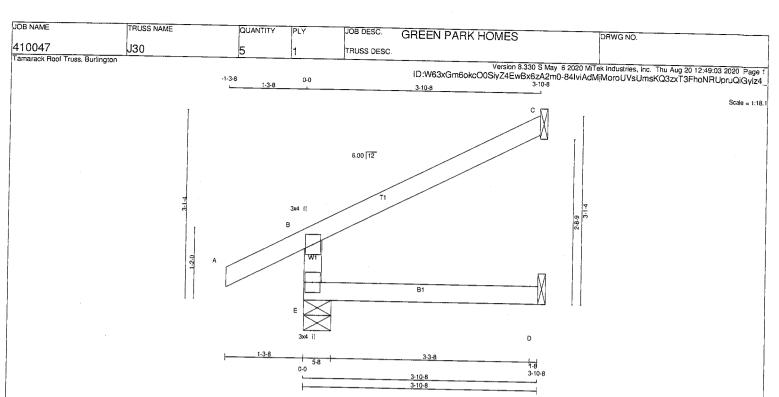

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.20 (B) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

LUMBER N. L. G. A. RULES CHORDS SIZE E - B 2x4 LUMBER DESCR. SPF SPF SPF DRY No.2 No.2 No.2 No.2 DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES W IEN Y TMV+p BMV1+p 4.0

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BUILDINGS BEARINGS FACTORED MAXIMUM FACTORED GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ L BRG BRG HORZ UPLIFT IN-SX 5-8 IN-SX SHOD 388 133 133 1-8 1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS

ı		1ST LCASE	MAX./	<u>MIN. COMPO</u>	NENT REACTION	4S		
i	JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Į	E	272	193 / 0	0/0	0/0	0/0	78 / 0	0/0
į	С	92	74 / 0	0/0	0/0	0/0	17 : 0	
Ì	D	24	0/0	0/0	0/0	0/0	24 / 0	0 0
i					0,0	0,0	24 / 0	0 - 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

MAX. MEMB. FR-TO	PRDS FACTORED FORCE (LBS) -347 / 0 0 / 28 -20 / 0	FACTOI VERT. LO (PL FROM 0.0 -91.8 -91.8	AD LC1 F) TO 0.0 -91.8	CSI (LC)	MAX. UNBRAC LENGTH 7.81 10.00 6.25	B S MAX. FACTO FORCE (LBS)	RED MAX CSI (LC)
E-D	.0 - 0	-18.5	-18.5	0.06 (4)	10.00		

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

TOTAL WEIGHT = 5 X 12 = 60 lb DESIGN CRITERIA

SPECIFIED LOADS:

LL = DL = LL = DL = AD = TOP CH. 25.6 6.0 0.0 7.4 PSF PSF TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS OVERHANG NOT TO BE ALTERED OR CUT OFF.

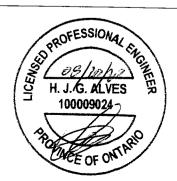
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.23/1.00 (B-C:1) , BC=0.06/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.16/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


AUTOSOLVE RIGHT HEEL ONLY

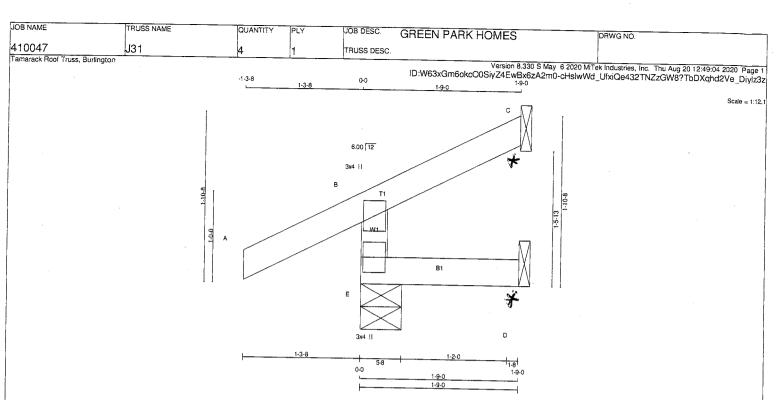

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.14 (E) (INPUT = 0.90) JSI METAL= 0.10 (B) (INPUT = 1.00)

LUMBER N. L. G. A. RULES CHORDS SIZE DESCR SPF SPF SPF SIZE LUMBER No.2 No.2 В DRY DRY CD No.2 DRY: SEASONED LUMBER.

 PLATES (table is in inches)

 JT TYPE PLATES

 B TMV+p MT20
 w 3.0 4.0 4.0 BMV1+p

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

DEARINGS					
FACTORED GROSS REACTION		M FACTION REACTION		INPUT BRG	REQRD BRG
JT VERT HORZ E 269 0 C 43 0 D 5 0	DOWN 269 43 15	HORZ 0 0	UPLIFT 0 -22 -5	IN-SX 5-8 1-8	IN-SX 5-8 1-8
		-	•	, 0	1-0

SEE MITEK STANDARD DETAIL 897791H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED PROVIDE ANCHORAGE AT BEARING JOINT D FOR 150 LBS FACTORED

UNFACTORED REACTIONS COMBINED WIND SOIL 0 ' 0 0 - 0 DEAD ECD 0/0 46 / 0 6 / 0 30 23 / -18

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS MAX. FACTORED WEBS FACTORED MAX. FACTORED FORCE MA VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBF
FROM TO LENG
0.0 0.0 0.04 (5) 7.6
-91.8 -91.8 0.12 (1) 10.0
-91.8 -91.8 0.09 (1) 6.2 MEMB. FORCE MAX CSI (LC) UNBRAC (LBS) CSI (LC) LENGTH FR-TO 7.81 10.00 £-B -242 0 A-B E-D 0 0 -18.5 -18.5 0.04 (5)

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = DL = LL = 25.6 6.0 0.0 7.4 PSF PSF DL = PSF TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

TOTAL WEIGHT = 4 X 7 = 27 lb

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , ABC 2019 PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/399 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.12/1.00 (A-B:1) , BC=0.04/1.00 (D-E:5) , WB=0.00/1.00 (n/a:0) , SSI=0.09/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

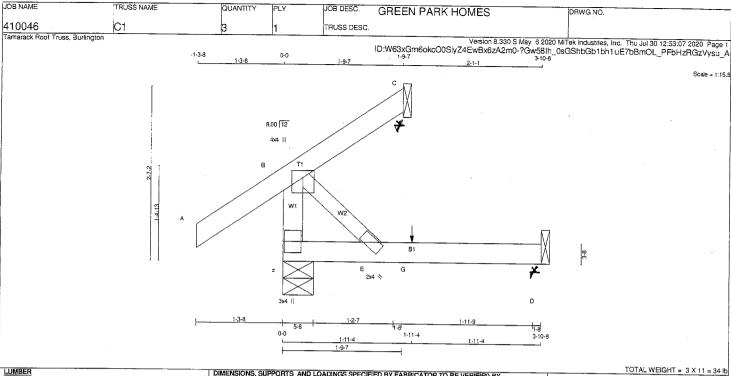

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.10 (E) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

LUMBER N. L. G. A. RULES SIZE 2x4 LUMBER No.2 CHORDS F - B DRY No.2 No.2 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 E
 BMW+w
 MT20

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS
FACTORED MAXIMUM FACTORED INPUT REGRD

MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLIFT GROSS REACTION VERT HORZ 292 0 BRG IN-SX IN-SX 5-8 1-8 292 5-8 .30

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

1.25 2.00

LEN 4.0 4.0

4.0 2.0

DESCR SPF

SPE

SPF

SPF

UNFACTORED REACTIONS
1ST LCASE MAI
JT COMBINED SNOW MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND SOIL 0/0 0/0 205 23 29 143/0 0/0 0/0 62/0 29 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS MAX. FACTORED WEBS OS CTORED FACTORED FORCE VERT. LOAD LC1 MAX MAX. (LBS) (PLF) CSI (LC) UNBF FROM TO LENG 6/0 0.0 0.0 0.0 (1) 7.6 0.03 (1) 7.6 0.03 (1) 7.6 0.03 (1) 7.6 0.03 (1) 7.6 0.03 (1) 7.6 0.03 (1) 7.6 0.03 (1) 7.6 0.03 (1) 0.03 (1 MAX. FACTORED MEMB. MEMB MAX CSI (LC) CSI (LC) UNBRAC LENGTH FR-TO 0.03 (1) 7.81 B-E FR-TO F- B A- B B- C 0.70 0.00 (1) 0 / 35 -27 / 0 -91.8 -91.8 0.13 (5) F- E E- G G- D -18.5 -18.5 0.07 (4) -18.5 -18.5 0.08 (4) -18.5 -18.5 0.08 (4) 0/0 10.00 10.00 0/0 FACTORED CONCENTRATED LOADS (LBS) MAX+ TYPE HEEL CONN.

FRONT

VERT

TOTAL

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

SPECIFIED LOADS DL = DL = LL = DL = DL = AD = TOP CH. 6.0 0.0 7.4 TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

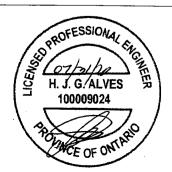
ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.14/1.00 (A-B:5) , BC=0.08/1.00 (D-E:4) . WB=0.00/1.00 (B-E:1) , SSI=0.09/1.00 (A-B:5)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.17 (B) (INPUT = 0.90) JSI METAL= 0.05 (B) (INPUT = 1.00)

OB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREEN PARK HOMES	DRWG NO.
10046	C2	5	1	TRUSS DESC.		
amarack Roof Truss, Bur	lington				Version 8.330 S A	May 6 2020 MiTek Industries, Inc. Thu Jul 30 12:53:08 2020 Page
		-1-	3-8	0-0	10.W63XGHIO0KCOUSIYZ4EWBX6ZAZ	vay o zuzu kiriak indusmes, inc. Thu Jul 30 12:53:08 2020 Page 2m0-TSUTLeicnAOJJIrnalCGQRfnCAIYjsVkWdBpVxysu
			1-3-0		1-9-7 1-1	Scale = 1:
				8.00 [12 4x4	·	
		27.2		B 11 W1 S44 II	B1	
		į	1-3-6	5-8	1-2-7 (97) 1-11-1 1-9-7 1-10-8 1-10-8	
UMBER L. G. A. RULES HORDS SIZE B 2x4 DF C 2x4 DF D 2x4 DF D 2x4 DF RY: SEASONED LUMBE	RY No.2 S RY No.2 S RY No.2 S	DIMENSIONS, SI BUILDING DESI BEARINGS FACTO OF GROSS R F JT VERT F 274 C 34 D 17	GNER RED MA)	(IMUM FACTORE) DSS REACTION	BRG BRG LIFT IN-SX IN-SX 5-8 5-8	TOTAL WEIGHT = 5 X 9 = 44 DESIGN CRITERIA 1 SPECIFIED LOADS: TOP CH. LL = 25.6 PSF DL = 5.0 PSF BOT CH. LL = 0.0 PSF DL = 7.4 PSF TOTAL LOAD = 39.0 PSF

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+p
 MT20

 E
 BMW+w
 MT20
 W 4.0 2.0 3.0 LEN Y 4.0 1. 4.0 1 Y X 1.25 2.00

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

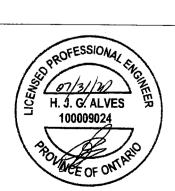
PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

0/0 0/0 0/0 . C D 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.


LOADING TOTAL LOAD CASES: (5)

WEBS
MAX. FACTORED
MEMB. FORCE MA)
"PS) CSI C H O R D S

MAX. FACTORED FACTORED WERT LOAD LC1 MAX MAX. MEMB.

(LBS) (PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO
-B 0/35 -91.8 -91.8 0.12 (1) 10.00
-C -27 / 0 -91.8 -91.8 0.12 (1) 6.25 CHORDS MEMB. MAX CSI (LC) FR-TO F- B A- B B- C 0/0 F- E E- D -18.5 -18.5 0.02 (4) 10.00 -18.5 -18.5 0.02 (4) 10.00

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2017040

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

SPACING = 24.0 IN. C/C

- CSA 086-14 - TPIC 2014

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

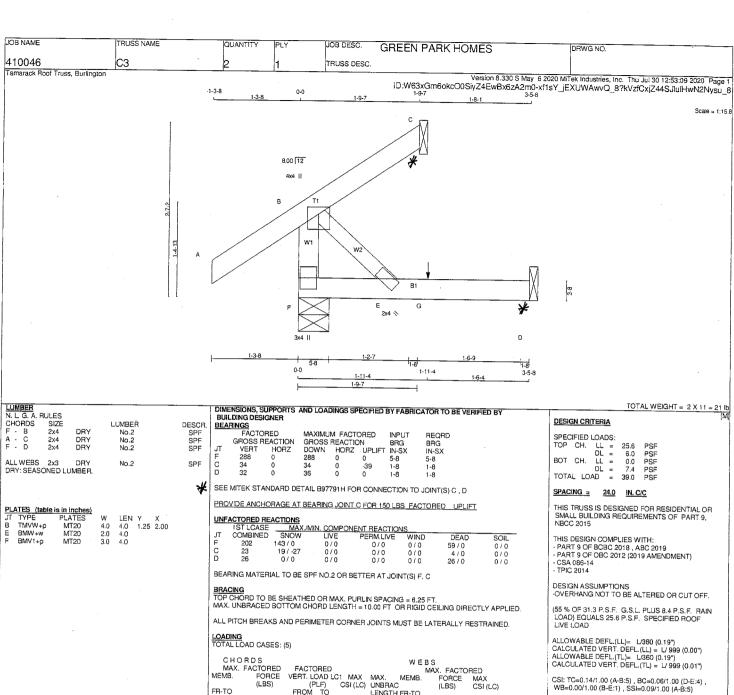
THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

DESIGN ASSUMPTIONS •OVERHANG NOT TO BE ALTERED OR CUT OFF.

CSI: TC=0.12/1.00 (A-B:1) , BC=0.02/1.00 (E-F:4) , WB=0.00/1.00 (B-E:1) , SSI=0.08/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR = 1.00

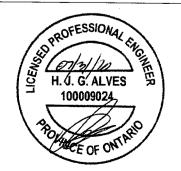

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.17 (B) (INPUT = 0.90) JSI METAL= 0.05 (B) (INPUT = 1.00)



СН	CHORDS					WEBS				
	X. FACTORED	FACTO	RED				MAX. FACT	OBED		
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE			
	(LBS)	(PL	.F) (CSI (LC)	UNBRAG	2	(LBS)	CSI		
FR-TO		FROM			LENGTH		,,	00.	(20)	
F- B	-256 / 0	0.0	0.0	0.03(1)		B-E	0/0	0.00	(1)	
A-B	0 / 35	-91.8	-91.8	0.14 (5)	10.00			0.00	(•)	
B- C	-27 / 0	-91.8		0.13 (5)						
F- E	0/0	-18.5	-18.5	0.06 (4)	10.00					
E-G	0/0	-18.5		0.06 (4)						
G-D	0/0			0.06 (4)						
FACTO	RED CONCENT	RATED LO	ADS (LE	38)						
JT	LOC. LC1		MAX-		ACE (DIR.	TYPE	HEEL	CONN	
G	1-11-4 1	1					TOTAL		CO14:4.	

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2017041

 NAIL VALUES

 PLATE
 GRIP(DRY)
 SHEAR (PLI)
 SECTION (PLI)

 (PSI)
 (PLI)
 (PLI)
 (PLI)

 MAX
 MIN
 MAX MIN
 MAX MIN

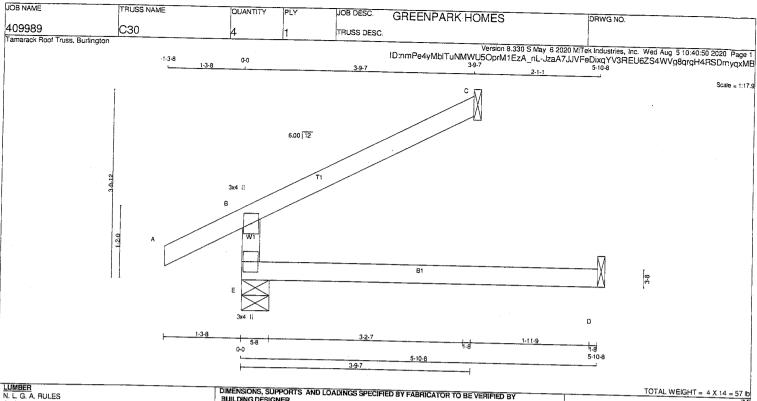

 MT20
 650
 371
 1747
 788
 1987
 1873

 PLATE PLACEMENT TOL. = 0.250 inches

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE RIGHT HEEL ONLY TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.17 (B) (INPUT = 0.90) JSI METAL= 0.05 (B) (INPUT = 1.00)

LUMBER N. L. G. A. CHORDS E - B A - C E - D	RULES SIZE 2x4 2x4 2x4	DRY DRY DRY	LUMBER No.2 No.2 No.2	DESCR. SPF SPF SPF					
DRY: SEASONED LUMBER.									

DESCR. SPF	B
SPF SPF	JT E C

BUILDING DESIGNER EARINGS FACTORED MAXIMUM FACTION:

GROSS REACTION:
BRG
DOWN HORZ UPLIFT IN-SX
0 0 5-8 REORD GROSS REACTION VERT HORZ 405 0 BRG IN-SX 5-8 130 50 130 1-8 1-8 1-8 D

SEE MITEK STANDARD DETAIL 897791H FOR CONNECTION TO JOINT(S) C . D

PLATES (table is in inches)									
JT B E	TYPE TMV+p BMV1+p	PLATES MT20 MT20	W 3.0 3.0	LEN 4.0 4.0	Υ	х			

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	21	•	
D E M	286 90 36	SNOW 190 / 0 73 / 0 0 / 0	LIVE 0 / 0 0 / 0 0 / 0	PERM.LIVE 0/0 0/0 0/0	WIND 0 / 0 0 / 0 0 / 0	DEAD 96 0 17 0	SOIL 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX. MEMB. FR-TO	RDS FACTORED FORCE (LBS) -342 0 0 28 -19 0	FROM TO	SI (LC) UNB LENG 1.13 (4) 7. 1.12 (1) 10.	. MEMB. RAC GTH FR-TO 81 00	X. FACTOR	RED MAX CSI (LC)
E- D	0 0	-18.5 -18.5 (25		

SPECIFIED LOADS: LL = DL = LL = DL = DL = CH. PSF PSF 5.0 0.0 7.4 BOT CH. PSF TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

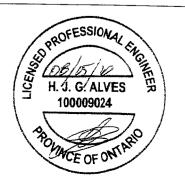
ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.03")

CSI: TC=0.22/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.15/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

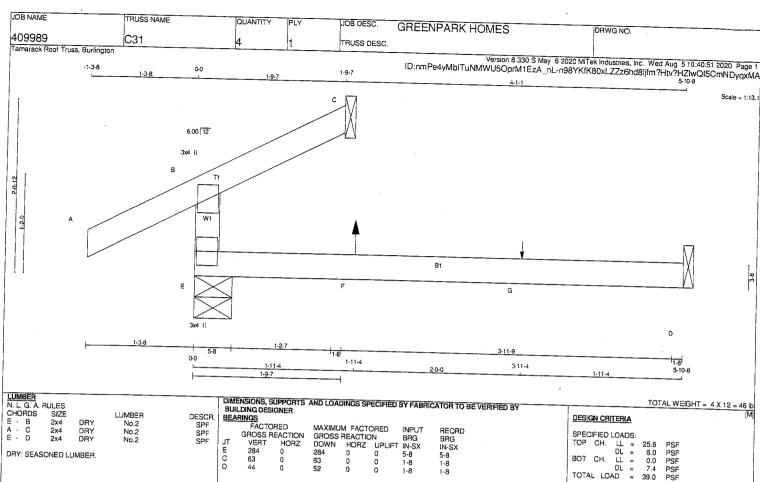

| NAIL VALUES | VALUE

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.14 (E) (INPUT = 0.90) JSI METAL= 0.09 (B) (INPUT = 1.00)

DRY: SEASONED LUMBER. PLATES (table is in inches)
JT TYPE PLATES

TMV+n BMV1+p

10/ LEN Y MT20 MT20

BEA	RINGS				
JT E C D	FACTO GROSS R VERT 284 63 44	MAXIMU GROSS DOWN 284 63 52	M FACTO REACTIO HORZ 0 0 0	INPUT BRG IN-SX 5-8 1-8	REQR BRG IN-SX 5-8 1-8 1-8

SEE MITEK STANDARD DETAIL 897791H FOR CONNECTION TO JOINT(S) C . D

UNFACTORED REACTIONS
1ST LCASE MA
JT COMBINED SNOW MAX/MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE V
137 / 0 0 / 0 0 / 0 WIND DEAD SOIL 0 0 0 0 0 0 ECO 200 137 / 0 62 0 25 0 37 0 0/0 0,0 07-3 0:0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E. C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

CHORDS WEBS FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBF
FROM TO LENG MAX. FACTORED MAX. FACTORED FORCE MA MEMB. FORCE MAX (LBS) CSI (LC) UNBRAC (LBS) CSI (LC) FR-TO LENGTH FR-TO 0.0 0.0 0.11 (4) 7.81 -91.8 -91.8 0.12 (1) 10.00 -91.8 -91.8 0.08 (4) 10.00 F-B -227 0 0 28 B-C -9.9 E- F F- G G- D 0 -18.5 -18.5 0.14 (4) -18.5 -18.5 0.14 (4) -18.5 -18.5 0.14 (4) 10.00 0.0 10.00 FACTORED CONCENTRATED LOADS (LBS) MAX+ 12 JT F LOC LC1 7 MAX-FACE TYPE DIR HEEL CONN FRONT FRONT VERT VERT TOTAL TOTAL C1 C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

Structural component only DWG# T-2017360

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

DESIGN ASSUMPTIONS OVERHANG NOT TO BE ALTERED OR CUT OFF.

25.6 PSF 6.0 PSF PSF

39.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9.

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

PSF

BOT CH.

TOTAL LOAD

NBCC 2015

- TPIC 2014

SPACING = 24.0 IN. C/C

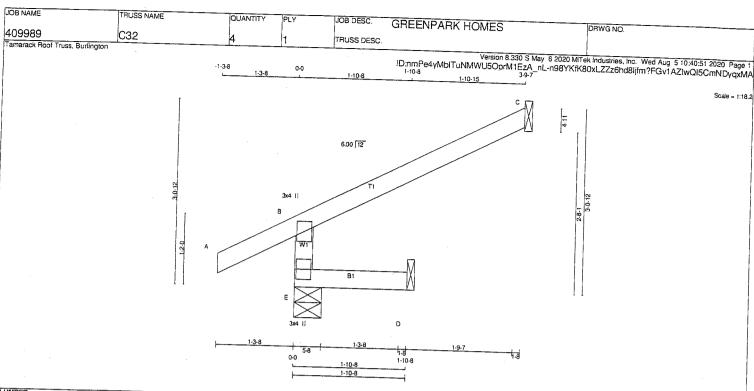
ALLOWABLE DEFL.(LL) = L/380 (0.20")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL) = L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSI: TC=0.12/1.00 (A-B:1) , BC=0.14/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.09/1.00 (A-B:1)

DOL LUMBER=0.99 NAIL=0.99 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

| NAIL VALUES | FRANK | SECTION (PLI) | NAIL VALUES | FRANK | SECTION (PLI) | NAIL VALUES | SECTION (PLI) | NAIL VALUES | SECTION (PLI) | NAIL VALUES | SECTION (PLI) | NAIL VALUES | SECTION (PLI) | NAIL VALUES | SECTION (PLI) | NAIL VALUES | SECTION (PLI) | NAIL VALUES | SECTION (PLI) | NAIL VALUES | NAIL VAL

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.09 (E) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00)

LUMBER N. L. G. A. RULES CHORDS SIZE E - B 2x4 A - C 2x4 E - D 2x4	DRY N	BER - 0.2 0.2 0.2	DESCR. SPF SPF SPF					
DRY: SEASONED LUMBER.								

SPF	1
SPF	1 -
	1

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

BEA	RINGS					
JT E C D	FACTO GROSS R VERT 361 130 16	MAXIMU GROSS DOWN 361 130 17	M FACTO REACTION HORZ 0 0 0	ORED N UPLIFT 0 0 0	INPUT BRG IN-SX 5-8 1-8	REORD BRG IN-SX 5-8 1-8 1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C . D

PL	ATES (table	is in inches)				
JT B E	TYPE TMV+p BMV1+p	PLATES MT20 MT20	W 3.0 3.0	LEN 4.0 4.0	Y	x

UNF	ACTORED RE	ACTIONS					
JT E	1ST LCASE COMBINED 250	MAX./N	MIN. COMPOR LIVE 0 / 0	NENT REACTION PERM.LIVE 0 / 0	WIND 0 0	DEAD	SOIL
D	90 12	73 / 0 0 / 0	0/0 0/0	0/0	070	60 · 0 17 0 12 0	0 : 0 0 : 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

MAX MEMB. FR-TO E-B	ORDS FACTORED FORCE (LBS)	FACTO VERT. LO (PL FROM 0.0	AD LC _F) TO 0.0	CSI (LC) 0.01 (4)	LENGTH 7.81	MEMB.	B S MAX. FACTO FORCE (LBS)	RED MAX CSI (LC)	
						MEMB.			
				001 (10)			(LBS)	CSI (LC)	
	-342 : 0			0.01 (4)	7 04	rn-10			
A-B	0 / 28	-91.8		0.13 (5)					
B-C	-19 0	-91.8		0.22 (1)					
E-D	0:0	-18.5	-18.5	0.02 (4)	10.00				

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA

	SPEC	IFIED	LOA	os:		
	TOP	CH.		=	25.6	PSI
Ì				=	6.0	PSF
Į	BOT	CH.	LL	=	0.0	PSF
ļ	TOTA		DL	=	7.4	PSF
		ı ın				

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

TOTAL WEIGHT = 4 X 10 = 38 ib

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 986-14
- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.22/1.00 (B-C:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.15/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

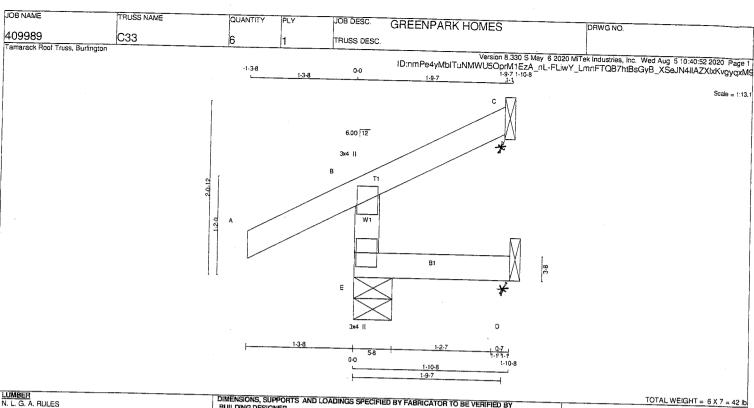

MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.14 (E) (INPUT = 0.90) JSI METAL= 0.09 (B) (INPUT = 1.00)

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE 2x4 LUMBER No.2 DESCR. SPF SPF SPF - B - C DRY DRY No.2 DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 W LEN Y 3.0 BMV1+p

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BUILDINGS BEARINGS FACTORED INPUT MAXIMUM FACTORED REQRD GROSS REACTION GROSS REACTION BRG
DOWN HORZ UPLIFT IN-SX BRG HORZ 0 VERT IN-SX 271 0 45 45 1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C . D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT D FOR 150 LBS FACTORED UPLIFT

UNFACTORED REACTIONS
1ST LCASE _____MAX MAX./MIN. SNOW COMBINED WIND DEAD 47 0 7 0 SOIL 141 / 0 0/0 0/0 0/0 0 0 0 0 0 CD 24 / -18 0/0 0 / -8 0/0 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

ECD

CHORDS WERS MAX. FACTORED FACTORED MAX. FACTORED FORCE MAX MEMB. VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC MAX (PLF) FROM TO 0.0 ((LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO 7.81 10.00 0.0 0.0 0.04 (5) -91.8 -91.8 0.12 (1) -91.8 -91.8 0.09 (1) A- B B- C 0 / 28 0 E- D 0.70 -18.5 -18.5 0.04 (5) 10.00

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

DESIGN CRITERIA

SPECIFIED LOADS: 25.6 PSF PSF PSF CH. 5.0 0.0 7.4 DI TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
PART 9 OF BCBC 2018, ABC 2019
PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 **TPIC 2014**

DESIGN ASSUMPTIONS OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

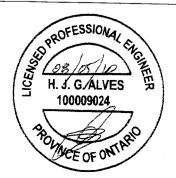
CSt: TC=0.12/1.00 (A-B:1) , BC=0.04/1.00 (D-E:5) WB=0.00/1.00 (n/a:0) , SSI=0.09/1.00 (A-B:1)

DOL LUMBER=1:00 NAIL=1:00 LS BEND=1:10 COMP=1:10 SHEAR=1:10 TENS=1:10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.


NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

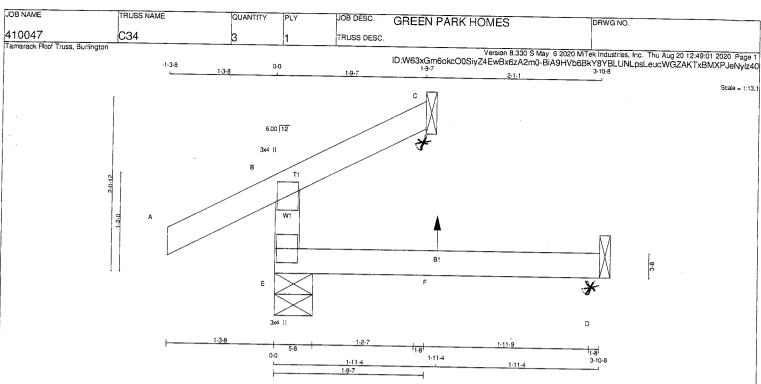

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.10 (E) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

LUMBER N. L. G. A. RULES CHORDS SIZE DESCR SPF SPF SPF SIZE LUMBER No.2 No.2 В DRY DRY No 2 DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMV+p MT20 W LEN Y 3.0 BMV1+p 3.0

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

BEA	RINGS	··-					
	FACTO GROSS F	REACTION	MAXIMU GROSS			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	279	0	279	0	0	5-8	5-8
Č	49	0	49	0	-20	1-8	1-8
D	26	0	35	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C . D

PROVIDE ANCHORAGE AT BEARING JOINT C FOR 150 LBS FACTORED UPLIFT

MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE COMBINED DEAD SOIL 138 / 0 22 / -20 58 / 0 13 / 0 25 / 0 0/0 0/0 0/0 0/0 0/0 0 / -5

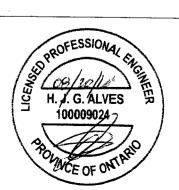
BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

<u>LOADING</u> TOTAL LOAD CASES: (9)

CHORDS FACTORED VERT. LOAD LC1 MAX (PLF) CSI(LC) MAX. FACTORED MAX. FACTORED MEMB. MEMB. MAX CSI (LC) CSI(LC) UNBRAC LENGTH FR-TO (LBS) FROM TO


0.0 0.0 0.05 (5)
-91.8 -91.8 0.14 (5)
-91.8 -91.8 0.08 (5) ÉR-TO 7.81 0 / 28 B-C -15 / 1 E-F F-D -18.5 -18.5 0.06 (4) 10.00 -18.5 -18.5 0.06 (4) FACTORED CONCENTRATED LOADS (LBS)

MAX-LC1 7 MAX+ FACE HEEL CONN FRONT VERT TOTAL

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

Structural component only DWG# T-2018771

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TOTAL WEIGHT = 3 X 9 = 28 lb

DESIGN CRITERIA

SPECIFIED LOADS:

BOT CH.

TOTAL LOAD

SPACING =

NBCC 2015

LL = DL = LL = DL = AD =

6.0 0.0 7.4

39.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PARTS.

24.0 IN. C/C

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL):= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.14/1.00 (A-B:5) , BC=0.06/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.10/1.00 (A-B:5)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

PSF

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.10 (E) (INPUT = 0.90) JSI METAL= 0.07 (B) (INPUT = 1.00)

LUL/LUS/LJS/HUS/HHUS/HGUS

SIMPSON Strong Tic

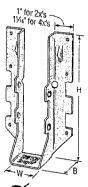
Standard and Double-Shear Joist Hangers

This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

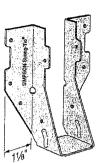
Most hangers in this series have double-shear nailing — an innovation that distributes the load through two points on each joist nail for greater strength. This allows for fewer nails, faster installation, and the use of all common nails for the same connection. (Do not bend or remove tabs)

Double-shear hangers range from the light capacity LUS hangers to the highest capacity HGUS hangers. For medium load truss applications, the HUS offers a lower cost alternative and easier installation than the HGUS hangers, while providing greater load capacity and bearing than the LUS.

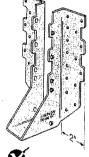
Material: See table on pp. 258-259.

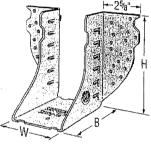

Finish: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, pp. 20-24.

Installation:


- · Use all specified fasteners; see General Notes.
- · Nails must be driven at an angle through the joist or truss into the header to achieve the tabulated resistances (except LUL).
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated factored resistance.
- · Not designed for welded or nailer applications.
- With single ply 2x carrying members, use 10d x 11/2" nails into the header and 10d commons into the joist, and reduce the resistance to 0.64 of the table value where 16d nails are specified and 0.77 where 10d nails are specified.

Options:


- · LUS, LUS, LUL and HUS hangers cannot be modified.
- Other sizes available; consult your Simpson Strong-Tie representative.
- · See Hanger Options information on p. 126.

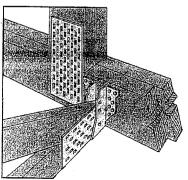


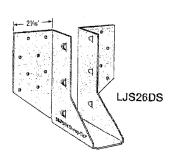
Y HUS210 (HUS26, HUS28, and HHUS similar)

O-C-CAN2018 @2017 SIMPSON STRONG-TIE COMPANY INC

Double-Shear Nailing

Double-Shear Nailing Side View; Do not bend tab

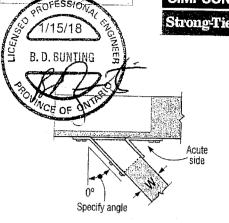



Dome Double-Shear Nailing Side View (available on some models) U.S. Patent 5,603,580

HHUS210-2

HHUS/HGUS

See Hanger Options information on pp. 125-127.


HHUS - Sloped and/or Skewed Seat

- HHUS hangers can be skewed to a maximum of 45° and/or sloped to a maximum of 45°
- For skew only, maximum factored down resistance is 0.85 of the table value
- For sloped only or sloped and skewed hangers, the maximum factored down resistance is 0.72 of the table value
- Uplift resistances for sloped/skewed conditions are 0.62 of the table value
- The joist must be bevel-cut to allow for double-shear nailing

HGUS - Skewed Seat

HGUS hangers can be skewed only to a maximum of 45°. Factored resistances are:

	•		, odiotal loca ale.
HGUS Seat Width W < 2" 2" < W < 6" 2" < W < 6"	Joist Bevel or square cut Bevel cut Square cut	Down Resistance 0.62 of table value 0.67 of table value 0.46 of table value	Uplift 0.46 of table value 0.41 of table value 0.41 of table value
W > 6"	Bevel cut	0.75 of table value	0.41 of table value

Top View HHUS Hanger Skewed Right

(joist must be bevel cut) All joist nails installed on the outside angle (non-acute side).

Standard and Double-Shear Joist Hangers (cont.)

These products are available with additional corrosion protection. For more information, see p. 24.

These products are approved for installation with the Strong-Drive® SD Connector screw. See pp. 32-34 for more information.

					ensions		F	steners		Factored	Resistance	
		(in.)						iotorior a	D.I	-ir-L	S-	P-F
	Model	Ga.	1		į				Uplift	Normal	Uplift	Normal
	No.		W	н	В	de3	Header	Joist	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$
	İ			-				l doing	ib,	lb.	lb.	ib.
		L	<u> </u>	J			<u> </u>		kN	kN	kN	kN
	·				· · · · · · · · · · · · · · · · · · ·			Single 2x Siz	tes .			L
	LUS24	18	19/16	31/8	13/4	21/4	(4) 10d	(2) 10d	, 710	1625	645	1155
		 		+			(4) 104	12/100	3.16	7.23	2.87	5.14
	LU24L	22	1%	3	15%	211/15	(4) 10d	(2) 10d x 11/2"	360	1020	320	725
	ļ	 		<u> </u>			(., 100	(C) 100 X 172	1.60	4.54	1.42	3.22
	LU26L	22	1%6	5	15%	45%	(6) 10d	(4) 10d x 11/2"	720	1605	645	1140
	9	 	-	ļ	-		(0) 100	(+) 10d x 172	3.20	7.14	2.87	5.07
3	LUS26	18	1%6	43/4	13/4	3%	(4) 10d	(4) 10d	1420	2170	1290	1630
	7	ļ	ļ	-	-		(1) 100	(+) 100	6.32	9.65	5.74	7.25
	HUS26	16	15/8	5%	3	315/15	(14) 16d	(6) 16d	2705	4940	2065	3875
	<u> </u>	ļ	<u> </u>	ļ			(. 1) 100	(6) 100	11,30	21.97	9.20	17.24
	LJS26DS	18	19/16	5	31/2	4%	(16) 16d	(6) 16d	2055	4265	1460	4115
	-		<u> </u>	-			1.07.00	(0) 100	9.14	18.97	6.49	18.31
	HGUS26	12	15/8	5%	5	41/8	(20) 16d	(8) 16d	2685	6625	2685	5700
		 						(0) 100	11.96	29.51	11.96	25.35
	LU28L	20	1%6	63/4	15/8	57/8	(8) 10d	(6) 10d x 11/2"	1140	2185	1020	1550
	,		- -			 	(-,	(5) 104 1172	5.07	9.72	4.54	6.89
3	LUS28	18	1%16	6%	13/4	3%	(6) 10d	(4) 10d	1420	2520	1290	1790
					<u> </u>		V-1	(1) 100	6.32	11.21	5.74	7.96
Þ	HUS28	16	1%	7 1/16	3	61/16	(22) 16d	(8) 16d	3605	5365	2675	4345
1	j/							,,	16.04	23.86	11.90	19.33
	HGUS28	12	15/8	7⅓	5	61/8	(36) 16d	(12) 16d	3310	7675	3310	6900
}								1,-7,-	14.74	34.19	14.74	30.73
4	LU210L	20	1%6	8	1%	7%	(10) 10d	(6) 10d x 1½" -	1140	2495	1020	1770
į	-							.,	5.07	11.10	4.54	7.87
•	LUS210	18	1%	713/16	1%	37/8	(8) 10d	(4) 10d	1420	2785	1290	2210
				L		. 1	177	1.7.104	6.32	12.39	5.74	9.83

- 1. Factored uplift resistances have been increased 15% for wind or earthquake loading; no further increase is allowed.
- 2. Designer must ensure that hanger is compatible with truss when reduced heel height is used.
- 3. de is the distance from the bearing seat to the top joist nail.
- 4. Resistances shown require a minimum 2-ply girder truss. For fastening to single-ply truss request technical bulletin T-C-N10TRSSCN and/or see installation notes.
- 5. Nails: 16d = 0.162" dia. x 31/2" long. See pp. 27-28 for other nail sizes and information.

Face-Mount Hangers

C-C-CAN2018 @2017 SIMPSON STHONG-TIE COMPANY INC.

These products are available with additional corrosion protection. For more information, see p. 24,

These products are approved for installation with the Strong-Drive® SD Connector screw. See pp. 32–34 for more information.

				ensions (in.)	5	Fas	teners			Resistance	n =
Model No.	Ga.							Uplift (K _D = 1.15)	Fir-L Normal (K _D = 1.00)	Uplift	P-F Normal
		W	Н	В	de ³	Header	Joist	lb.	(A) = 1.00) b.	(K _D = 1.15)	(K _D = 1.00
		<u> </u>					Dauble 0: 0	kN	kN	kN	kN
LUS24-2	***	1 214	014	T .	7	T	Double 2x S	835	2020	590	1405
LU324-2	18	31/8	31/6	2	11/2	(4) 16d	(2) 16d	3.71	8.99	2.62	1435 6.38
LUS26-2	18	31/8	47/8	2	4	(4) 16d	(4) 16d	1720	2595	1545	1920
HILLIEGO O	+	1		+	+	<u> </u>	-	7.65 2850	11.54 7335	6.87	8.54
HHUS26-2	14	35/16	5%	3	315/16	(14) 16d	(6) 16d	12.68	32.63	2065 9.20	5205 23.15
HGUS26-2	12	3₹16	57/16	4	41⁄a	(20) 16d	(8) 16d	4385	8950	3110	6355
LUS28-2	18	31/8	7	-	+	(0) 404	(4) (2)	19.51 1720	39.81 3325	13.83 1545	28.27 2575
10020-2	1 10	378		2	4	(6) 16d	(4) 16d	7.65	14,79	6.87	11,45
HHUS28-2	14	35⁄16	75/16	3	61/8	(22) 16d	(8) 16d	3765	8940	2675	6345
HGUS28-2	12	35/16	73/	1	31/	(00) (0)	11.01.12.1	16.75 6070	39.77 12980	11.90 4310	28.22 9215
TIGOGEO Z	12	3716	73/16	4	61/4	(36) 16d	(12) 16d	27.00	57.74	19.17	40.99
LUS210-2	18	31/8	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195
HHUS210-2	14	254-	034-	1 -	†	(00) 40 1	(10) 10.	11.48 4670	20.02 9660	10.32 4235	7000
11100210-2	14	35/16	93/6	3	8	(30) 16d	(10) 16d	20.77	42.97	18.84	31,14
HGU\$210-2	12	35/1G	93/16	4	81/8	(46) 16d	(16) 16d	6840	14015	4855	10270
		<u></u>	-L	1			Triple 2x Siz	30.43	62,34	21.60	45.69
HGUS26-3	12	415/16	51/2	4	41/8	(20) 164	1	4385	8950	3110	6355
,	-	4 716	372	4	4 78	(20) 16d	(8) 16d	19.51	39.81	13.83	28.27
HGUS28-3	12	41546	71/4	4	6%	(36) 16d	(12) 16d	6070 27.00	12980	4310	9215
HHUS210-3	14	413/16	9	3	715/16	(20) 104	(10) (0)	4670	57.74 9670	19.17 4235	40,99 6865
7111002310		4716	ļ		7 '716	(30) 16d	(10) 16d	20.77	43.02	18,84	30.54
HGUS210-3	12	415/16	91/4	4	8%	(46) 16d	(16) 16d	6840 30.43	14645	4855	10400
			·	1			Quadrupie 2x		65.14	21.60	46.26
HGUS26-4	12	6%s	57/s	4	41/6	(20) 16d	(8) 16d	4385	8950	3110	6355
,				<u> </u>		120/100	(0) 100	19.51	39.81	13.83	28,27
HGUS28-4	12	6%s	7¥16	4	61/8	(36) 16d	(12) 16d	6070 27.00	12980 57.74	4310 19.17	9215 40.99
HHUS210-4	14	61/6	8%	3	713/16	(30) 16d	(10) 16d	4670	10155	4235	7210
			i				(10) 100	20.77	45,17	18.84	32.07
HGUS210-4	12	6%6	9%6	4	81/6	(46) 16d	(16) 16d	6840	14645 65.14	4855 21.60	10400 46.26
HGUS212-4	12	6%	10%	4	101/8	(56) 16d	(20) 16d	7640	14995	5425	10645
y					1070	(00) 100	(20) 100	33.98	66.70	24.13	47.35
HGUS214-4	12	6%	12%	4	111/4	(66) 16d	(22) 16d	10130 45.06	16400 72.95	7195 32.00	11645 51.80
,			·	···			4x Sizes			00.00	01.00
LUS46	18	3%16	4¾	2	37/16	(4) 16d	(4) 16d	1720	2595	1545	1920
HHUS46	1,	25/	F1/		0454	(4.4)		7.65 2540	11,54 7335	6.87 2065	8.54
· III0040	14	3%	51/4	3	315/16	(14) 16d	(6) 16d	11.30	32.63	9.20	5205 23.15
HGUS48	12	3%	51/4	4	41/16	(20) 16d	(8) 16d	4385	8950	3110	6355
LUS48	10	78/	C2/			101.10.1		19:51 1720	39.81 3325	13.83 1545	28.27 2575
	18	39/16	6¾	2	3%a	(6) 16d	(4) 16d	7.65	14.79	6.87	11.45
HHUS48	14	3%	71/8	3	61/a	(22) 16d	(8) 16d	3765	8940	2675	6345
HGUS48	12	254	716-	4	D1/	(50) 104	(10) 45.4	16.75 6070	39.77 12980	11.90 4310	28.22 9215
	12	3%	71/16	4	61/16	(36) 16d	(12) 16d	27.00	57.74	19.17	40.99
LUS410	18	3%€	83/4	2	5%s	(8) 16d	(6) 16d	2580	4500	2320	3195
HGUS410	12	35/8	9	4	01/-	(46) 464	(40) 40	11,48 6840	20.02 14015	10.32 4855	14.21 10270
- AGOUTIU	14	J76	3	4	81/16	(46) 16d	(16) 16d	30.43	62.34	21.60	45.69
HGUS412	12	35/8	10%	4	101/16	(56) 16d	(20) 16d	7640	14995	5425	10645
HGUS414	12	754	1974		111/	(00) 10:	(50) (5)	33.98 10130	66.70 16400	24.13 7195	47.35 11645
11400011	14	3%	12%s	4	11 %s	(66) 16d	(22) 16d	45.06	72.95	32.00	51.80

PROFESSION

Plated Truss Connectors

See footnotes on p. 258.

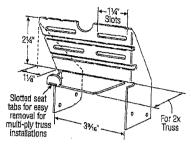
TERNICAL BUILDER

TC - Truss Connectors

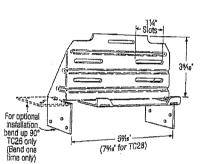
SIMPSON
Strong-Tie

The TC truss connector is an ideal connector for scissor trusses and can allow horizontal movement up to 11/4". The TC also attaches plated trusses to top plates or sill plates to resist uplift forces. Typically used on one or both ends of truss as determined by the building designer.

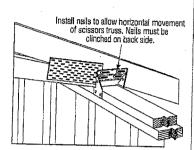
Material: 16 gauge Finish: G90 galvanized

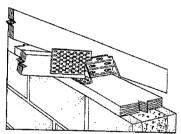

Design: Factored resistances are in accordance with CSA 086-14

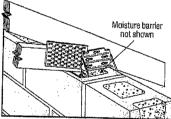
Installation:


- · Use all specified fasteners.
- Nails: 10d = 0.148" dia. x 3" long common wire, 10d x 1½ = 0.148" dia. x 1½" long.
- Drive 10d nails into the truss at the inside end of the slotted holes (inside end is towards the centre of the truss) and clinch on the back side. Do not seat these nails into the truss-allow room under the nail head for movement of the truss with respect to the wall.

Optional TC Installation:

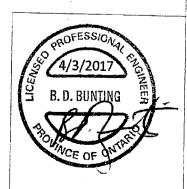

 Bend one flange up 90°. Drive specified nails into the top and face of the top plates or install Titen° screws into the top and face of masonry wall. See optional load tables and installation details.


TC24 U.S. Patent 4,932,173


TC26 (TC28 Similiar)

Typical TC24 Installation

Optional TC26 Installation for Grouted Concrete Block using a Wood Nailer (8", 10", 12" Wall Installation Similar)


Optional TC26 Installation for Grouted -- Concrete Block using Titen Screws-

	Fas	teners	Factored Resistance		
Model			D.Fir-L	S-P-F	
No.	Truss	Wall Plates	Uplift (K ₀ =1.15)	Uplift (K _p =1.15)	
			lb.	lb.	
TC24	(4) 10d	(4) 10d	605	430	
TC26	(5) 10d	(6) 10d	1015	720	
TC28	(5) 10d	(6) 10d	1015	720	

Optional TC Installation Table

	Fa	steners	Factored Resistance		
Model			D.Fir-L	S-P-F	
No.	Truss	Wall Plates	Uplift (K ₀ =1.15)	Uplift (K _D =1.15)	
			lb.	lb.	
TC26	(5) 10d	(6) 10d x 11/2"	810	660	
1020	(5) 10d	(6) 10d	930	660	

- Factored resistances have been increased 15% for earthquake or wind loading; no further increase allowed; reduce where other loads govern.
- 2. Grout strength is 15 MPa minimum.
- Optional TC26 installation with 10d nails requires minimum 3" top plate thickness.
- 4. TC26 fastened to grouted concrete block with (6) 1/16" x 21/4" Titen screws has a factored uplift resistance of 275 lb.

This technical bulletin is affective until June 30, 2019 and reliablishing mailor available as of Marchi, 2017 This Information is updated periodically and should not be silled upok affer June 30, 2019. Contact Simuson Stone This for current information and limited parrainty of see stronglishing.

@ 2017 Simpson Strong-Tie Company inc

T-SPECTC17 3/17 exp. 6/19

(800) 999-5099 strongtie.com

Seismic and Hurricane Ties (cont.)

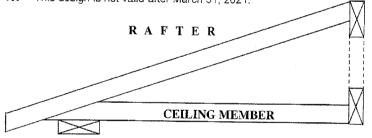
These products are available with additional corrosion protection. For more information, see p. 24.

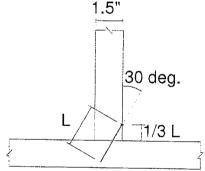
These products are approved for installation with the Strong-Drive® SD Connector screw. See pp. 32–34 for more information.

Model No.			Fasteners			Factored Resistance (K _D = 1.15)					
	.					D.Fir-L			S-P-F		
	" Ga	То	To Plates	To Studs	Uplift		Lateral		La	teral	
		Rafters/			lb.	Fi	F ₂	Uplift lb.	F ₁	F ₂	
		Truss				ib.			lb.	lb	
					kN	kN	kN	kN	kN	kl	
H1	18	(6) 8d x 11/5"	(4) 8d		740	685	300	680	485	21	
	- 	 -		<u> </u>	3.29	3,05	1.33	3.02	2,16	0.9	
H2A	18	(5) 8d x 11/2"	(2) 8d x 11/2"	(5) 8d x 11/2"	830	220	75	590	155	5.5	
			1	.,,	3.69	0.98	0.33	2.62	0.69	0.2	
H2.5A	18	(5) 8d	(5) 8d	-	805	160	160	755	160	16	
					3.58	0.71	0.71	3.36	0.71	0.7	
H2.5T	18	(5) 8a	(5) 8d	_	835	175	210	740	160	21	
					3,71	0.78	0.93	3.29	0.71	0.9	
Н3	18	(4) 8d	(4) 8d		740	180	265	615	125	19	
					3,29	0.80	1.18	2.74	0.56	0.8	
H6	16		(8) 8d	(8) 8d	1585	1085	_	1125	770		
					7.05	4.83	_	5.00	3.43		
H7Z	16	5 (4) 8d	(2) 8d	(8) 8d	1390	670		990	475	_	
					6.18	2.98	-	4.40	2.11	_	
H83	18	(5) 10d x 11/2"	(5) 10d x 1½"	_	1120	_	_	1025	_		
		(-,			4.98	-		4.56	_		
H10A ³	18	(9) 10d x 11/2"	(9) 10d x 1½"		1735	795	410	1505	565	290	
					7.72	3.54	1.82	6.69	2.51	1.2	
H10AR	18	(9) 10d x 1½"	(9) 10d x 11/2"		1485	690	430	1220	570	305	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(a) 100 x 172		6.61	3.07	1.91	5.43	2.54	1.3	
H10A-2	18	(9) 10d x 1½"	(9) 10d x 11½"		1835	1275	430	1645	880	308	
					8.16	5,67	1.91	7.32	3.91	1.36	
H10S ^{7,8}	18	(8) 8d x 1½"	(8) 8d x 1½"	(8) 8d	1465	795	315	1040	565	225	
					6.52	3.54	1.40	4.63	2.51	1.00	
H11Z	18	(6) 16d x 21/2"	(6) 16d x 21/2"		1095	920	545	780	655	390	
					4.87	4.09	2.42	3.47	2.91	1.73	
H14		1 (12) 8d x 1½"	(13) 8d	_	2390	855	320	1805	610	230	
	18				10.63	3.80	1.42	8.03	2.71	1.02	
		2 (12) 8d x 11/2"	(15) 8d		2390	855	320	1805	610	230	
		- (12, 00 x 1 /2	(10) 60		10.63	3.80	1.42	8.03	2.71	1.02	
rsp		(9) 10a x 1½"	(6) 10d x 11/2"	.—	1295	440	_	920	310		
	16				5.76	1.96		4.09	1.38		
		(9) 10d x 11/2"	(6) 10d		1560	440		1105	310		
		(0) 100 x 1/2			6.94	1.96		4.92	1.38		

- Factored resistances have been increased 15% for short term loading; no further increase is allowed.
- Factored resistances are for one anchor. A minimum rafter thickness of 2½" must be used when framing anchors are installed on the same side of the plate (exception: H2.5A).
- H8 factored uplift resistances for stud-to-bottom plate installations are 595 'b. (2.65 kN) for D.Fir-L and 390 lb. (1,74 kN) for S-P-F.
- When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- Hurricane ties are shown installed on the outside of the wall for clarity, Installation on the inside of the wall is acceptable. For a continuous load path, connections at the top and bottom of the wall must be on the same side of the wall (see technical bulletin T-HTIECONPATH).
- Factored resistances in the F₁ direction are not intended to replace diaphragm boundary members or prevent cross grain bending of the truss or rafter members. Additional shear transfer elements shall be considered where there may be effects of cross grain bending or tension.
- H10S can have the stud offset a maximum of 1" from the rafter (centre to centre) for a reduced uplift of 1435 lb. (6.38 kN) D.Fir-L and 1015 lb. (4.51 kN) S-P-F.
- 8. H10S nails to plates are optional for uplift but required for lateral loads.
- H10A may be field-bent up to a slope of 6/12. Multiply the tabulated uplift value x 0.75. Full tabulated lateral resistances apply.
- 10. The factored resistances of stainless-steel connectors match carbon-steel connectors when installed with Simpson Strong-Tie® stainless-steel, SCNR ring-shank nails. For more information, refer to engineering letter L-F-SSNAILS at strongtie.com.
- 11. D.Fir-L/S-P-F factored uplift resistances for the H2.5A fastened to a 2x4 truss bottom chord and double top plates using (5) 8d x 1 ½" nails into the top plates and (3) 8d x 1 ½" nails into the lowest three flange holes into the truss bottom chord is 485 lb. (2.20 kN).
- 12. Nails: 16d x 2½" = 0.162" dia. x 2½" long, 10d = 0.148" dia. x 3" long, 10d x 1½" = 0.148" dia. x 1½" long, 8d = 0.131" dia. x 2½" long, 8d x 1½" = 0.131" dia. x 1½" long. See pp. 27–28 for other nail sizes and information.

BEARING ANCHORAGE BY TOE-NAILS FOR LATERAL CAPACITY


B97791H1


NAIL TYPE	LENGTH	DIAMETER	NAIL LATERAL CAPACITY (LB)		
	(IN)	(IN)	S-P-F	D. FIR	
COMMON	3.00	0.144	132	147	
WIRE	3.25	0.144	132	147	
******	3.50	0.160	159	177	
COMMON	3.00	0.122	97	108	
SPIRAL	3.25	0.122	97	108	
OFFICE	3.50	0.152	145	162	

NOTES:

- 1. Rafter and ceiling members may be anchored to top and bottom chords of girder truss by toe-nailing rafter and ceiling members to girder chords provided the reaction does not exceed the lateral capacities in the table. Hangers (specified by others) are required for reactions higher than the maximum toe-nail capacity. Reactions are based on factored loads.
- 2. Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA 086-14, section 12.9.4.1.
- 3. For 9-3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- 4. Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in tables below.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42 (SPF), G = 0.49 (D. Fir).
- 6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See next page for nailing on bearing plate).
- 7. For loads due to wind the nail lateral capacity in this table may be multiplied by 1.15 (Ko factor).
- 8. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 9. Nail values in this table comply with CSA O86-14, section 12.9.4

This design is not valid after March 31, 2021.

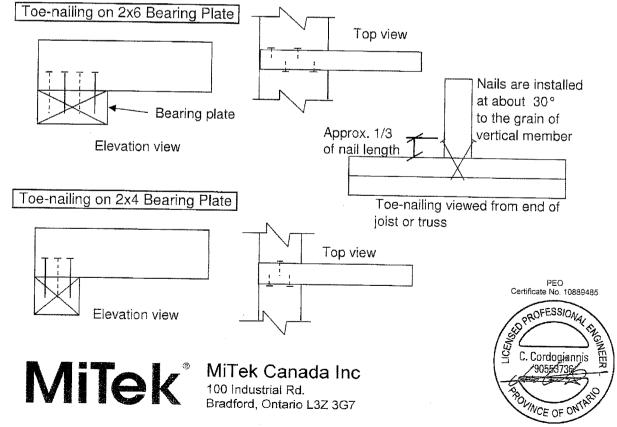
Nail type	Common wire	Common spiral	Common wire	Common spiral 0.122	
Nail dia. (in)	0.160	0.152	0.144		
	(3.5'	' nail)	(3" and 3.25" nail)		
LUMBER SIZE	V	AXIMUM NUMB			
2X4 SPF	. 2	2	3	3	
2X4 D. Fir	2	2	2	2	
2X6 SPF	4	4	4	5	
OVE D Eir	2		<u> </u>		

TOE-NAIL INSTALLATION

R U D \mathbf{S}

E

BEARING ANCHORAGE BY TOE-NAILS FOR WIND LOADING

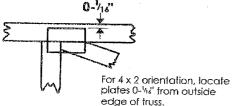

B97791H2

NAIL TYPE	LENGTH	DIAMETER	NAIL WITHDRAWAL CAPACITY (LB		
MALE I II E	(IN)	(IN)	S-P-F	D. FIR	
COMMON	3.00	0.144	30	42	
WIRE	3.25	0.144	32	45	
VVIII.	3.50	0.160	38	52	
COMMON	3.00	0.122	26	36	
SPIRAL	3.25	0.122	28	40	
STITAL	3.50	0.152	36	50	

Note: If using truss with D. Fir lumber and S-P-F bearing plate, use values in table for S-P-F.

NOTES:

- 1. Truss chord, rafter, or ceiling members may be anchored to bearing plate by toe-nails, provided that the actual factored uplift force due to wind or earthquake load does not exceed the withdrawal capacities in the table. Hangers (specified by others) are required for uplift forces that are higher than the maximum toe-nail withdrawal capacity.
- Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA O86-14, section 12.9.5.2.
- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- **4.** Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in table above.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42(SPF), G = 0.49(D. Fir).
- 6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See drawing on detail B37579H1).
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA O86-14, section 12.9.5
- 9. This design is not valid after March 31, 2021.



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated. Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss and fully embed teeth.

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

 4×4

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

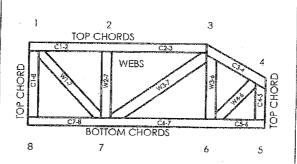
LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

Industry Standards:


Truss Design Procedures and Specifications for Light Metal Plate Connected Wood Trusses DSB-89: Design Standard for Bracing.

BCS1:

Building Component Safety Information, Guide to Good Practice for Handling. Installing & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MiTek® All Rights Reserved

Milek Engineering Reference Sheel: Mil-7473C rev. 10-'08

A General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. cliagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative T. I. or Eliminator bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, properly owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane of joint locations are regulated by IPIC.
- 7. Design assumes trusses will be suitably protected from the environment in accord with TPIC.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing. or less, if no celling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone
- 20. Design assumes manufacture in accordance with TPIC Quality Criteria.

TECH-NOTES

TN 15-001 Piggyback Bracing

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

Disclaimer:

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

- 1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components
- 2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.
- 3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.
- 4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.
- 5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.

- 2- Lumber is to be the sizes and grade specified on the truss drawing.
- 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6- The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)
- 7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals.
- 8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols, numbering system and General Safety notes.

T-1800218

Feb 09, 2018