

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

BARLASSINA

Location:

CAMBRIDGE

Model:

Lot #:

Elevation:

BLOCK 120 (CHERRY)-TH-19~

TH-21 (CHERRY 2, EL-1)

Job Track: PlanLog:

52956 206521

Layout ID:

428410

Ref# Page:

1 of 2

Date:

08-15-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK -		_			OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 3-ply	T79Z Hip Girder	6 /12	58-11-00	9-07-12	2 x 8	1-03-08 1-03-08	1-02-00 1-02-00	1394.43 830.00		
	5	T83 Hip	6 /12	45-00-08	10-11-14	2 x 6	1-03-08	1-02-00 8-01-04	1627.02 975.00		
	6	T84 Jack-Closed	9 /12	8-09-08	9-09-06	2 x 4		3-02-04 9-09-06	305.55 193.00		
W	1 3-ply	T86 Flat Girder	0 /12	8-11-08	7-11-00	2 x 6 2 x 8		7-11-00 7-11-00	272.41 169.00		
	1	T87 Monopitch	9 /12	8-09-08	8-01-06	2 x 4	1-03-08	1-06-04 8-01-06	45.96 29.33		
	1	T87G GABLE	9 /12	8-09-08	8-01-06	2 x 4	1-03-08	1-06-04 8-01-06	47.61 30.83		
	2	T120 Piggyback Base	6 /12	53-11-00	10-00-00	2 x 6	1-03-08	1-02-00 2-09-08	724.69 435.33		
	3	T121 Piggyback Base	6 /12	58-11-00	10-00-00	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1310.67 798.50		
	1 2-ply	T121Z Piggyback Base Girder	6 /12	58-11-00	10-00-00	2×6	1-03-08 1-03-08	1-02-00 1-02-00	873.1 531.33		
	1 3-ply	T126 Half Hip Girder	9 /12	3-06-08	3-05-12	2 x 4 2 x 10		1-06-04 3-05-12	82.15 56.50		
	1	PB76 Piggyback	6 /12	19-07-08	1-06-00	2 x 4			55.92 35.17		
	1	PB77 Piggyback	6 /12	19-07-08	3-00-00	2 x 4			56.54 36.17	·	
	1	PB79 Piggyback	6 /12	19-07-08	4-00-12	2 x 4			62.57 40.50	-	
	1	PB80 Piggyback	6 /12	19-07-08	4-10-14	2 x 4			57.44 35.67		

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

BARLASSINA

Location:

CAMBRIDGE

Model:

Lot #:

Elevation:

BLOCK 120 (CHERRY)-TH-19~

TH-21 (CHERRY 2, EL-1)

Job Track: PlanLog:

52956 206521

Layout ID:

428410

Ref# Page:

2 of 2

Date:

08-15-2022

Designer:

Sales Rep:

Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	5	PB120 Piggyback	6 /12	21-10-00	5-05-08	2 x 4			321.99 198.33		-
	1 2-ply	PB120Z Piggyback	6 /12	21-10-00	5-05-08	2 x 4			128.8 79.33		
	5	J18W Jack-Open	4 /12	6-10-08	3-00-06	2 x 4	1-03-08	3-15 2-07-07	98.45 60.83		
	1	J120 Jack-Open	6 /12	4-07-08	3-05-12	2 x 4	1-03-08	1-02-00 3-05-12	13.78 8.67		

TOTAL #TRUSS= 46

TOTAL BFT OF ALL TRUSSES= 4543.49

BFT.

TOTAL WEIGHT OF ALL TRSSES 7479.08 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
42	Hardware	H2.5A	
4	Hardware	Н8	
2	Hardware	HGUS26	
1	Hardware	HGUS26-3	
1	Hardware	HGUS28-3	
4		HTS16	
5	Hardware	LJS26DS	
6	Hardware	LUS24	
TOTAL NU	IMBER OF ITEMS= 65		

Lumber Yard: TAMARACK LUMBER

Builder: **GREEN PARK HOMES**

Project: BARLASSINA

Location: CAMBRIDGE

Model: BLOCK 120 (CHERRY)-TH-19~

Lot #:

Elevation: TH-22 (CHERRY 1,EL-1)

Job Track: PlanLog:

52956 206521

Layout ID:

428411

Ref# Page:

1 of 1

Date:

08-15-2022

Designer:

Sales Rep: Rick DiCiano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T113 Half Hip Girder	12 /12	10-00-00	2-09-02	2 x 4 2 x 6	·	1-08-12 2-09-02	50.76 33.00		
	1	T122 Piggyback Base	6/12	54-02-00	10-00-00	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	356.28 214.33		
	5	T123 Piggyback Base	6 /12	54-02-00	10-00-00	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1797.34 1088.33		
MVM	1	T124 Roof Special	6 /12	57-10-00	11-01-06	2 x 6	1-03-08 1-03-08	1-02-00 1-06-04	407.81 249.00		
	4	T125 Piggyback Base	6 /12	57-10-00	11-01-06	2 x 6	1-03-08 1-03-08	1-02-00 1-06-04	1614.16 981.33		
	6	PB121 Piggyback	6 /12	15-10-00	3-11-08	2 x 4			231.73 140.00		
	2	PB122 Piggyback	6 /12	14-04-08	3-07-02	2 x 4			69.61 41.67		
	1	PB123 Piggyback	6 /12	14-04-08	3-00-00	2 x 4			38.35 25.00		
	1	PB124 Piggyback	6 /12	14-04-08	1-06-00	2 x 4			39.72 25.50		
	5	J18W Jack-Open	4 /12	6-10-08	3-00-06	2 x 4	1-03-08	3-15 2-07-07	98.45 60.83		
	6	J79 Jack-Open	4 /12	7-03-08	3-02-00	2 x 4	1-03-08	3-15 2-09-02	129.22 84.00		

TOTAL #TRUSS= 33

TOTAL BFT OF ALL TRUSSES= 2942.99

BFT.

TOTAL WEIGHT OF ALL TRSSES 4833.44 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
50	Hardware	H2.5A	

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

BARLASSINA

Location:

CAMBRIDGE

Model:

BLOCK 121 (CHERRY)

Lot #: Elevation: block 120 (TH-19)

TH-7,31 (CHERRY 3E,EL-1)

Job Track:

PlanLog:

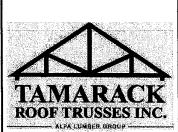
52956 206513

Layout ID:

428364

Ref# Page:

1 of 2


Date:

08-15-2022

Designer:

Sales Rep: Rick DiCiano

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T24Z Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T51 Half Hip Girder	9 /12	18-09-08	4-01-04	2 x 4 2 x 6	1-03-08	1-06-04 4-01-04	177.93 112.00		
	1 2-ply	T51Z Half Hip Girder	9 /12	18-09-08	4-01-04	2 x 4 2 x 6	1-03-08	1-06-04 4-01-04	177.93 112.00		
	2	T52 Half Hip	9 /12	18-09-08	5-01-04	2 x 4	1-03-08	1-06-04 5-01-04	153.85 98.33		
	2	T53 Half Hip	9 /12	18-09-08	6-01-04	2 x 4	1-03-08	1-06-04 6-01-04	166.98 106.67		
	2	T54 Half Hip	9 /12	18-09-08	7-01-04	2 x 4	1-03-08	1-06-04 7-01-04	176.84 113.33		
	2	T55 Half Hip	9 /12	18-09-08	8-01-04	2 x 4	1-03-08	1-06-04 8-01-04	191.55 121.67		
	2	T56 Half Hip	9 /12	18-09-08	9-01-04	2 x 4	1-03-08	1-06-04 9-01-04	202.89 127.00		,
	10	T57 Half Hip	9 /12	18-09-08	10-01-04	2 x 4	1-03-08	1-06-04 10-01-04	1062.03 670.00		
	2	T58 Half Hip	9 /12	18-09-08	11-01-04	2 x 4	1-03-08	1-06-04 11-01-04	208.02 128.67		
	1	T75 Common	9 /12	8-06-00	4-06-04	2×4	1-03-08 1-03-08	6-04 6-04	29.36 20.00		
	1	T75G GABLE	9 /12	8-06-00	4-06-04	2 x 4	1-03-08 1-03-08	6-04 6-04	31.13 20.67		
	3	T76 Common	9 /12	8-06-00	4-08-08	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	114.84 77.50		
	2	PB16 Piggyback	9 /12	8-02-13	2-08-00	2 x 4		2-08-00	53.17 33.67		

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

BARLASSINA

Location:

CAMBRIDGE

Model:

BLOCK 121 (CHERRY)

Lot #:

Block 120 (TH-19)

Elevation:

TH-7,31 (CHERRY 3E,EL-1)

Job Track: PlanLog:

52956 206513

Layout ID:

428364

Ref# Page:

2 of 2

Date:

08-15-2022

Designer:

Sales Rep:

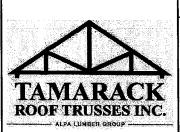
Rick DiCiano

Roof Trusses

	QTY	MARK			·····		OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	PB17 Piggyback	9 /12	8-02-13	3-08-00	2 x 4		3-08-00	57.01 37.33		,
	2	PB18 Piggyback	9 /12	8-02-13	4-08-00	2 x 4		4-08-00	61.89 39.67		
	2	PB19 Piggyback	9 /12	8-02-13	5-08-00	2 x 6 2 x 4		5-08-00	74.76 46.67		
	15	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	251.92 160.00		
	4	J18W Jack-Open	4 /12	6-10-08	3-00-06	2 x 4	1-03-08	3-15 2-07-07	78.76 48.67		
	5	J19 Jack-Open	5 /12	5-08-08	3-02-13	2 x 4	1-03-08	4-01 2-08-09	76.47 46.67		

TOTAL #TRUSS= 65

TOTAL BFT OF ALL TRUSSES= 2157.52


BFT.

TOTAL WEIGHT OF ALL TRSSES 3404.98 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
32	Hardware	H2.5A	
2	Hardware	LUS24	
1	Hardware	LUS26-2	

TOTAL NUMBER OF ITEMS= 35

Lumber Yard: TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

BARLASSINA

Location:

CAMBRIDGE

Model:

BLOCK 121 (CHERRY)

Lot #: Elevation: Block 120 (TH-20)

TH-8 ,32 (CHERRY 2,EL-1)

Job Track: PlanLog:

52956 206513

Layout ID:

428365

Ref# Page:

1 of 2

Date:


08-16-2022

Designer:

Sales Rep:

Rick DiCiano

PROFILE	QTY PLY	MARK	РІТСН	SPAN	HEIGHT	LUMBER	OVERHANG LEFT	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
	PLY	TYPE		0.7		LOWIDER	RIGHT	RIGHT	BFT.	STACK#	REMARKS
	1	T77 Piggyback Base	6/12	58-11-00	10-00-00	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	388.95 236.33		
	4	T78 Piggyback Base	6 /12	58-11-00	10-00-00	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1598.57 970.67		
	1 3-ply	T79 Hip Girder	6 /12	58-11-00	9-05-14	2 x 6 2 x 8	1-03-08 1-03-08	1-02-00 1-02-00	1371.41 812.00		
	4	T82 Hip	6 /12	46-03-08	10-11-14	2 x 6	1-03-08	1-02-00 7-05-12	1311.23 782.67		
	5	T84 Jack-Closed	9 /12	8-09-08	9-09-06	2 x 4		3-02-04 9-09-06	254.62 160.83		
W	1 3-ply	T85 Flat Girder	0 /12	8-11-08	7-03-08	2 x 6		7-03-08 7-03-08	246.32 154.50		
	2	T87 Monopitch	9 /12	8-09-08	8-01-06	2 x 4	1-03-08	1-06-04 8-01-06	91.92 58.67		
	1	T87G GABLE	9 /12	8-09-08	8-01-06	2 x 4	1-03-08	1-06-04 8-01-06	47.61 30.83		
	5	PB75 Piggyback	6 /12	22-04-00	5-07-00	2 x 4			329.86 201.67		
	1	PB76 Piggyback	6 /12	19-07-08	1-06-00	2 x 4			55.92 35.17		
	1	PB77 Piggyback	6 /12	19-07-08	3-00-00	2 x 4			56.54 36.17		
	1	PB78 Piggyback	6 /12	19-07-08	4-06-00	2 x 4			64.27 41.00		
	5	J18W Jack-Open	4 /12	6-10-08	3-00-06	2 x 4	1-03-08	3-15 2-07-07	98.45 60.83		

Lumber Yard: TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

BARLASSINA

Location:

CAMBRIDGE

Model:

BLOCK 121 (CHERRY)

Lot #:

Blockizo (TH-20)

Elevation:

TH-8,32 (CHERRY 2,EL-1)

Job Track: PlanLog:

52956 206513

Layout ID:

428365

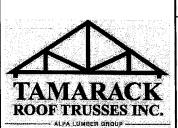
Ref# Page:

2 of 2

Date:

08-16-2022

Designer:


Sales Rep:

Rick DiCiano

HARDWARE

QTY	TYPE	MODEL	LENGTH
5	Hardware	LUS24	
40	Hardware	H2.5A	
4	Hardware	H8	
1	Hardware	HGUS28-3	
2		HTS16	
4	Hardware	LJS26DS	

TOTAL NUMBER OF ITEMS= 56

Lumber Yard: TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

Location:

BARLASSINA CAMBRIDGE

Model:

BLOCK 121 (CHERRY).

Lot #:

Block 120 (TH-23)

Elevation:

TH-11,35 (CHERRY 1,EL-1)

Job Track: PlanLog:

52956 206513

Layout ID:

428368

Ref# Page:

1 of 1

Date:

08-16-2022

Designer:

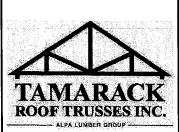
Sales Rep:

Rick DiCiano

Roof Trusses

PROFILE	QTY PLY	MARK TYPE	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT	HEEL HEIGHT LEFT	LBS. BFT.	BUNDLE #	LOAD BY
	1	T90 Roof Special	6 /12	57-10-00	10-09-04	2 x 6	1-03-08 1-03-08	1-02-00 1-06-04	404.53 244.33	O'AON#	ILLIMATING
	4	T91 Piggyback Base	6 /12	57-10-00	10-11-02	2 x 6	1-03-08 1-03-08	1-02-00 1-06-04	1613.12 961.33		
	1	T93 Piggyback Base Girder	6 /12	54-02-00	10-00-00	2 x 6	1-03-08 1-03-08	1-02-00	367.04 222.67		
	5	T94 Piggyback Base	6 /12	54-02-00	10-00-00	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1805.23 1096.67		
	1	T113 Flat Girder	0 /12	10-00-00	2-09-02	2 x 6		2-09-02 2-09-02	54.75 32.00		
	6	PB83 Piggyback	6 /12	12-10-00	3-02-08	2 x 4			184.59 117.00		
	1	PB84 Piggyback	6 /12	15-09-00	1-06-00	2 x 4			43.96 27.83		
	1	PB85 Piggyback	6 /12	15-09-00	3-00-00	2 x 4			42.33 26.83		
	2	PB86 Piggyback	6 /12	15-09-00	3-11-04	2 x 4			76.81 46.67		
	5	J18W Jack-Open	4 /12	6-10-08	3-00-06	2 x 4	1-03-08	3-15 2-07-07	98.45 60.83		
	3	J78 Jack-Open	9 /12	1-09-08	2-10-06	2 x 4	1-03-08	1-06-04 2-10-06	27.43 21.00		
	6	J79 Jack-Open	4 /12	7-03-08	3-02-00	2 x 4	1-03-08	3-15 2-09-02	129.22 84.00		

TOTAL #TRUSS= 36


TOTAL BFT OF ALL TRUSSES= 2941.16

BFT.

TOTAL WEIGHT OF ALL TRSSES 4847.46 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
50	Hardware	H2.5A	

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project: Location: BARLASSINA CAMBRIDGE

Model:

BLOCK 121 (CHERRY)

Lot #: Elevation: Block 120 (TH-24)

TH-12, 36 (CHERRY 12,EL-1)

Job Track: PlanLog:

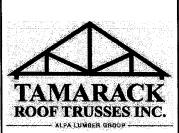
52956 206513

Layout ID:

428370

Ref# Page:

1 of 3


Date:

08-16-2022

Designer:

Sales Rep: Rick DiCiano

	QTY	MARK		*****	***		OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1 2-ply	T24Z2 Jack-Closed Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	57.64 37.00		
	1 2-ply	T95 Hip Girder	9 /12	23-08-08	6-01-02	2 x 4 2 x 6	1-03-08	1-06-04 2-04-02	248.85 157.33		
	1	T96 Hip	9 /12	23-08-08	7-07-02	2 x 4	1-03-08	1-06-04 3-04-02	111.74 71.33		
	1	T97 Hip	9 /12	23-08-08	9-01-02	2 x 4		1-06-04 3-04-02	115.57 71.50		
	1	T98A Hip	9 /12	23-04-00	10-07-02	2 x 4		1-09-10 3-04-02	129.77 81.83		
	1	T99A Common	9 /12	23-04-00	11-03-14	2 x 4		1-09-10 3-04-02	110.24 69.33		
	1	T100 Half Hip	9 /12	23-08-08	7-08-04	2 x 4	1-03-08	1-06-04 7-08-04	117.41 75.00		
	1	T100A Half Hip	9 /12	23-04-00	7-08-04	2 x 4		1-09-10 7-08-04	114.72 73.67		
	1	T101 Half Hip	9 /12	23-08-08	8-08-04	2 x 4	1-03-08	1-06-04 8-08-04	119.37 74.83		
	1	T101A Half Hip	9 /12.	23-04-00	8-08-04	2 x 4		1-09-10 8-08-04	116.66 73.50		
	1	T102A Half Hip	9 /12	23-04-00	9-08-04	2 x 4		1-09-10 9-08-04	122.56 76.67		
	1	T102B Half Hip	9 /12	22-08-08	9-08-04	2 x 4		2-03-04 9-08-04	121.14 74.83		
	4	T102C Piggyback Base	9 /12	22-06-08	9-08-04	2 x 4		2-04-12 9-08-04	483.08 299.33		
	1 2-ply	T103 Half Hip Girder	9 /12	23-08-08	4-01-04	2 x 4 2 x 6	1-03-08	1-06-04 4-01-04	225.23 139.67		

Lumber Yard:

TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

BARLASSINA

Location:

CAMBRIDGE

Model: Lot #:

BLOCK 121 (CHERRY)

Elevation:

Block 120 (TH-24)

TH-12, 36 (CHERRY 12,EL-1)

Job Track: PlanLog:

52956 206513

Layout ID:

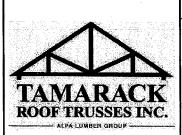
428370

Ref#

Page:

2 of 3

Date:


08-16-2022

Designer:

Sales Rep:

Rick DiCiano

	QTY	MARK .					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	T104 Half Hip	9 /12	23-08-08	5-01-04	2 x 4	1-03-08	1-06-04 5-01-04	97.08 60.67		
	1	T105 Half Hip	9 /12	23-08-08	6-01-04	2 x 4	1-03-08	1-06-04 6-01-04	105.08 66.00		
	1	T106 Half Hip	9 /12	23-08-08	7-01-04	2 x 4	1-03-08	1-06-04 7-01-04	111.49 71.33		
	2	T107 Haif Hip	9 /12	22-06-08	10-08-04	2 x 4		2-04-12 10-08-04	267.33 167.33		
	5	T108 Common	9 /12	11-05-00	5-09-10	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	244.83 158.33		
	1	T108G GABLE	9 /12	11-05-00	5-09-10	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	52.6 34.67		
	1 2-ply	T109 Monopitch Girder	9 /12	10-02-00	9-01-12	2 x 4 2 x 6		1-06-04 9-01-12	114.35 74.33		
	1	T110G GABLE	9 /12	10-02-00	5-04-00	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	46.81 32.50		
	1	T111G GABLE	9 /12	11-09-08	9-07-00	2 x 4		1-06-04 8-09-10	68.03 44.00		
	1 2-ply	T112 Jack-Closed Girder	9 /12	3-10-08	6-01-02	2 x 4 2 x 6	1-03-08	3-02-04 6-01-02	53.84 34.33		
	2	T115 Common	9 /12	17-04-00	8-00-04	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	161.32 102.00		
	1	T115G GABLE	9 /12	17-04-00	8-00-04	2 x 4	1-03-08 1-03-08	1-06-04 1-06-04	82.93 53.00		
	2	PB87 Piggyback	9 /12	12-09-13	2-00-00	2 x 4		2-00-00	81.48 54.00		
	2	PB88 Piggyback	9 /12	12-09-13	3-00-00	2 x 4		3-00-00	87.02 56.00		

Lumber Yard: TAMARACK LUMBER

Builder:

GREEN PARK HOMES

Project:

BARLASSINA

Location: Model: CAMBRIDGE BLOCK 121 (CHERRY)

Lot #:

Block 120 (TH-24)

Elevation:

TH-12, 36 (CHERRY 12, EL-1)

Job Track: PlanLog:

52956 206513

Layout ID:

428370

Ref#

Page:

3 of 3

Date:

08-16-2022

Designer:

Sales Rep:

Rick DiCiano

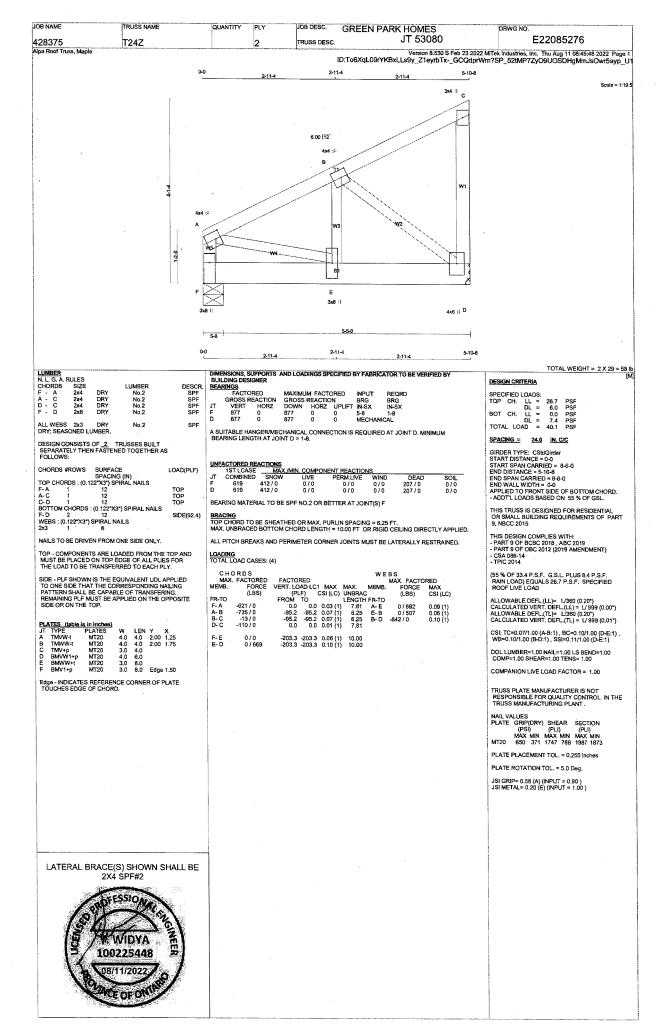
Roof Trusses

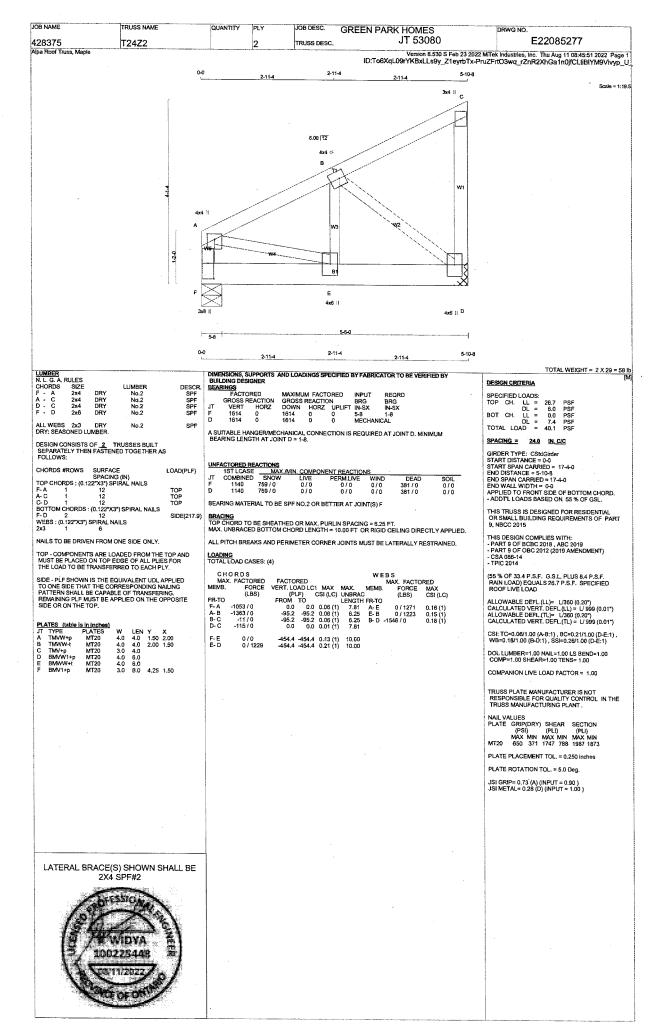
	QTY	MARK					OVERHANG	HEEL HEIGHT	LB\$.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	4	J1 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	67.18 42.67		
	6	J13W Jack-Open	5 /12	6-10-08	3-08-10	2 x 4	1-03-08	5-06 3-03-12	126.93 77.00		
	6	J14W Jack-Open	5 /12	5-04-08	3-01-02	2 x 4	1-03-08	5-06 2-08-04	91.81 60.00		
	7	J15 Jack-Open	5 /12	5-06-08	3-01-15	2 x 4	1-03-08	5-06 2-09-01	109.88 70.00		
	5	J75 Jack-Open	9 /12	3-10-08	5-01-02	2 x 4	1-03-08	2-02-04 5-01-02	80.09 50.83		
	1	J76 Jack-Open	9 /12	1-09-07	3-06-05	2 x 4	1-03-08 2-01-01	2-02-04 3-06-05	12.77 8.83		
	1	J77 Jack-Open	9 /12	1-08-00	3-06-05	2 x 4		2-04-02 3-07-02	8.35 6.17		

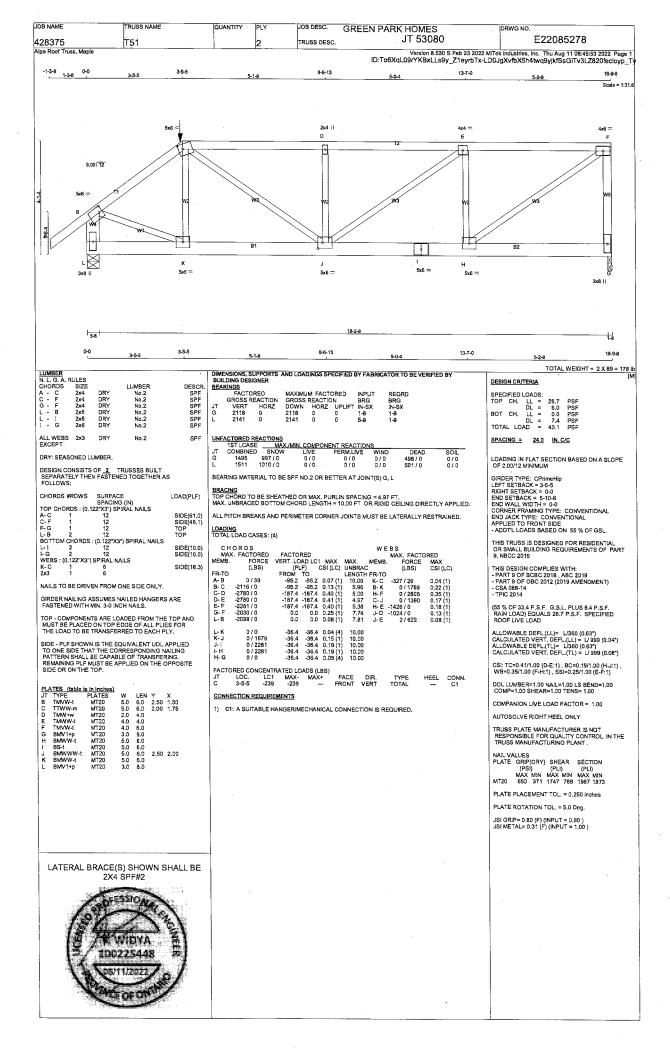
TOTAL #TRUSS= 74

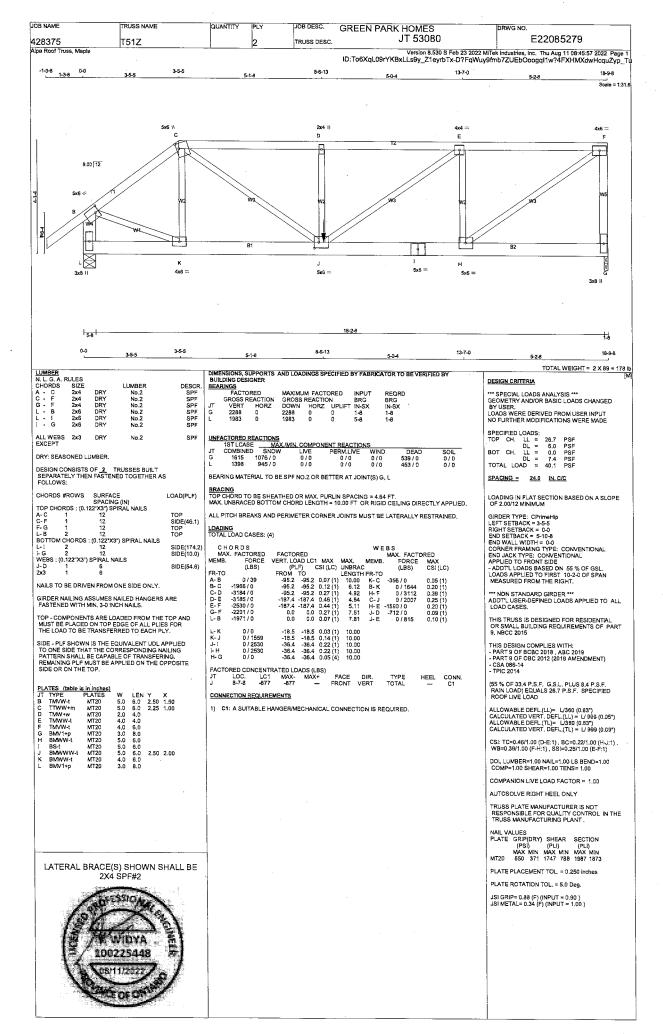
4

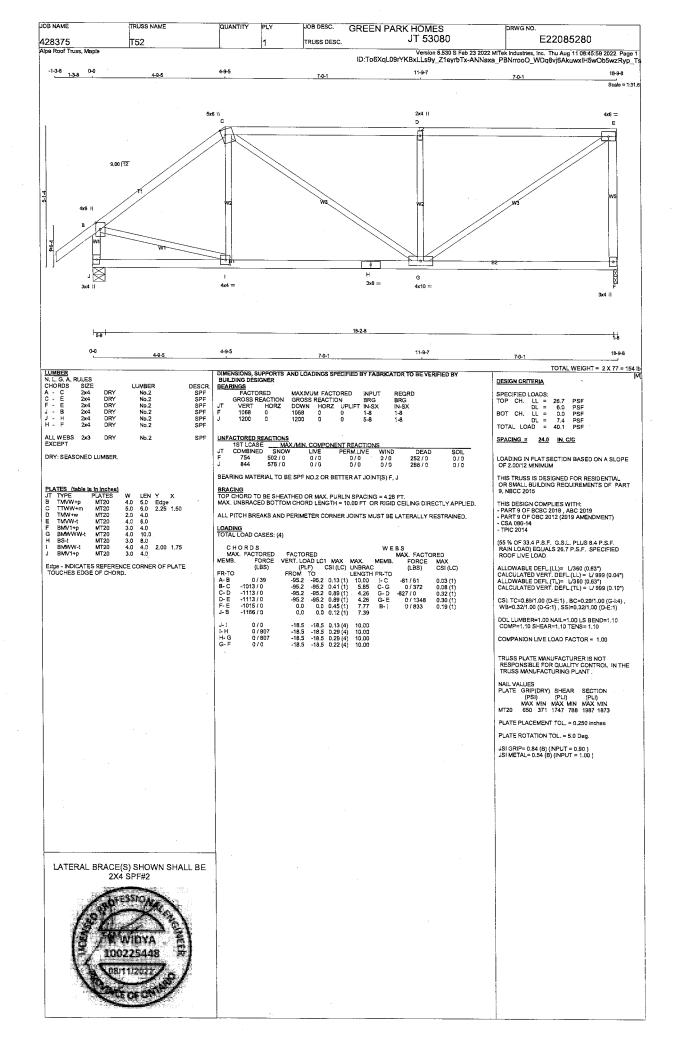
TOTAL BFT OF ALL TRUSSES= 2699.81

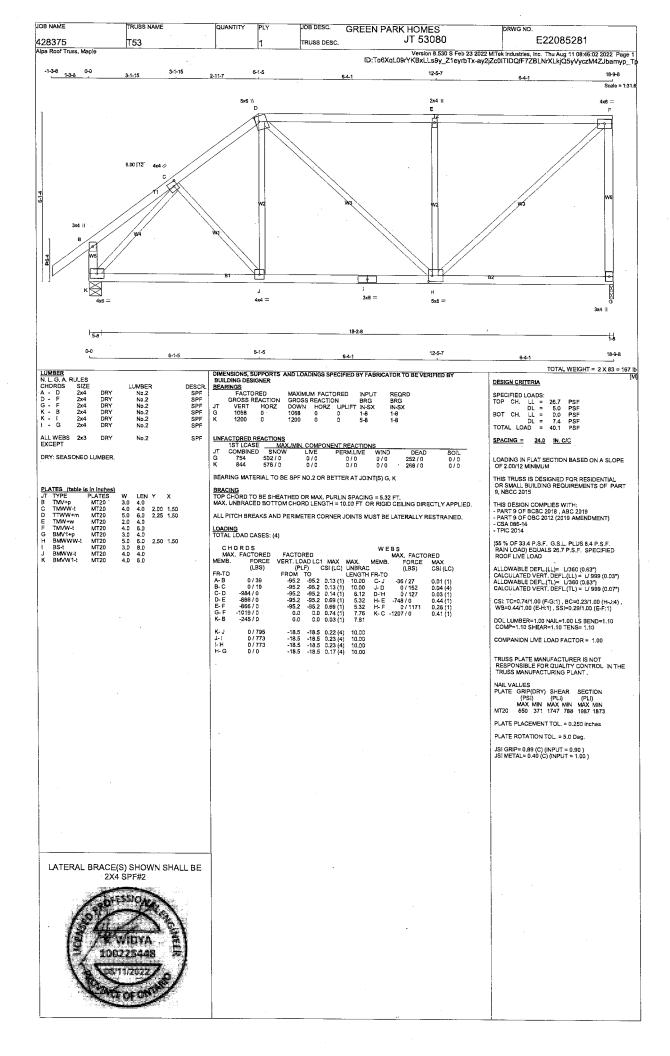

BFT.

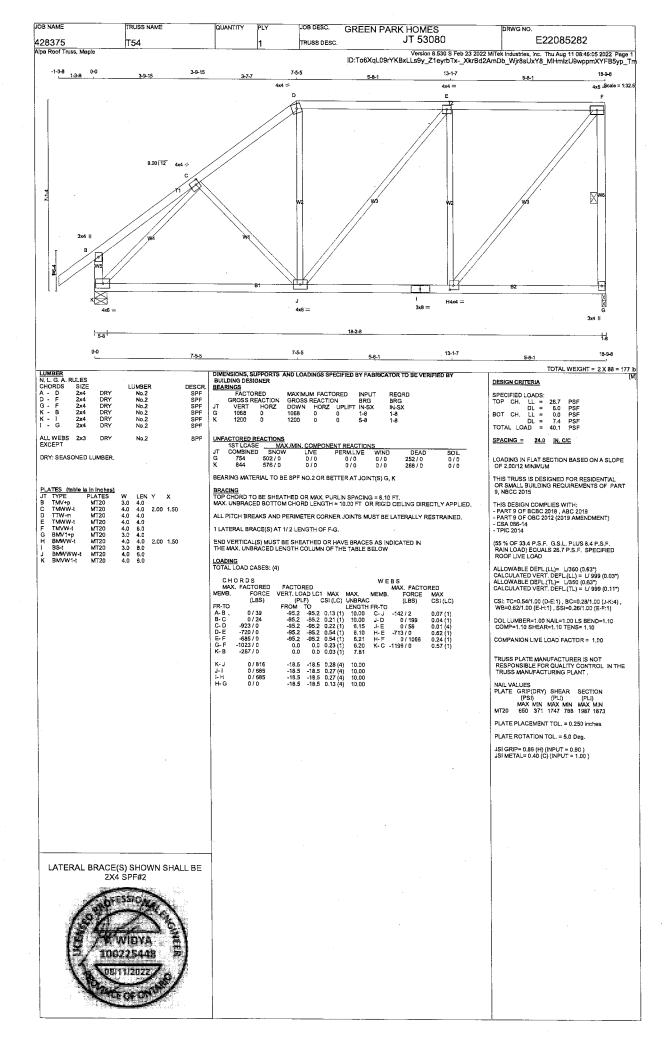

TOTAL WEIGHT OF ALL TRSSES 4265.17 LBS

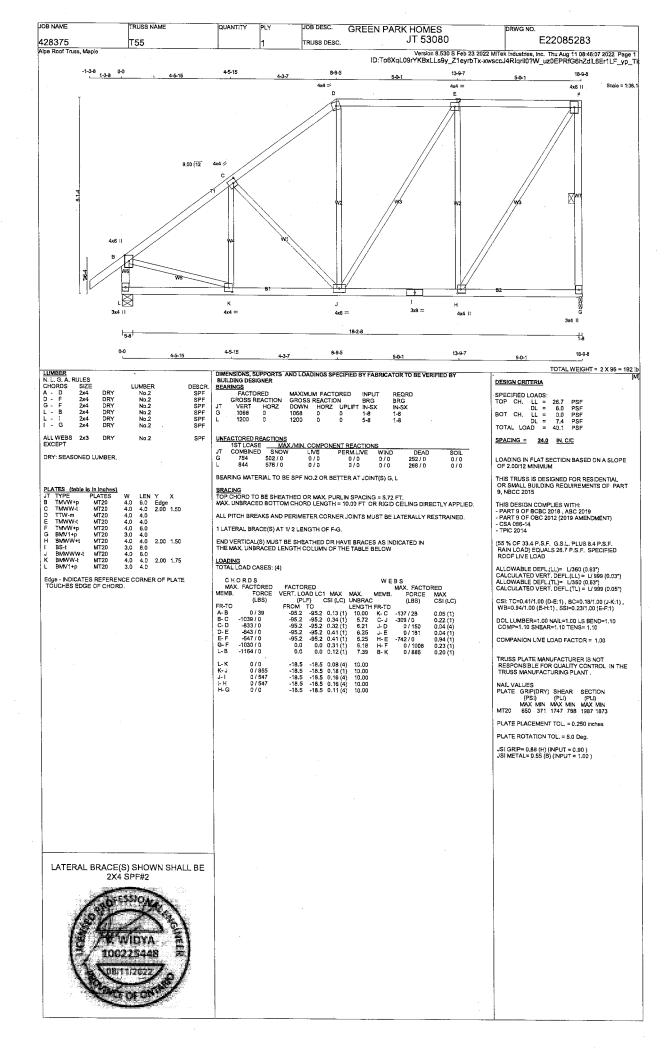

HARDWARE

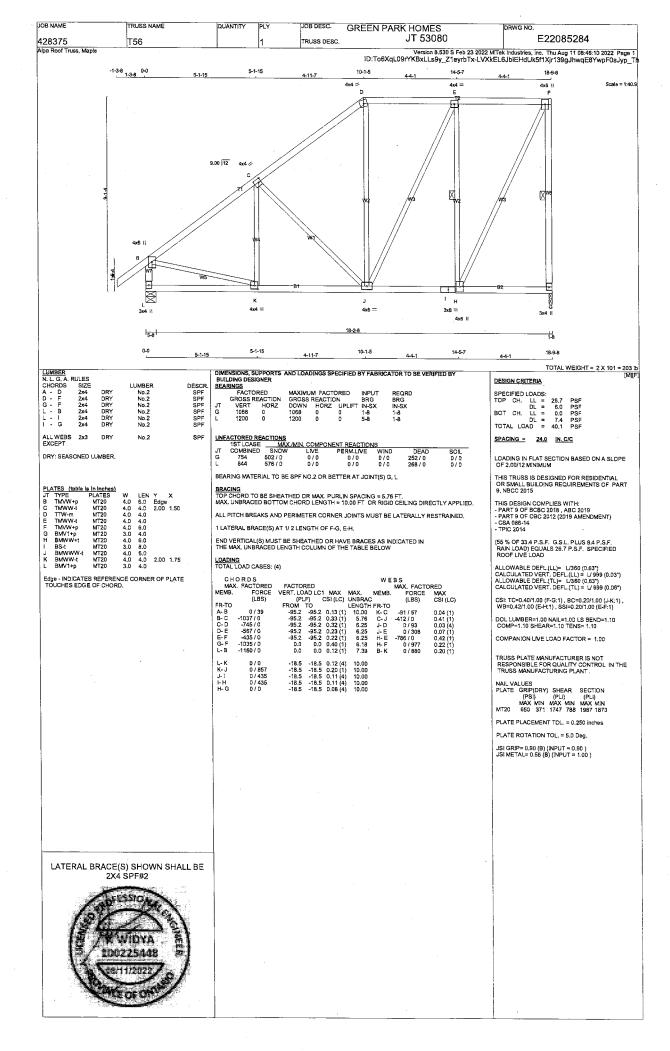

QTY	TYPE	MODEL	LENGTH		
35	Hardware	H2.5A			
1	Hardware	HGUS26-2	-		
9	Hardware	LJS26DS			
1	Hardware	LUS26-2			

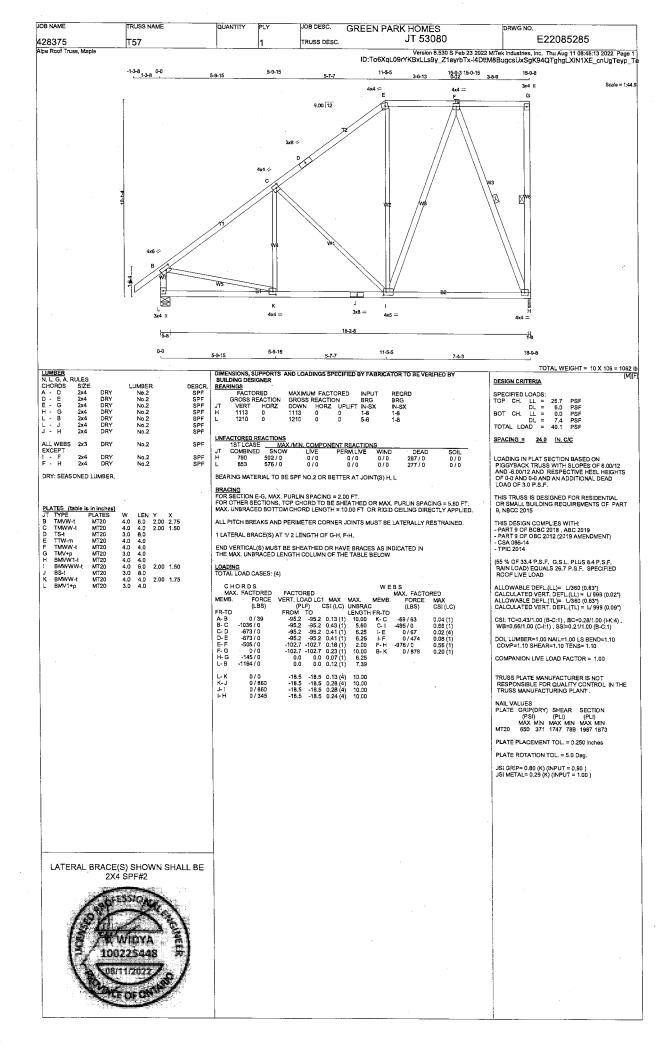

TOTAL NUMBER OF ITEMS= 46

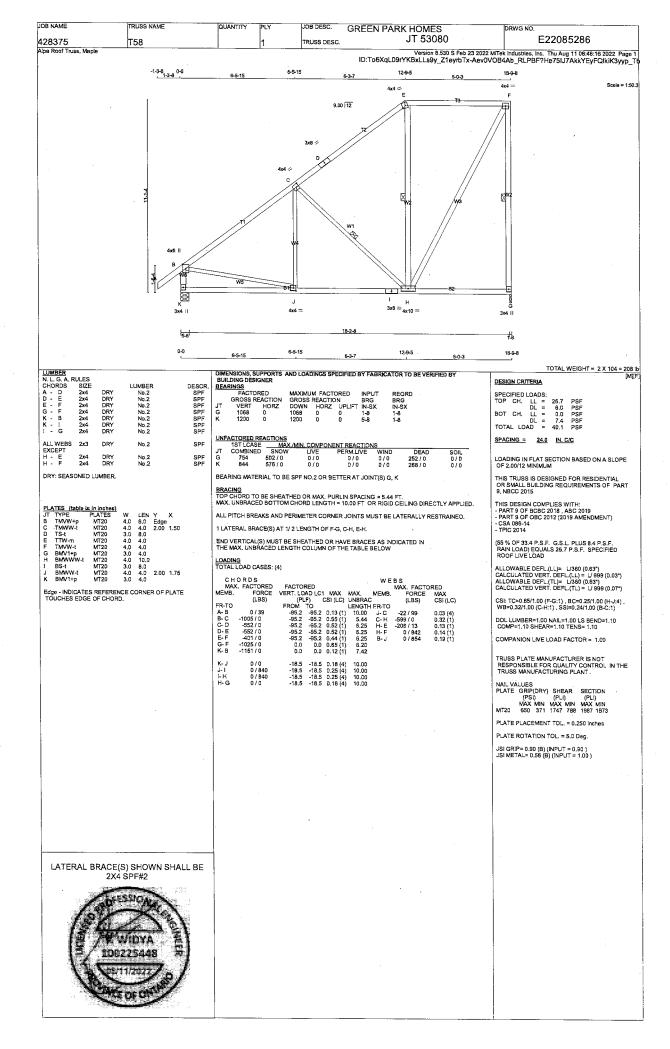


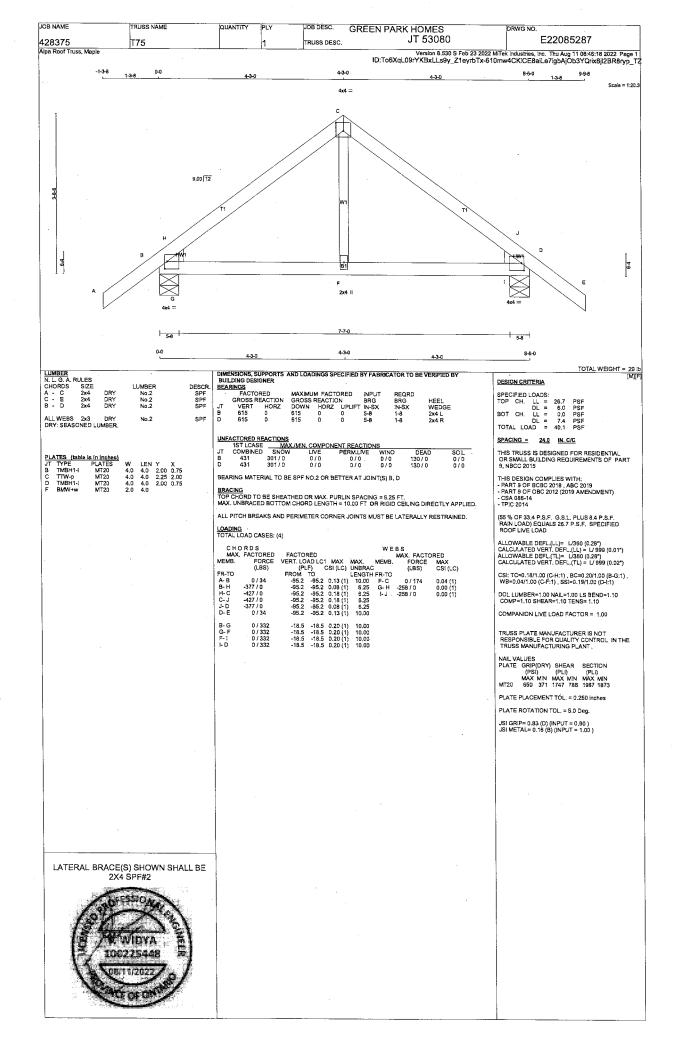


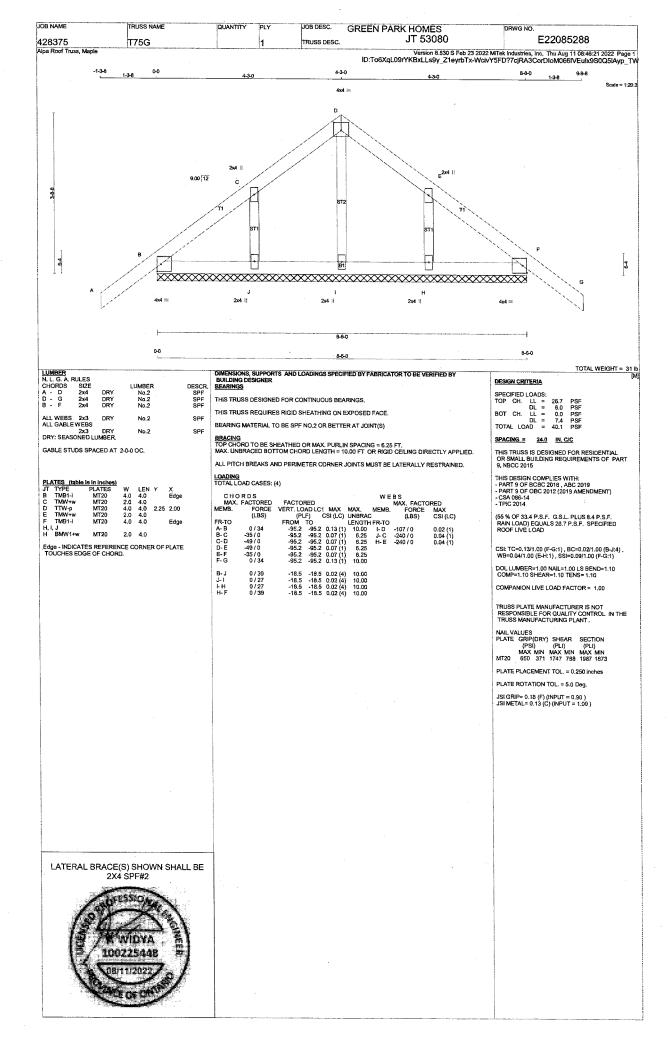


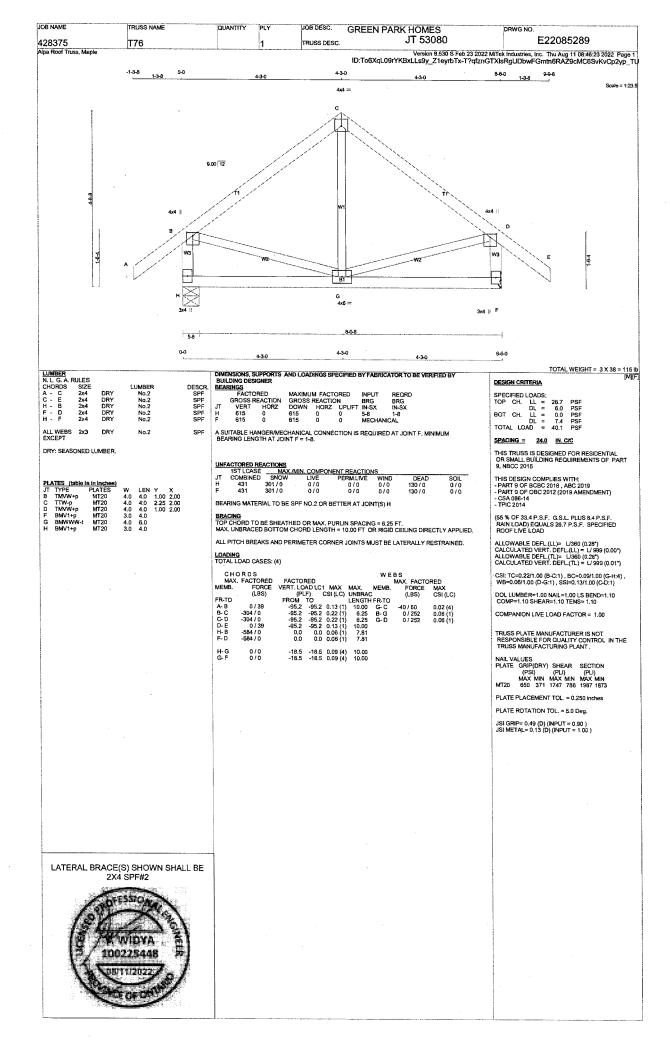


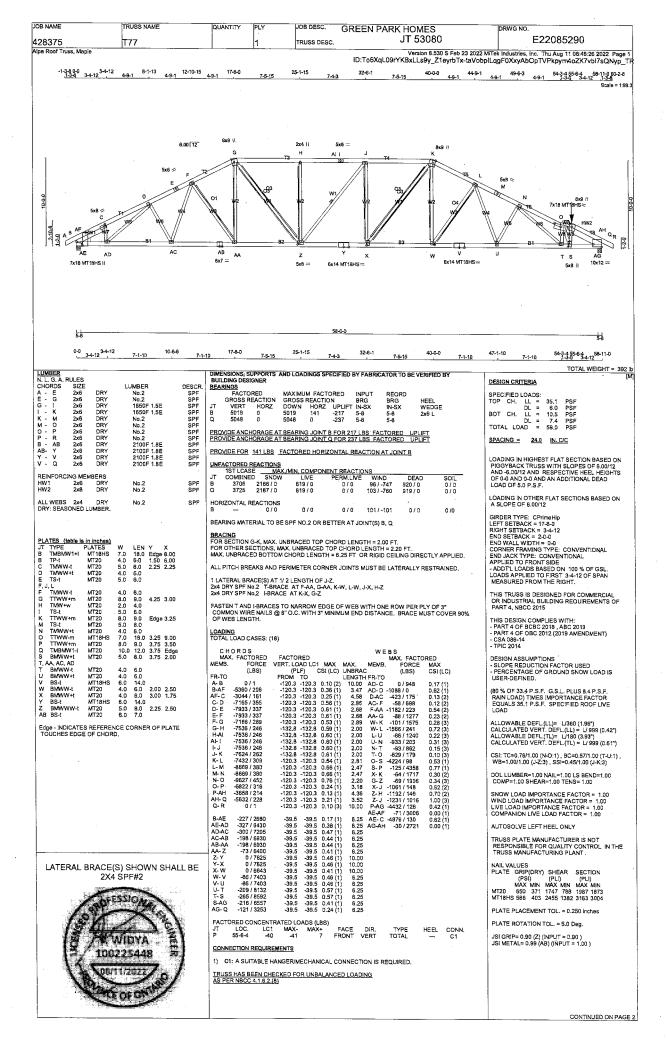


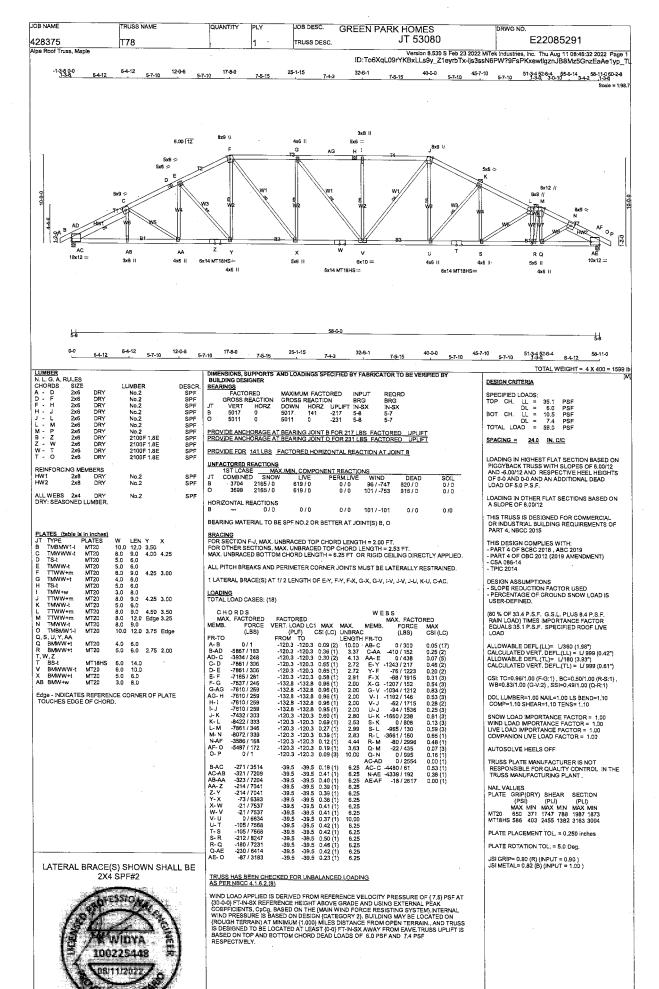


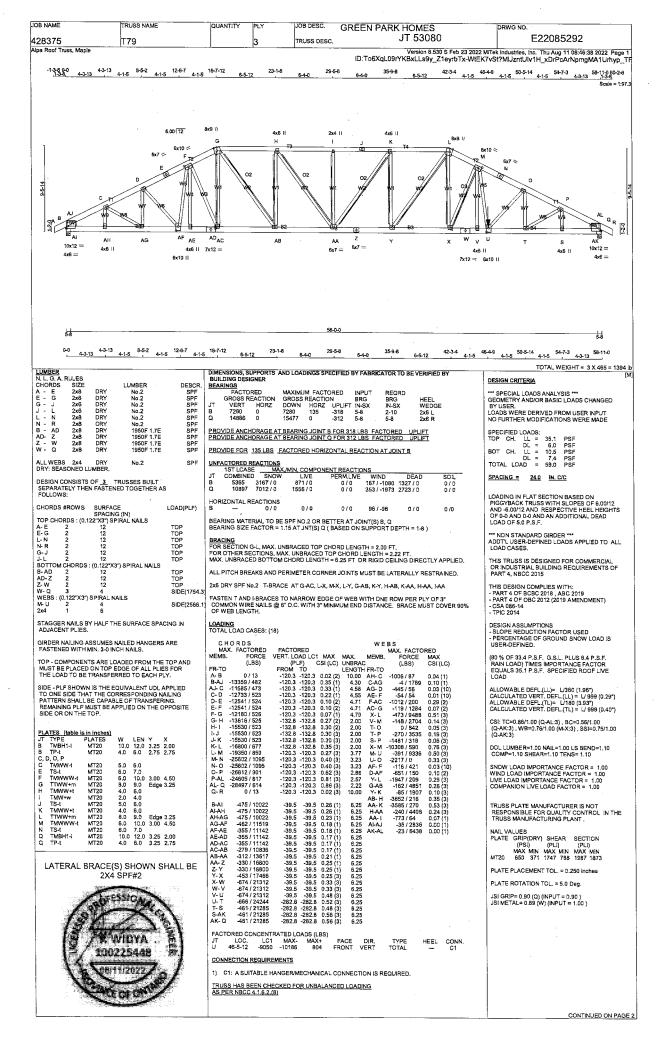




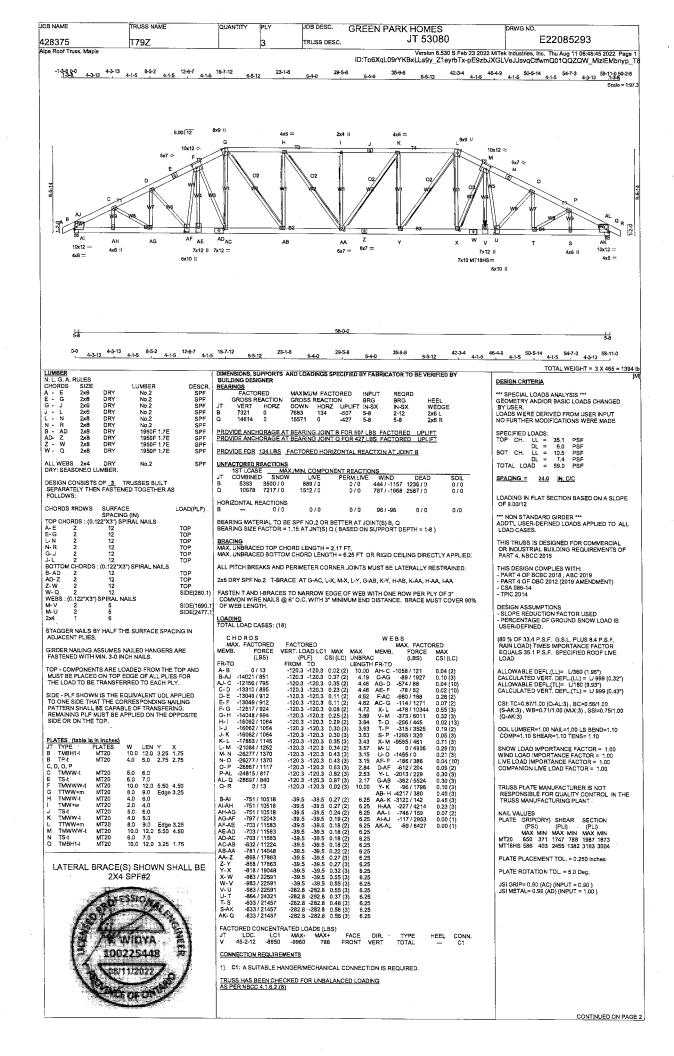






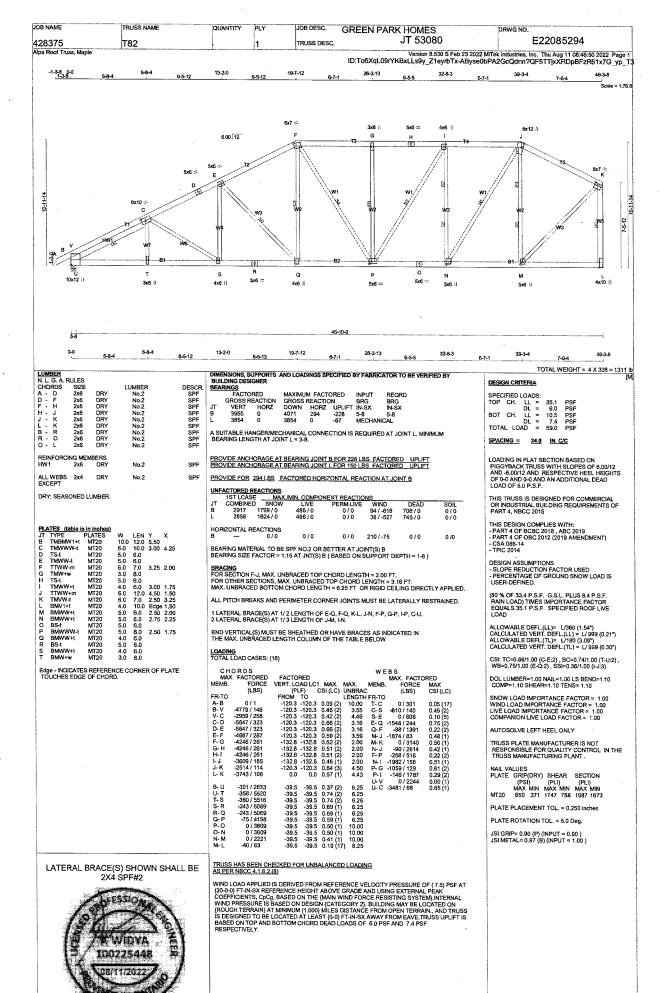


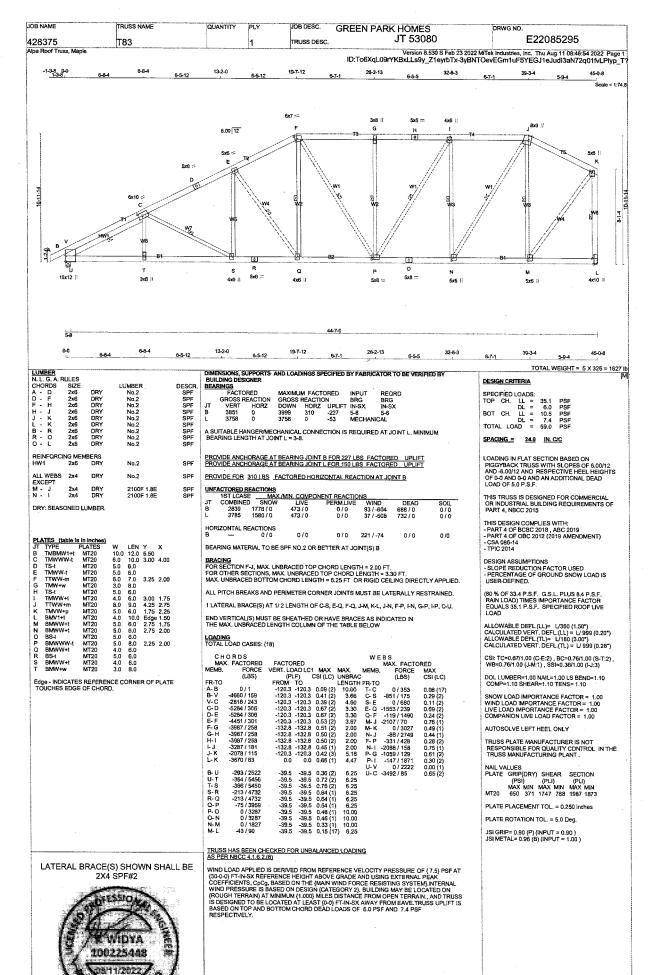
28375	TRUSS NAME	QUANTITY	PLY 1	JOB DESC. TRUSS DESC.	GREEN PARK	HOMES JT 53080		DRWG NO. E220	35290(2)	
28370 pa Roof Truss, Maple	<u> </u>		1	tross Desc.		Version 8.530 S KBxLLs9y_Z1ey	Feb 23 2022 MiTe	k Industries, Inc. T	hu Aug 11 08:46:30 uVvNRkVR6I IAA	2022 Page v5378vn
					.D. I CONULCON		ILIII (AIVIS	LEN TO LI AUEUPIP	~ * Y14/3/C V 00/UVV	coyp
		CONNECTION F	REQUIREMENTS	<u> </u>			-			
		1) C1: A SUIT	ABLE HANGER	VMECHANICAL CO	NNECTION IS REQUIRE					
		WIND LOAD AF {30-0-0} FT-IN-	PLIED IS DERI	VED FROM REFER	RENCE VELOCITY PRES GRADE AND USING EX VIND FORCE RESISTING GORY 2). BUILDING MA DISTANCE FROM OPEN FT-IN-SX AWAY FROM OAOS OF 6.0 PSF AND	SURE OF { 7.5} PSI	TAT			
		WIND PRESSI	S, CpCg, BASE JRE IS BASED	D ON THE (MAIN V ON DESIGN (CATE	VIND FORCE RESISTING GORY 2}, BUILDING MA	SYSTEM).INTERN. Y BE LOCATED ON	AL			
		IS DESIGNED BASED ON TO	TO BE LOCATE P AND BOTTO	ED AT LEAST (0-0) M CHORD DEAD L	FT-IN-SX AWAY FROM OAOS OF 6.0 PSF AND	EAVE.TRUSS UPLIF 7.4 PSF	TIS		-	
		RESPECTIVEL	Y.							
		!								
	·									
							.			
						**				
					•					
· .										
•										
1 ATERAL PRACE	E(P) PHOMA PHATE									
LATERAL BRACE	E(S) SHOWN SHALL BE 4 SPF#2	1							,	
<i>/</i> #	#44///)									
1811	2/1X//X									
					٠.					
[# ,/*ib										
		1								

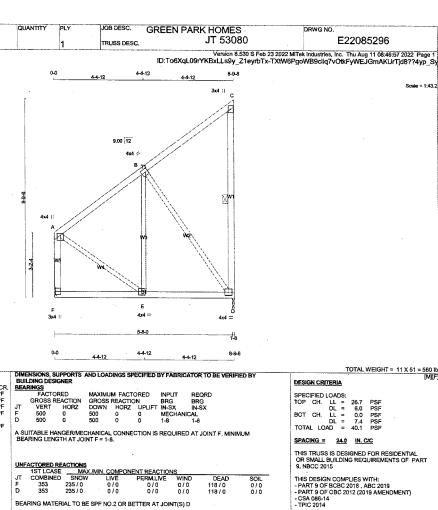


JOB NAME TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES JT 53080 E22085292(2) 428375 Alpa Roof Truss, Maple Version 8.530 S Feb 23 2022 MTek Industries, Inc. Thu Aug 11 08:46:41 2022 Page 2 ID:To6XqL09rYKBxLLs9y Z1eyrbTx-xSvSixUilH8urFb2z1a carLepBYaAV627G9S0yp TC | PLATES (table is in inches) | T | TWE | PLATES | S | SM/V-W | MT20 | S | SM/V-W | MT20 | T | S | SM/V-W | MT20 | S | SS-1 | MT20 | MS-1 | MT20 W LEN Y X CONNECTION REQUIREMENTS 4.0 6.0 5.0 6.0 6.0 10.0 5.50 3.00 7.0 12.0 5.0 6.0 2.50 2.25 6.0 7.0 2.50 3.50 6.0 7.0 2.50 3.50 6.0 6.0 2.50 2.55 7.0 12.0 3.50 5.75 6.0 10.0 5.50 3.00 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. WINO LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (30-0-4) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, C.p.C., BASED ON THE (MAN WIND FORCE RESISTING SYSTEM), INTERNAL WIND PRESSURE IS BASED ON THE (MAN WIND FORCE RESISTING SYSTEM), INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON (ROUGH TERRAIN) AT MINIMUM (1 0:00) WILES DISTANCE FROM OPEN TERRAIN, AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 6.0 PSF AND, 7.4 PSF RESPECTIVELY. Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2






Roof Truss, Maple	8375	T797		i =	
ID_TOSXqL09rYKBxLLS9y Z1eyrbTx-EqsDKa8eQouAKePt?CdO2eYgea7jL58fS0		11.02	3	INDEO DEGE.	
TYPE PLATES W LEN Y X TYPA: WT20 4.0 5.0 12.5 2.75 BMW+W 1720 4.0 5.0 12.0	Trada, mapie			Version 8. ID:To6XqL09rYKBxLLs9y	530 S Feb 23 2022 MiTek Industries, Inc. Thu Aug 11 08:46:48 20: Z1eyrbTx-Eoq6DKa8eQ0uAKePt?CdO2eYgea7jL58fjS0
	BMW+w MT20 Y, AB, AG BMWW+t MT20 BMWW+t MT20 BMW+w MT20 BMW+w MT20 BMW-w+t MT20	4.0 6.0 3.25 2.75 5.0 6.0 6.0 10.0 5.50 3.00 7.0 12.0 7.0 12.0 5.0 6.0 2.50 2.00 6.0 7.0 2.75 3.50 6.0 7.0 2.75 3.50 7.0 12.0 7.0 12.0	1) C1: A SUITABLE HANGE WIND LOAD APPLIED IS DEF (30-0-0) FT-IN-SX REFEREN COEFFICIENTS, CPC, BASI WIND PRESSURE IS BASEL (ROUGH TERRAIN) AT MININ IS DESIGNED TO BE LOCAT BASED ON TOP AND BOTT	RIWECHANICAL CONNECTION IS REQUIRED. RIVED FROM REFERENCE VELOCITY PRESSURE OF { 7 CE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAD ON THE (MAIN WIND FORCE RESISTING SYSTEM). BY ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCAT WITH A CONTROL OF THIS WALL OF THIS STANCE FROM OPEN TERRAIN, A CONTROL FROM OPEN TERRAIN, A CONTROL FROM OPEN TERRAIN, A CONTROL FROM OPEN TERRAIN.	K.
					·
					·
					·

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

LEN Y X 4.0 1.00 2.00 4.0 2.00 1.50 4.0 4.0 4.0 4.0 W 4.0 4.0 3.0 4.0 4.0 3.0

ALL WEBS 2x3 DRY DRY: SEASONED LUMBER.

LUMBER No.2 No.2 No.2 No.2

JOB NAME

428375

TRUSS NAME

T84

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 8.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH DF C-D.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	RDS FACTORED	FACTOR	RED	WEBS MAX. FACTORED						
MEMB.	FORCE	VERT. LO.		MAX	MAX.	мемв.	FORCE	MAX		
İ	(LBS)	(PL	F) (CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM	ΤΌ		LENGTH	FR-TO	, ,			
F-A	-468 / 0	0.0	0.0	0.08 (1)	7.81	A-E	0 / 265	0.06(1)		
A-B	-246 / 0	-95.2	-95.2	0.24 (1)	6.25	E-B	-45 / 65	0.03(1)		
B-C	-31 / 0	-95.2	-95.2	0.24 (1)	6.25	B-D	-382 / 0	0.42 (1)		
D-C	-158 / 0	0.0	0.0	0.07 (1)	6.25					
F-E	0/0	-18.5	40.5		40.00					
				0.10 (4)						
E-D	0 / 222	-18.5	-18.5	0 12 (4)	10 00					

(55 % OF 33.4 P.S.F. G.S.L PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 26.7 P.S.F. SPECIFIED ROOF LIVE LQAD

ALLOWABLE DEFL.(LL)= L/360 (0.29°)
CALCULATED VERT. DEFL.(IL)= L/999 (0.00°)
ALLOWABLE DEFL.(TL)= L/360 (0.29°)
CALCULATED VERT. DEFL.(TL)= L/999 (0.01°)

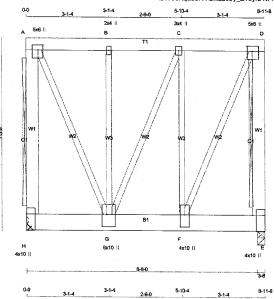
CSI: TC=0.24/1.00 (A-B:1) , BC=0.12/1.00 (D-E:4) , WB=0.42/1.00 (B-D:1) , SSI=0.16/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.35 (A) (INPUT = 0.90) JSI METAL= 0.09 (A) (INPUT = 1.00)

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

TRUSS NAME QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO JT 53080 E22085297 428375 T85 TRUSS DESC. rsion 8.530 S Feb 23 2022 MiTek Industr Version 6.530 S Feb 23 2022 MTTek Industries, Inc. Thu Aug 11 08:46:59 2022 Page 1D:To6XqL09rYKBxLLs9y_Z1eyrbTx-Pw?GX5i22pPK?0zW1pvCLNbZA4PtoN?iBxd64zyp_S

LUMBER
N. L. G. A. RULES
CHORDS SIZE
H - A 2x6
A - D 2x6
E - D 2x6
H - E 2x8 LUMBER No.2 No.2 No.2 No.2 DESCR. SPF SPF SPF SPF SPF

DESIGN CONSISTS OF 3 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

	s #ROWS	SURFACE SPACING (IN)	LOAD(PLF)			
	10RDS : (0.1	22"X3") SPIRAL NAILS				
H-A	2	12	TOP			
A-D	2	12	SIDE(35.0)			
D-E	2	12	TOP			
BOTTO	M CHOROS	(0.122*X3*) SPIRAL NAILS				
H-E	4	. 4	SIDE(1270.8			
WEBS: (0.122"X3") SPIRAL NAILS						
2x3	1 '	6				

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES F THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PL	PLATES (table is in inches)							
丌	TYPE	PLATES	W	LEN	Y X			
Α	TMVW+p	MT20	5.0	6.0	2.25 2.25			
В	TMW+w	MT20	2.0	4.0				
С	TMWW+t	MT20	3.0	4.0				
D	TMVW+p	MT20	5.0	6.0	2.25 2.25			
E	BMV1+t	MT20	4.0		Edge 1.50			
F	BMWW+t	MT20	4.0		5.50 2.00			
G	BMWWW+t	. MT20	6.0	10.0	5.50 2.00			
Η.	BMV1+t	MT20	4.0	10.0	7.25			

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

FACTORED		MAXIMUM FACTORED			INPUT	REQR
GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
VERT	HORZ	DOWN	HORZ	UPLIFT	N-SX	IN-SX
9019	0	9109	-194	0	MECHAN	NICAL
9019	0	9109	0	0	3-8	3-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 4.0,

PROVIDE FOR 194 LBS FACTORED HORIZONTAL REACTION AT JOINT H

UNF	ACTORED R	EACTIONS					
	1ST LCASE	MAX.,	MIN. COMPO	NENT REACTIO	NS.		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Н	6683	3855 / 0	1133 / 0	0/0	43 / -123	1755 / 0	0/0
E	6683	3855 / 0	1133 / 0	0/0	78 / -133	1755 / 0	0/0
	RIZONTAL RE	EACTIONS					
Н	_	0/0	0/0	0/0	139 / -139	0/0	0 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING

MAX. UNBRACED TOP CHORD LENGTH = 8.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 8.25 FT OR RIGID CEILING DIRECTLY APPLIED. ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x6 DRY SPF No.2 T-BRACE AT A-H, D-E

FASTEN T AND LBRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3° COMMON WIRE NAILS @ 6° O.C. WITH 3° MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (18)

¢н	ORDS					WE	BS	
MA)	K. FACTORED	FACTO	RED				MAX, FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	_F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	` '	
H-A	-6335 / 0	0.0	0.0	0.28 (2)	7.81	F-D	0 / 6759	0.51 (2)
A- B	-2811 / 0	-67.8	-67.8	0.06 (2)	6.25	A-G	0 / 8736	0.51 (2)
8- C	-2811/0	-67.8	-67.8	0.07 (2)	6.25	F- C	-170 / 126	0.04 (2)
C-D	-2820 / 0	-67.8	-87.8	0.06 (2)	6.25	G-B	-181 / 97	0.05 (9)
E-D	-6349 / 0	0.0	0.0	0.28 (2)	7.81	G-C	-69 / 79	0.02 (12)
H- G	-125 / 167	-1945 R	1945 8	0.30 (2)	6.25			
G-F	0 / 2820			0.25 (2)				
F-E	-29 / 75			0.29 (2)				

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (30-0-4) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, COCO, BASED ON THE (MAN WIND FORCE RESISTING SYSTEM), INTERNAL WIND PRESSURE IS BASED ON HE GROWN WIND FORCE RESISTING SYSTEM, INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON FOLIOH FOR WIND MAY BE LOCATED ON FOLIOH FOR WAY BE LOCATED ON TO SEE AND TO SEE LOCATED ON THE STATE OF THE WAY FROM EAVE. TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 6.0 PSF AND 7.4 PSF RESPECTIVE.

TOTAL WEIGHT = 3 X 86 ≈ 258 lb

Scale = 1:33.3

DESIGN CRITERIA *** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	35.1	PSF
			=	6.0	PSF
BOT	CH.	LL	=	10.5	PSF
		DL	=	7.4	PSF
TOTA	L LO	ΑD	=	59.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

*** NON STANDARD GIRDER ***
ADDITL USER-DEFINED LOADS APPLIED TO ALL
LOAD CASES.

THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015

THIS DESIGN COMPLIES WITH;
PART 4 OF BCBC 2018, ABC 2019
PART 4 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS
- SLOPE REDUCTION FACTOR USED
- PERCENTAGE OF GROUND SNOW LOAD IS USER-DEFINED.

(80 % OF 33.4 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 35.1 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.30°)
CALCULATED VERT. DEFL.(LL)= L/999 (0.03°)
ALLOWABLE DEFL.(TL)= L/180 (0.60°)
CALCULATED VERT. DEFL.(TL)= L/999 (0.04°)

CSI: TC=0.28/1.00 (D-E:2) , BC=0.30/1.00 (G-H:2) , WB=0.51/1.00 (D-F:2) , SSI=0.58/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR # 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (D) (INPLIT = 0.90) JSI METAL= 0.42 (F) (INPUT = 1.00)

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

Version 8.530 S Feb 23 2022 MTEk Industries, Inc. Thu Aug 11 0847:02 2022 Page 1 ID:To6XqL09rYKBxLLs9y_Z1eyrbTx-qVgP97kxLknvsTi5lySvy?D4oHQd?k1Ctvrmhlyp_S 3-1-4 5-10-4 8-11-8 2x4 | 3x4 | 5x6 i Ш 217 4x8 || E 6x10 li 4x10 | 5-8

JOB DESC.

TRUSS DESC.

GREEN PARK HOMES

JT 53080

LUMBER
N. L. G. A. RULES
CHORDS SIZE
H - A 2x6
A - D 2x6
E - D 2x6
H - E 2x8 LUMBER No.2 No.2 No.2 No.2 DESCR. SPF SPF SPF SPF ALL WEBS 2x3 DRY DRY; SEASONED LUMBER. SPF

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

JOB NAME

428375

TRUSS NAME

T86

QUANTITY.

CHORD	s #ROWS	SURFACE SPACING (IN)	LOAD(PLF)			
TOP CH	IORDS: (0.1	22"X3") SPIRAL NAI	LS			
H-A	2	12	TOP			
A- D	2	12	SIDE(35.0)			
D-E	2	12	TOP			
	MICHORDS	: (0.122"X3") SPIRAL	NAILS			
H-E	4	4	SIDE(1240.5)			
WEBS: (0.122"X3") SPIRAL NAILS						
2x3	1	6	į			

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING, REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

	PLATES (table is in inches)								
į	JT	TYPE	PLATES	W	LEN	Υ	х		
	Α	TMVW+p	MT20	5.0	6.0	2.00	2,25		
	В	TMW+w	MT20	2.0	4.0				
	С	TMWW+t	MT20	3.0	4.0				
	D	TMVW+p	MT20	5.0	6.0	2.00	2.25		
	E	BMV1+p	MT20	4.0	6.0				
	F	BMWW+t	MT20	4.0	10.0	5.50	2.00		
	G	BMWWW+t	MT20	6.0	10.0	5.50	2.00		
	н	BMV1+t	MT20	4.0	10.0	7,25			

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS

2-9-0

5-10-4

8-11-8

FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REGRE
GROSS R	EACTION	GROSS	REACTIO	N	BRG	BRG
VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
8815	0	8905	-212	0	MECHA	NICAL
8815	0	8905	0	n	5_R	4.2

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 4-0.

PROVIDE FOR 212 LBS FACTORED HORIZONTAL REACTION AT JOINT H

UNE	ACTORED R						
	1ST LCASE		MIN. COMPO	NENT REACTIO	NS		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
н	6535	3756 / 0	1111 / 0	0/0	53 / -123	1728 / 0	0/0
Ε	6535	3756 / 0	1111/0	0/0	88 / -143	1728 / 0	0/0
HORIZONTAL REACTIONS							
н	_	0/0	0/0	0/0	152 / -152	0/0	0./0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BBACING
MAX. UNBRACED TOP CHORD LENGTH = 8,25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6,25 FT. OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x6 DRY SPF No.2 T-BRACE AT A-H, D-E

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3° COMMON WIRE NAILS @ 6° O.C. WITH 3° MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (18)

СН	ORDS				WE	BS	
MAX	K. FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT, LOAD LC		MAX.	MEMB.	FORCE	MAX
l	(LBS)		CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
H-A	-6182 / 0	0.0 0.0	0.32 (2)	7.81	F-D	0 / 6496	0.49 (2)
A-B	-2508 / 0	-67.8 -67.8	0.06 (2)	6.25	A-G	0 / 6473	0.49(2)
B-C	-2508 / 0	-67.8 -67.B	0.07 (2)	6.25	F- C	-169 / 138	0.06 (2)
C-D	-2517 / 0	-67.8 -6 7.8	0.06 (2)	6.25	G-B	-179 / 97	0.06 (9)
E-D	-6196 / 0	0.0 0.0	0.32 (2)	7.81	G-C	-82 / 93	0.03 (12)
H-G	-136 / 182	-1900.2-1900.2	0.20 (2)	6.25			
G-F	0 / 2517	-1900.2-1900.2					
F-E	-32 / 82	-1900.2-1900.2					
1	-02/02	-1500.2-1500.2	0.23 (2)	0.23			

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (30-0-3) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CPC, BASED ON THE (MAN WIND FORCE RESISTING SYSTEM), INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON (ROUGH TERRAN) AT MINIMUM (1 000) MILES DISTANCE FROM OPEN TERRAIN, AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (6-0) FT-IN-SX AWAY FROM BAVE, TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 6.0 PSF AND 7.4 PSF RESPECTIVELY.

TOTAL WEIGHT = 3 X 91 = 272 lb

E22085298

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED
BY USER. LOADS WERE DERIVED FROM USER INPUT NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS:

TOP CH. LL = 35.1 PSF
OL = 6.0 PSF
BOT CH. LL = 10.5 PSF
DL = 7.4 PSF
TOTAL LOAD = 59.0 PSF

DESIGN CRITERIA

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

*** NON STANDARD GIRDER ***
ADDTL USER-DEFINED LOADS APPLIED TO ALL
LOAD CASES.

THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018, ABC 2019
- PART 4 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS
- SLOPE REDUCTION FACTOR USED
- PERCENTAGE OF GROUND SNOW LOAD IS
USER-DEFINED.

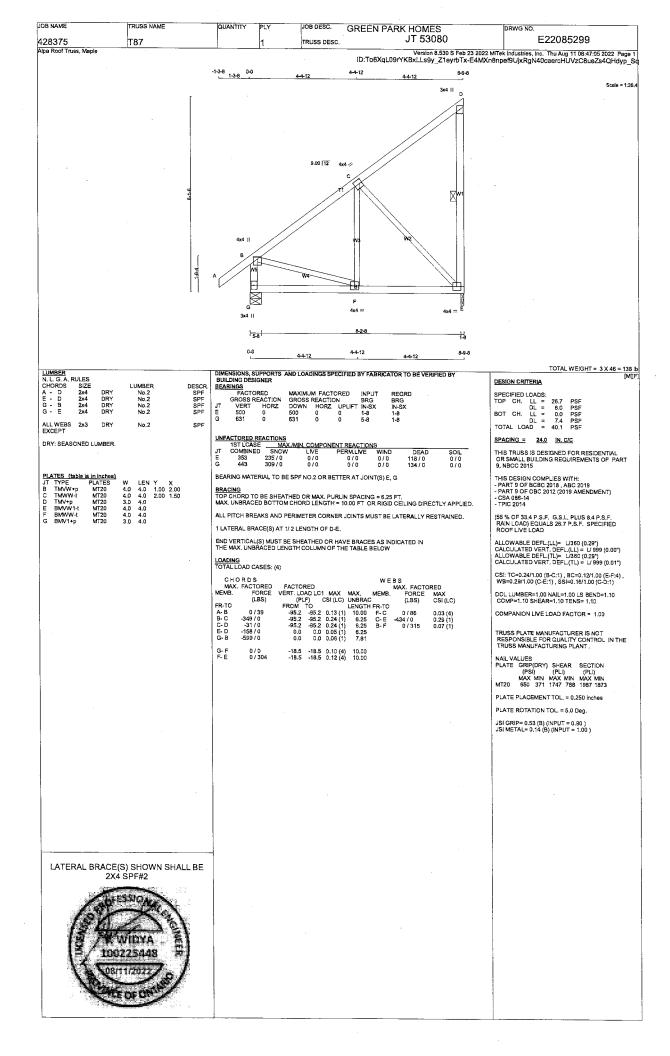
(80 % OF 33.4 P.S.F. G.S.L. PLUS 8.4 P.S.F. (80 % OF 35.4 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 35.1 P.S.F. SPECIFIED ROOF LIVE LOAD

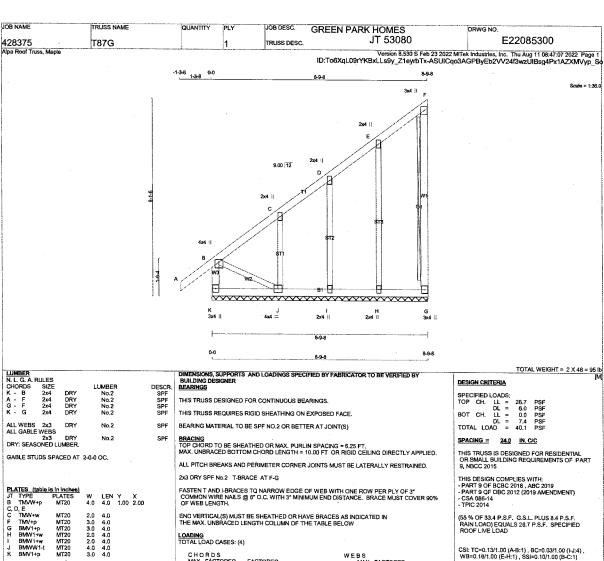
ALLOWABLE DEFL.(LL)= L/360 (0.30°)
CALCULATED VERT. DEFL.(LL)= L/399 (0.03°)
ALLOWABLE DEFL.(TL)= L/180 (0.60°)
CALCULATED VERT. DEFL.(TL) ≈ L/399 (0.04°)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1,10

SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT,


PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.78 (D) (INPUT = 0.90) JSI METAL= 0.41 (F) (INPUT = 1.00)

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

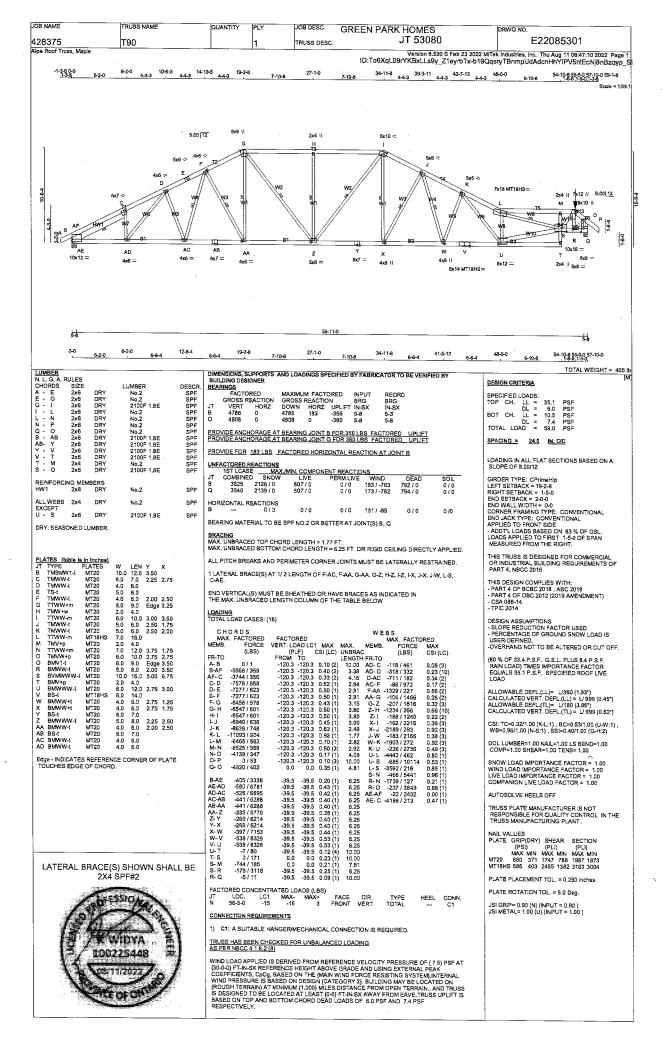
CHORDS MAX. FACTOREO MEMB. FORCE (LBS) FACTOREO
VERT.LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO
0.0 0.0 0.3 (1) 7.81 H-E
95.2 95.2 0.13 (1) 1.000 l-D
-95.2 95.2 0.09 (1) 1.000 l-D
-95.2 95.2 0.05 (1) 6.25 B-J
-95.2 95.2 0.05 (1) 1.000
-95.2 95.2 0.05 (1) 1.000
-95.2 95.2 0.05 (1) 1.000
-95.2 95.2 0.05 (1) 6.25
0.0 0.0 0.06 (1) 7.81 FORCE (LBS) MAX CSI (LC) FR-TO K-B A-B B-C C-D D-E G-F -252/0 0/39 -2/0 -20/0 0/0 -11/0 -80/0 0.16 (1) 0.06 (1) 0.06 (1) 0.00 (1) 0/0 0/6 0/3 0/0 -18.5 0.03 (4) -18.5 0.03 (4) -18.5 0.02 (4) -18.5 0.02 (4)

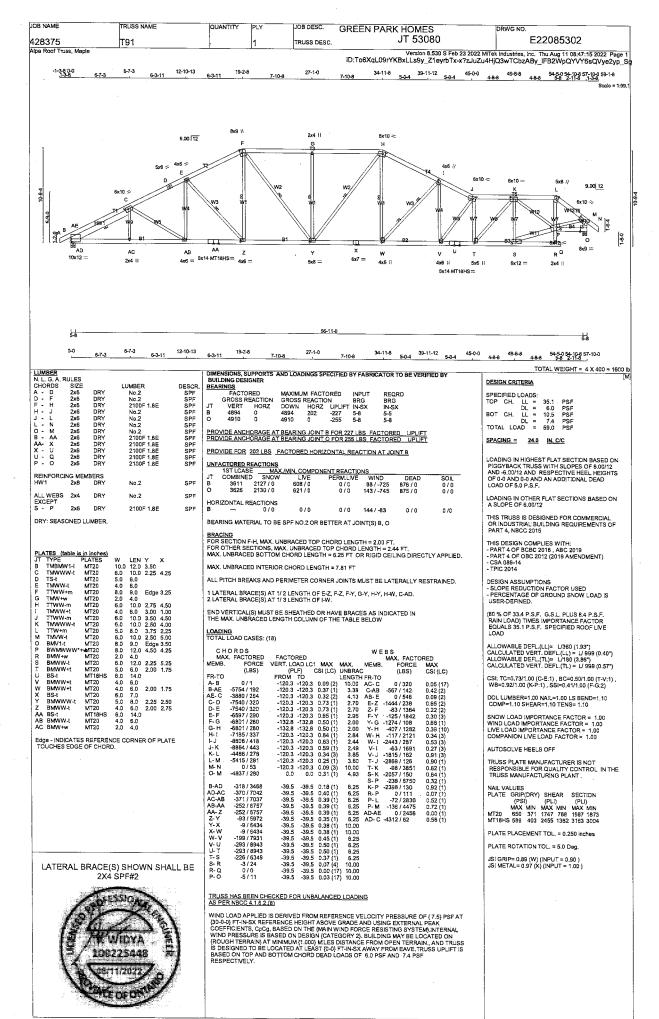
CSI: TC=0.13/1.00 (A-B:1) , BC=0.03/1.00 (I-J:4) , WB=0.16/1.00 (E-H:1) , SSI=0.10/1.00 (B-C:1)

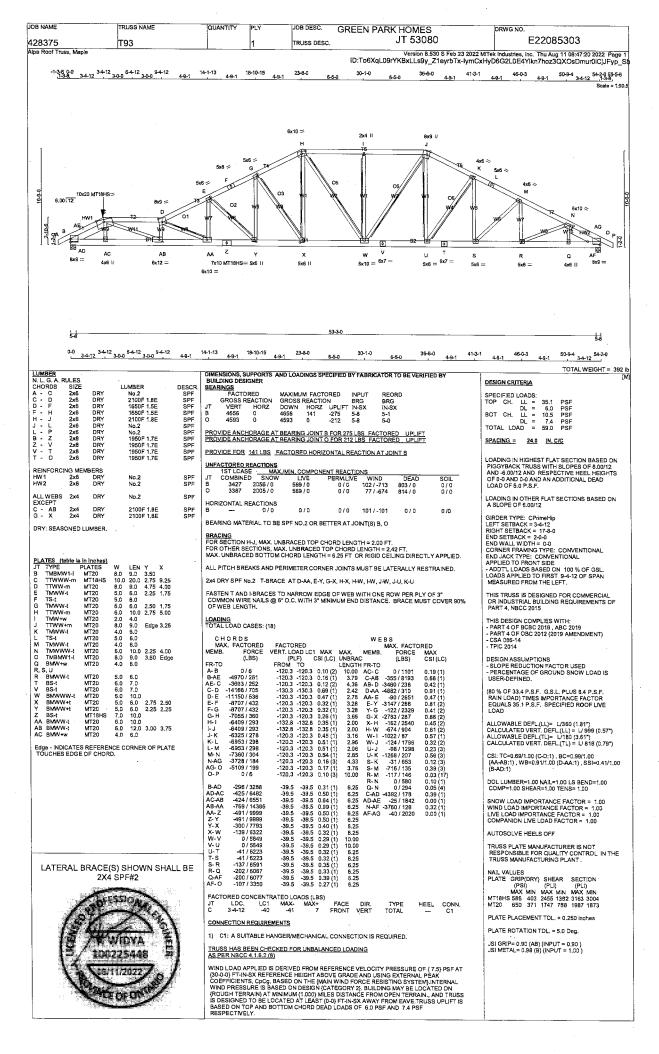
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

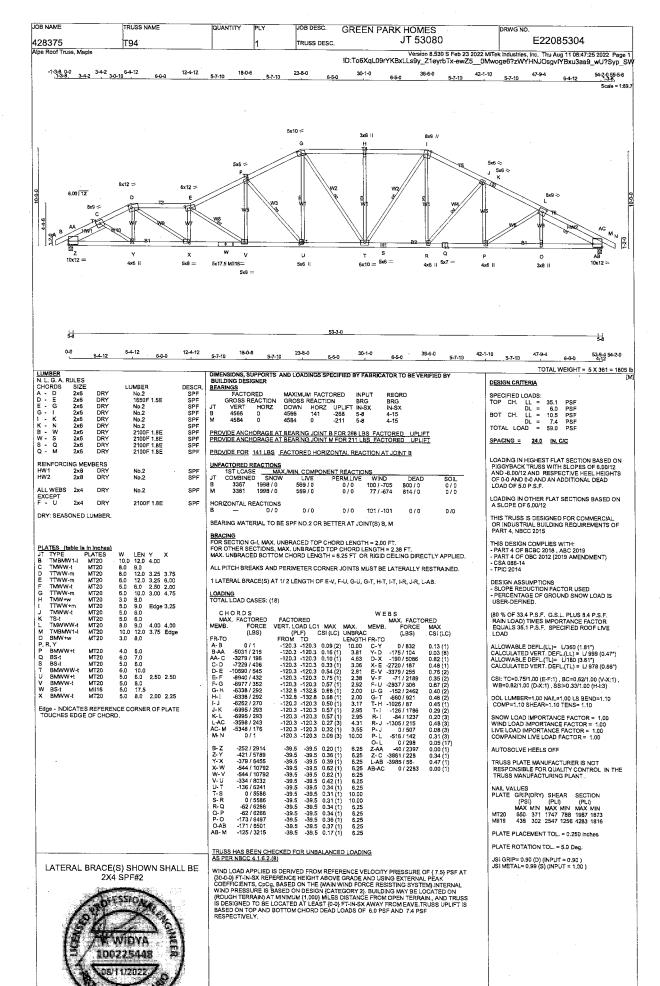
COMPANION LIVE LOAD FACTOR = 1.00

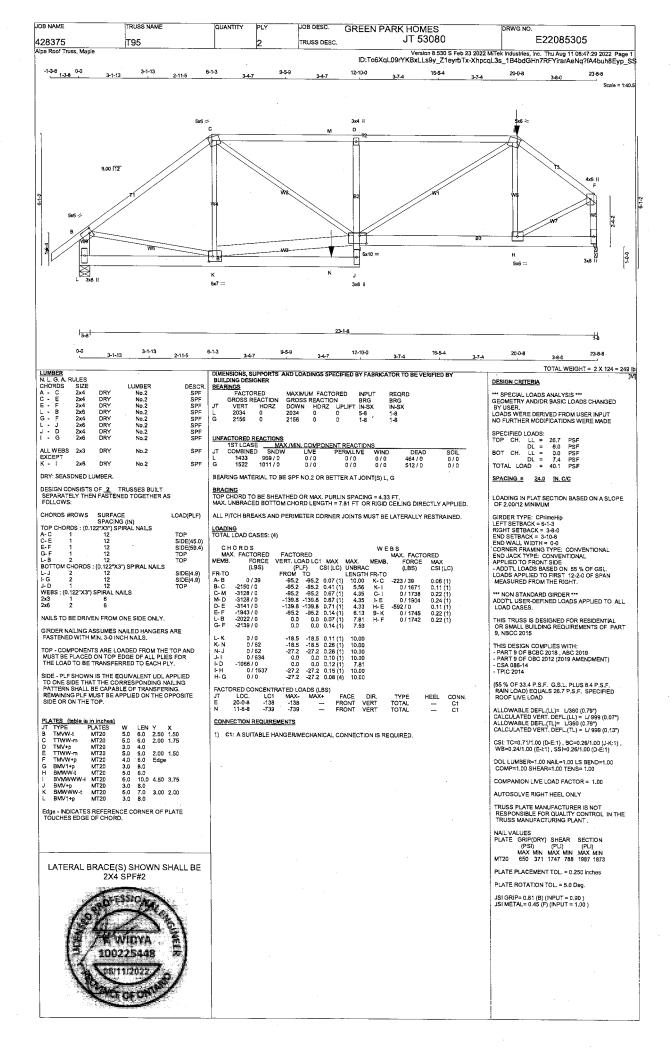
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT,

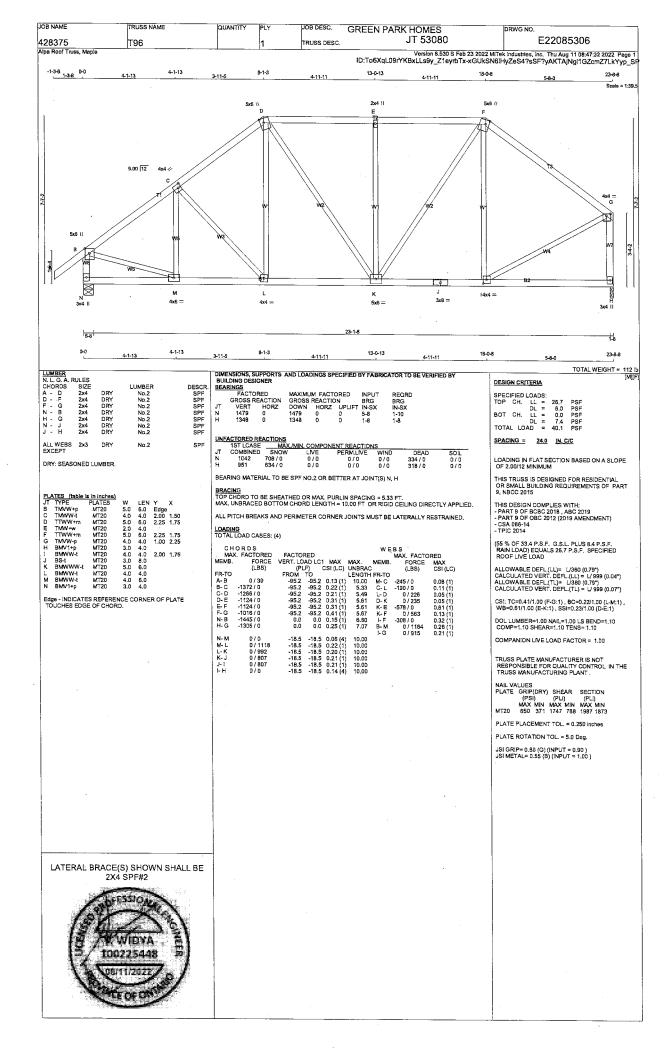

PLATE PLACEMENT TOL. = 0.250 inches

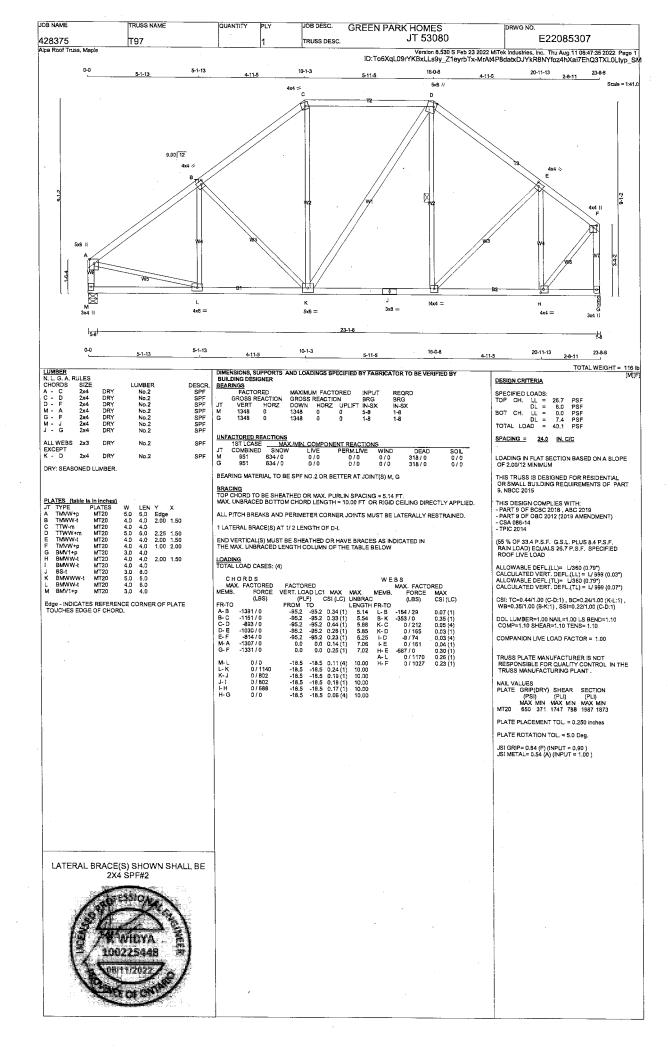

PLATE ROTATION TOL. = 5.0 Deg

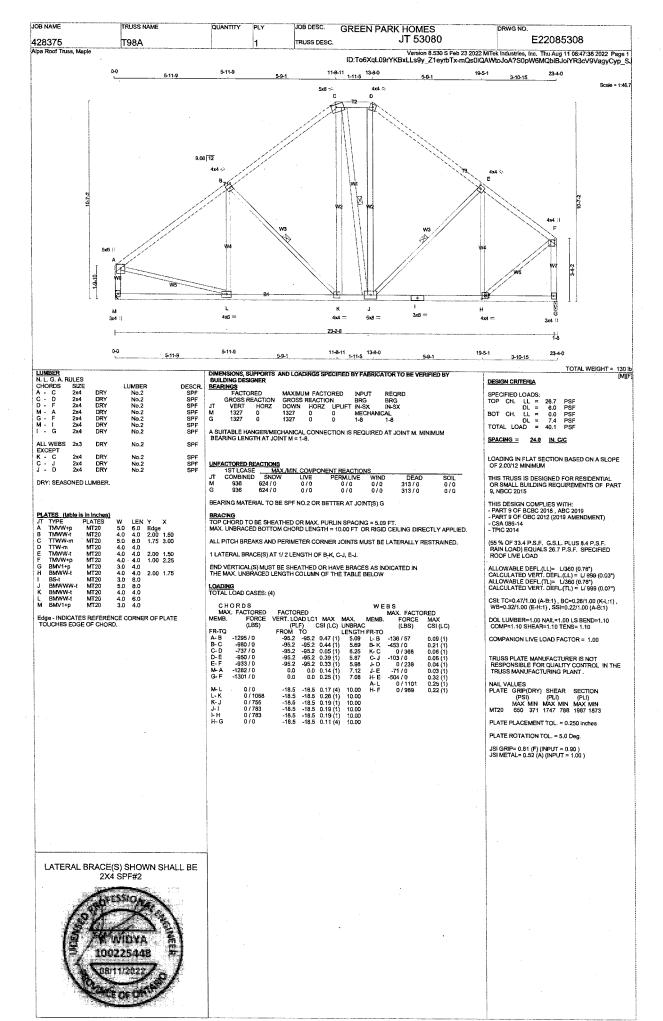

JSI GRIP= 0.19 (B) (INPUT = 0.90) JSI METAL= 0.14 (C) (INPUT = 1.00)

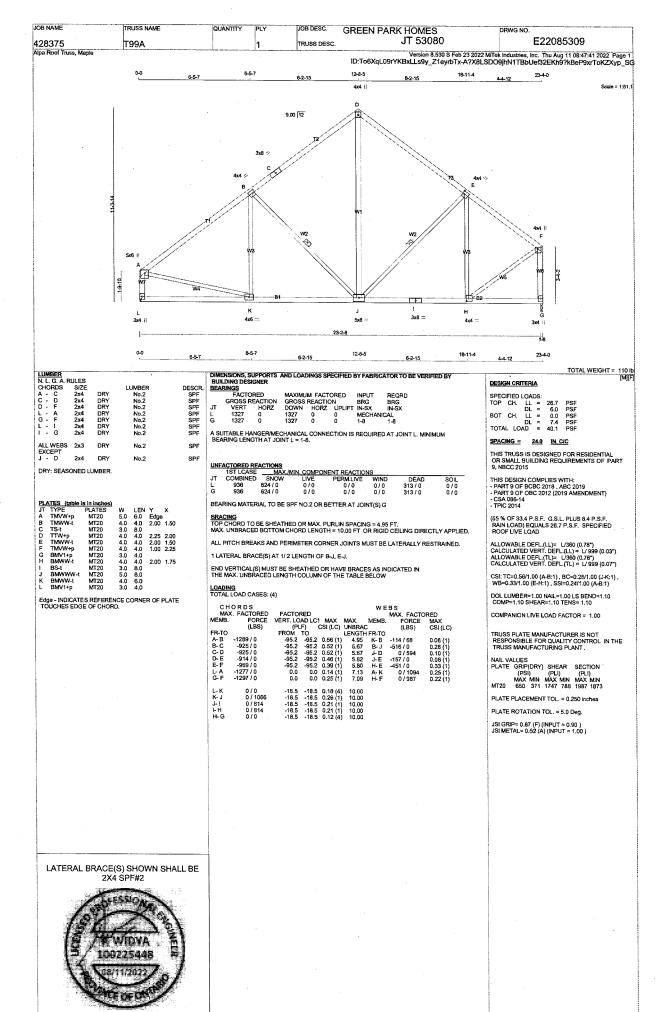

LATERAL BRACE(S) SHOWN SHALL BE

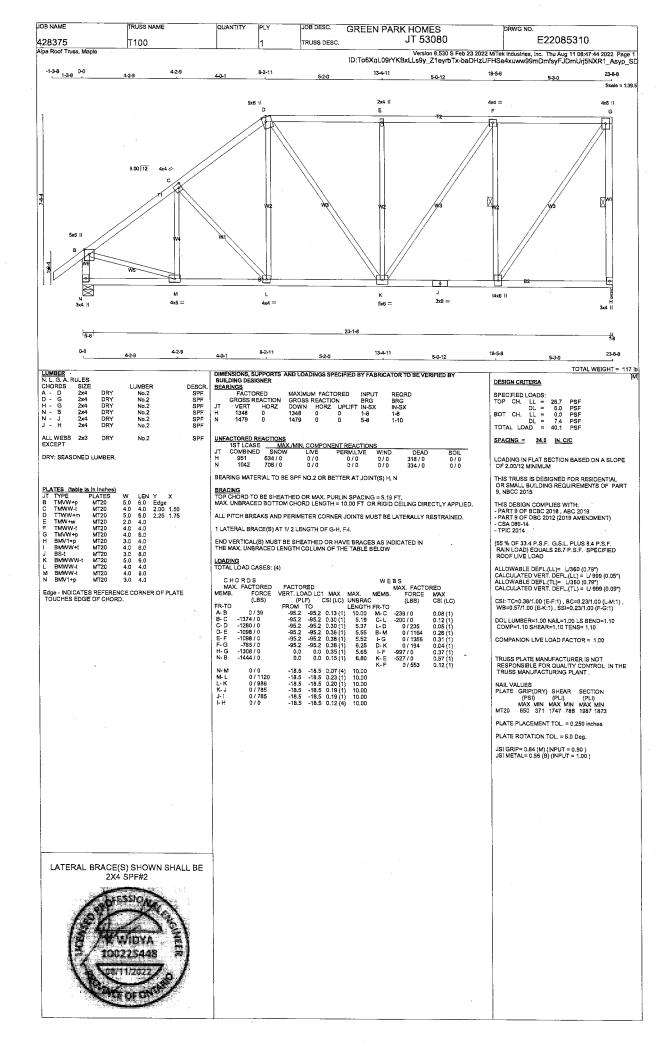


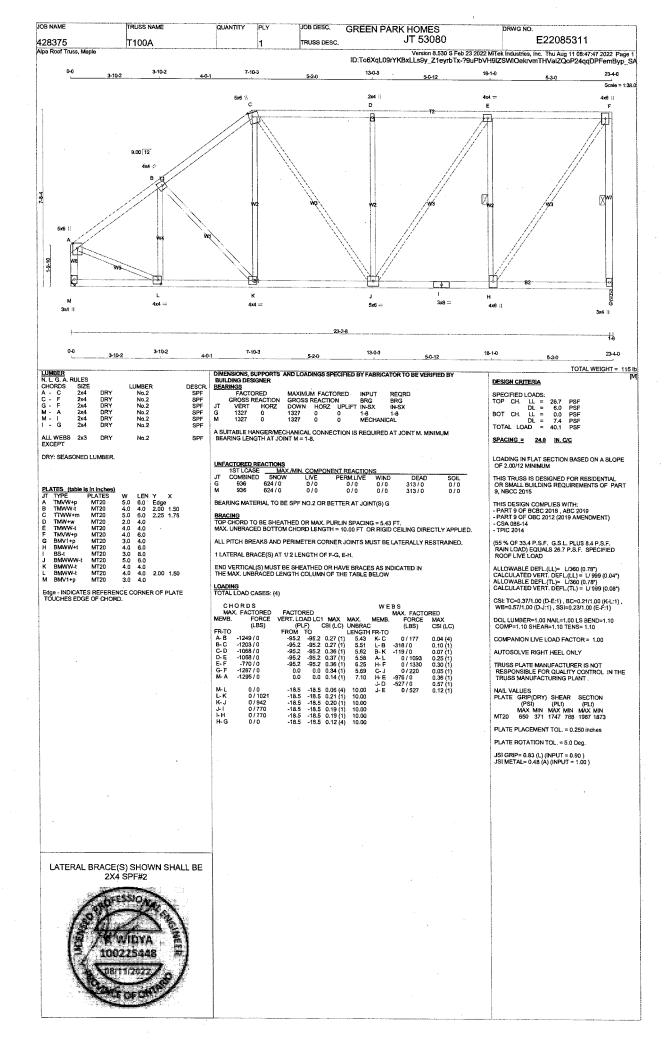


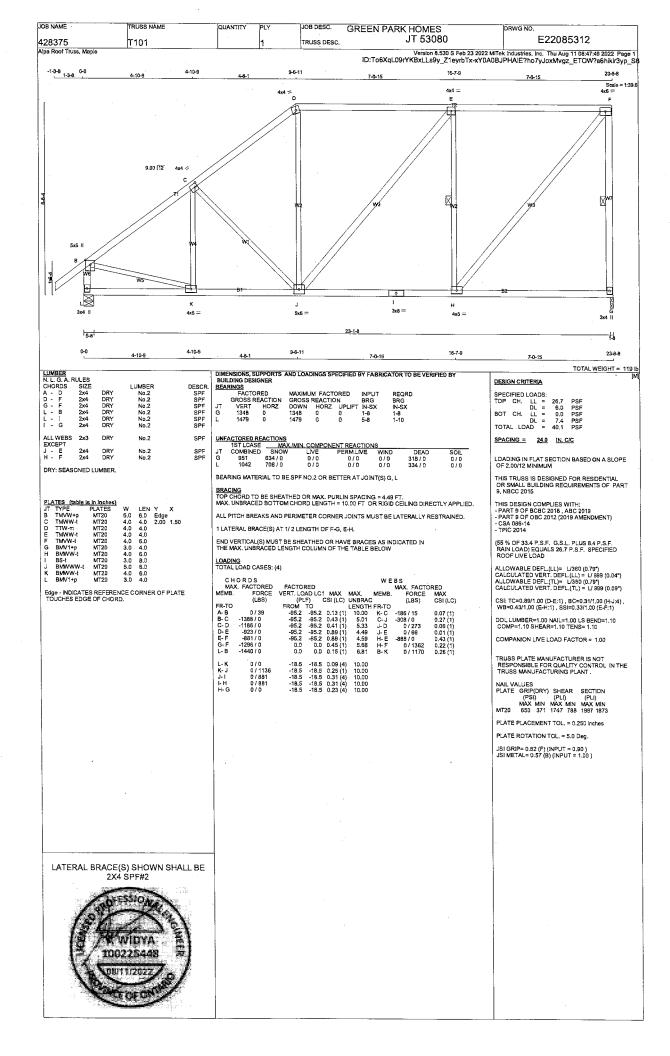


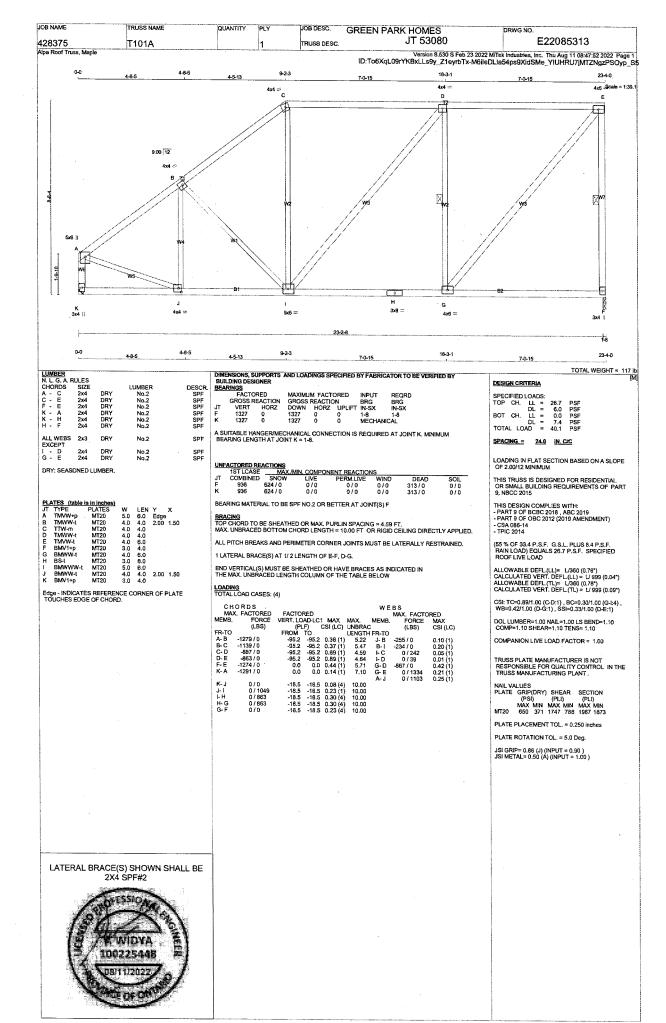


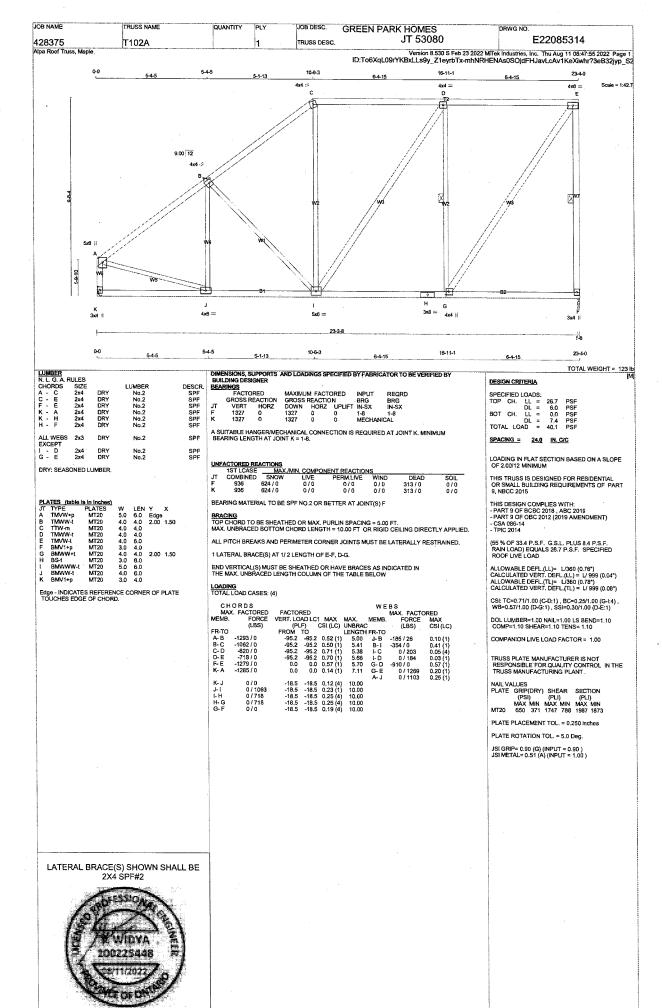


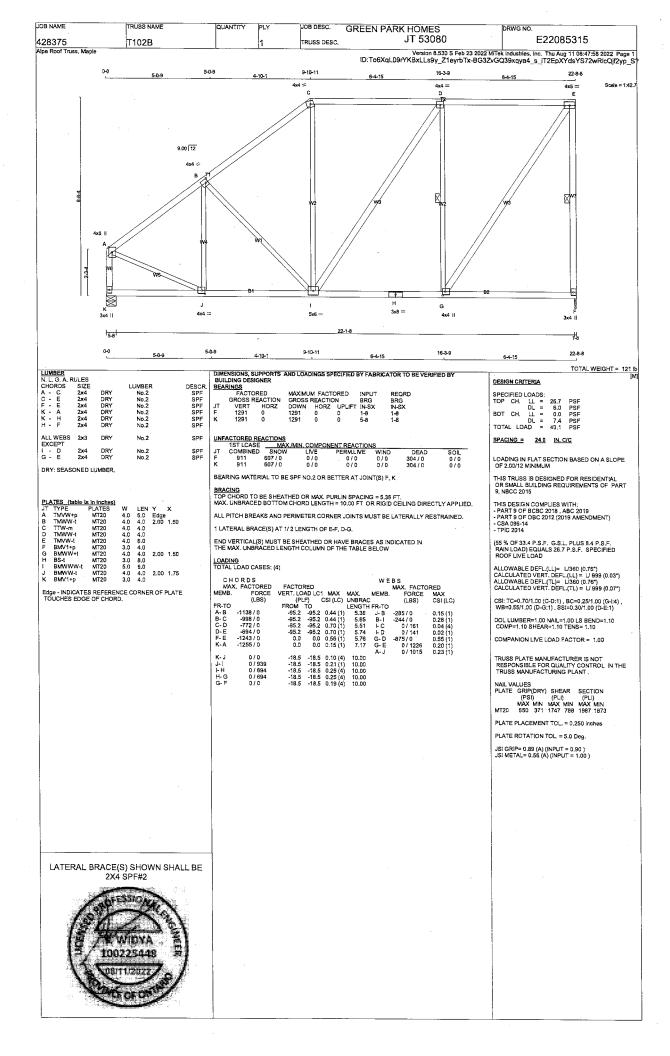


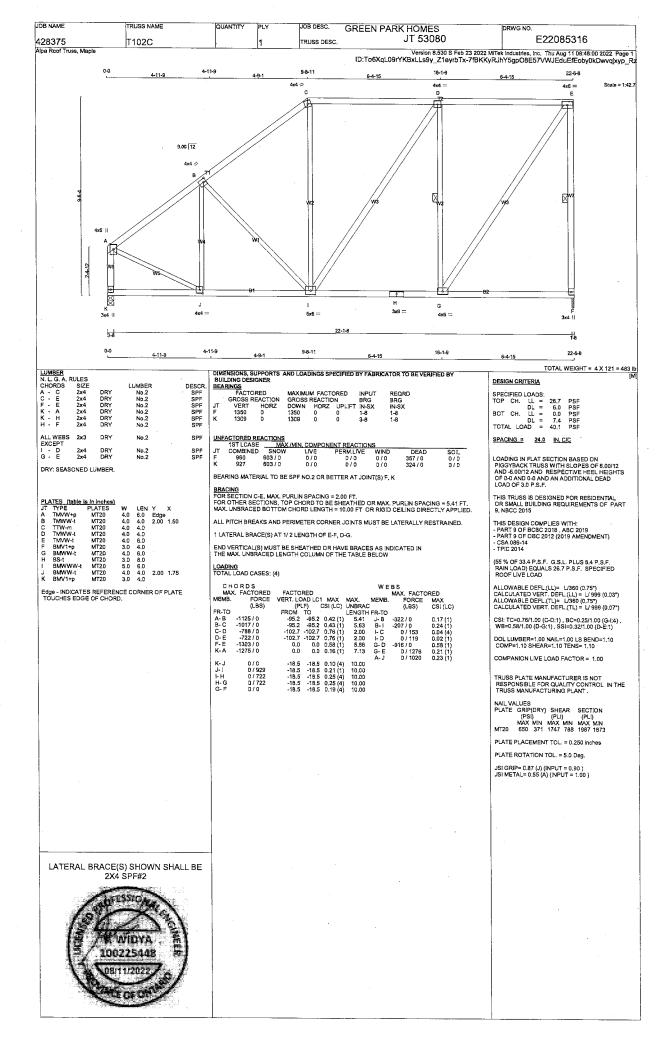


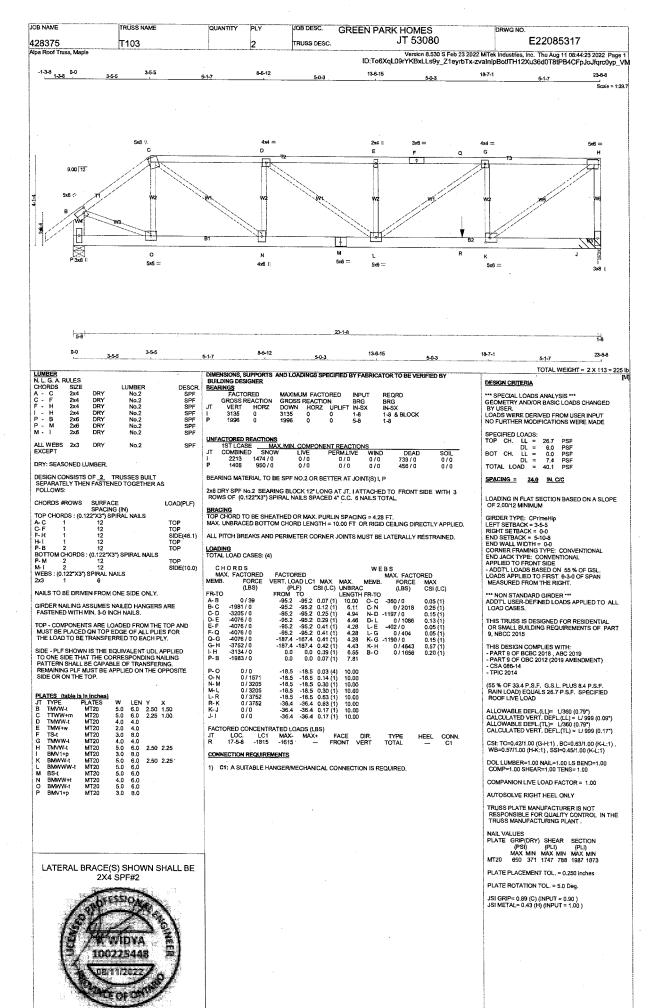


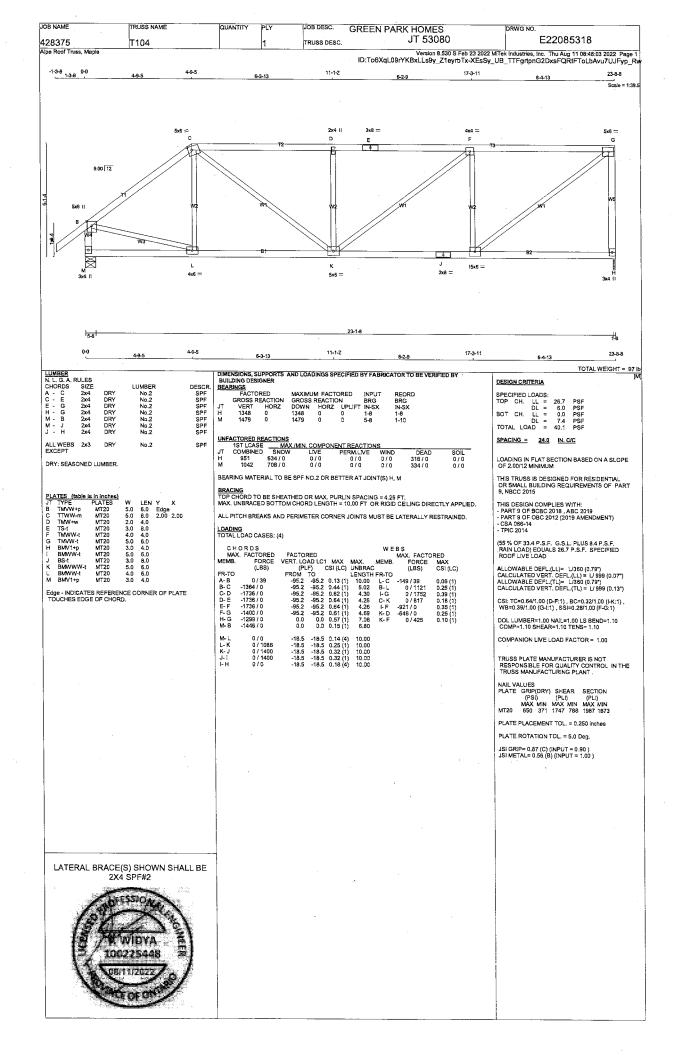


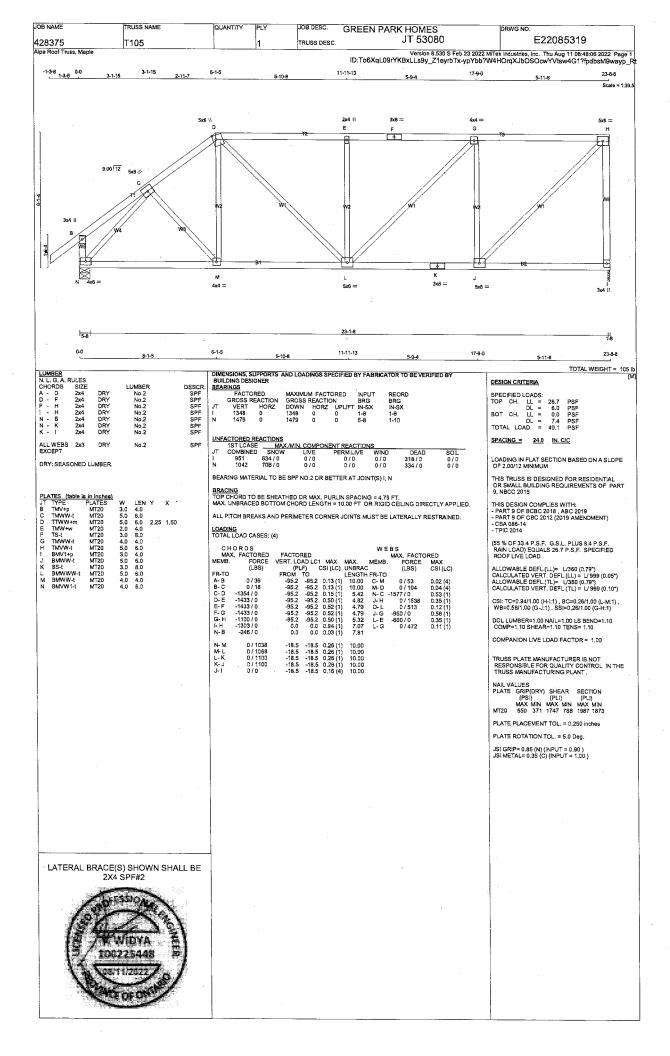


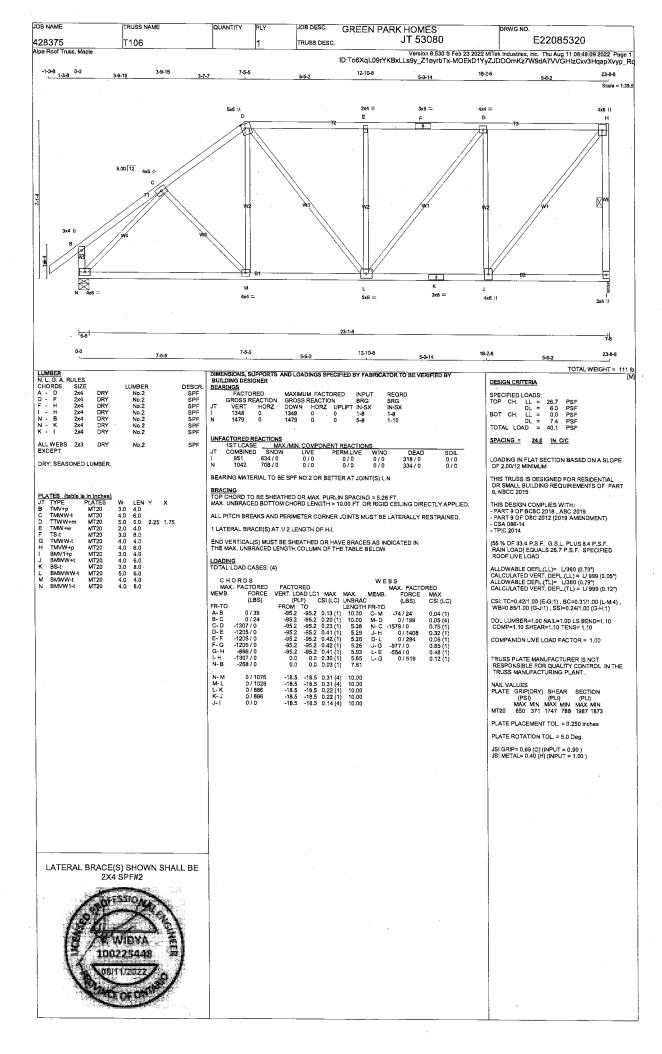


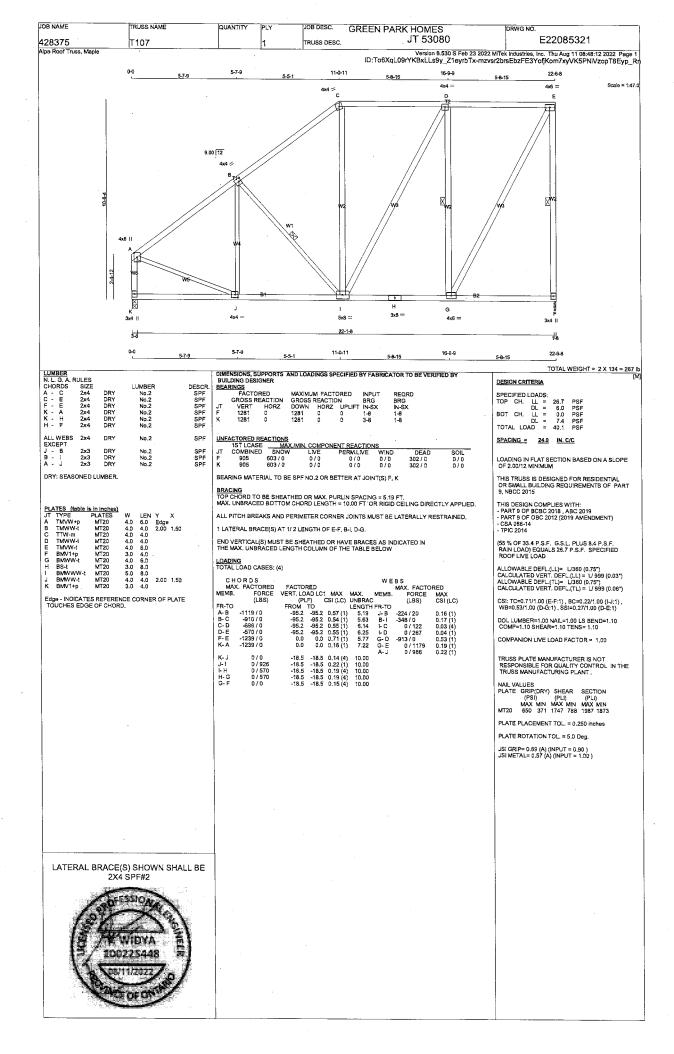


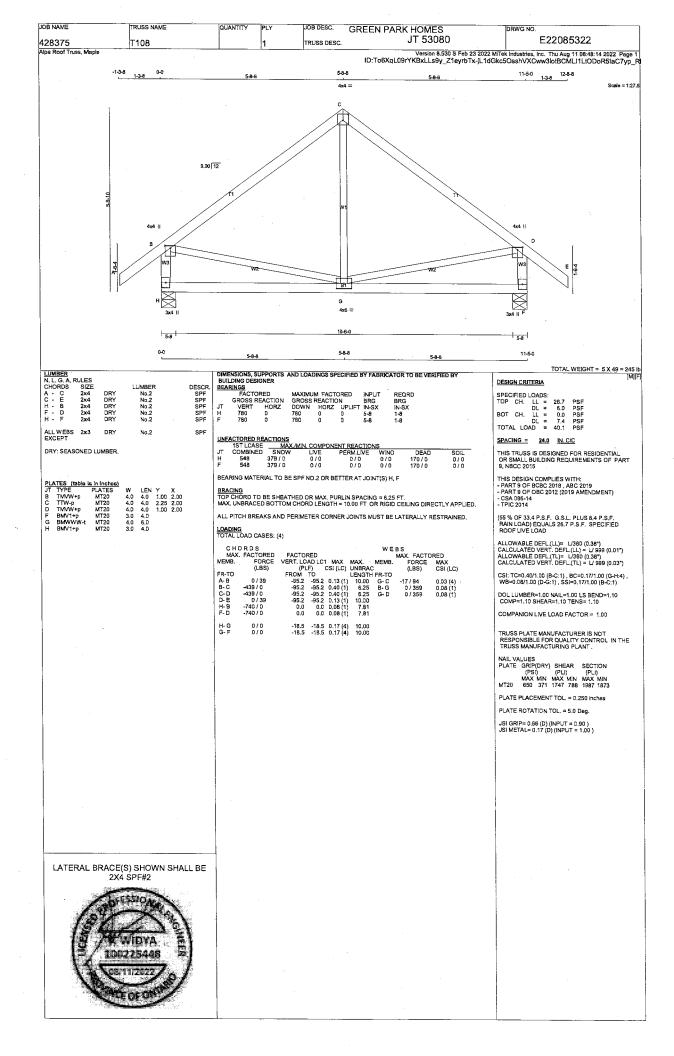


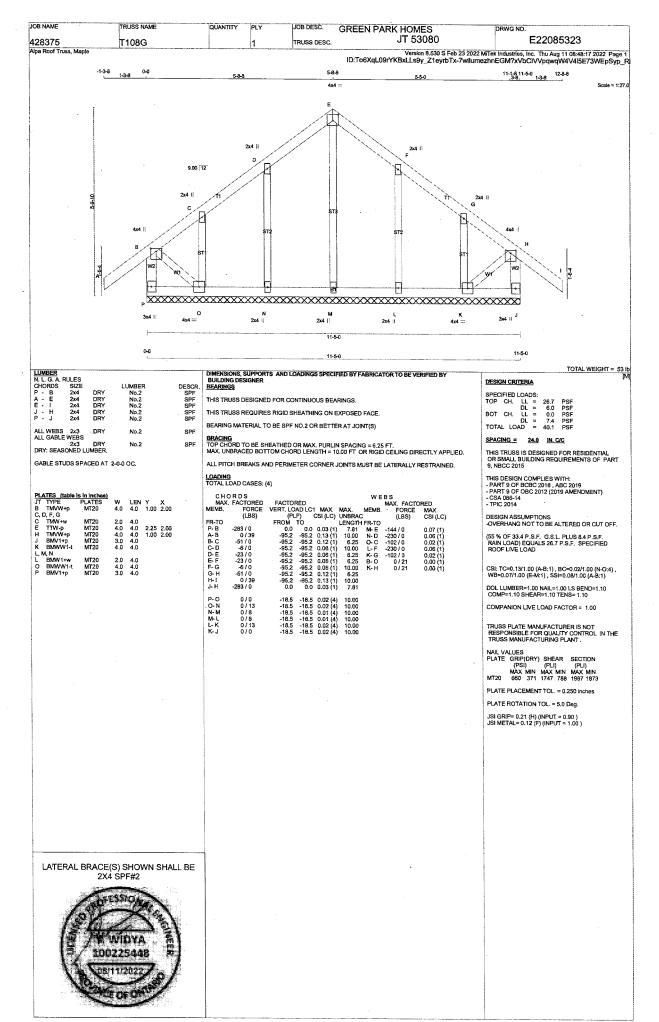


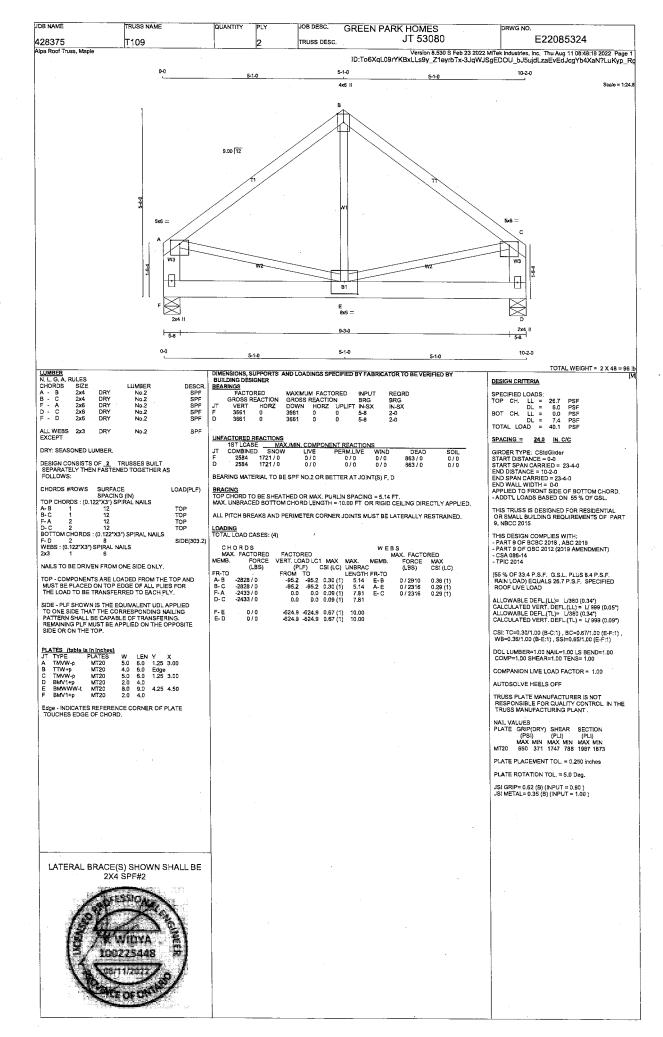


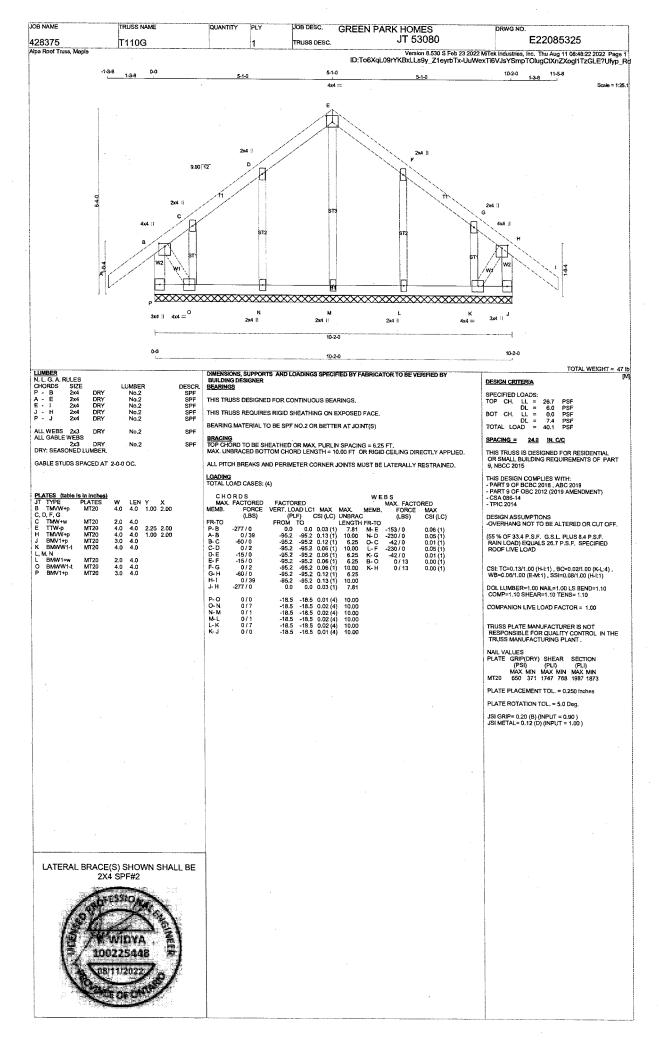


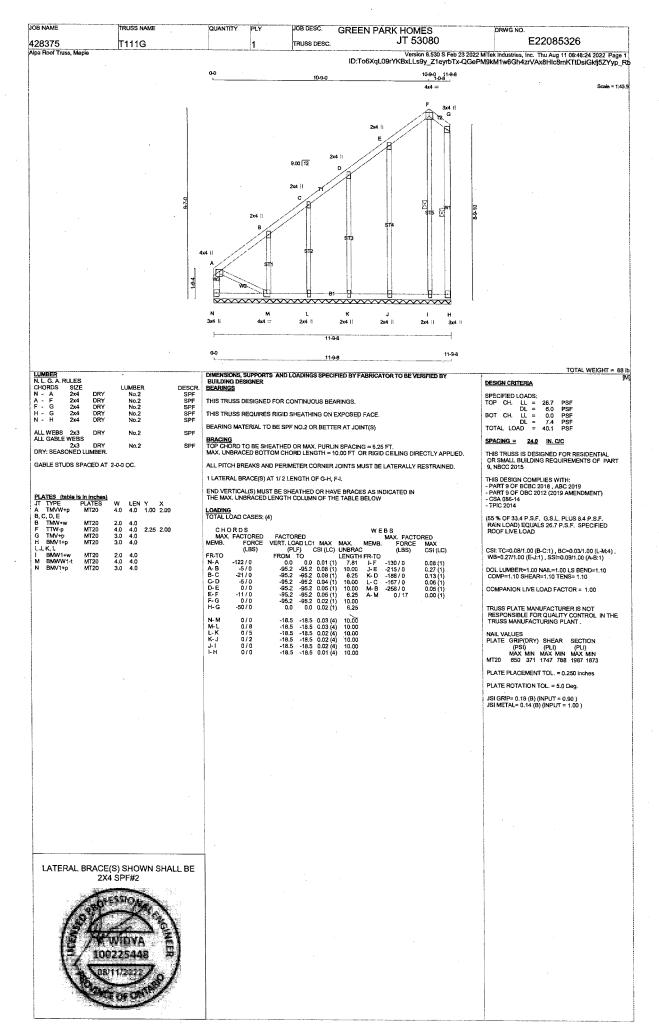












QUANTITY JOB DESC. GREEN PARK HOMES DRWG NO JT 53080 E22085327 Version 8.530 S Feb 23 2022 MTek Industries, Inc. Thu Aug 11 08:48:27 2022 Page 1 ID:To6XqL09rYKBxLLs9y_Z1eyrbTx-qrJX?BmFKrUrYXiQBIUrvwEeEYS_QHhiQdxmAsyp_R Scale = 1:28. 344 11 С 9.00 12 4x4 II 5.8 0-0 3-10-8 3-10-8 TOTAL WEIGHT = 2 X 27 = 54 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS
FACTORED MAXIMUM FACTORED INPUT REQRD DESIGN CRITERIA SPECIFIED LOADS: TOP CH. LL = GROSS REACTION VERT HORZ 870 0 739 0 TOP CH. LL = 26.7

DL = 6.0

BOT CH. LL = 0.0

DL = 7.4

TOTAL LOAD = 40.1 BRG IN-SX 1-8 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8. SPACING = 24.0 IN. C/C

LUMBER
N. L. G. A. RULES
CHORDS SIZE
E - B 2x4
A - C 2x4
D - C 2x4
E - D 2x6 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

JOB NAME

428375

TRUSS NAME

T112

CHORD	s #ROWS	SURFACE SPACING (IN)	LOAD(PLF)			
TOP CH	ORDS: (0.1	22"X3") SPIRAL NAILS				
E-B	1	12	TOP			
A-C	1	12	TOP -			
C-D	1	12	TOP			
BOTTO	M CHORDS	: (0.122"X3") SPIRAL NAILS				
E-D	2	12	SIDE(133.8)			
WEBS: (0.122"X3") SPIRAL NAILS						
2x3	1 '	6				

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

| PLATES (table is in Inches)
JT	TYPE	PLATES
B	TM/W+p	MT20
C	TM/+p	MT20
D	BM/W1+p	MT20
E	BM/W1+p	MT20

UNFACTORED REACTIONS												
	1ST LCASE MAX./MIN. COMPONENT REACTIONS											
JT	COMBINED	SNOW	LIVE	PERMLIVE	WIND	DEAD	SOIL					
Ε	612	421 / 0	0/0	0/0	0/0	191 / 0	0/0					
D	522	347 / 0	0/0	0/0	0/0	174 / 0	0/0					
BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E												

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

CHORDS MAX. FACTORED			FACTORED			WEBS MAX, FACTORED			
ı	мемв.	FORCE	VERT. LC		BIAV	MAX.	МЕМВ.	FORCE	
ì	MILITIES.								MAX
		(LBS)			CSI (LC)	UNBRAC		(LBS)	CSI (LC)
	FR-TO		FROM	TO		LENGTH	FR-TO		
	E-B	-316 / 0	0.0	0.0	0.03(1)	7.81	B- D	0/0	0.00(1)
	A-B	0 / 39	-95.2	-95.2	0.11(7)	10.00			
	B-C	0/0	-95.2	-95.2	0.13(1)	10.00			
	D-C	-184 / 0	0.0		0.06 (1)				
	E-D	0/0	-286.2	-286.2	0.20 (1)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

GIRDER TYPE: CSIdGirder
START DISTANCE = 0-0
START SPAN CARRIED = 11-5-0
END DISTANCE = 3-10-8
END SPAN CARRIED = 11-5-0
END SPAN CARRIED = 11-5-0
END WALL WIDTH = 0-0
APPLIED TO FRONT SIDE OF BOTTOM CHORD.
-ADDTL LOADS BASED ON 55 % OF GSL.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
-PART 9 OF BCBC 2018, ABC 2019
-PART 9 OF OBC 2012 (2019 AMENDMENT)
-CSA 086-14
- TPIC 2014

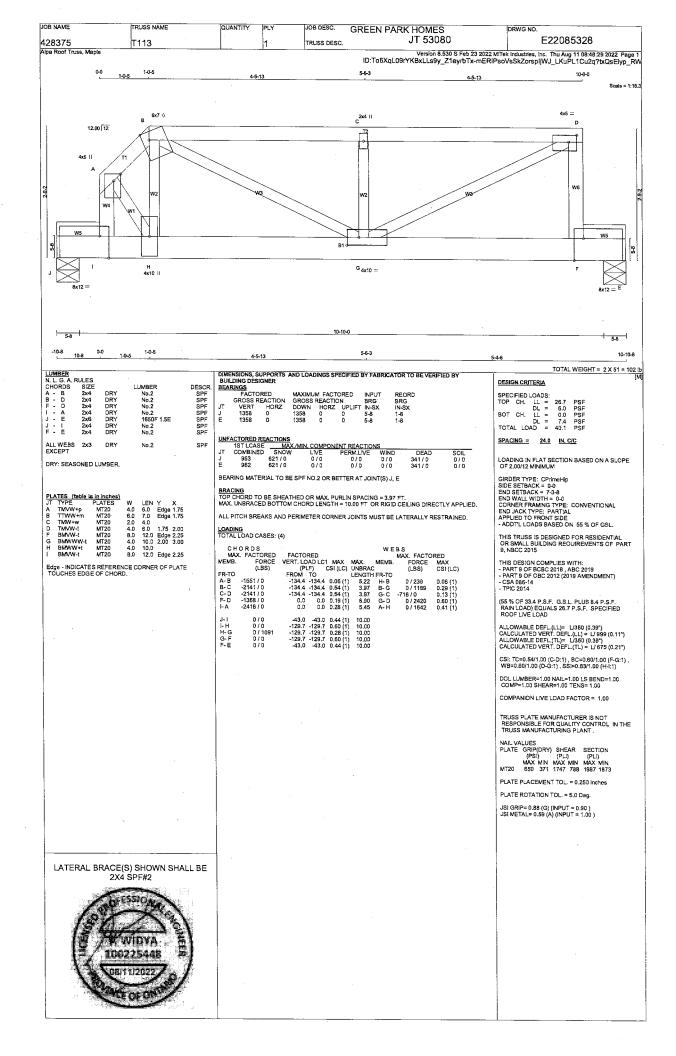
(55 % OF 33.4 P.S.F. G.S.L PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 26.7 P.S.F. SPECIFIED ROOF LIVE LOAD

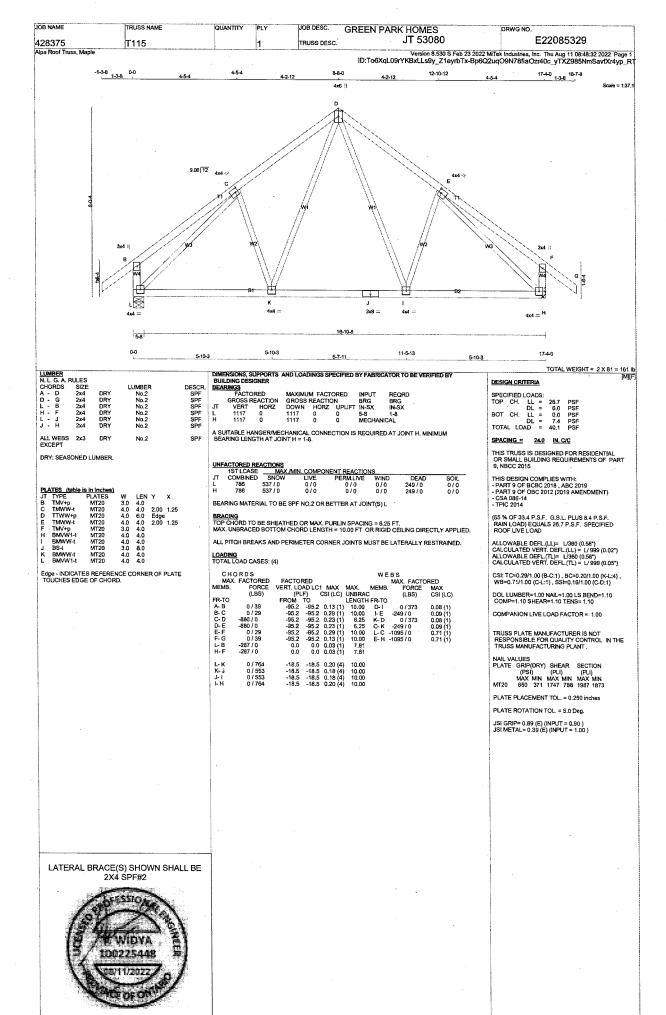
ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

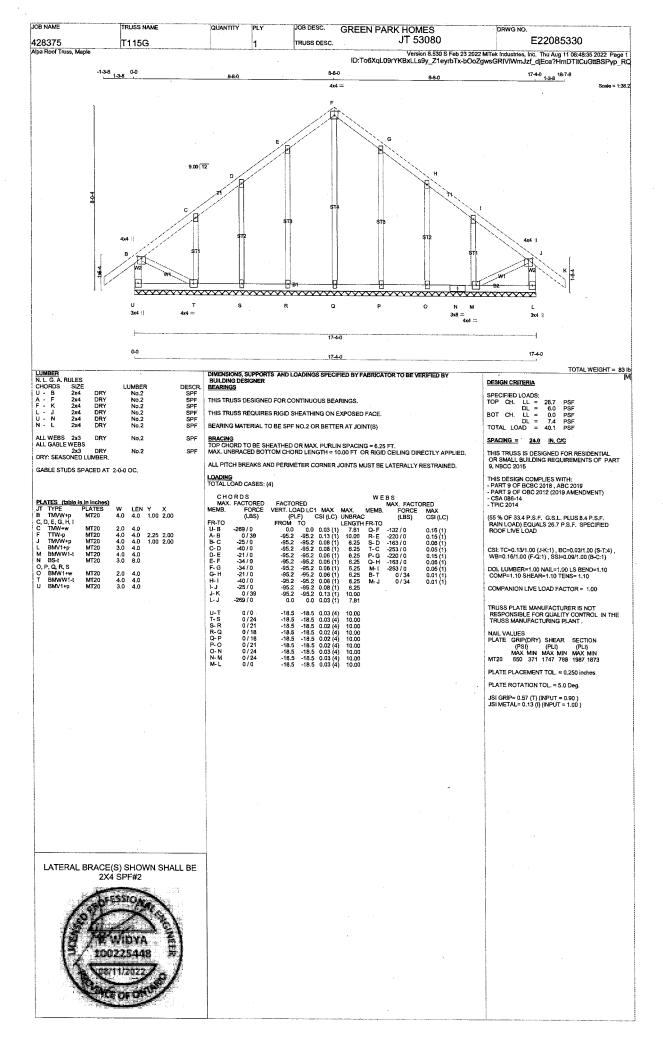
DOL LUMBER=1.00 NAIL≈1.00 LS BEND=1.00 COMP≈1.00 SHEAR=1.00 TENS= 1.00

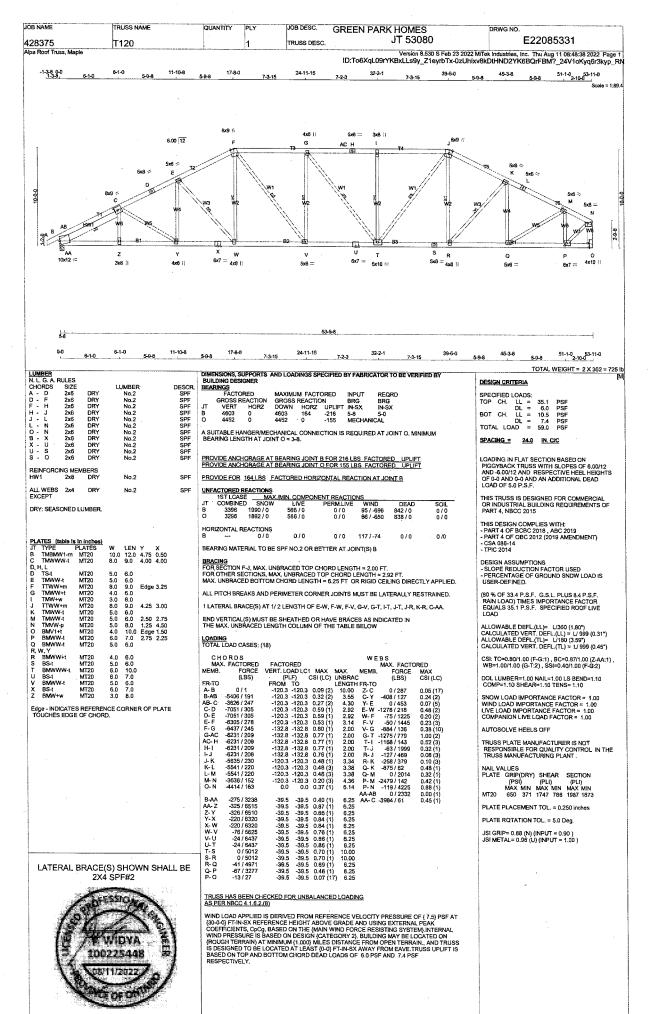
COMPANION LIVE LOAD FACTOR = 1.00

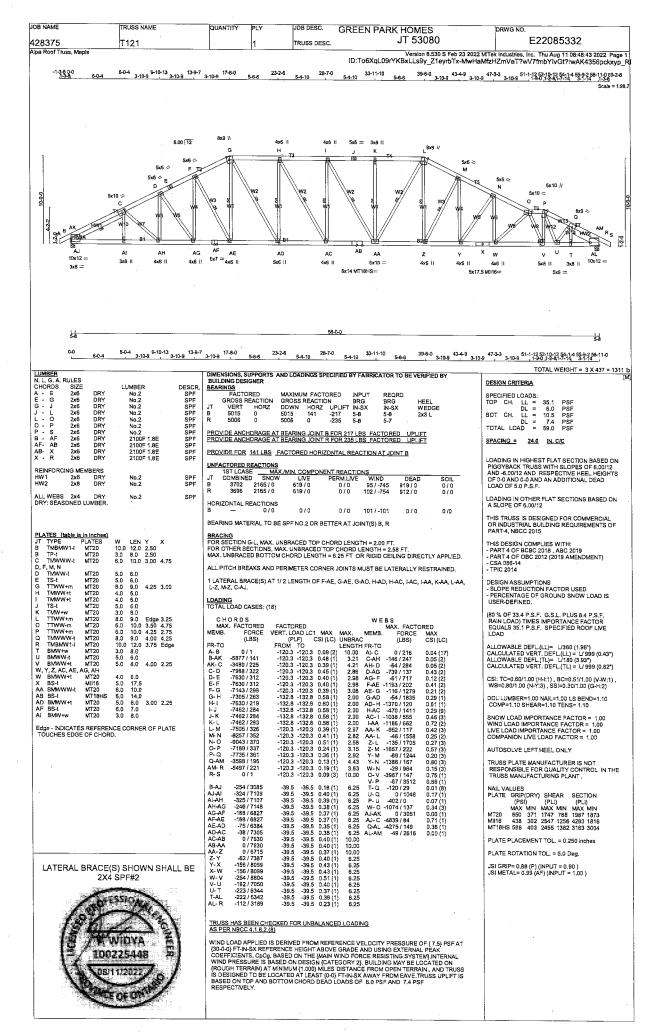
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

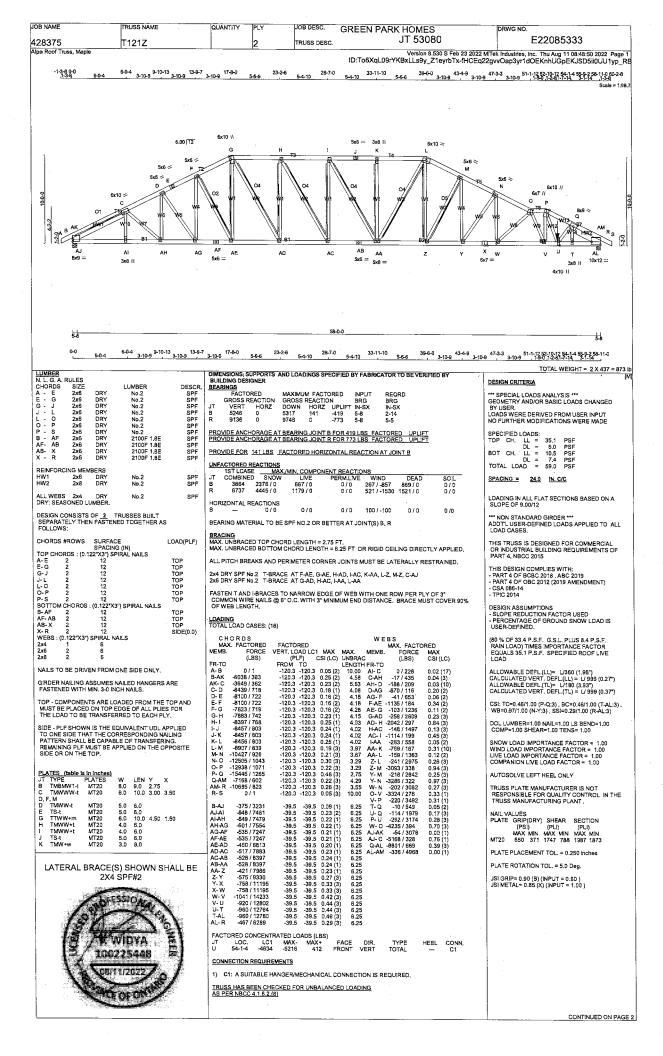

PLATE PLACEMENT TOL. = 0.250 inches

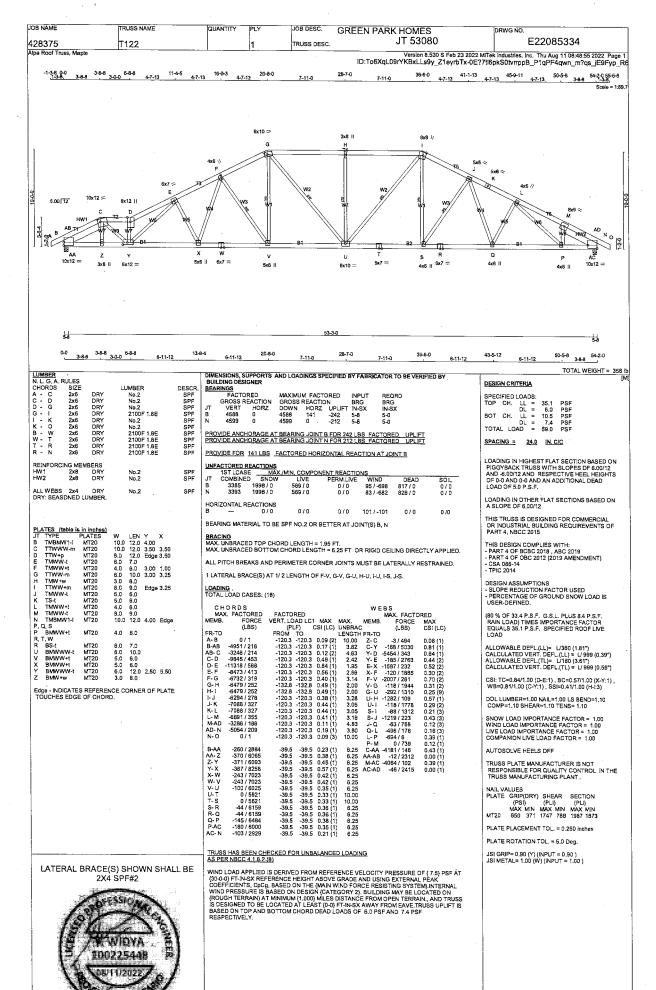

PLATE ROTATION TOL. = 5.0 Deg.

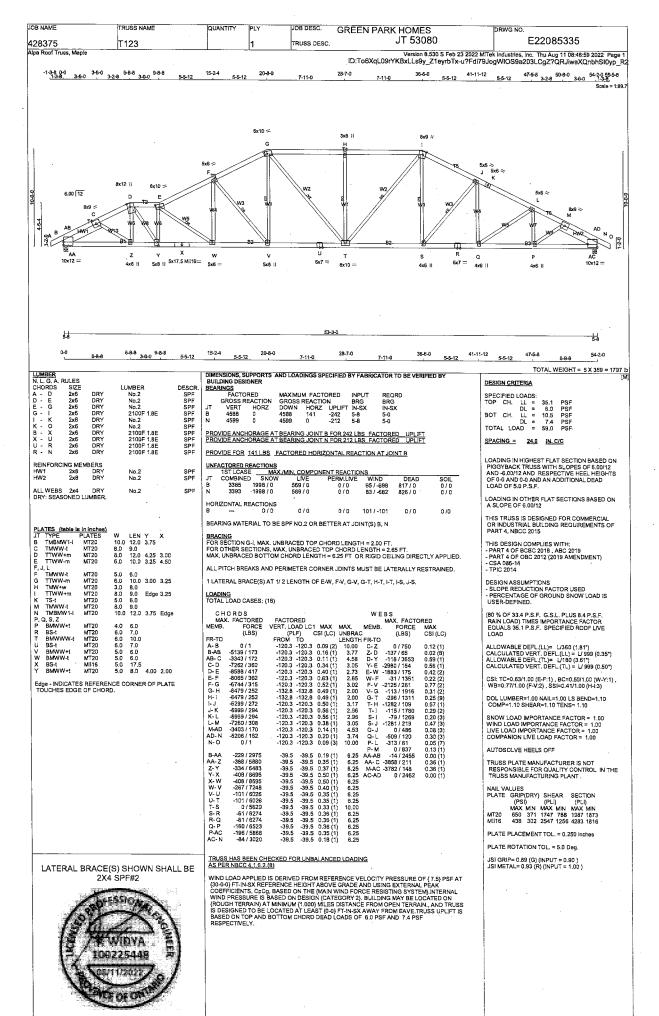

JSI GRIP= 0.12 (B) (INPUT = 0.90) JSI METAL= 0.03 (C) (INPUT = 1.00)

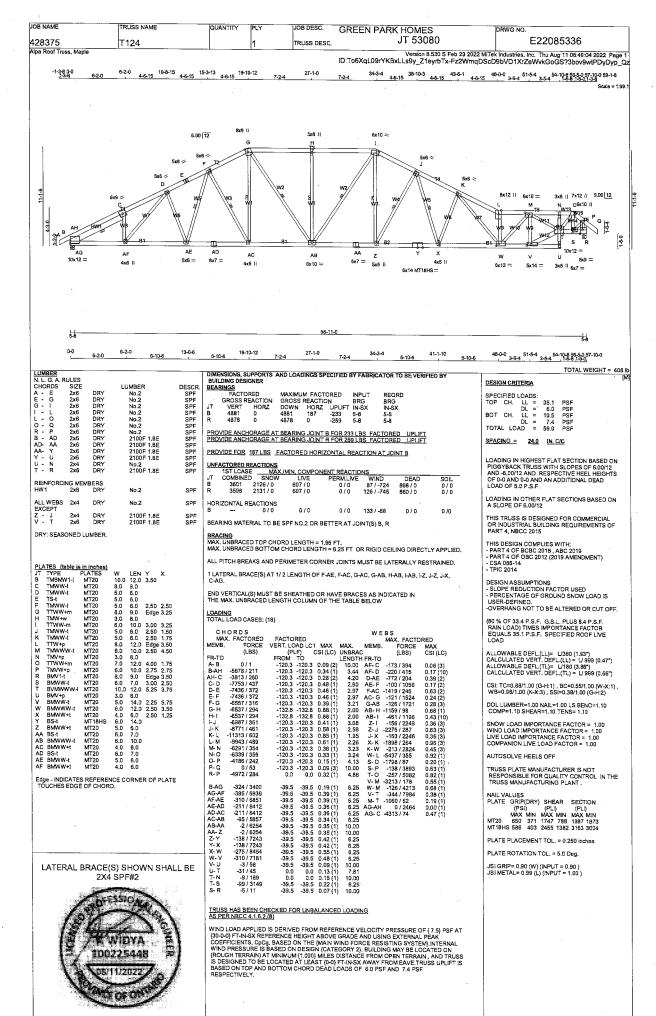

LATERAL BRACE(S) SHOWN SHALL BE

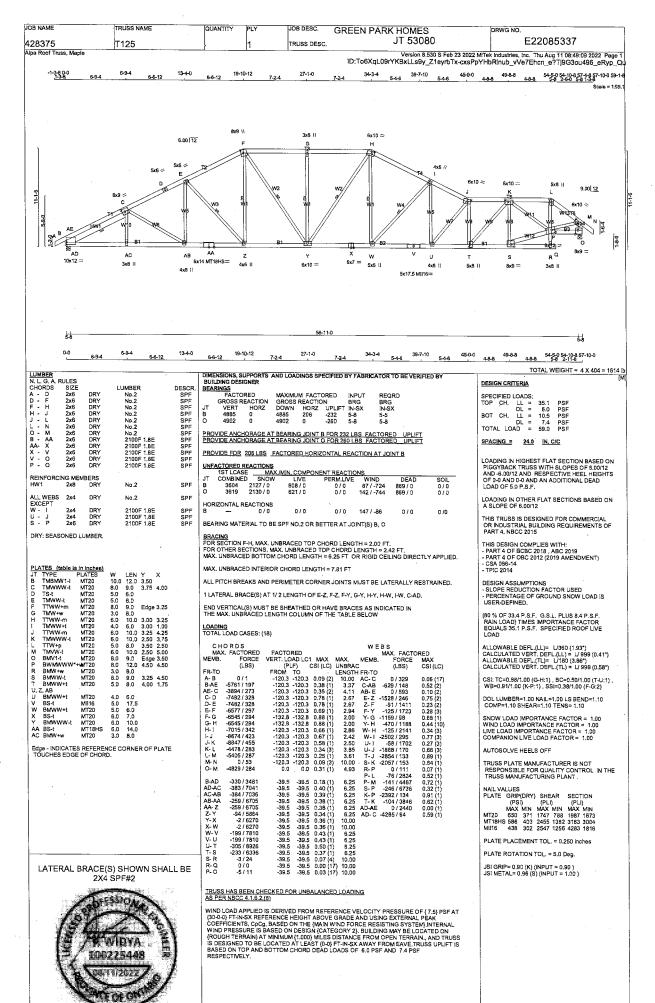


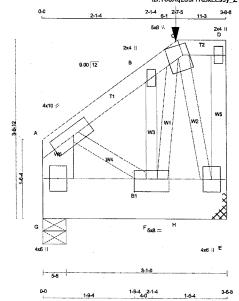





JOB NAME TRUSS NAME QUANTITY JOB DESC. **GREEN PARK HOMES** JT 53080 428375 Alpa Roof Truss, Maple T121Z Version 8.530 S Feb 23 2022 MTek Industries, Inc. Thu Aur 11 08:48:53 2022 Page 2 ID:To6XqL09rYKBxLLs9v_Z1eyrbTx.4suMS44ZCqm9gXhQirmyxyPJ?V1G1WpzXPgE85Myp_R8 PLATES (table is in inches)
JT 1YPE PLATES
L TTWW-P PLATES
L TTWW-M MT20
N TMWW-I MT20
N TMWW-I MT20
N TWW-M MT20
N TWW-M MT20
N TWW-M MT20
N TWW-M MT20
N TMBMW-I MT20
N TMBMW-I MT20
N TMBMW-I MT20
N TMBMW-I MT20
N TMMW-I MT20 K LEN Y X
6.0 10.0
5.0 6.0 2.50 2.75
6.0 7.0 4.50 3.00
6.0 10.0 Edge
8.0 9.0 4.00 4.25
10.0 12.0 3.75 Edge
3.0 8.0
4.0 10.0 5.00 1.50 CONNECTION REQUIREMENTS 1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED. WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (30-0-0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAX COEFFICIENTS, CCC, BASED ON THE (MAN WIND FORCE RESISTING SYSTEM), ANTERNAL WIND PRESSURE IS BASED ON TEGISION (CATEGORY 2), BUILDING MAY BE LOCATED ON ROUGH TERRAIN, AT WINDIAM (1.00) MILES DISTANCE FROM OPEN TERRAIN, AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS RASED ON TO AND BOTTOM CHORD DEAD LOADS OF 6.0 PSF AND 7.4 PSF RESPECTIVELY. 4.0 6.0 2.75 1.75 6.0 7.0 5.0 8.0 5.0 6.0 5.0 6.0 3.0 8.0 Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.


E22085333(2)


LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2



TRUSS NAME QUANTITY JOB DESC. **GREEN PARK HOMES** DRWG NO JT 53080 E22085338 428375 T126 TRUSS DESC Alpa Roof Truss, Maple Version 8.530 S Feb 23 2022 MiTek Industries, Inc. Thu Aug 11 08:49:13 2022 Page 1 ID:To6XqL09rYKBxLLs9y_Z1eyrbTx-Ui5wfvK5V_HJ4cDGtyJdmd8Xq59gC3KU?n4BnCyp_Qr

Scale = 1:17 (

LUMBER								
N. L. G. A. R	ULES							
CHORDS	SIZE		LUMBER	DESCR.				
A - C	2x4	DRY	No.2	SPF				
C - D	2x4	DRY	No.2	SPF				
E - D	2x4	DRY	No.2	SPF				
G - A	2x8	DRY	No.2	SPF				
G - E	2x10	DRY	No.2	SPF				
				-				
ALL WEBS	2x3	DRY	No.2	SPF				
EXCEPT								

DRY: SEASONED LUMBER

DESIGN CONSISTS OF 3 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORE	S #ROWS	SURFAC							
TOP CH	TOP CHORDS: (0.122"X3") SPIRAL NAILS								
A-C	1	12	SIDE(105.2)						
C-D	1	12	SIDE(91.9)						
D-E	1	12	TOP						
G-A	2	12	TOP						
BOTTOM CHORDS: (0.122*X3*) SPIRAL NAILS									
G-E	5	4	SIDE(1555.9)						
WEBS: (0.122"X3") SPIRAL NAILS									

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)

Л	TYPE .	PLATES	W	LEN	Y	х
Α	TMVW-t	MT20	4.0	10.0	2.00	4.50
В	TMW+w	MT20	2.0	4.0		
C	TTWW+m	MT20	5.0	6.0	Edge	3.50
D	TMV+p	MT20	2.0	4.0	_	
E	BMVW1+p	MT20	4.0	6.0		
F	BMWWW-t	MT20	5.0	8.0	3.00	4.00
G	BMV1+p	MT20	4.0	6.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

	UNGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRO
GROSS REACTION			GROSS REACTION			BRG	BRG
	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	4687	0	4687	0	-205	MECHAN	NICAL
	4521	0	4521	92	-130	5-8	1-10

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-11.

PROVIDE ANCHORAGE AT BEARING JOINT E FOR 205 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT G FOR 160 LBS, FACTORED UPLIFT

PROVIDE FOR 92 LBS FACTORED HORIZONTAL REACTION AT JOINT G

| UNFACTORED REACTIONS | 13T LCASE | MAX_/MIN_COMPONENT REACTIONS | 13T COMBINED | SNOW LIVE | PERM.LIVE | WIND | E | 3422 | 2178/10 | 5447/0 | 0.70 | 625/-55 | 6 | 3310 | 2098/10 | 5447/0 | 0.70 | 5373/-55 | DEAD 625 / -596 573 / -533 699 / 0 686 / 0

HORIZONTAL REACTIONS G -- 0/0 0/0 0/0 66 / -48 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

JT E G

<u>BRACING</u>
MAX. UNBRACED TOP CHORD LENGTH = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (18)

CHORDS MAX. FACTORED FACTORED				WEBS MAX. FACTORED				
	MEMB.	FORCE	VERT, LOAD LC	MAX I	MAX.	MEMB.	FORCE	MAX
		(LBS)	(PLF)	CSI (LC) I	JNBRAC	;	(LBS)	CSI (LC)
	FR-TO		FROM TO		.ENGTH	FR-TO		, ,
	A- B	-1318 / 57	-120.3 -120.3	0.06(3)	6.25	C-E	-2090 / 117	0.13(1)
1	B-C	-1207 / 98	-120.3 -120.3	0.06 (3)	6.25	A-F	-53 / 1133	0.09 (1)
	C-D	-13 / 33	-222.4 -222.4	0.01 (3)	6.25	F-B	-20 / 218	0.02 (3)
	E-D	-112 / 22		0.01 (13)	7.81	F-C	-91 / 2359	0.18(2)
	G-A	-1408 / 48	0.0 0.0	0.02 (1)	7.81			
	G-F	-81 / 63	-2399.2-2399.2		6.25			
	F-H	-46/599 .	-2399.2-2399.2		6.25			
	H-E	-46 / 599	-2399.2-2399.2	0.16(1)	6.25			

FACTORED CONCENTRATED LOADS (LBS)

JT LOC. LC1 MAX- MAX+ FACE DIR.

C 2-7-15 -195 -215 49 BACK VERT HEEL CDNN.

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2 (8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (7.5) PSF AT (30-0-4) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, Co-2, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM), INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON (ROUGH TERRAIN) AT MINIMUM (100) MILES DISTANCE FROM OPEN TERRAIN, AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-4) FT-IN-SX AWAY FROM BAYETRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 6.0 PSF AND 7.4 PSF RESPECTIVE.

TOTAL WEIGHT = 3 X 27 = 82 lb DESIGN CRITERIA

- 1	SPECIFIED LOADS:						
	TOP	CH.	LL	=	35.1	PSF	
			DL	=	6.0	PSF	
	BOT	CH.	LL	=	10.5	PSF	
			DŁ	=	7.4	PSF	
	TOTA	L LO	AD	=	59.0	PSF	

SPACING = 24.0 IN. C/C

0/0

0 /0

0/0

LOADING IN FLAT SECTION BASED ON A SLOPE OF 6.00/12

GIRDER TYPE: CSMGinder
START DISTANCE = 0-0
START SPAN CARRIED = 53-11-0
END DISTANCE = 3-8-8
END SPAN CARRIED = 63-11-0
END WALL WIDTH = 0-0
APPLIED TO FRONT SIDE OF BOTTOM CHORD.
-APPLIED TO FRONT SIDE OF BOTTOM CHORD. ADDTL LOADS BASED ON 100 % OF GSL.

GIRDER TYPE: CPrimelip
LEFT SETBACK = 2-7-15
RIGHT SETBACK = 0-0
END SETBACK = 0-0
END SETBACK = 4-7-8
END WALL WIDTH = 0-0
CORNER FRAMING TYPE: CONVENTIONAL
END JACK TYPE: CONVENTIONAL
APPLIED TO BACK SIDE
-ADDT'L LOADS BASED ON 100 % OF GSL

THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015

THIS DESIGN COMPLIES WITH THIS DESIGN COMPLIES WITH!
-PART 4 OF BCBC 2018, ABC 2019
-PART 4 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
-TPIC 2014

DESIGN ASSUMPTIONS DESIGN ASSUMPTIONS -SLOPE REDUCTION FACTOR USED - PERCENTAGE OF GROUND SNOW LOAD IS USER-DEFINED.

(80 % OF 33.4 P.S.F. G.S.L PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 35.1 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19*)
CALCULATED VERT. DEFL.(LL)= L/999 (0.00*)
ALLOWABLE DEFL.(TL)= L/180 (0.24*)
CALCULATED VERT. DEFL.(TL)= L/999 (0.01*)

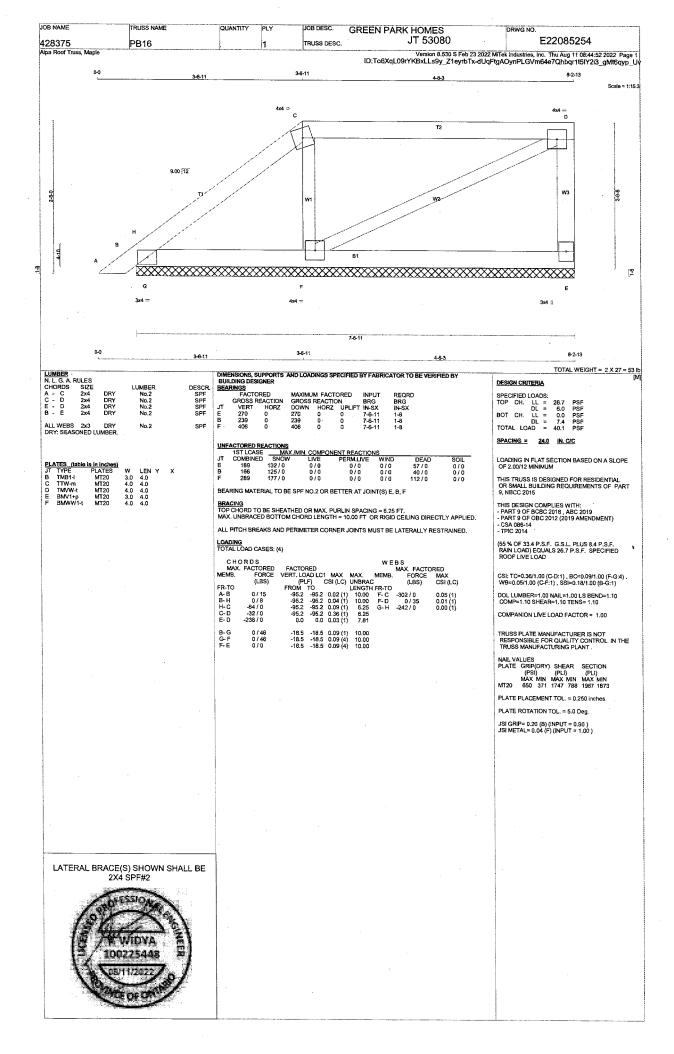
CSI: TC=0.06/1.00 (A-B:3) , BC=0.20/1.00 (F-G:1) , WB=0.18/1.00 (C-F:2) , SSI=0.47/1.00 (F-G:1)

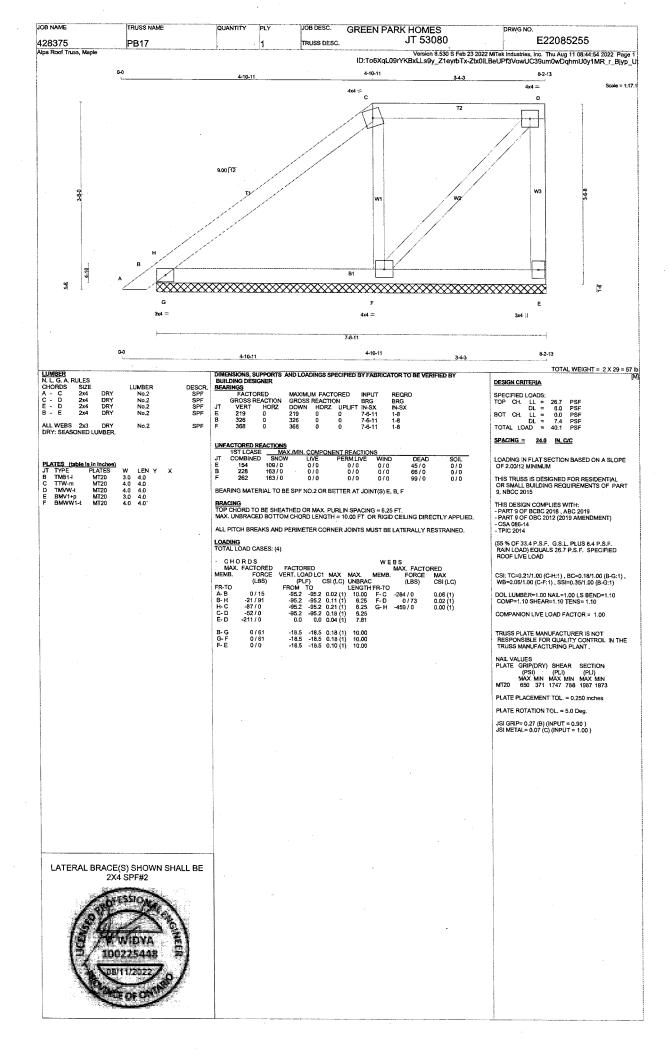
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

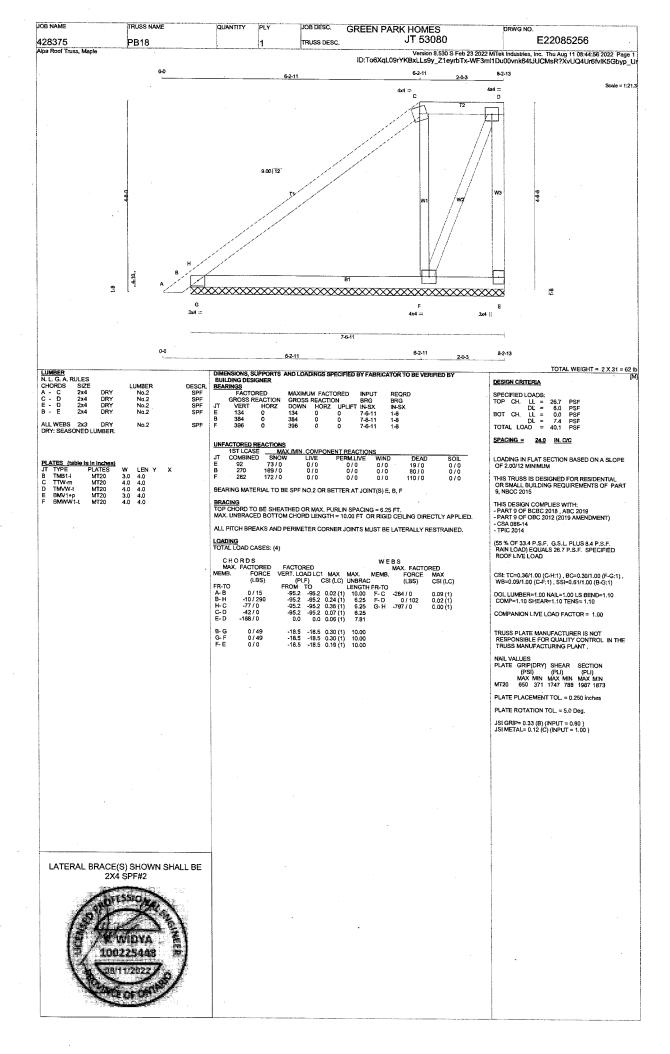
SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00

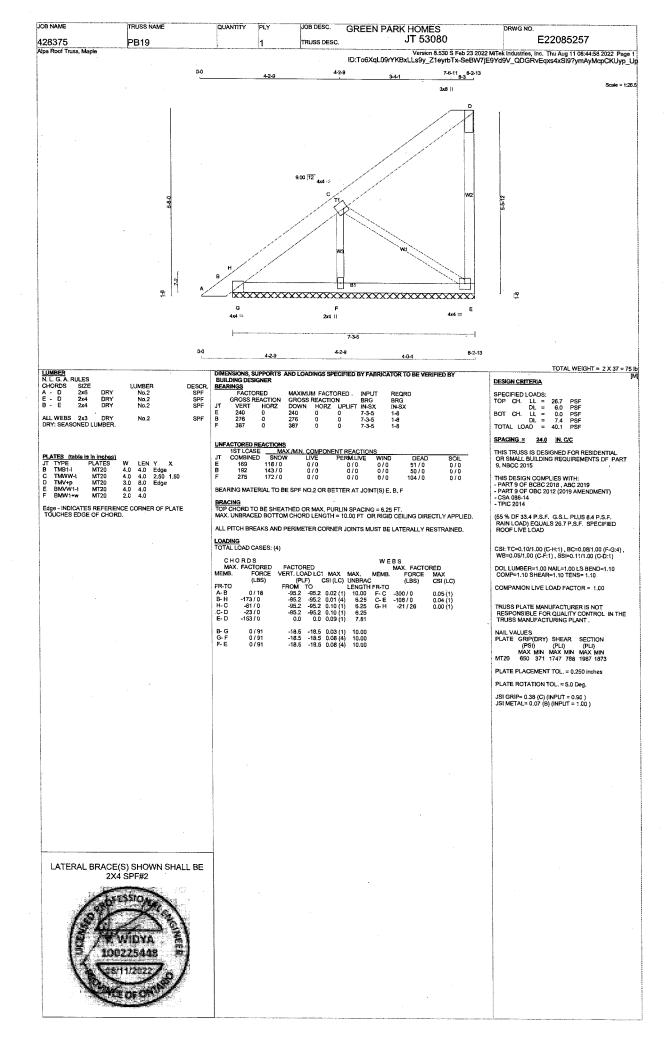
AUTOSOLVE RIGHT HEEL ONLY

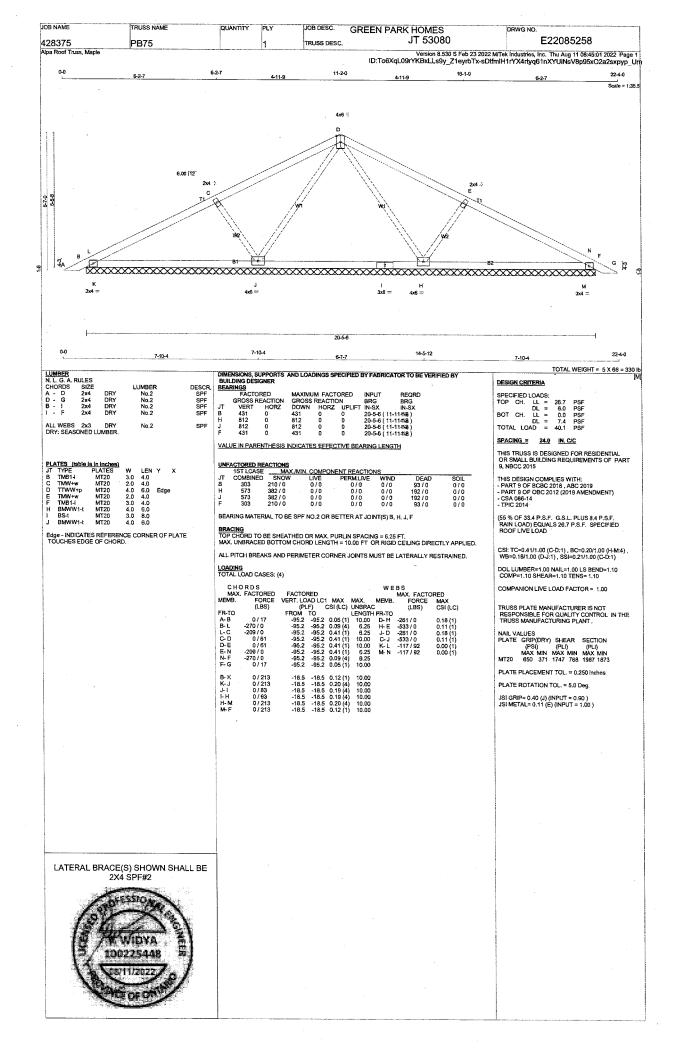
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

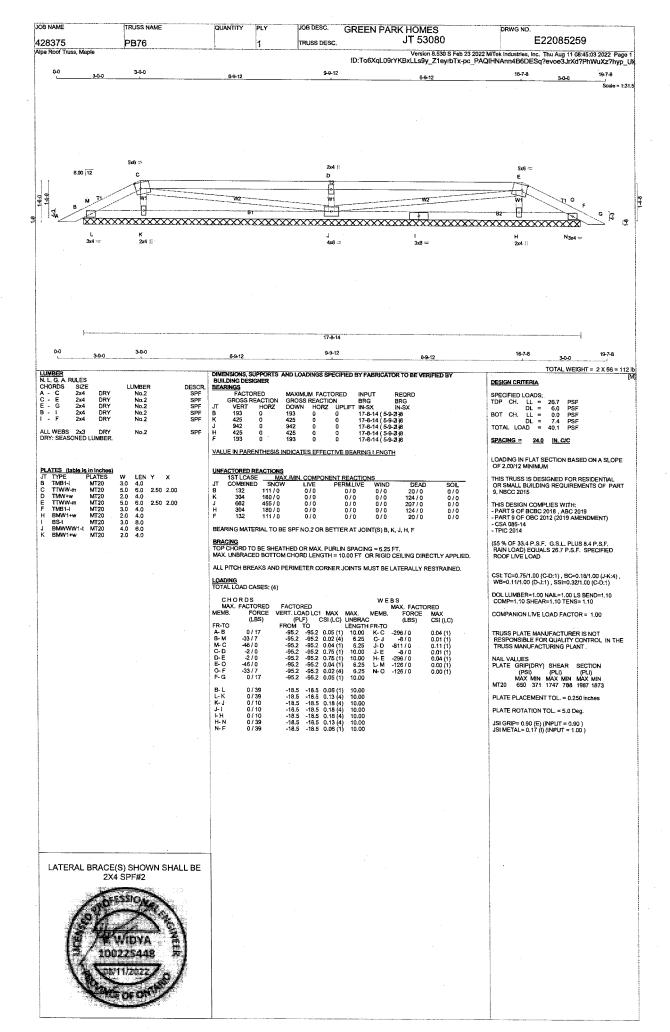

PLATE PLACEMENT TOL. = 0.250 inches

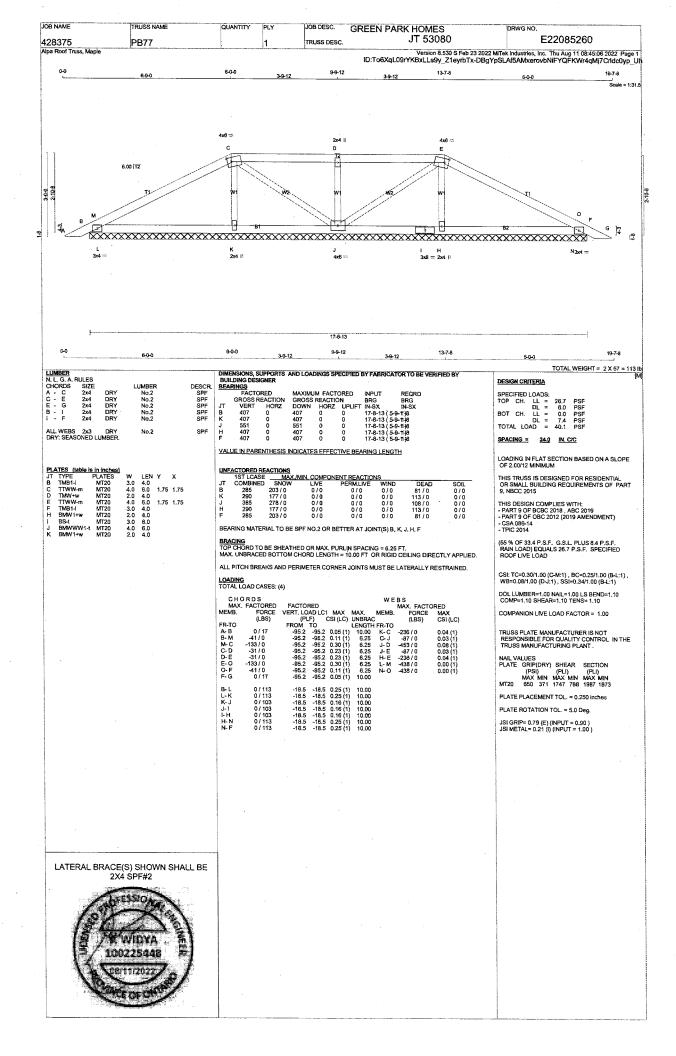

PLATE ROTATION TOL. = 5.0 Deg.

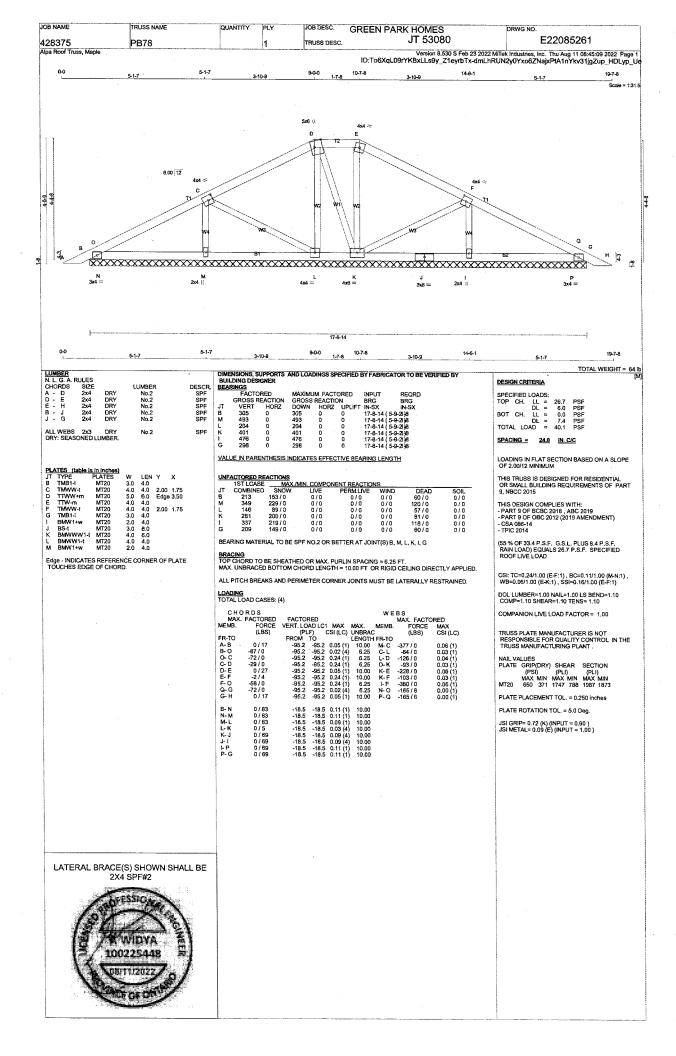

JSI GRIP= 0.73 (C) (INPUT = 0.90) JSI METAL= 0.19 (F) (INPUT = 1.00)

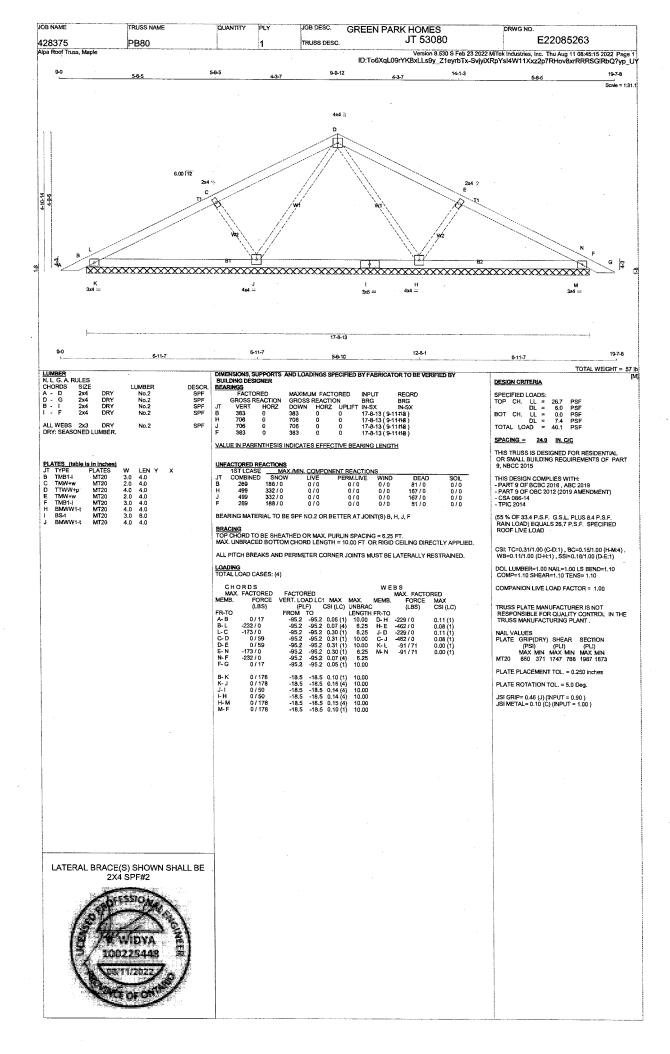

LATERAL BRACE(S) SHOWN SHALL BE 2X4 SPF#2

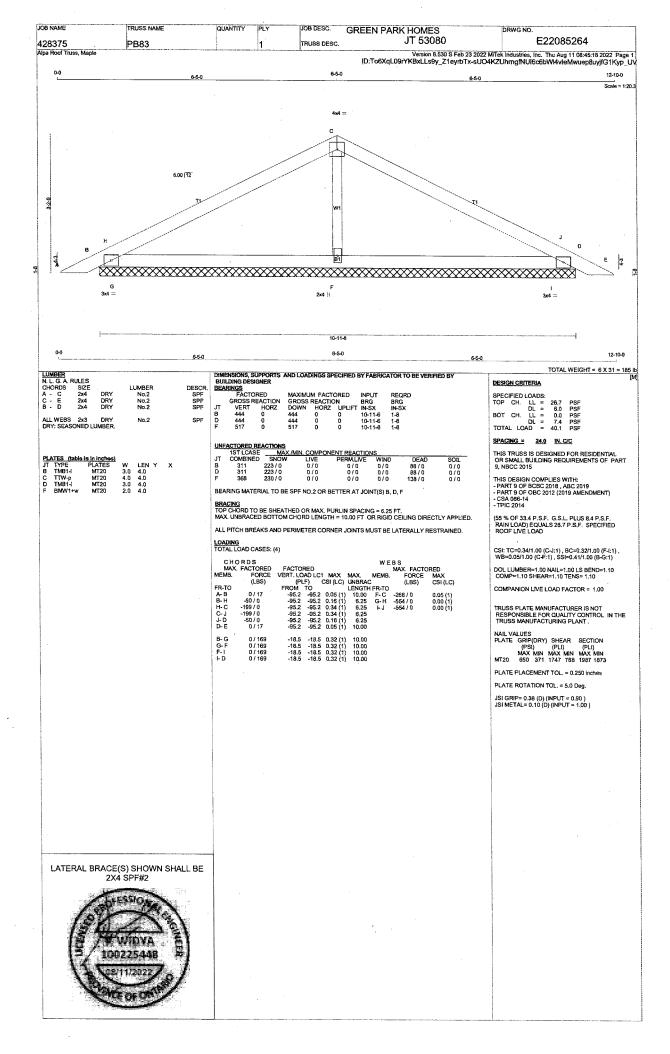


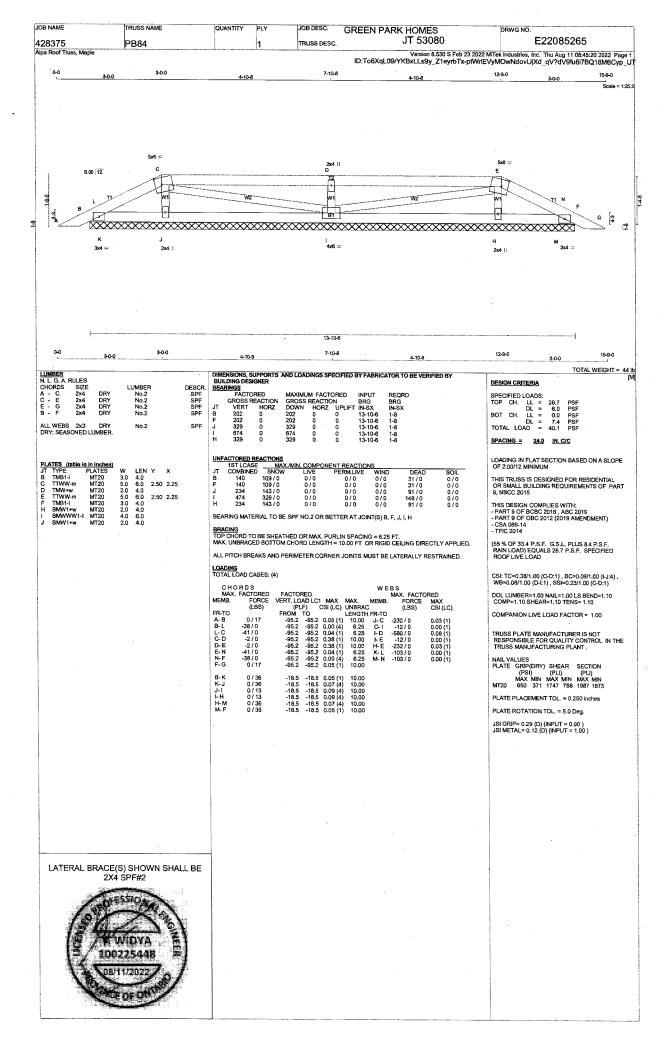


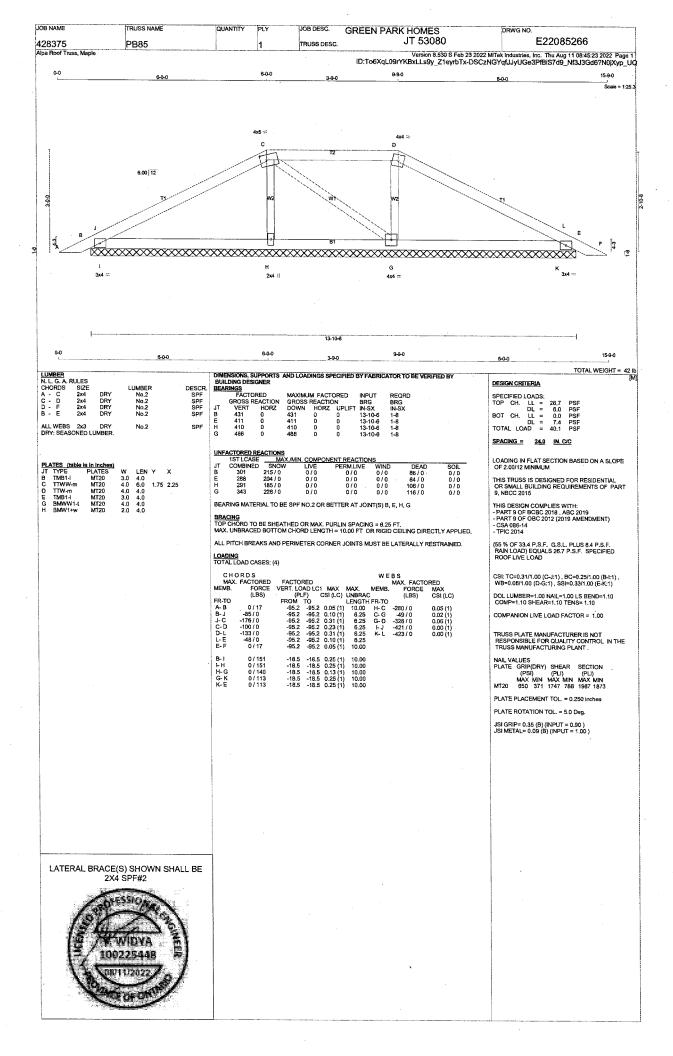


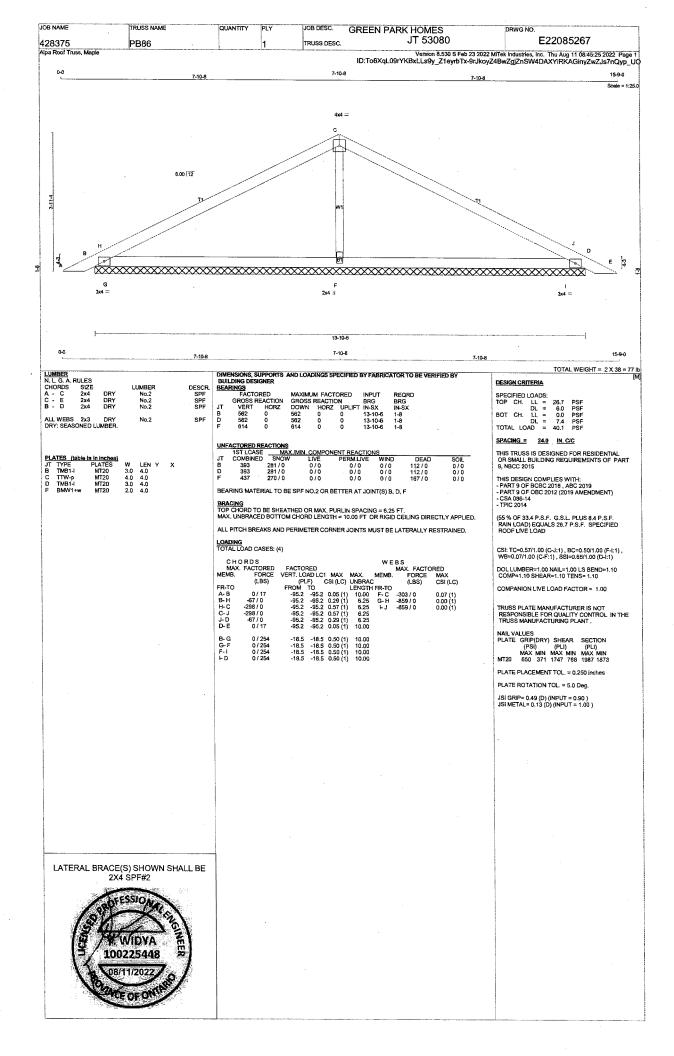


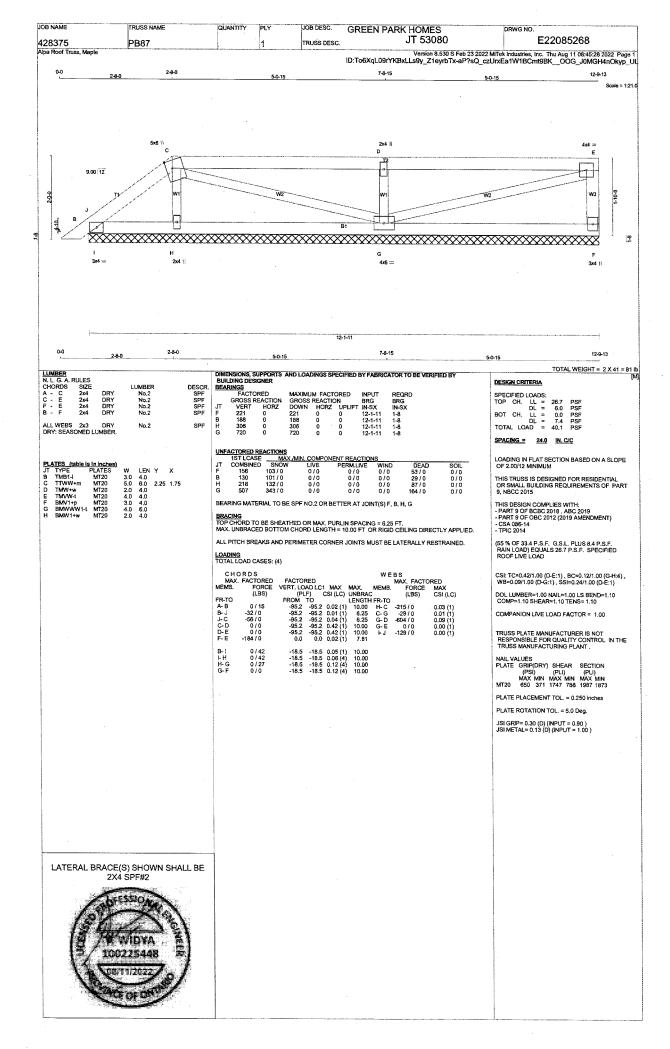


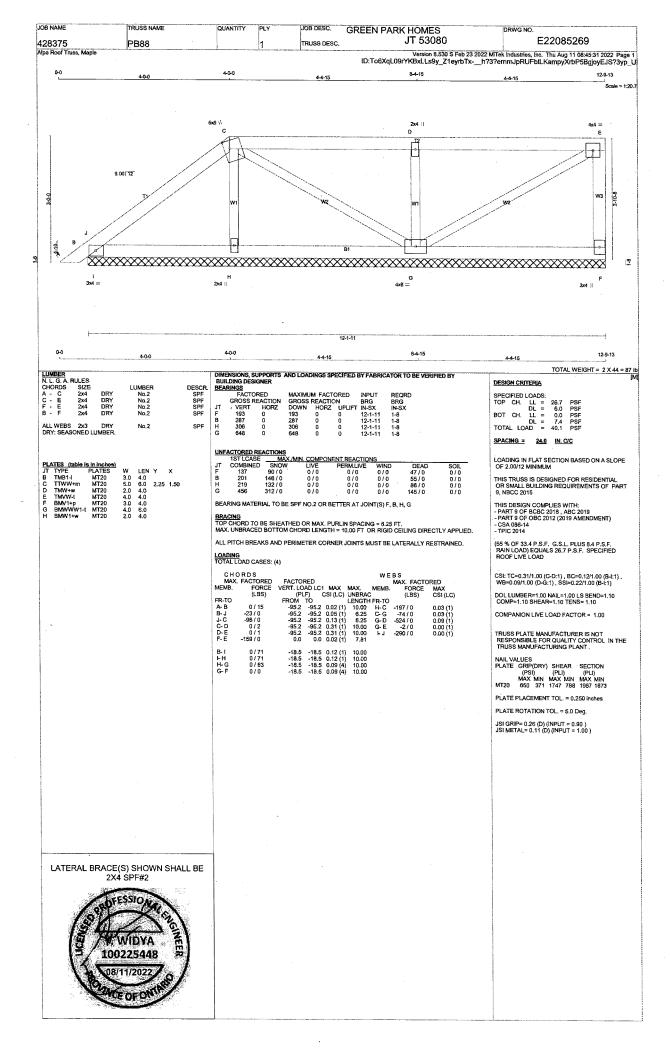


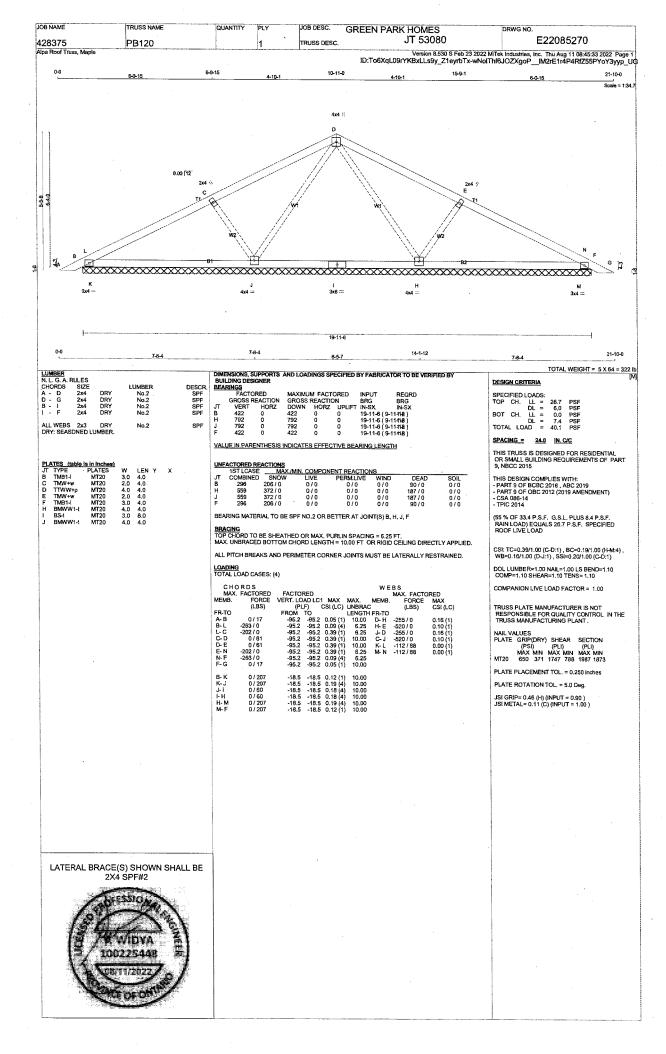


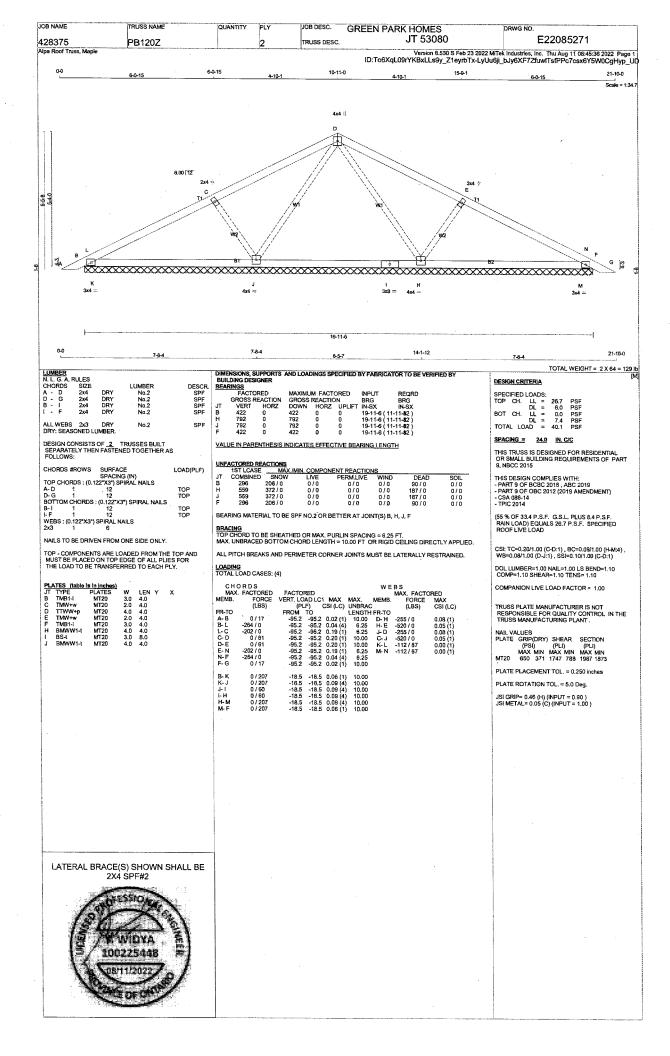


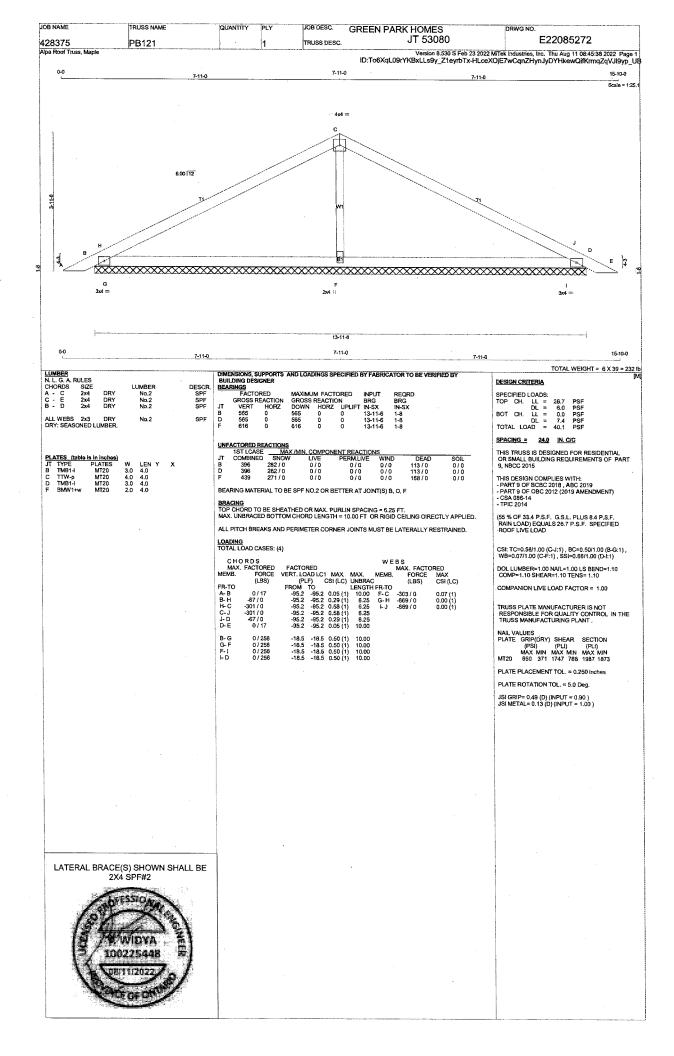


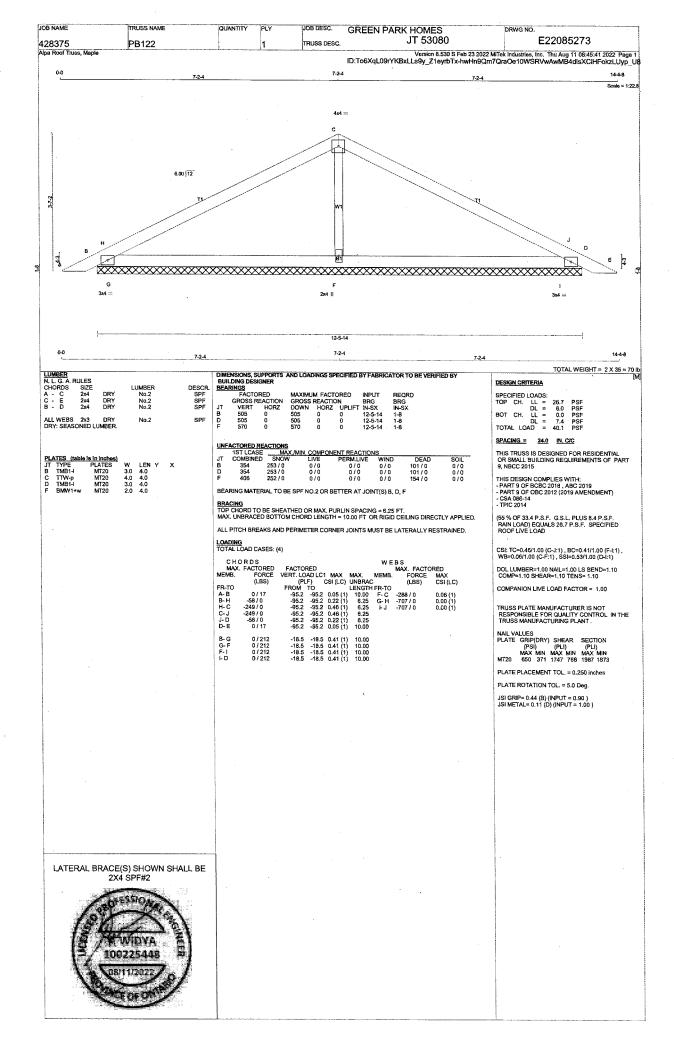


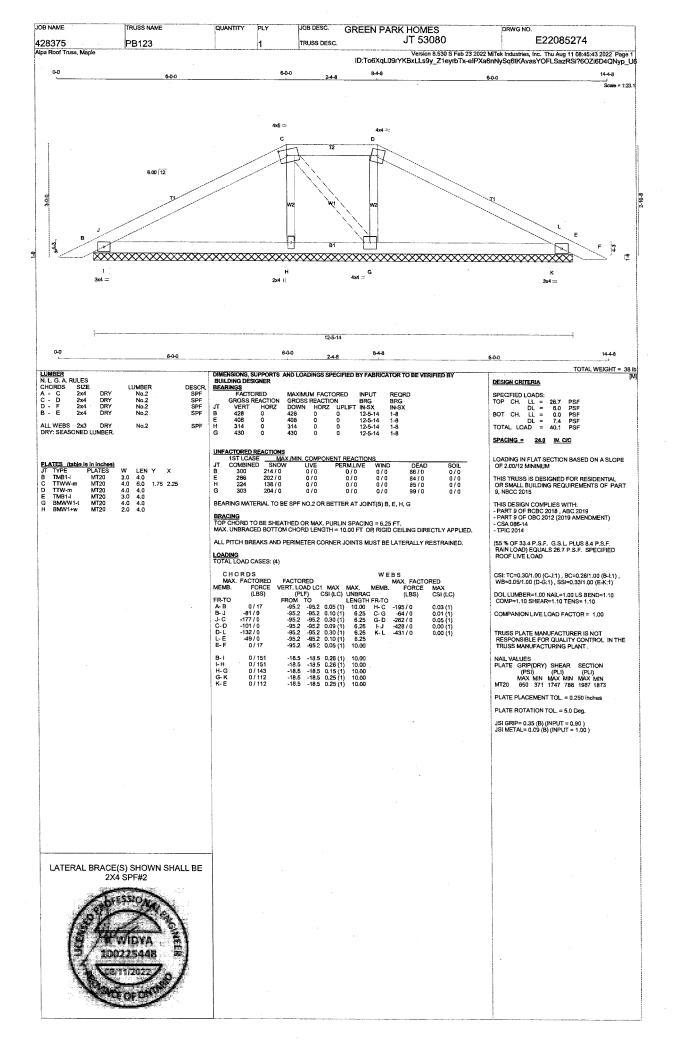


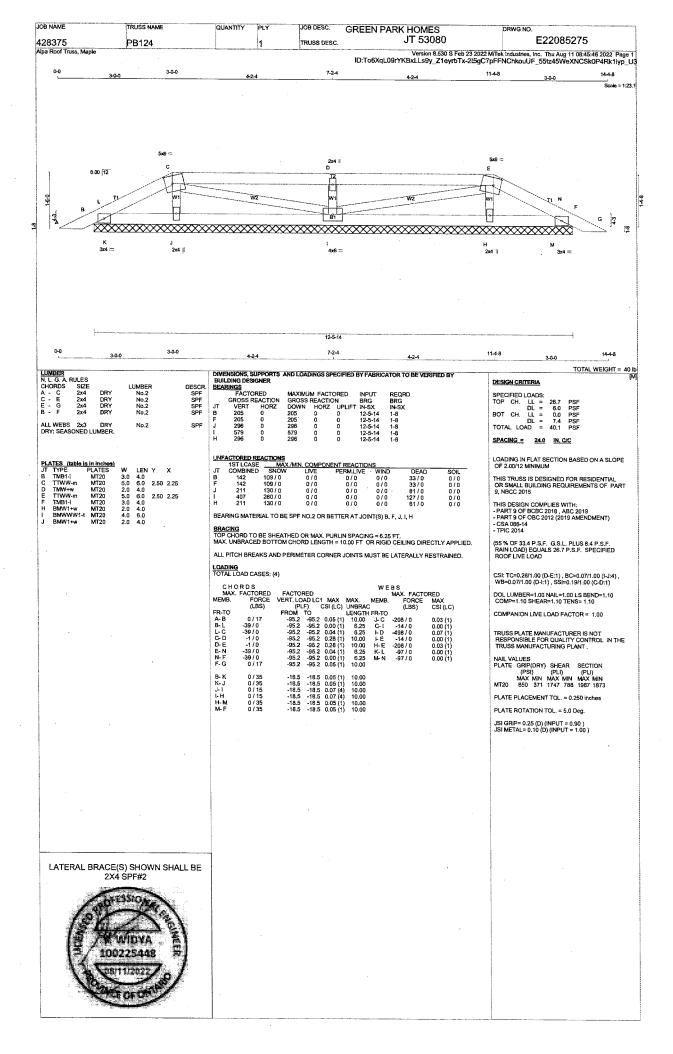


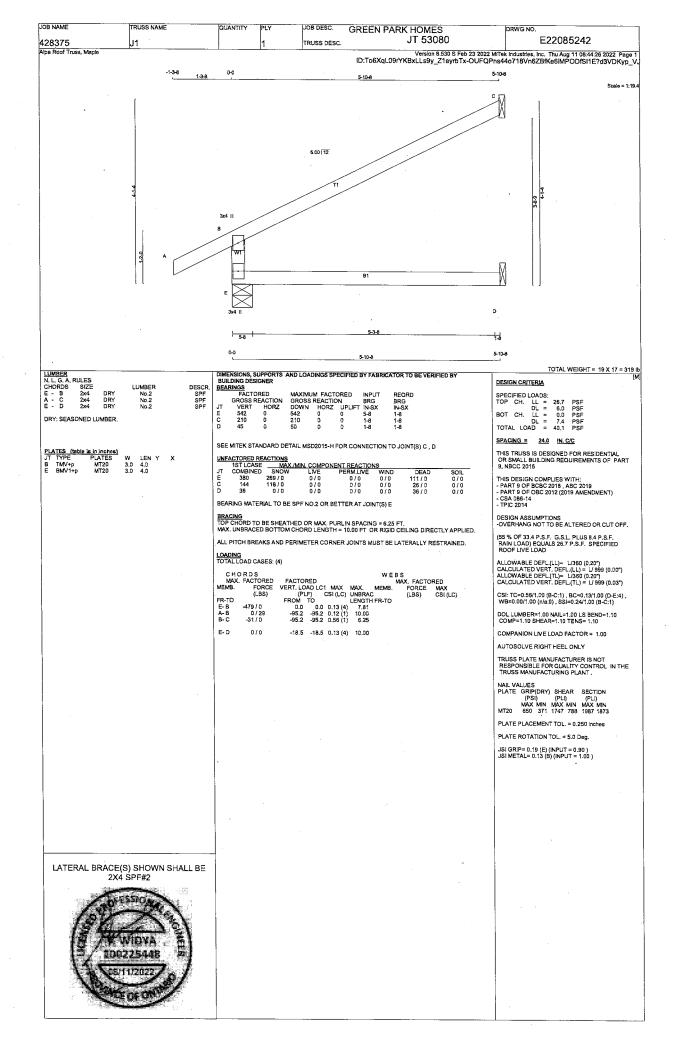


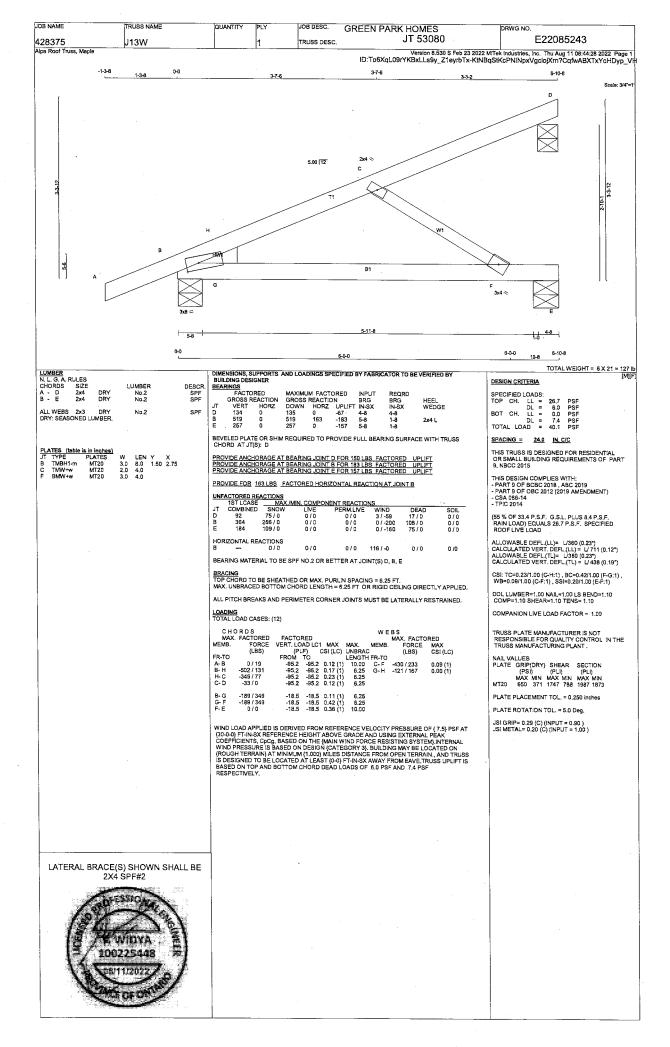


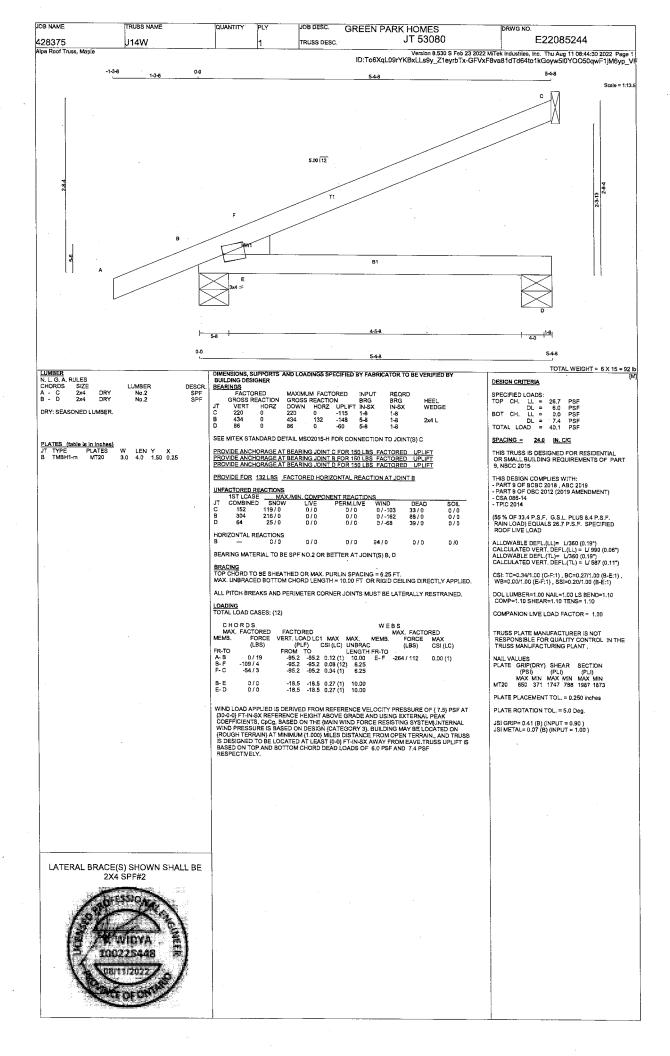




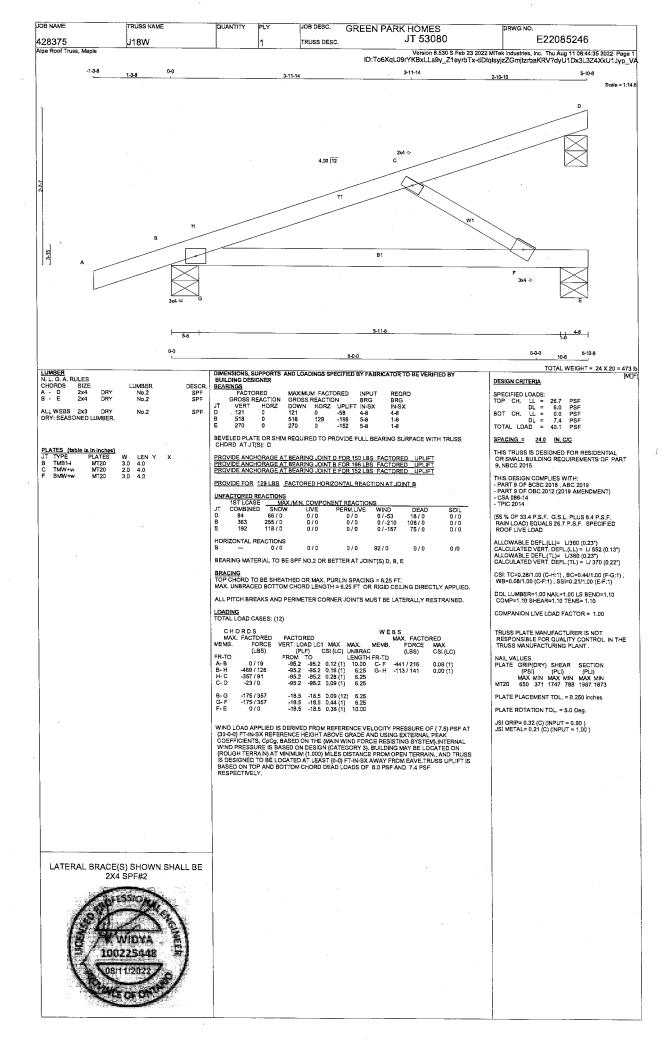


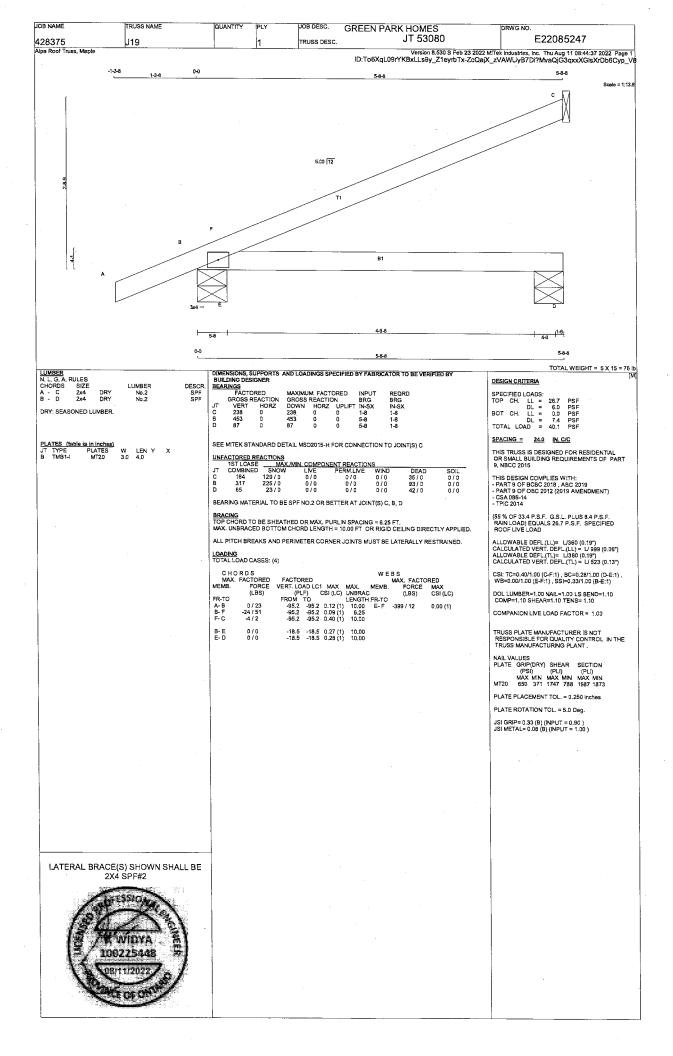


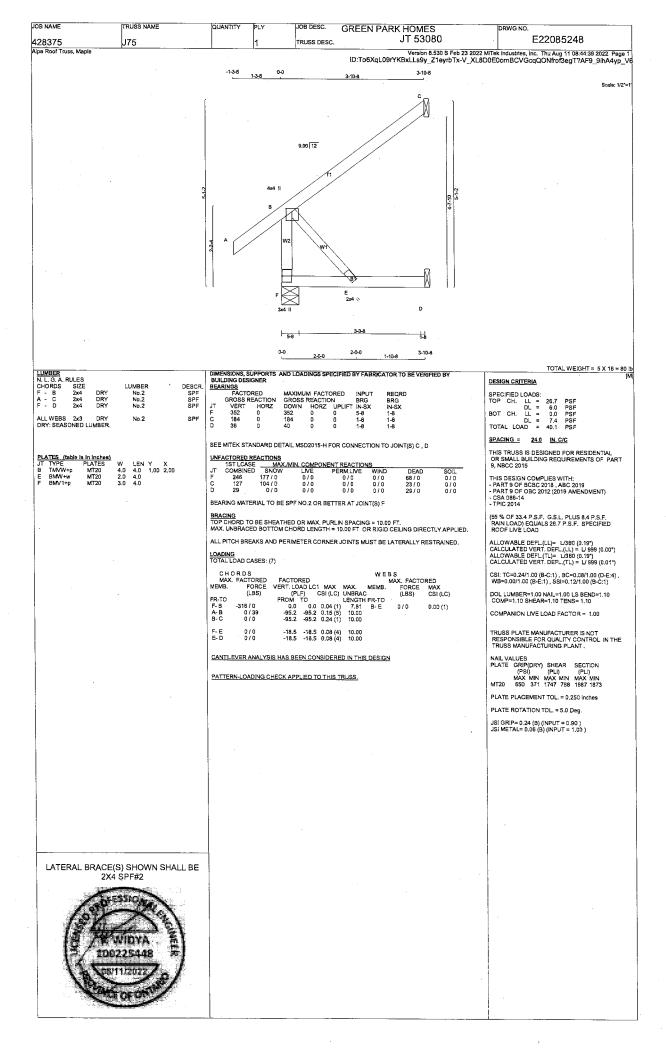


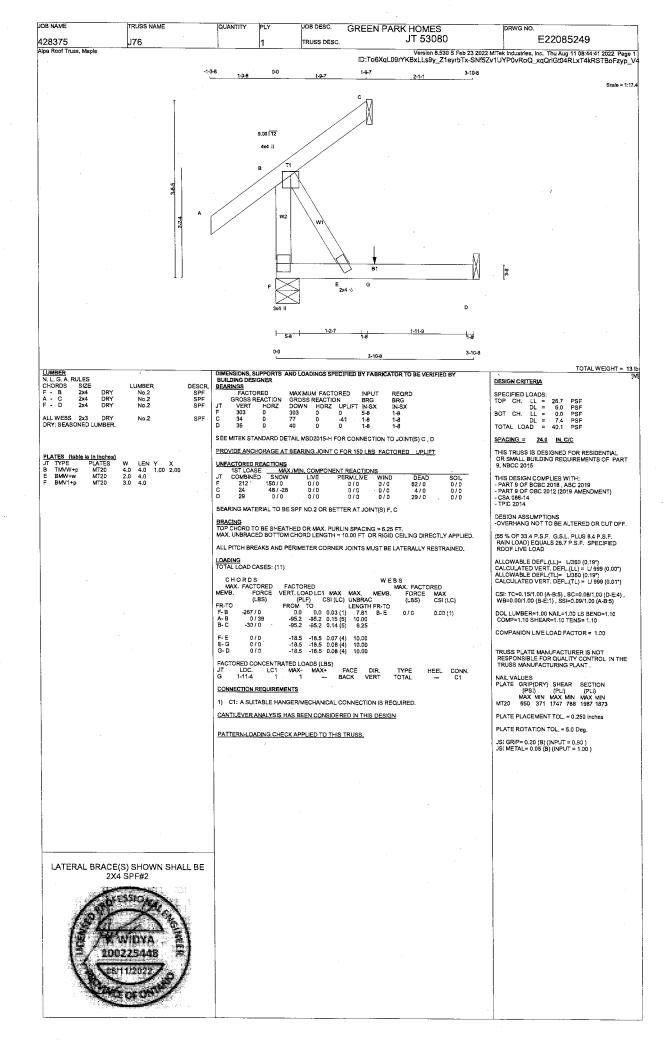


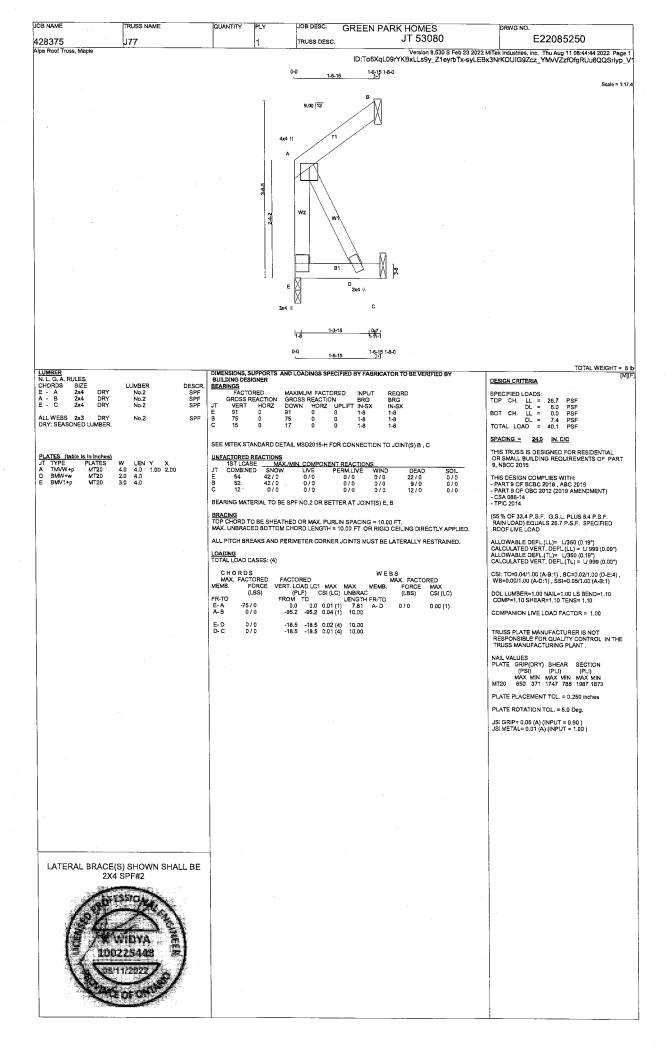


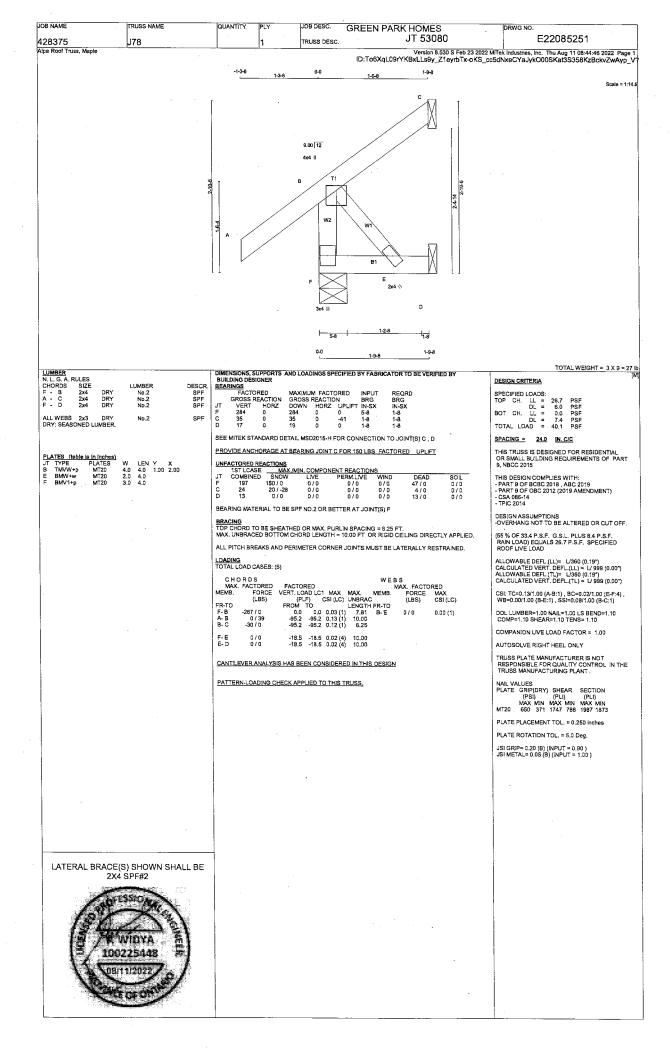


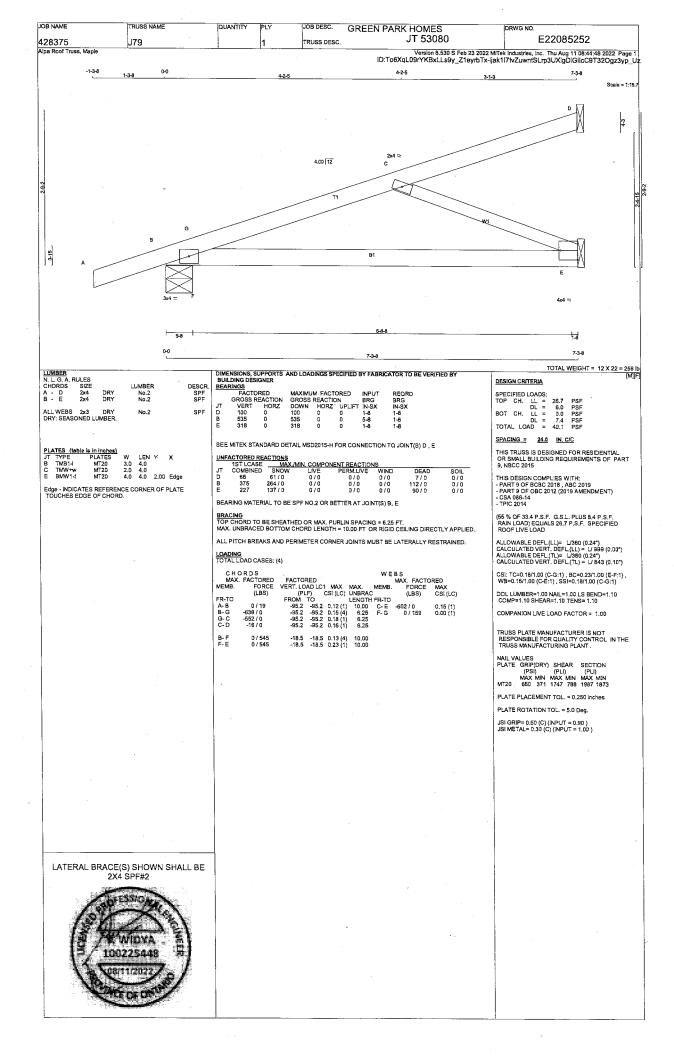


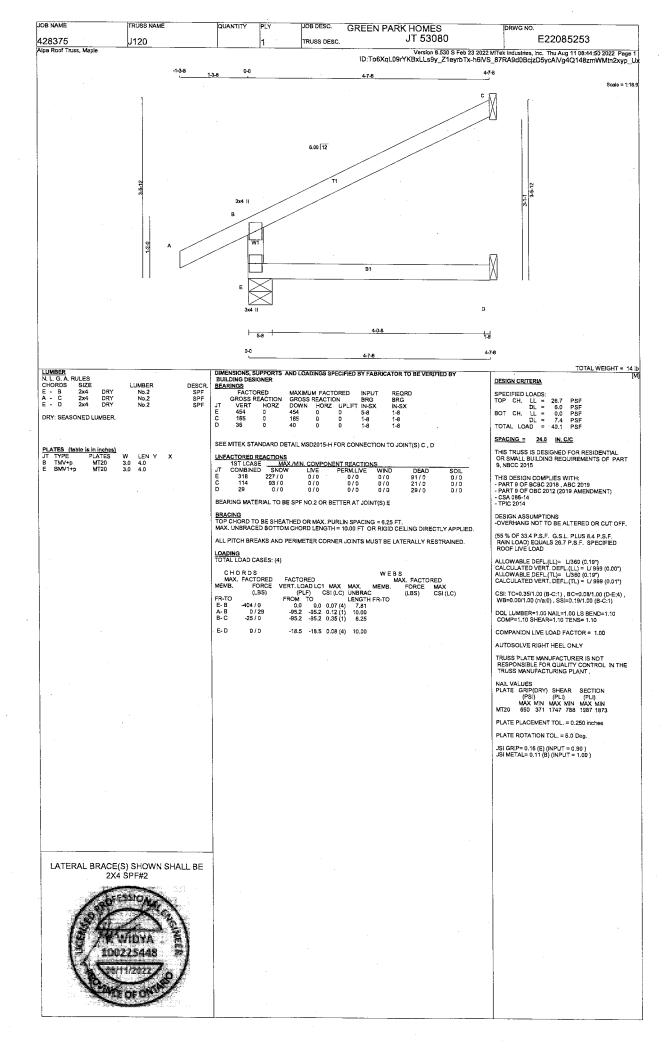












EWP DESIGN INC.

(905) 832-2250

FAX (905) 832-0286

RESPONSIBILITIES AND SPECIFICATIONS

RESPONSIBILITIES

- 1. EWP DESIGN INC. is responsible for the design of trusses as individual components.
- It is the responsibility of others to ascertain that the design loads utilized on each
 drawing meet or exceed the actual dead load imposed by the structure, the live load
 imposed by the intended use and the snow load imposed by local building code or
 authorities with jurisdictions.
- 3. All dimensions are to be verified by the owner, contractor, architect or other authorities with jurisdictions before truss fabrication.
- 4. EWP DESIGN INC. bears no responsibility for the erection of trusses. Persons erecting trusses are cautioned to seek professional advice regarding the temporary and permanent bracing for the system. Bracing shown on EWP DESIGN INC. drawing is specified for the truss as a component only and forms an integral part of the truss design.
- 5. It is the truss manufacturer's responsibility to ensure that trusses are manufactured in conformance with specifications of EWP DESIGN INC. as outlined below.

SPECIFICATIONS

- 1. Trusses designed by EWP DESIGN INC. conform to the relevant section of the Ontario Building Code of Canada (Part 9 or Part 4) or to the Canadian code for farm buildings, whichever applies to the building type, as indicated on the EWP DESIGN INC. drawings, and conform to the design procedures established by the Truss Plate Institute of Canada. Unit stresses used for truss designs are as per the edition of CSA-O86 shown on EWP DESIGN INC. drawings.
- 2. Lumber is to be the size, species and grade as specified on EWP DESIGN INC. drawings.
- 3. Moisture content of lumber shall not exceed 19% in service unless specified otherwise.
- 4. Metal connector plates shall be applied to both faces of truss at each joint and shall be positioned as specified.
- 5. Top chords of trusses are assumed to be continuously braced laterally by roof sheathing or by purlins at intervals not exceeding 12.5 times the thickness of top chord member.
- 6. Bottom chords shall be laterally braced at intervals not exceeding 3M (10') o.c., where rigid ceiling is not applied directly to the underside of chords.

THESE DRAWINGS CONSTITUTE THE PROPERTY OF EWP DESIGN INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY THE ALPA LUMBER GROUP, AND WILL BE RETRACTED BY EWP DESIGN INC. IF UTILIZED FOR ANY OTHER PURPOSE.

STANDARD DETAIL MSD2015-H

Issued: SEPTEMBER 22, 2020

Expiry:

APRIL 30, 2022

TOE-NAIL CAPACITY DETAILS

LATERAL AND WITHDRAWAL RESISTANCE OF BEARING ANCHORAGE BY TOE-NAILS

			SPF	D. FIR	SPF	D. FIR
COMMON	3.00	0.144	. 122	139	30	42
WIRE	3.25	0.144	127	144	32	45
	3.50	0.160	152	173	38	52
COMMON	3.00	0.122	96	108	26	36
SPIRAL	3.25	0.122	97	108	28	40
31 IIVAL	3.50	0.152	142	161	36	. 50
3.25" Gun nail	3.25	0.120	94	105	28	39

Note: If using truss with D. Fir lumber and SPF bearing plate, use tabulated SPF values in table.

Nail type:		Common wire	Common spiral	Common wire	Common spiral	Gun Nail
Diameter	(in.)	0.160	0.152	0.144	0.122	0.120
Length	(in.)	3.50	3.50	3.00	3.00	3.25
2x4 SPF		2	2 .	3	3	3
2x6 SPF		4	4	4	5	5
2x4 D. FIR	ł	2	2	2	2	2
2x6 D. FIR	l .	3	3	3	4	4

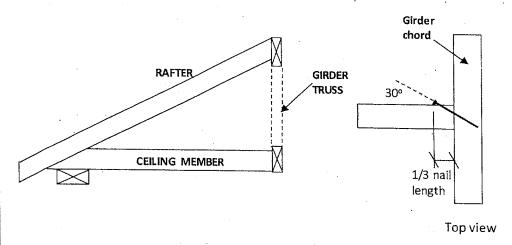
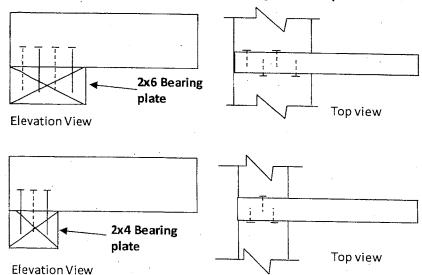
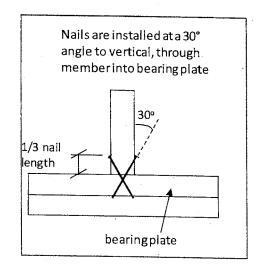


Figure 1: Toe-Nailing Rafter / Ceiling Member to Girder Truss

December 21, 2020


STANDARD DETAIL MSD2015-H


Issued: SEPTEMBER 22, 2020

Expiry: **APRIL 30, 2022**

TOE-NAIL CAPACITY DETAILS

Figure 2: Toe-Nail Anchorage to Bearing Plate for Uplift

NOTES:

- 1. Rafter and ceiling members may be connected to top and bottom chords of girder truss by toe-nailing the members into the girder chords (see fig. 1), provided the factored vertical reactions of the supported members do not exceed the lateral resistance of the toe-nails. Mechanical connectors (hangers) are required if factored vertical reactions exceed the toe-nail capacity, or if the connection must resist horizontal loads (loads perpendicular to the face of girder or rafter).
- 2. Trusses, rafters or ceiling members may be anchored to the bearing plate with toe-nails (see fig. 2), provided that the factored uplift reactions due to wind or earthquake loads do not exceed the withdrawal resistance of the toe-nails. Mechanical anchors (tie-downs) are required for reactions that exceed the toe-nail withdrawal capacity. Toe-nail anchorage to bearing plates is NOT permitted if uplift reactions are generated from gravity loads (snow, floor live, dead).
- 3. Tabulated toe-nail resistances on page 1 are for **one** toe-nail. Multiply unit values by the number of nails used in the connection. Maximum number of nails in a connection shall not exceed the tabulated limits shown on page 1 for a given lumber size /species.
- 4. Nail values are based on specific gravity of G = 0.42 (SPF) and G = 0.49 (D. Fir).
- 5. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member.
- 6. For wind / earthquake loads, tabulated lateral resistances may be multiplied by 1.15 (K_D factor). No increases are permitted for tabulated withdrawal resistances.
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA 086-19, Clause 12.9.

SIMPSON Strong-Tie

LUL/LUS/LJS/HUS/HHUS/HGUS

Standard and Double-Shear Joist Hangers

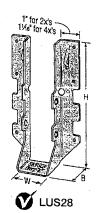
This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower Installed cost, or a combination of these features.

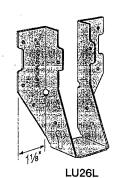
Most hangers in this series have double-shear nailing — an innovation that distributes the load through two points on each joist nail for greater strength. This allows for fewer nails, faster installation, and the use of all common nails for the same connection. (Do not bend or remove tabs)

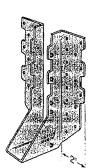
Double-shear hangers range from the light capacity LUS hangers to the highest capacity HGUS hangers. For medium load truss applications, the HUS offers a lower cost alternative and easier installation than the HGUS hangers, while providing greater load capacity and bearing than the LUS.

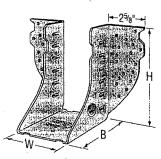
Material: See table on pp. 217-218.

Finish: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, pp. 18-20.


Installation:

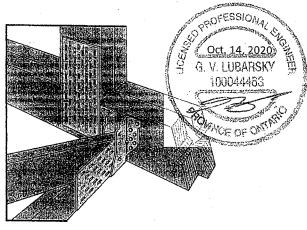

Plated Truss Connectors

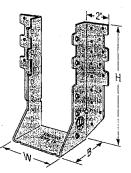

- Use all specified fasteners; see General Notes.
- Nails must be driven at an angle through the joist or truss into the header to achieve the tabulated resistances (except LUL).
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated factored resistance.
- Not designed for welded or nailer applications.
- \bullet With single ply 2x carrying members, use 10d x 1½" nails into the header and 10d commons into the joist, and reduce the resistance to 0.64 of the table value where 16d nails are specified and 0.77 where 10d nails are specified.

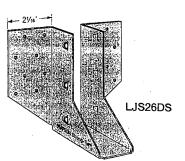

Options:

- LUS, LJS, LUL and HUS hangers cannot be modified.
- Other sizes available; consult your Simpson Strong-Tie representative.
- See Hanger Options information on pp. 105~107.

Double-Shear Nailing




Double-Shear Nailing Side View; Do not bend tab


Dome Double-Shear Nailing Side View (available on some models)

LUS - Double Shear Joist Hangers

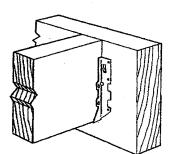
SIMPSON Strong-Tie

LUS28

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

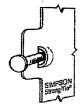
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uptiff resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

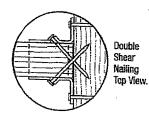
Installation:

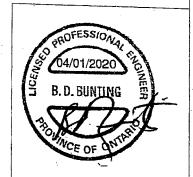
- Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

Options:


These hangers cannot be modified

Typical LUS Installation


Model			Dimens	ions (in	.)	Fast	eners	Factored Resistance (lb.)				
Madel No.	Ga.	-	т	1	1	 	·		īr-L	S-I	P-F	
Mu.		W	H	В	d _a [†]	Face	Joist	Uplift	Normal	Uplift	Normal	
LUS24	+	101		ļ	<u> </u>		JUIST	(K _p =1.15)	(K ₀ =1.00)	(K ₀ =1.15)	(K ₀ =1.00)	
	18	19/16	31/6	13/4	1 15/18	(4) 10d	(2) 10d	710	1630	645	1155	
LUS24-2	18	31/6	31/6	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435	
LUS26	18	1%	43/4	13/4	35/8	(4) 10d	(4) 10d	1420	2170			
LUS26-2	18	31/8	47/6	2	4	(4) 16d	(4) 16d	1720		1290	1630	
LUS26-3	18	4%	43/16	2	31/4	(4) 16d			2595	1545	1920	
LUS28	18	1%	6%	13/4			(4) 16d	1720	2595	1545	2340	
∐S28-2	+				3¾	(6) 10d	(6) 10d	1420	2520	1290	1790	
	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575	
LUS28-3	18	4%	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545		
LUS210	18	1%6	713/16	13/4	37/8	(8) 10d	(4) 10d	1420			2375	
LUS210-2	18	31/6	9	2	6	··-			2785	1290	2210	
LUS210-3	18	45%			 	(8) 16d	(6) 16d	2580	4500	2320	3195	
DOZ10-3		478	83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375	


 $^{1.\,}d_{\rm e}$ is the distance from the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some mode(s).

U.S. Patent 5,603,580

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be reflect upon after June 30, 2022. Contact Simpson Strong-Tie for current information and finited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company inc.

T-SPECLUS20 3/20 exp. 6/22

TECHNICAL BULLETIN

HUS/LJS - Double Shear Joist Hangers

SIMPSON Strong:Tie

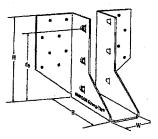
All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

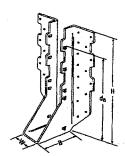
Material: See table Finish: G90 galvanized

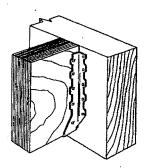
Design:

- Factored resistances are in accordance with CSA O86 -14.
- Uplift resistances have been increased 15%.
 No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:


- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications


See current catalogue for options


0

LJS26DS

HUS210 (HUS26, HUS28, similar)

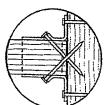


Typical HUS Installation

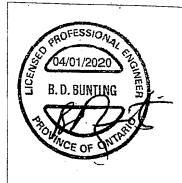
Typical HUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

		Di	mens	ons (i	n.)	Fas	Fasteners		Factored Resistance (lb.)				
Model	Ga.								ir-L		P-F		
No.	ual	W	Н	В	d _e ¹	Face	Joist	Uplift (K ₀ =1.15)	Normal (K _p =1.00)	Uplift (K _p =1.15)	Normal (K ₀ =1.00)		
LJS26DS	10							lb.	lb.	lb.	ib.		
	18	19/16	5	3½	4%	(16) 16d	(6) 16d	2055	4265	1460	4115		
HUS26	16	1%	53/8	3	315/46	(14) 16d	(6) 16d	2705	4940	2065			
HUS28	16	1%	73/32	3	-	(22) 16d		— ——	· · · · · · · · · · · · · · · · · · ·		3875		
						. ,	(8) 16d	3605	5365	2675	4345		
HUS210	16	1%	93/32	3	731/32	(30) 16d	(10) 16d	4505	5795	4010	4740		
HUS1.81/10	16	113/16	9	3	8	(30) 16d	(10) 16d						
1 d is the dis					· · · ·		(10) 100	4505	6450	4010	5200		

1. de is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be reliad upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company inc.

T-SPECHUS20 3/20 exp. 6/22

HGUS - Double Shear Joist Hangers

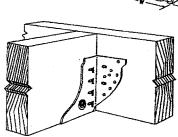
SIMPSON Strong-Tie

HGUS28-2

All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

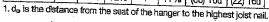
Material: 12 gauge Finish: G90 galvanized

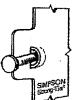
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

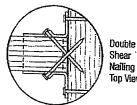
Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or naller applications

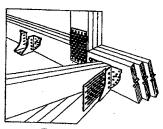


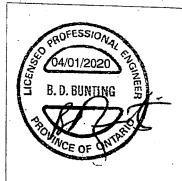

See current catalogue for options

	1		Dimens	ions (ir	l.)	Faste	mers	F	actored Re	sistance (I	b.)
Model No.	Ga	-	Τ	Γ	·	-	T	D.F	ir-L		P-F
NO.		W	Н	В	d,1	Face	Joist	Uplift	Normal	Uplift	Normal
HGUS26	10	451		ļ			Golat	(K ₀ =1.15)	(K _p =1.00)	(K ₀ =1.15)	(K ₀ =1.00)
	12	1%	5%	5	45/32	(20) 16d	(8) 16d	2685	6625	2685	5700
HGUS26-2	12	35/16	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	
HGUS26-3	12	415/16	51/2	4	41/6	(20) 16d	(8) 16d	4385	8950	3100	6355
HGUS26-4	12	6%s	57/16	4	41/6	(20) 16d	(8) 16d	4385	8950		6355
HGUS28	12	1%	71/s	5	61%	(36) 16d	(12) 16d	3310		3100	6355
HGUS28-2	12	35/16	73/15	4	61/6	(36) 16d	(12) 16d		7.675	3100	6900
HGUS28-3	12	416/16	71/4	4	6%	(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS28-4	12	6%e	73/16	4	61/4			6070	12980	4310	9215
HGUS210	12	15/8	91/4	5		(36) 16d	(12) 16d	6070	12980	4310	9215
HGUS210-2	12				71/8	(46) 16d	(16) 16d	3535	11070	2510	8090
	_	35/16	93/16	4	81/8	(46) 16d	(16) 16d	6840	14015	4855	10270
HGUS210-3	12	415/16	91/4	4	8%	(46) 16d	(16) 16d	6840	14645	4855	10400
HGUS210-4	12	6 % 6	93/16	4	81/8	(46) 16d	(16) 16d	6840	14645	4855	
HGUS212-4	12	6%s	10%	4	101/8	(56) 16d	(20) 16d	7640	14995		10400
HGUS214-4	12	6%	12%	4	111/8	(66) 16d	(22) 16d			5425	10645
1 4 2 4 - 1					/6	(co) rou	الاحم الالا	10130	16400	7195	11645



Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5,603,580


Double Shear Natting Side View. Do not bend tab back.

Shear Nailing Top View.

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHGUS20 3/20 exp. 6/22

HHUS - Double Shear Joist Hangers

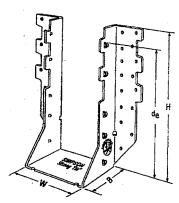
SIMPSON Strong-Tie

All HHUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

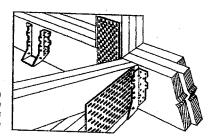
Material: 14 gauge Finish: G90 galvanized

Design:

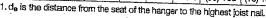
- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

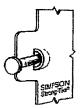

Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications


Options:

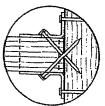
See current catalogue for options


Typical HHUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

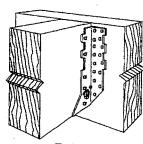


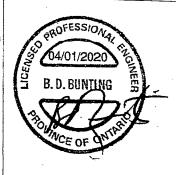
HHUS410

	1		imensio	ns (in.))	Fast	eners	F	actored Re	sistance (L	b.)
Model	Ga.		т		, 		7		ir-L		P-F
No.		W	н	В	d _a ¹	Face	Joist	Uplift	Normal	Uplift	Normal
10000					u _e		Just	(K _n =1.15)	(K ₀ =1.00)	(K _D =1.15)	
HHUS26-2	14	3%6	513/18	3	315/16	(14) 16d	(6) 16d	2850	7335	2065	5205
HHUS28-2	14	3%6	77/32	3	65/32	(22) 16d	(8) 16d	3765	8940		
HHUS210-2	14	35/16	93/32	3	8	(30) 16d	(10) 16d			2675	6345
HHUS210-3	14	411/16	9	3	715/16	(30) 16d	· · · · · ·		9660	4235	7000
HHUS210-4	14	61/6	823/52				(10) 16d	4670	9670	4235	6865
HHUS46	-			3	727/32	(30) 16d	(10) 16d	4670	10155	4235	7210
	14	3%₃	513/32	3	315/16	(14) 16d	(6) 16d	2540	7335	2065	5205
HHUS48	14	3%	71/a	3	61/a	(22) 16d	(8) 16d	3765	8940	2675	6345
HHUS410	14	3%	9	3	8	(30) 16d	(10) 16d	4670			
HHUS5.50/10	14	51/2	9	3	8	(30) 16d			9855	4235	7000
HHUS7.25/10	14	71/4	9				(10) 16d	4670	10155	4235	7210
d is the dista		1 74	3	35/16	729/32	(30) 16d	(10) 16d	4670	10155	3370	7210



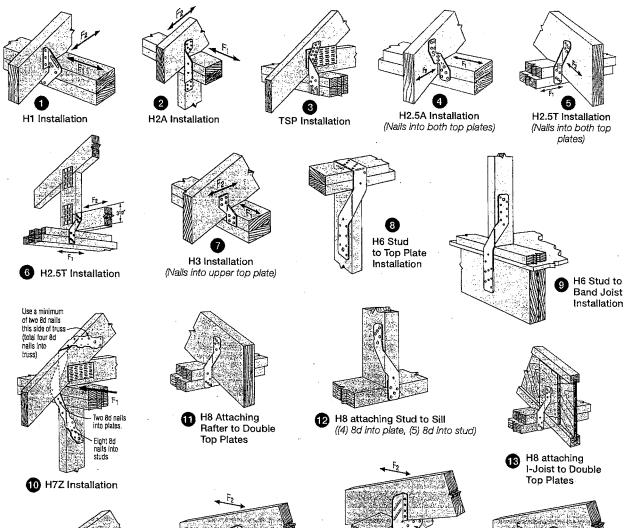
Dome Double Shear Nailing prevents tabs breaking off (available on some models).

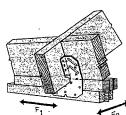

U.S. Patent 5,603,580


Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View,

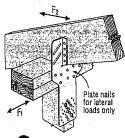
Typical HHUS Installation

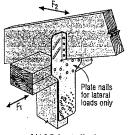

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.


© 2020 Simpson Strong-Tie Company inc.

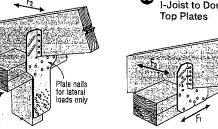
T-SPECHHUS20 3/20 exp. 6/22

H/TSP

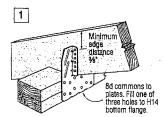

Seismic and Hurricane Ties (cont.)



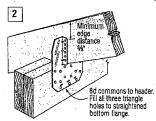
C-C-CAN2018 @ 2017 SIMPSON STRONG-TIE COMPANY INC.


14 H10A Field-Bent Installation

15 H10S Installation



16 H10S Installation with Stud Offset



H10A Installation

H10A optional positive angle nailing connects shear blocking to rafter. Use 8d common nails. Slot allows maximum field-bending up to a pitch of 6/12, use 75% of the table uplift value; bend one time only.

H14 Installation to **Double Top Plates**

H14 Installation to Double 2x Header

Avoid a Misinstallation

Do not make new holes or overdrive nails.

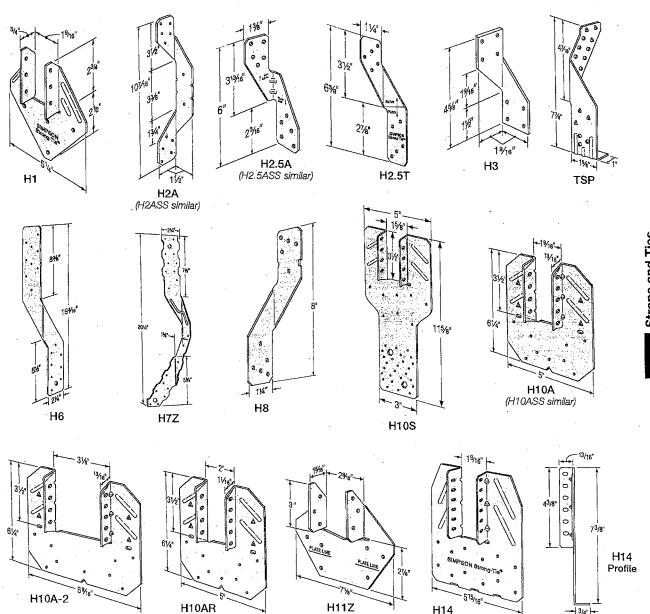
H/TSP

SIMPSON Strong-Tie

Seismic and Hurricane Ties

Simpson Strong-Tie® hurricane ties provide a positive connection between truss/rafter and the wall of the structure to resist wind and seismic forces. New additions to the line provide even more options.

- H10AR The heavy-duty design of the H10A available with a 2" wide throat to accommodate rough lumber
- H10A-2 The H10A design with a 3" throat for double 2x members
- H2ASS, H2.5ASS and H10ASS Popular ties now available in stainless steel


Material: See table

C-C-CAN2018 @2017 SIMPSÓN STRONG-TIE COMPANY INC.

Finish: Galvanized. H7Z and H11Z — ZMAX® coating. Some models available in stainless steel or ZMAX; see Corrosion Information, pp. 20–24 or visit strongtie.com.

Installation:

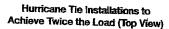
- · Use all specified fasteners; see General Notes.
- H1 can be installed with flanges facing inward (reverse of H1 installation drawing; number 1).
- H2.5T, H3 and H6 ties are shipped in equal quantities of right and left versions (right versions shown).
- Hurricane ties do not replace solid blocking.
- When installing ties on plated trusses (on the side opposite the truss plate) do not fasten through the truss plate from behind. This can force the truss plate off of the truss and compromise truss performance.
- H10A optional nailing to connect shear blocking, use 8d nails.
 Slots allow maximum field bending up to a pitch of 6:12, use H10A sloped loads for field bent installation.

H - Seismic and Hurricane Ties

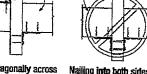
SIMPSON Strong-Tie

The H connector series provides wind and seismic ties for trusses and rafters.

Material: 18 gauge Finish: G90 galvanized

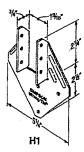

Design: • Factored resistances are in accordance with CSA 086-14

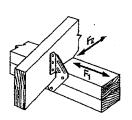
 Factored resistances have been increased 15%. No further increase is permitted.


Installation: • Use all specified fasteners

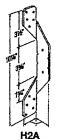
- Nails: 8d = 0.131" dia. x 2½" long common wire, 8d x 1½" = 0.131" x 1½ long, 10d x 1½" = 0.146" x 1½" long
- H1 can be installed with flanges facing outwards
- Hurricane ties do not replace solid blocking

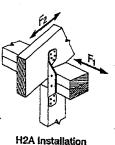
Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows: Factored Shear/Resisting Shear + Factored Tension/Resisting Tension ≤ 1.0 .

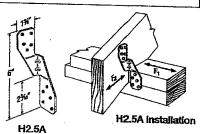


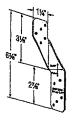

Wall

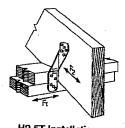
top plate

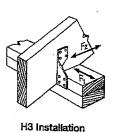

install diagonally across from each other for minimum 2x iruss.

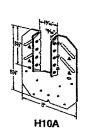

Nailing into both sides of a single ply 2x truss may cause the wood to split.

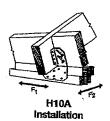


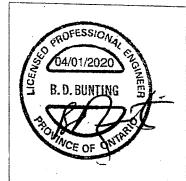



H1 Installation









H2.5T

H2.5T Installation (Nails into both top plates)

		Ī	Fasteners			Fac	tored Re	sistance	(lb.)	
Model	ο-	<u> </u>	r		D.Fir-L			S-P-F		
No.	Ga,	7.0.0			Uplift	Nor	mai	Unite	Nor	mai
		To Rafter	To Plates	To Studs	· · · · · ·	F ₁	F ₂	Uplift	F ₁	F ₂
11.4		·				(K ₀ =1.15)			(K _n =1.15	
H1	18	(6) 8d x 11/2"	(4) 8d		740	685	300	680	485	215
H2A	18	(5) 8d x 11/2"	(2) 8d x 11/2"	(5) 8d x 1½"	830	220	75	590		
H2.5A	18	(5) 8d	(5) 8d	.,	805				155	55
H2.5T	18					160	160	755	160	160
		(5) 8d	(5) 8d		83 5	175	240	740	160	210
НЗ	18	(4) 8d	(4) 8d		740	180	265	615		
HIDA	18	(9) 10d x 11/2"	(Q) 10d v 114"						125	190
		10/1007/172	(0) TOUR 172		1735	795	410	1505	565	290

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- Factored resistances are for one anchor. A
 minimum rafter thickness of 2½" must be used
 when framing anchors are installed on each side of
 the joist and on the same side of the plate.
- When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- 4. Hurricane ties are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable. For a Continuous Load Path, connections must be on same side of the wall.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be religid upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see stronglis.com.

© 2020 Simpson Strong-Tia Company Inc.

T-SPECH20 3/20 exp. 6/22

TECHNICAL BULLETIN

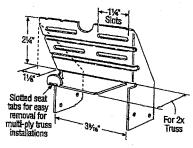
TC - Truss Connectors

SIMPSON Strong-Tie

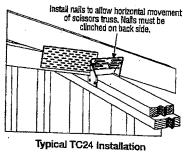
The TC truss connector is an ideal connector for scissor trusses and can allow horizontal movement up to 11/4". The TC also attaches plated trusses to top plates or sill plates to resist uplift forces. Typically used on one or both ends of truss as determined by the building designer.

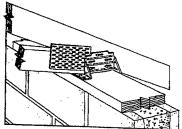
Material: 16 gauge

Finish: G90 galvanized

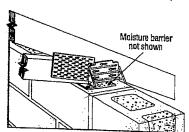

Design: Factored resistances are in accordance with CSA 086-14

Installation:

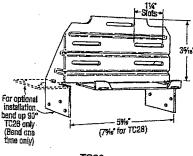

- Use all specified fasteners.
- Nails: 10d = 0.148" dia. x 3" long common wire, $10d \times 1\frac{1}{2} = 0.148$ " dia. $\times 1\frac{1}{2}$ " long.
- Drive 10d nails into the truss at the inside end of the slotted holes (inside end is towards the centre of the truss) and clinch on the back side. Do not seat these nails into the truss-allow room under the nail head for movement of the truss with respect to the wall.


Optional TC Installation:

 Bend one flange up 90°. Drive specified nails (Band ans time only) into the top and face of the top plates or install Titen* screws into the top and face of masonry wall. See optional load tables and installation details.

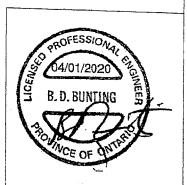


TC24 U.S. Patent 4,932,173



Optional TC26 Installation for Grouted Concrete Block using a Wood Nailer (8", 10", 12" Wall Installation Similar)

Optional TC26 Installation for Grouted Concrete Block using Titen Screws


TC26 (TC28 Similiar)

	Fas	teners	Factored Resistance		
Model			D.Fir-L	S-P-F	
No.	Truss	Wall Plates	Uplift (K ₀ =1.15)	Uplift (K ₀ =1.15)	
			fb.	lb.	
TC24	(4) 10d	(4) 10d	605	430	
TC26	(5) 10d	(6) 10d	1015	720	
TC28	(5) 10d	(6) 10d	1015	720	

Optional TC Installation Table

- Parona	O mistan	arrott table			
	Fa	steners	Factored	Resistance	
Modei			D.Fir-L	S-P-F	
No.	Truss	Wall Plates	Uplift (K _p =1.15)	Uplift (K ₀ =1.15)	
,			lb.	lb.	
TC26	(5) 10d	(6) 10d x 11/2"	810	660	
. 320	(5) 10d	(6) 10d	930	660	

- 1. Factored resistances have been increased 15% for earthquake or wind loading; no further increase allowed; reduce where other loads govern.
- 2. Grout strength is 15 MPa minimum.
- 3. Optional TC26 installation with 10d nails requires minimum 3" top plate thickness.
- 4. TC26 fastened to grouted concrete block with (6) - 1/46" x 21/4" Titen screws has a factored uplift resistance of 275 lb.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECTC20 3/20 exp. 6/22

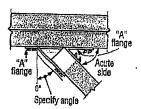
HTU

Face-Mount Truss Hanger (cont.)

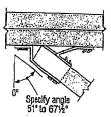
These products are approved for installation with the Strong-Drive® SD Connector screw. See pp. 32-34 for more information.

Alternate Installation for (2) 2x4 and (2) 2x6 Headers

•			Fr	isteners .		Factored !	lesistance	
Madel	Min.	Minimum			D.F	ir-L		
Model No.	Heel Height	Header			Uplift	Normai	Uplift	Normal
	(In.)	Size	Header	Joist	$(K_0 = 1.15)$	$(K_0 = 1.00)$	$(K_0 = 1.15)$	$(K_0 = 1.00)$
				1	ib.	lb.	lb.	lb.
				ļ	kN	kN	kN	kN
HTU26 (Min.)	37%	(2) 2x4	(10) 16d	(14) 10d x 11/2"	1740	3340	1235	2370
				(1.1/1.00%)	7.74	14,86	5.49	10,54
HTU26 (Max.)	51/2	(2) 2x4	(10) 16d	(20) 10d x 11/2"	2470	4015	1755	2850
				(25) 100 % 172	10.99	17,86	7.81	12.68
HTU28 (Max.)	37/6	(2) 2x6	(20) 16d	(26) 10d x 11/2"	4150	6395	2945	4540
				(20) 100 X 172	18.46	28.45	13,10	20,19
HYU210 (Max.)	71/4	(2) 2x6	(20) 16d	(32) 10d x 11/2°	4150	6395	2945	4540
	1			(42) 100 X 172	18.46	28.45	13.10	20.19


See table footnotes on p. 280.

Hanger Options


See Hanger Options information on pp. 125–127.

Skewed Seat

- Skewable up to 67½°
- Available in single and 2-ply size
- No bevel cut required

Top View HTU Hanger Skewed Right < 51°

Top View HTU Hanger Skewed Right ≥ 51°

Factored Resistances for Skewed HTU Hangers

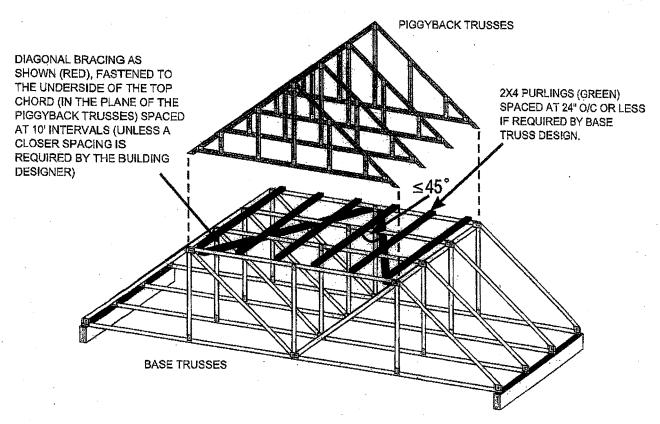
	1											
		F	asteners		Factored	Resistance	. 7. 7.27 7. 7. 2					
	Skew		1	D.1	īr-L	T	P-F					
Model No.	Angle	1		Uplift	Normal	Uplift	Normal					
HO.	(Degrees)	Header	Joist	(KD=1.16)	(KD=1.00)	(KD=1.15)	(KD=1.00)					
				lbs	lbs	lbs	lbs					
	ļ	ļ		kN	kN	KN	kN					
	< 51	(20) 16d	(14) 10d x 11/2"	1835	4110	1300	2905					
HTU26			(1.9 tod x 172	8.16	18.28	5.78	12.92					
	51-671/2	(20) 16d	(12) 10d x 1 1/2"	1350	3820	955	2560					
,	ļ	(,	172) 100 % 172	6,01	18.10,	4.25	11.39					
	< 51	(26) 16d	(20) 10d x 11/4"	2810	4270	1985	3030					
HTU28			(40) 100 X 1/2	12.50	18.99	8.83	13,48					
	51-67%	(26) 16d	(17) 10d x 11/2"	2075	3930	1465	2780					
·	ľ	,	(1171007172	9.23	17.48	6.52	12.37					
HTU210	< 51	(32) 16d	(26) 10d x 1 1/2"	3785	4430	2675	3135					
	 _		(20) 100 2 172	16.84	19.71	11,90	13,95					
	51~671/2	(32) 16d	(22) 10d x 11/2"	2795	4240	1980	3000					
	·	,	(22) 100 X 17E	12.43	18.86	8.81	13,35					
	<51	(20) 16d	(14) 10d	2140	3715	1515	2625					
HTU26-2			(1.9.100	9.52	16.53	6.74	11,68					
	51~671/2	(20) 16d	(12) 10d	1610	3920	1140	2785					
			(1.2) 1.50	7.16	17.44	5.07	12.39					
	< 51	(26) 16d	(20) 1 0 d	3960	5425	2815	3855					
HTU28-2			(25) 100	17.62	24.13	12.52	17.15					
	51-671/2	(26) 16d	(17) 10d	2385	5425	1695	3855					
			(11) 100	10.61	24.13	7.54	17.15					
	< 51	(32) 16d	(26) 10d	5025	6890	3570	4890					
HTU210-2		,, ,	(CO) IOU	22.35	30.65	15.88	21.75					
	51-671/2	(36) 16d	(22) 10d	3145	6680	2225	4745					
		(, 100	(4.2) TOU	13.99	29.72	9.90	21.10					

Factored uplift resistances have been increased 15% for wind or earthquake loading; no further increase is allowed.

2. Reduced heights are not permitted for skewed HTU's.

3. Nails: 16d = 0.162" dia. x 3½" long, 10d x 1½" = 0.148" dia. x 1½" long, 10d = 0.148" dia. x 3" long. See pp. 27–28 for other nail sizes and information.

TECH-NOTES


TN 15-001 Piggyback Bracing

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

Discialmer:

OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technical are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to the information provided but has developed this technical confirmation where it is not currently readily available.

HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI

SIMPSON Strong:Tie

C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC

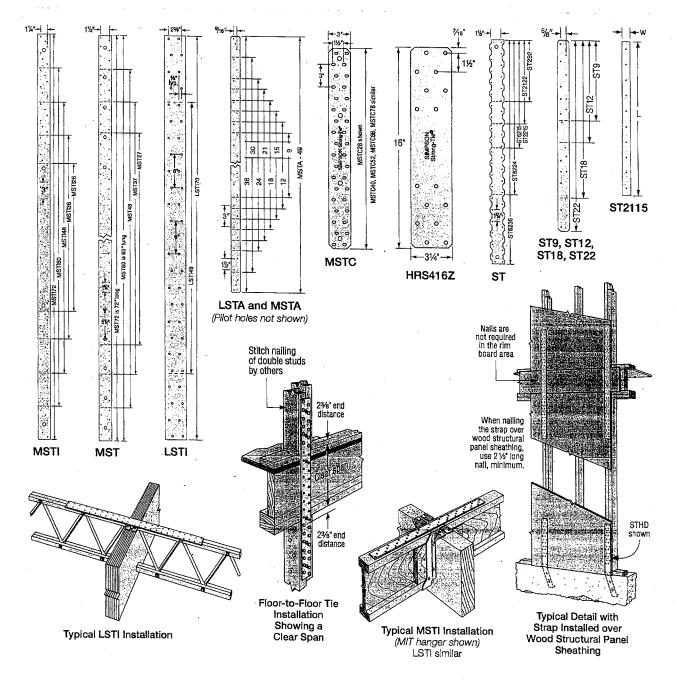
Strap Ties

Straps are designed to transfer tension loads in a wide variety of applications.

HRS — Heavy strap designed for installation on the edge of 2x members. The HRS416Z installs with Strong-Drive® SDS Heavy-Duty Connector screws.

LSTA and MSTA — Designed for use on the edge of 2x members, with a nailing pattern that reduces the potential for splitting.

LSTI and MSTI — Light and medium straps that are suitable where pneumatic-nailing is necessary through diaphragm decking and wood chord open-web trusses.

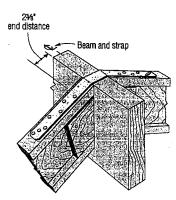

MST — High-capacity strap that can be installed with either nails or bolts. Suitable for double 2x member connections or greater.

MSTC — High-capacity strap that utilizes a staggered nail pattern to help minimize wood splitting. Nail slots have been countersunk to provide a lower nail head profile.

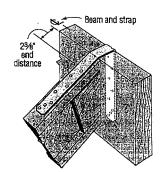
Finish: Galvanized. Some products are available in stainless steel, ZMAX® coating or black powder coat (add PC to sku); contact Simpson Strong-Tie. See Corrosion Information, pp. 18–20.

Installation: Use all specified fasteners; see General Notes

Options: Special sizes can be made to order; contact Simpson Strong-Tie for longer lengths


Strong-Tie

Strap Ties (cont.)


These products are available with additional corrosion protection. For more information, see p. 20.

SD Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 366–370 for more Information.

				nsions				ile Resistance	
	Model	_	- (n.)	Fasteners		ir–L	· · · · · · · · · · · · · · · · · · ·	P-F
	No.	Ga.			(Total)	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$
	1		W	L		lb.	lb.	lb.	ib.
						kN	kN	kN	KN
İ	LSTA9		11/4	9	(6) 10d	600	690	555	635
					(0) 100	2.67	3.07	2.47	2.82
	LSTA12		11/4	12	(8) 10d	800	920	735	845
Ļ					(0) 100	3.56	4.09	3.27	3.76
1	LSTA15		11/4	15	(10) 10d	1000	1150	920	1060
-					(10) 100	4.45	5.12	4.09	4.72
-	LSTA18		11/4	18	(12) 10d	1200	1380	1105	1270
ļ					(12) .00	5.34	6.14	4.92	5.65
	LSTA21		11/4	21	(14) 10d	1400	1610	1290	1485
-		20			(1.7.100	6.23	7.16	5,74	6.61
ļ	LSTA24		11/4	24	(16) 10d	1600	1840	1475	1695
-					(10) 100	7.12	8.19	6.56	7.54
	ST292		21/18	95/16	(8) 8d	585	675	535	615
-				- 7.00	(5) 00	2.60	3.00	2.38	2.74
	ST2122		21/1B	1213/16	(12) 8d	940	1085	865	995
-			10	/10	(12/00	4.18	4.83	3.85	4.43
-	ST2115		3/4	16 5 16	(8) 8d	670	770	615	710
			,,	10710	(0, 00	2.98	3.43	2.74	3.16
	ST2215		21/16	165/16	(16) 8d	1335	1540	1235	1420
				107.0	(10) 00	5.94	6.85	5.49	6.32
1	LSTA30		11/4	- 30	(20) 10d	2235	2465	2075	2385
1					(20) 100	9.94	10.97	9.23	10.61
	LSTA36		11/4	36	(24) 10d	2465	2465	2465	2465
		[]	177		(24) Tou	10.97	10.97	10.97	10.97
	LSTI49		3¾	49	(32) 10d x 11/2"	3115	3580	2852	3280
	201110		07,4	- 10	(02) 100 x 172	13.86	15.93	12.69	14.59
1	LSTI73		3¾	73	(48) 10d x 11/2"	4670	5370	4280	4920
			0,4	10	(40) Tour X 172	20.77	23.89	19.04	21.89
1	MSTA9		11/4	9	(6) 10d	670	770	625	715
Į		18	174		(0) 100	2.98	3.43	2.78	3.18
•	MSTA12	"	11/4	12	(8) 10d	895	1030	830	955
					(0) 100	3.98	4.58	3,69	4.25
•	MSTA15	:	11/4	15	(10) 10d	1120	1285	1040	1195
			177		(10) 100	4.98	5.72	4.63	5,32
•	MSTA18		11/4	18	(12) 10d	1340	1545	1245	1430
		1	174	'	(12) 100	5.96	6,87	5,54	6,36
•	MSTA21		11/4	21	(14) 10d	1565	1800	1455	1670
		4			(11) 100	6.96	8.01	6.47	7.43
•	MSTA24		11/4	24	(16) 10d	1790	2060	1660	1910
			<u> </u>	<u> </u>	1.5/ 100	7.96	9,16	7.38	8.50
)	MSTA30	l .	11/4	30	(20) 10d	2470	2840	2260	2595
-					123,100	10,99	12.63	10.05	11.54
•	MSTA36		11/4	36	(24) 10d	2965	3070	2710	3070
- !		1		ļ	(= // 100	13.19	13.66	12.06	13.66
	MSTA49		11/4	49	(28) 8d	2725	2725	2545	- 2725
		4	<u> </u>	1	1-5,55	12.12	12.12	11,32	12.12
	ST6215		21/16	165/16	(16) 8d	1405	1615	1300	1500
		-		ļ	1.7.7	6.25	7.18	5.78	6.67
	ST6224	16	21/16	235/16	(24) 8d	2305	2650	2155	2475
		4	<u> </u>		1 1 2 1	10.25	11.79	9.59	11.01
	ST9		11/4	9	(6) 8d	525	605	490	`560
		1	''	<u> </u>	(5) 50	2.34	2.69	2.18	2.49
	ST12		11/4	11%	(8) 8d	700	805	650	750
		4	- ''	:176	(0) 00	3.11	3.58	2.89	3.34
	ST18		11/4	173/4	(12) 8d	1050	1210	975	1125
		_	173	11/4	(12) Ou	4.67	5.38	4.34	5.00
	ST22		11/4	21%	(18) 8d	1580	1790	1465	1685
	1 5.25	1	1 /4	2178	(10) ou	7.03	7.96	6.52	7.50\

Typical LSTA Installation (hanger not shown) Bend strap one time only

Typical LSTA Installation (hanger not shown) Bend strap one time only

- 1. Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- Use half of the nails in each member being connected to achieve the listed resistances.
- 3. Nails: 10d = 0.148" dia. x 3" long, 10d x 1½" = 0.148" dia. x 1½" long, 8d = 0.131" dia. x 2½" long. See pp. 22-23 for other nail sizes and information.

Strong-Tie

HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI

Strap Ties (cont.)

These products are available with additional corrosion protection. For more information, see p. 20.

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 366–370 for more Information.

		Dimer	sions			Factored Tensi	le Resistance	
		(ir	1.)	Ī	D.F	ir–L	S-I	P-F
Model No.	Ga.			Fasteners (Total)	$(K_D = 1.00)$	(K _D = 1.15)	$(K_D = 1.00)$	(K _D = 1.15)
140.		W	L	(1000)	lb.	lb.	ib.	ib.
					kN	kN	kN	kN
MSTC28			001/	(00) 10-1	3955	4545	3615	4155
MSTUZO		3	281/4	(32) 10d	17.59	20.22	16.08	18.48
MSTC40	16	3	401/4	(49) 104	5930	6820	5420	6235
10101040	10		4074	(48) 10d	26.38	30.34	24.11	27.74
MSTC52] [3	521/4	(E4) 10d	6670	6940	6100	6940
IVIS I COZ		ა	3274	(54) 10d	29.67	30.87	27.14	30.87
MSTC66		3	65¾	(66) 10d	8515	8565	7455	856 5
WISTCOO		3	0074	(00) 100	37.88	38.10	33.16	38.10
MSTC78	14	3	77¾	(66) 10d	8515	8565	7455	85 6 5
WOTC/O] " [J	1174	(00) 100	37.88	38.10	33.16	38.10
ST6236		2 1/s	3313/16	(36) 04	3735	4295	3270	3760
310230		2716	33.416	(36) 8d	16.61	19.11	14.55	16.73
MSTI26		21/16	26	(00) 10d v 114"	2825	3250	2475	2850
10101120		2716	20	(22) 10d x 1 ½"	12.57	14.46	11.01	12.68
MSTI36	1	2½s	36	(32) 10d x 1½"	4110	4725	3600	4140
IVIOTIO		∠716	30	(32) (UU X 1 72	18.28	21.02	16.01	18.42
MSTI48		2½s	48	(44) 10d x 1½"	5650	6500	4955	5 6 95
WIGHT		2716	40	(44) IOUX 172	25.13	28.91	22.04	25.33
MSTI60		21/16	60	(56) 10d x 1 ½"	7195	7360	6305	7250
INIO I IOO		2716	00	(30) 100 X 1 72	32.01	32,74	28.05	32.25
MSTI72	12	21/15	72	(68) 10d x 1 ½"	7360	. 7360	7240	7360
WISTITZ	14	2716	12	(00) 100 X 1 72	32.74	32.74	32,21	32.74
MST27		27/в	27	(26) 8d	2685	3090	2355	2710
1910 [27		2718	21	(20) 60	11.94	13.75	10.48	12.06
MST37		2 1/1 в	371/2	(38) 8d	3930	4515	3440	3960
MOIO		2716	J1 /2	(30) 60	17.48	20.08	15.30	17.62
MST48		21/16	48	(50) 8d	5170	5945	4530	5210
1110140		2/16	70	(50) 00	23.00	26.45	20.15	23.18
HRS416Z		31/4	16	(16) ¼" x 1½" SDS	2400	2760	2120	2440
11104102		374	10	(10) 74 X 1 72 303	10.68	12.28	9.43	10.85
MST60		21/16	60	(64) 8d	6620	7610	5800	6670
HIO100.	10	2/10		(04) 00	29.45	33.85	25.80	29.67
MST72	10	21/s	72	. (78) 8d	8065	9135	7065	8125
1410112	MS1/2	2716 /2		. (10)00	35.88	40.64	31.43	36.14

1. Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.

2. Use half of the nails in each member being connected to achieve the listed resistances.

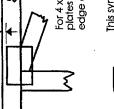
3. Nails: 10d = 0.148° dia. \times 3" long, $10d \times 1$ ½" = 0.148° dia. \times 1½" long, 8d = 0.131" dia. \times 2½" long. See pp. 22–23 for other nail sizes and information.

23/8" end distance

Jan. 5, 2021

A WOF OF OR (MIT hanger shown) LSTI similar

Straps and Ties


C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.

Symbols

PLATE LOCATION AND ORIENTATION

Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss Center plate on joint unless x, y and fully embed teeth. offsets are indicated.

This symbol indicates the required direction of slots in connector plates. For 4 x 2 orientation, locate plates 0-1/4" from outside edge of truss.

*Plate location details available in MITek software or upon request.

PLATE SIZE

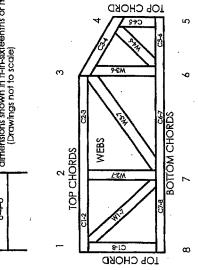
4 ×

width measured perpendicular to slots. Second dimension is The first dimension is the plate the length parallel to slots.

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T, I or Eliminator bracing Indicated by symbol shown and/or if indicated.

BEARING


indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

Industry Standards: DSB-89: BCSI: ü

for Light Metal Plate Connected Wood Trusses Truss Design Procedures and Specifications Design Standard for Bracing.
Building Component Safety Information,
Guide to Good Practice for Handling,
Installing & Bracing of Metal Plate Connected Wood Trusses

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVAIS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MITek® All Rights Reserved

MITek Engineering Reference Sheet: Mil-7473C rev. 10-'08 POWER 10 PERFORM."

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative T, I, or Eliminator bracing should be considered.
- Never exceed the design loading shown and never stack materials on Inadequately braced trusses. m
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other. ശ്
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint tocations are regulated by TPIC. ۶,
- Design assumes trusses will be suitably protected from the environment in accord with TPIC. 7
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. œ
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber. ۶.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shalf be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no celling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use. 17. Install and load vertically unless indicated otherwise.
- 19. Review all partions of this design (front, back, words and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with IPIC Quality Criteria.

EWP DESIGN INC.

(905) 832-2250

FAX (905) 832-0286

RESPONSIBILITIES AND SPECIFICATIONS

RESPONSIBILITIES

- 1. EWP DESIGN INC. is responsible for the design of trusses as individual components.
- 2. It is the responsibility of others to ascertain that the design loads utilized on each drawing meet or exceed the actual dead load imposed by the structure, the live load imposed by the intended use and the snow load imposed by local building code or authorities with jurisdictions.
- 3. All dimensions are to be verified by the owner, contractor, architect or other authorities with jurisdictions before truss fabrication.
- 4. EWP DESIGN INC. bears no responsibility for the erection of trusses. Persons erecting trusses are cautioned to seek professional advice regarding the temporary and permanent bracing for the system. Bracing shown on EWP DESIGN INC. drawing is specified for the truss as a component only and forms an integral part of the truss design.
- 5. It is the truss manufacturer's responsibility to ensure that trusses are manufactured in conformance with specifications of EWP DESIGN INC. as outlined below.

SPECIFICATIONS

- 1. Trusses designed by EWP DESIGN INC. conform to the relevant section of the Ontario Building Code of Canada (Part 9 or Part 4) or to the Canadian code for farm buildings, whichever applies to the building type, as indicated on the EWP DESIGN INC. drawings, and conform to the design procedures established by the Truss Plate Institute of Canada. Unit stresses used for truss designs are as per the edition of CSA-O86 shown on EWP DESIGN INC. drawings.
- 2. Lumber is to be the size, species and grade as specified on EWP DESIGN INC. drawings.
- 3. Moisture content of lumber shall not exceed 19% in service unless specified otherwise.
- 4. Metal connector plates shall be applied to both faces of truss at each joint and shall be positioned as specified.
- 5. Top chords of trusses are assumed to be continuously braced laterally by roof sheathing or by purlins at intervals not exceeding 12.5 times the thickness of top chord member.
- 6. Bottom chords shall be laterally braced at intervals not exceeding 3M (10') o.c., where rigid ceiling is not applied directly to the underside of chords.

THESE DRAWINGS CONSTITUTE THE PROPERTY OF EWP DESIGN INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY THE ALPA LUMBER GROUP, AND WILL BE RETRACTED BY EWP DESIGN INC. IF UTILIZED FOR ANY OTHER PURPOSE.

STANDARD DETAIL MSD2015-H

Issued: SEPTEMBER 22, 2020

Expiry:

APRIL 30, 2022

TOE-NAIL CAPACITY DETAILS

LATERAL AND WITHDRAWAL RESISTANCE OF BEARING ANCHORAGE BY TOE-NAILS

			SPF	D. FIR	SPF	D. FIR
COMMON	3.00	0.144	122	139	30	42
WIRE	3.25	0.144	127	144	32	45
	3.50	0.160	152	173	38	52
COMMON	3.00	0.122	96	108	26	36
SPIRAL	3.25	0.122	97	108	28	40
	3.50	0.152	142	161	36	50
3.25" Gun nail	3.25	0.120	94	105	28	39

Note: If using truss with D. Fir lumber and SPF bearing plate, use tabulated SPF values in table.

Nail type:	Common wire	Common spiral	Common wire	Common spiral	Gun Nail
Diameter (in.)	0.160	0.152	0.144	0.122	0.120
Length (in.)	3.50	3.50	3.00	3.00	3.25
2x4 SPF	2	2 .	3	3	3
2x6 SPF	4	4	4	5	5
2x4 D. FIR	2	2	2	2	2
2x6 D. FIR	3	3	3	4	1

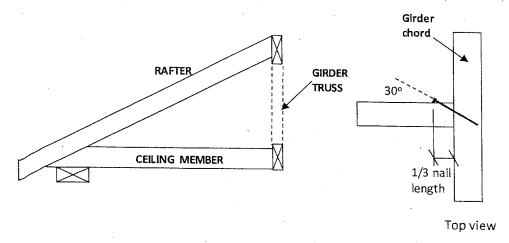
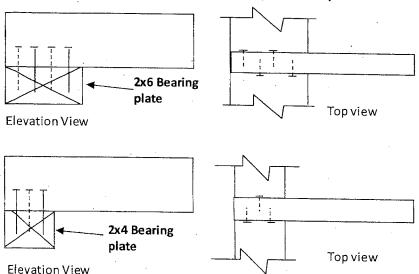
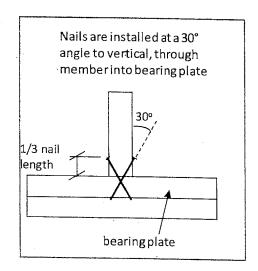


Figure 1: Toe-Nailing Rafter / Ceiling Member to Girder Truss

December 21, 2020

STANDARD DETAIL MSD2015-H


Issued: SEPTEMBER 22, 2020


Expiry:

APRIL 30, 2022

TOE-NAIL CAPACITY DETAILS

Figure 2: Toe-Nail Anchorage to Bearing Plate for Uplift

NOTES:

- 1. Rafter and ceiling members may be connected to top and bottom chords of girder truss by toe-nailing the members into the girder chords (see fig. 1), provided the factored vertical reactions of the supported members do not exceed the lateral resistance of the toe-nails. Mechanical connectors (hangers) are required if factored vertical reactions exceed the toe-nail capacity, or if the connection must resist horizontal loads (loads perpendicular to the face of girder or rafter).
- 2. Trusses, rafters or ceiling members may be anchored to the bearing plate with toe-nails (see fig. 2), provided that the factored uplift reactions due to wind or earthquake loads do not exceed the withdrawal resistance of the toe-nails. Mechanical anchors (tie-downs) are required for reactions that exceed the toe-nail withdrawal capacity. Toe-nail anchorage to bearing plates is NOT permitted if uplift reactions are generated from gravity loads (snow, floor live, dead).
- 3. Tabulated toe-nail resistances on page 1 are for **one** toe-nail. Multiply unit values by the number of nails used in the connection. Maximum number of nails in a connection shall not exceed the tabulated limits shown on page 1 for a given lumber size /species.
- 4. Nail values are based on specific gravity of G = 0.42 (SPF) and G = 0.49 (D. Fir).
- 5. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member.
- 6. For wind / earthquake loads, tabulated lateral resistances may be multiplied by 1.15 (K_D factor). No increases are permitted for tabulated withdrawal resistances.
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA 086-19, Clause 12.9.

SIMPSON Strong-Tie

LUL/LUS/LJS/HUS/HHUS/HGUS

Standard and Double-Shear Joist Hangers

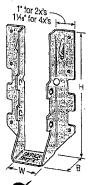
This product is preferable to similar connectors because of a) easier installation, b) higher capacities, c) lower installed cost, or a combination of these features.

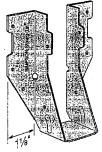
Most hangers in this series have double-shear nailing - an innovation that distributes the load through two points on each joist nail for greater strength. This allows for fewer nails, faster installation, and the use of all common nails for the same connection. (Do not bend or remove tabs)

Double-shear hangers range from the light capacity LUS hangers to the highest capacity HGUS hangers. For medium load truss applications, the HUS offers a lower cost alternative and easier installation than the HGUS hangers, while providing greater load capacity and bearing than the LUS.

Material: See table on pp. 217-218.

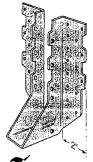
Finish: Galvanized. Some products available in stainless steel or ZMAX® coating; see Corrosion Information, pp. 18-20.

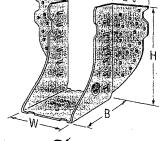

Installation:


Plated Truss Connectors

- · Use all specified fasteners; see General Notes.
- Nails must be driven at an angle through the joist or truss into the header to achieve the tabulated resistances (except LUL).
- Where 16d commons are specified, 10d commons may be used at 0.83 of the tabulated factored resistance.
- Not designed for welded or nailer applications.
- With single ply 2x carrying members, use 10d x 11/2" nails into the header and 10d commons into the joist, and reduce the resistance to 0.64 of the table value where 16d nails are specified and 0.77 where 10d nails are specified.

Options:

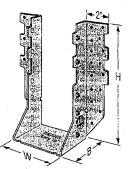

- · LUS, LJS, LUL and HUS hangers cannot be modified.
- · Other sizes available; consult your Simpson Strong-Tie representative.
- See Hanger Options information on pp. 105–107.



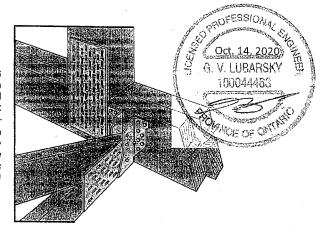
LU26L

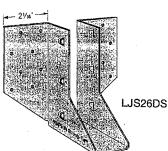
Y HUS210 (HUS26, HUS28, and HHUS similar)

M HGUS28-2


Double-Shear Nailing

Double-Shear Nailing Side View; Do not




Dome Double-Shear Nailing Side View (available on some models)

Typical HUS26 Installation with Reduced Heel Height (Truss Designer to provide fastener quantity for connecting multiple members together)

LUS - Double Shear Joist Hangers

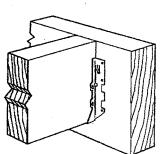
SIMPSON Strong-Tie

LU\$28

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

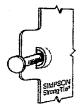
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

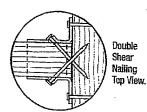
Installation:

- Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

Options:


These hangers cannot be modified

Typical LUS


						•				staliation	ı		
			Dimens	ions (in	.)	Fast	eners	F	Factored Resistance (lb.)				
Madei	Ga.		T	· · ·	. —		T	D.F	ir-L	S-P-F			
No.		W	Н	В	d _e ¹	Face	Joist	Uplift	Normal	Uplift	Normal		
LUS24	 		ļ				OULL	(K ₀ =1.15)	(K ₀ =1.00)	$(K_0=1.15)$	(K _n =1.00)		
	18	19/16	31/6	13/4	1 15/18	(4) 10d	(2) 10d	710	1630	645	1155		
LUS24-2	18	31/8	31/6	2	1 13/15	(4) 16d	(2) 16d	835	2020	590	1435		
LUS26	18	1%6	43/4	13/4	35/8	(4) 10d	(4) 10d	1420	2170	1290			
LUS26-2	18	31/6	41/8	2	4	(4) 16d	(4) 16d	1720	2595		1630		
LUS26-3	18	4%	43/16	2	31/4	(4) 16d	(4) 16d	1720		1545	1920		
LUS28	18	1%	6%	13/4	3¾	(6) 10d		 	2595	1545	2340		
LUS28-2	18	31/8	7	2	 		(6) 10d	1420	2520	1290	1790		
					4	(6) 16d	(4) 16d	1720	3325	1545	2575		
LUS28-3	18	4%	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375		
LUS210	18	1%6	713/16	13/4	37/g	(8) 10d	(4) 10d	1420	2785				
LUS210-2	18	31/6	9	2	6	(8) 16d				1290	2210		
Ш\$210-3	18	4%					(6) 16d	2580	4500	2320	3195		
d is the dis			83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375		

^{1.} d_{e} is the distance from the seat of the hanger to the highest joist nail.

Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

This technical bulletin is effective until June 30; 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tia Company Inc.

T-SPECLUS20 3/20 exp. 6/22

TECHNICAL BULLETIN

HUS/LJS - Double Shear Joist Hangers

SIMPSON Strong-Tie

HUS210

(HUS26, HUS28, similar)

Typical HUS

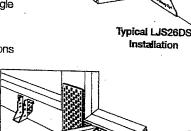
Installation

All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: See table Finish: G90 galvanized

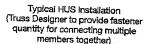
Design:

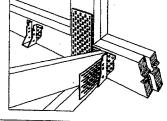
- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.


Installation:

Options:

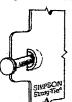
- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- · Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications




See current catalogue for options

0 0

0

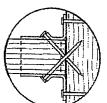


members together)

LJS26DS

		Di	mens	ons (î	n.)	Fasteners		Factored Resistance (fb.)				
Model	Ga.			Ì		,		D.F	ir-L	S-P-F		
NO.	GIL.	W	Н	В	q ^e 1	Face	Joist	Uplift (K ₀ =1.15)	Normal (K _p =1.00)	Uplift (K _p =1.15)	Normal (K _p =1.00) lb. 4115 3875	
LJS26DS	10	*01		-				lb.	b.	lb.		
	18	19/16	5	3½	45/B	(16) 16d	(6) 16d	2055	4265	1460		
HUS26	16	15/8	53/8	3	315/16	(14) 16d	(6) 16d	2705	4940	2065		
HUS28	16	1%	73/32	3	63/32	(22) 16d	(8) 16d	3605	5365			
HUS210	16	15/8	93/32	3	-	(30) 16d				2675	4345	
					1-732	(20) 100	(10) 16d	4505	5795	4010	4740	
HUS1.81/10	16	1 13/15	9	3	8	(30) 16d	(10) 16d	4505	6450	4010	5200	

1. de is the distance from the seat of the hanger to the highest joist nail.

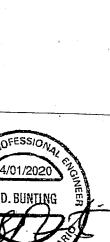


Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing Top View.



This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtis.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHUS20 3/20 exp. 6/22

HGUS - Double Shear Joist Hangers

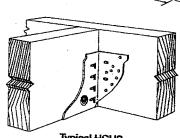
SIMPSON Strong-Tie

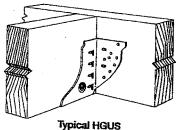
HGUS28-2

All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

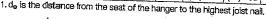
Material: 12 gauge Finish: G90 galvanized

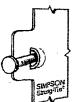
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.


Installation:

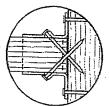
- Use all specified fasteners
- Nails: 16d = 0.162" dia x 3½" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications


See current catalogue for options

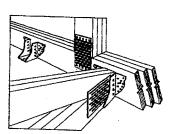


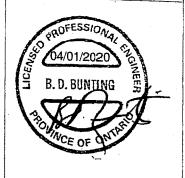
Installation

			Dimens	ions (ii	1.)	Faste	eners	F	actored Re	sistance (II	b.)
Model	GaL		Т	Τ-	Ť		1	D.F	r-L		P-F Normal (K ₉ =1.00) 5700 6355 6355 6900 9215 9215 8090 10270 10400 10645
No.	1	W	н	В	d, t	Face	Joist	Uplift	Normal	Uplift	Normal
HGUS26	12	15/	-	<u> </u>				(K ₀ =1.15)	(K _p =1.00)	(K ₀ =1.15)	(K _n =1.00)
		1%	53/8	5	4 1/32	(20) 16d	(8) 16d	2685	6625	2685	
HGUS26-2	12	35/16	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	
HGUS26-3	12	415/16	51/2	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	
HGUS26-4	12	6%s	57/16	4	41/8	(20) 16d	(8) 16d	4385	8950	3100	
HGUS28	12	1%	71/8	5	61/8	(36) 16d	(12) 16d	3310	7.675		
HGUS28-2	12	35/16	73/16	4	61/8	(36) 16d	(12) 16d	6070	12980	3100	
HGUS28-3	12	4 15/16	71/4	4	63/8	(36) 16d	(12) 16d			4310	
HGUS28-4	12	6%s	73/16	4	61/6	(36) 16d	· · · · · · · · · · · · · · · · · · ·	6070	12980	4310	9215
HGUS210	12	15/8	91/8	5	71/a	· · · · · · · · · · · · · · · · · · ·	(12) 16d	6070	12980	4310	9215
HGUS210-2	12	35/16	93/16			(46) 16d	(16) 16d	3535	11070	2510	8090
				4	81/6	(46) 16d	(16) 16d	6840	14015	4855	10270
HGUS210-3	12	415/16	91/4	4	8%	(46) 16d	(16) 16d	6840	14645	4855	
HGUS210-4	12	6%s	93/16	4	81/8	(46) 16d	(16) 16d	6840	14645	4855	
HGUS212-4	12	6%₅	10%	4	101/8	(56) 16d	(20) 16d	7640	14995		
HGUS214-4	12	6%	12%	4	111/8	(66) 16d	(22) 16d			5425	
de is the dis	fance	from #					(CA) 10U	10130	16400	7195	11645



Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5.603.580


Double Shear Nailing Side View. Do not bend tab back.

Double Shear Mailing Top View.

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

This technical bulletin is effective until June 30; 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECHGUS20 3/20 exp. 6/22

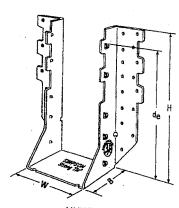
HHUS - Double Shear Joist Hangers

SIMPSON Strong-Tie

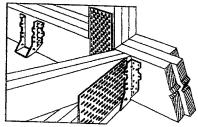
All HHUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 14 gauge Finish: G90 galvanized

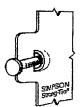
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

Installation:


- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

fastener quantity for connecting

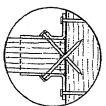


Options:

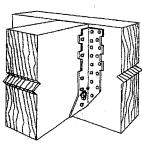
See current catalogue for options

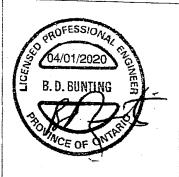
	1	0	imensio	ıns (in.)	}	Faste	eners	F	actored Re	sistance (1	h.)
Model	Ga.	 	Т		·		,,,,,,	D.F		S-P-F	
No.		W	Н	В	d _a 1	Face	Joist	Uplift	Normal	Uplift	Normal
LILII 1000 A	-				-e		Juist	(K _p =1.15)	(K ₀ =1.00)	(K _D =1.15)	(K ₀ =1.00)
HHUS26-2	14	3%₅	513/16	3	315/16	(14) 16d	(6) 16d	2850	7335	2065	5205
HHUS28-2	14	35/16	77/32	3	65/32	(22) 16d	(8) 16d	3765	8940	2675	6345
HHUS210-2	14	35/16	93/32	3	. 8	(30) 16d	(10) 16d	4670	9660	4235	
HHUS210-3	14	411/16	9	3	715/18	(30) 16d	(10) 16d		9670		7000
HHUS210-4	14	61/4	829/32	3	727/32	(30) 16d	(10) 16d			4235	6865
HHUS46	14	3%	513/32	3	315/18	``'		4670	10155	4235	7210
HHUS48	14					(14) 16d	(6) 16d	2540	7335	2065	5205
		3%	71/8	3	6 1/a	(22) 16d	(8) 16d	3765	8940	2675	6345
HHUS410	14	3%	9	_ 3	8	(30) 16d	(10) 16d	4670	9855	4235	7000
HHUS5.50/10	14	51/2	9	3	8	(30) 16d	(10) 16d	4670	10155		
HHUS7.25/10	14	71/4	9	35/16	729/32	(30) 16d	(10) 16d			4235	7210
. de is the dista	non for					(20) 100	(10) 100	4670	10155	3370	7210

distance from the seat of the hanger to the highest joist nail.



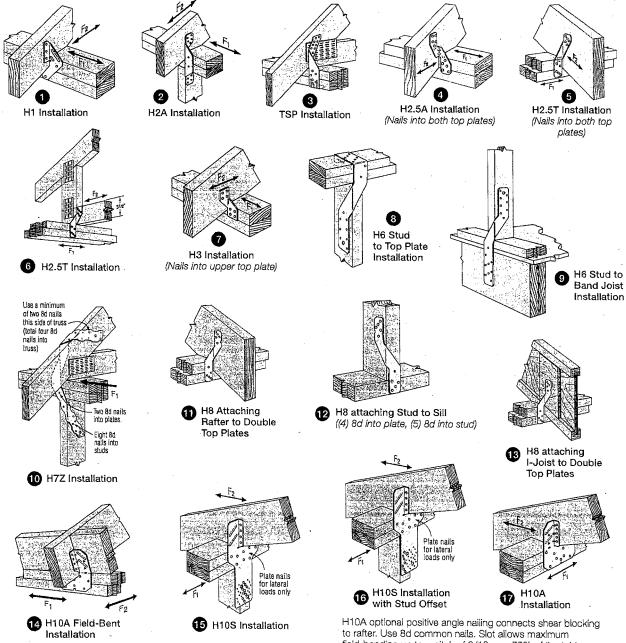
Dome Double Shear Nailing prevents tabs breaking off (available on some models).


U.S. Patent 5,603,580


Double Shear Nailing Side View. Do not bend tab back.

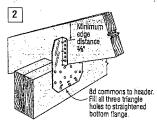
Double Shear Nailing Top View.

Typical HHUS Installation


This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see strongitie.com.

@ 2020 Simpson Strong-Tie Company Inc.

T-SPECHHUS20 3/20 exp. 6/22


H/TSP

Seismic and Hurricane Ties (cont.)


H14 Installation to Double Top Plates

C-C-CAN2018 @ 2017 SIMPSON STRONG-TIE COMPANY INC.

H14 Installation to Double 2x Header

Avoid a Misinstallation

Do not make new holes or overdrive nails.

field-bending up to a pitch of 6/12, use 75% of the table uplift value; bend one time only.

Straps and Ties

SIMPSON Strong Tie

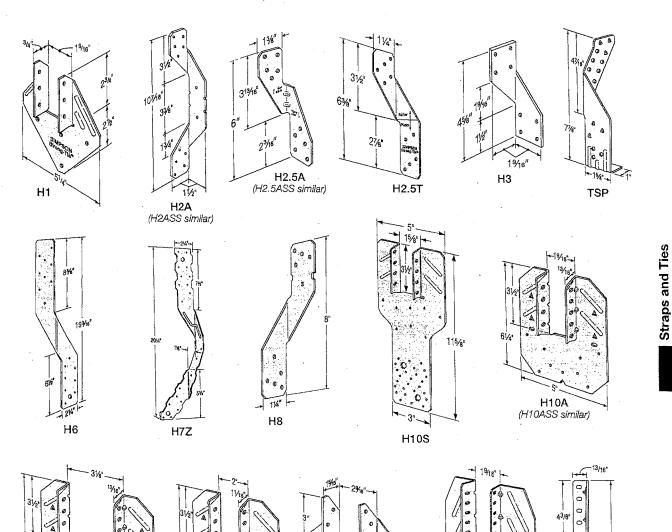
H/TSP

Seismic and Hurricane Ties

Simpson Strong-Tie® hurricane ties provide a positive connection between truss/rafter and the wall of the structure to resist wind and seismic forces. New additions to the line provide even more options.

- H10AR The heavy-duty design of the H10A available with a 2" wide throat to accommodate rough lumber
- H10A-2 The H10A design with a 3" throat for double 2x members
- H2ASS, H2.5ASS and H10ASS Popular ties now available in stainless steel

Material: See table


H10A-2

H₁₀AR

Finish: Galvanized. H7Z and H11Z - ZMAX® coating. Some models available in stainless steel or ZMAX; see Corrosion Information, pp. 20-24 or visit strongtie.com.

Installation:

- · Use all specified fasteners; see General Notes.
- H1 can be installed with flanges facing inward (reverse of H1 installation drawing; number 1).
- H2.5T, H3 and H6 ties are shipped in equal quantities of right and left versions (right versions shown).
- · Hurricane ties do not replace solid blocking.
- · When installing ties on plated trusses (on the side opposite the truss plate) do not fasten through the truss plate from behind. This can force the truss plate off of the truss and compromise truss performance.
- H10A optional nailing to connect shear blocking, use 8d nails. Slots allow maximum field bending up to a pitch of 6:12, use H10A sloped loads for field bent installation.

H11Z

H14 Profile

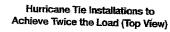
3/4"

H - Seismic and Hurricane Ties

SIMPSON Strong-Tie

The H connector series provides wind and seismic ties for trusses and rafters.

Material: 18 gauge Finish: G90 galvanized

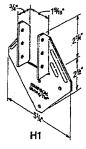

Design: • Factored resistances are in accordance with CSA 086-14

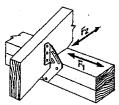
 Factored resistances have been increased 15%. No further increase is permitted.

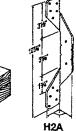
Installation: • Use all specified fasteners

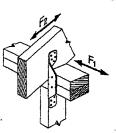
- Nails: 8d = 0.131" dla. x 2½" long common wire, 8d x 1½" = 0.131" x 1½ long, 10d x 1½" = 0.146" x 1½" long
- H1 can be installed with flanges facing outwards
- · Hurricane ties do not replace solid blocking

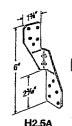
Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows: Factored Shear/Resisting Shear + Factored Tension/Resisting Tension ≤ 1.0 .

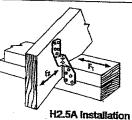


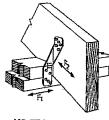


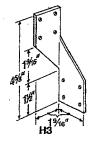


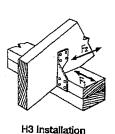

Nailing into both sides of a single ply 2x truss may cause the wood to split.

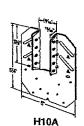


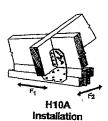

H1 Installation




H2A Installation







H2.5T

H2.5T Installation (Nails into both top plates)

(4) 8d

			Fasteners		Factored Resistance (lb.)					
Model	۵.		Γ			D.Fir-L			S-P-F	
No.	Ga,			!	Uplift	Nor	mai	11-20	Nor	mai
	To Rafter	To Plates	To Studs	Ft F2 Opart F1				F.	F ₂	
	1			(K ₀ =1.15)			(K _n =1.15)			
H1	18	(6) 8d x 11/2"	(4) 8d	_	740	685	300	680	485	
H2A	18	(5) 8d x 11/2"	(2) 8d x 1½"	(5) 8d x 11/2"	830	220				215
H2.5A	18			(d) 00 x 1/2			75	590	155	55
		(5) 8d	(5) 8d		805	160	160	755	160	160
H2.5T	18	(5) 8d	(5) 8d		835	175	240	740		
H3	10	(4) 04	(4) 0 1				270	740	160	210

740

1735

180

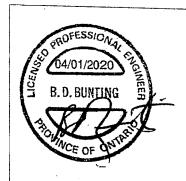
795

H10A | 18 | (9) 10d x 1½" | (9) 10d x 1½" | —

1. Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed

(4) 8d

- Factored resistances are for one anchor. A
 minimum rafter thickness of 2½" must be used
 when framing anchors are installed on each side of
 the joist and on the same side of the plate.
- When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.


265

410

615

1505

4. Hurricane ties are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable. For a Continuous Load Path, connections must be on same side of the wail.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be religid upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see stronglis.com.

© 2020 Simpson Strong-Tie Company Inc.

T-SPECH20 3/20 exp. 6/22

125

565

190

TECHNICAL BULLETIN

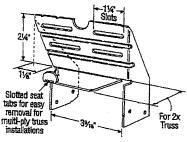
TC - Truss Connectors

SIMPSON Strong-Tie

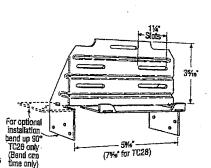
The TC truss connector is an ideal connector for scissor trusses and can allow horizontal movement up to 11/4". The TC also attaches plated trusses to top plates or sill plates to resist uplift forces. Typically used on one or both ends of truss as determined by the building designer.

Material: 16 gauge

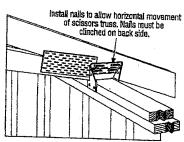
Finish: G90 galvanized

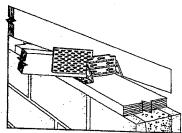

Design: Factored resistances are in accordance with CSA 086-14

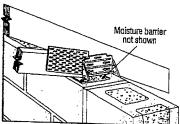
installation:


- Use all specified fasteners.
- Nails: 10d = 0.148" dia. x 3" long common wire, 10d x 1½ = 0.148" dia. x 1½" long.
- Drive 10d nails into the truss at the inside end of the slotted holes (inside end is towards the centre of the truss) and clinch on the back side. Do not seat these nails into the truss-allow room under the nail head for movement of the truss with respect to the wall.

Optional TC Installation:

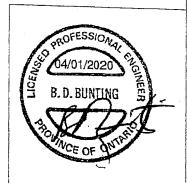

 Bend one flange up 90°. Drive specified nails into the top and face of the top plates or install Titen° screws into the top and face of masonry wall. See optional load tables and installation details.


TC24 U.S. Patent 4,932,173


TC26 (TC28 Similiar)

Typical TC24 Installation

Optional TC26 Installation for Grouted Concrete Block using a Wood Nailer (8", 10", 12" Wall Installation Similar)


Optional TC26 Installation for Grouted Concrete Block using Titen Screws

	Fas	teners	Factored I	Resistance
Model			D.Fir-L	S-P-F
No.	Truss	Wall Plates	Uplift (K ₀ =1.15)	Unlift
			!b.	ib.
TC24	(4) 10d	(4) 10d	605	430
TC26	(5) 10d	(6) 10d	1015	720
TC28	(5) 10d	(6) 10d	1015	720

Optional TC Installation Table

- Paonai	Unistalla	ation table			
	Fa	steners	Factored Resistance		
Modei			D.Fir-L	S-P-F	
No.	Truss	Wall Plates	Uplift (K _p =1.15)	S-P-F Uplift (K _p =1.15) lb. 660	
			lb.	lb.	
TC26	(5) 10d	(6) 10d x 11/2"	810	660	
. 020	(5) 10d	(6) 10d	930	660	

- Factored resistances have been increased 15% for earthquake or wind loading; no further increase allowed; reduce where other loads govern.
- Grout strength is 15 MPa minimum.
- Optional TC26 installation with 10d nails requires minimum 3* top plate thickness.
- 4. TC26 fastened to grouted concrete block with (6) 兆** × 2½* Titen screws has a factored uplift resistance of 275 lb.

This technical bulletin is effective until June 30, 2022, and reflects information available as of April 1, 2020. This information is updated periodically and should not be relied upon after June 30, 2022. Contact Simpson Strong-Tie for current information and limited warranty or see stronglis.com.

© 2020 Simpson Strong-Tie Company inc.

T-SPECTC20 3/20 exp. 6/22

HTU

Face-Mount Truss Hanger (cont.)

These products are approved for installation with the Strong-Drive® SD Connector screw. See pp. 32-34 for more information.

Alternate Installation for (2) 2x4 and (2) 2x6 Headers

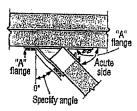
			Fr	steners		Factored	tesistance	
Madal	Min.	Minimum			D.Fir-L			P-F
Model No.	Heel Height	Header			Uplift	Normal	Uplift	Normal
	(In.)	Size	Header	Joist			$(K_D = 1.15)$	$(K_0 = 1.00)$
				1	łb.	lb.	lb.	ib.
					kN	kN	kN	kN
HTU26 (MIn.)	37/8	(2) 2x4	(10) 16d	(14) 10d x 11/2"	1740	3340	1235	2370
				(- 1 100 A 1 /2	7.74	14,86	5,49	10.54
HTU26 (Max.)	51/2	(2) 2x4	(10) 16d	(20) 10d x 11/2"	2470	4015	1755	2850
				1247 104 2 172	10.99	17.86	7.81	12.68
HTU28 (Max.)	3%	(2) 2x6	(20) 16d	(26) tod x 11/2"	4150	6395	2945	4540
		-		(20) 100 X 172	18.48	28.45	13.10	20,19
HTU210 (Max.)	71/4	(2) 2x6	(20) 16d	(32) 10d x 1½"	4150	6395	2945	4540
	174			(02) (00 X 172	18.46	28.45	13.10	2019

See table footnotes on p. 260.

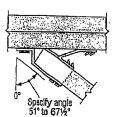
Factored Resistances for Skewed HTU Hangers

		F	asteners		Factored	Resistance	
	Clean			D.1	ir-L	}	P-F Normal (KD=1.00) Ibs kN 2905 12.92 2560 11.39 3030 13.48 2780 12.37 3135 13.95 3000 13.35 2625 11.68 2785 12.39 3855 17.15 3865 17.15 4890 21.75 4745 21.10
Model No.	Skew Angle	ł		Uplift	Normal	Uplift	
NO,	(Degrees)	Header	Joist	(KD=1.16)	(KD=1.00)	(KD=1,15)	
				lbs	lbs	ibs	-
-	<u> </u>			kN	kN	kN	
İ	< 51	(20) 16d	(14) 10d x 11/2"	1835	4110	1300	
HTU26			(1.9.100 x 1.72	8.16	18.28	5.78	
	51-671/2	(20) 16d	(12) 10d x 11/2"	1350	3820	965	
	ļ		1107 100 % 172	6.01	18.10,	4.25	
	< 51	(26) 16d	(20) 10d x 1 1/4"	2810	4270	1985	
HTU28			(-)	12.50	18.99	8.83	
	51-871/2	(26) 16d	(17) 10d x 11/2"	2075	3930	1465	
	ļ		(,,	9.23	17.48	6.52	
	< 51	(32) 16d	(26) 10d x 1 1/2"	3785	4430	2675	
HTU210	ļ		(==) (==) (==)	16,84	19.71	8.83 13.48 1465 2780 6.52 12.37 2675 3135 11.90 13.95 1980 3000 8.81 13.35 1515 2625	
	51-671/2	(32) 16d	(22) 10d x 11/2"	2795	4240	1980	3000
			(,,	12.43	18.86	8.81	13,35
	< 51	(20) 16d	(14) 10d	2140	3715	1515	2625
HTU26-2				9.52	16.53	6.74	11,68
	51~67½	(20) 16d	(12) 10d	1610	3920	1140	2785
			,,	7.16	17.44	5.07	12.39
	< 51	(26) 16d	(20) 10d	3960	5425	2815	3855
HTU28-2			(23) 100	17.62	24.13	12.52	17.15
	51-671/2	(26) 16d	(17) 10d	2385	5425	1695	3855
			()	10.61	24.13	7.54	17.15
	< 51	(32) 16d	(26) 10d	5025	6890	3570	
HTU210-2				22.35	30.65	15.88	21.75
	51671/2	(36) 16d	(22) †0d	3145	6680	2225	
5			V==3 OU	13.99	29.72	9,90	

1. Factored uplift resistances have been increased 15% for wind or earthquake loading; no further increase is allowed.


2. Reduced heel heights are not permitted for skewed HTU's.

3. Nails: 16d = 0.162" dia. x 3½" long, 10d x 1½" = 0.148" dia. x 1½" long, 10d = 0.148" dia. x 3" long. See pp. 27–28 for other nail sizes and information.


Hanger Options

See Hanger Options information on pp. 125-127. Skewed Seat

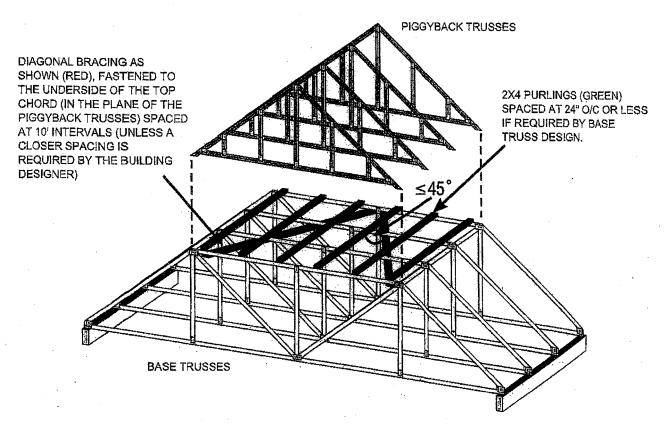
- Skewable up to 67½°
- Available in single and 2-ply size
- No bevel cut required

Top View HTU Hanger Skewed Right < 51°

Top View HTU Hanger Skewed Right ≥ 51°

Plated Truss Connecto

TECH-NOTES


TN 15-001 Piggyback Bracing

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

Disclaimer:

OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technote are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to the information provided but has developed this technote to offer guidance where it is not currently readily available.

HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI

C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.

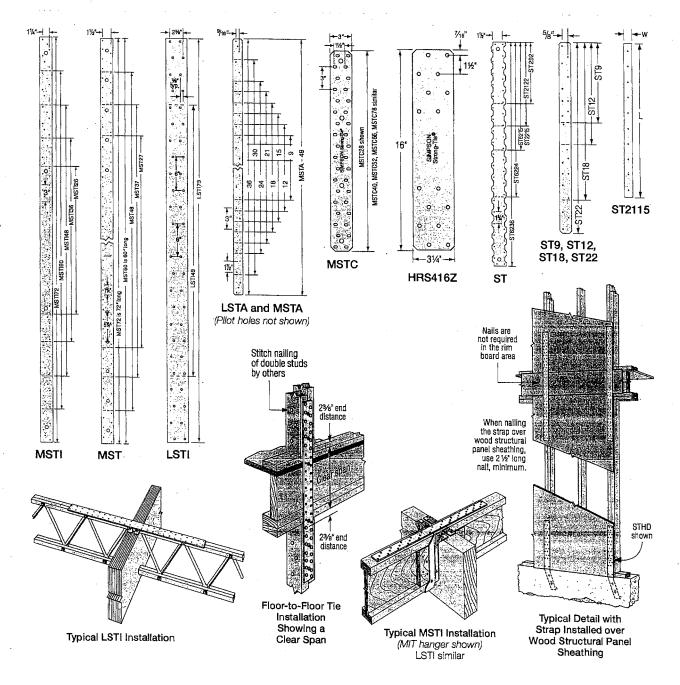
Strap Ties

Straps are designed to transfer tension loads in a wide variety of applications.

HRS — Heavy strap designed for installation on the edge of 2x members. The HRS416Z installs with Strong-Drive® SDS Heavy-Duty Connector screws.

LSTA and MSTA — Designed for use on the edge of 2x members, with a nailing pattern that reduces the potential for splitting.

LSTI and MSTI — Light and medium straps that are suitable where pneumatic-nailing is necessary through diaphragm decking and wood chord open-web trusses.


MST — High-capacity strap that can be installed with either nails or bolts. Suitable for double 2x member connections or greater.

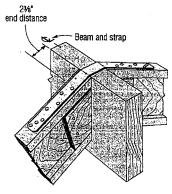
MSTC — High-capacity strap that utilizes a staggered nail pattern to help minimize wood splitting. Nail slots have been countersunk to provide a lower nail head profile.

Finish: Galvanized. Some products are available in stainless steel, ZMAX® coating or black powder coat (add PC to sku); contact Simpson Strong-Tie. See Corrosion Information, pp. 18–20.

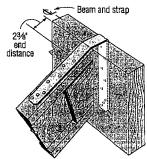
Installation: Use all specified fasteners; see General Notes

Options: Special sizes can be made to order; contact Simpson Strong-Tie for longer lengths

Straps and Ties


HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI

Strap Ties (cont.)


These products are available with additional corrosion protection. For more information, see p. 20.

Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 366–370 for more Information.

		Ga.	Dimensions		Engtonom	Factored Tensile Resistance				
	Model		(in.)				lr-L		P-F	
	No.			L	Fasteners (Total)	$(K_D = 1.00)$	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	
			W			lb.	lb.	lb.	ib.	
L			11/4	9	(6) 10d	kN	kN	kN	kN	
	LSTA9	İ				600	690	555	635	
L	LOTA	-				2.67	3.07	2.47	2.82	
	LSTA12		11/4	12	(8) 10d	800	920	735	845	
L						3.56	4.09	3.27	3.76	
	LSTA15		11/4	15	(10) 10d	1000	1150	920	1060	
-						4.45	5.12	4.09	4.72	
	LSTA18		11/4	18	(12) 10d	1200	1380	1105	1270	
-					(14) 10d (16) 10d (8) 8d	5.34	6.14	4.92	5.65	
	LSTA21		11/4	21		1400	1610	1290	1485	
1		20				6.23	7.16	5.74	6.61	
	LSTA24		11/4	24		1600	1840	1475	1695	
L			-			7,12 585	8.19 675	6.56 535	7.54	
	ST292		21/s	9 5/ 16		2.60	3.00	2.38	615 2.74	
ŀ			-			940	1085	865		
	ST2122		21/18 3/4 21/16	12 ¹ 1/ ₆ 16 1/ ₆	(12) 8d (8) 8d (16) 8d	4.18	4,83	3.85	995 4.43	
+						670	770	615	710	
	ST2115					2.98	3.43	2.74	3.16	
ŀ						1335	1540	1235	1420	
	ST2215					5.94	6.85	5,49	6.32	
f			11/4	·	(20) 10d	2235	2465	2075	2385	
	LSTA30			30		9.94	10.97	9.23	10.61	
Ì	107100	i			(0.0.40.)	2465	2465	2465	2465	
-	LSTA36		11/4	36	(24) 10d	10.97	10.97	10,97	10.97	
	LOTIMO		02/	40	(00) 104 : 11/1	3115	3580	2852	3280	
1	LSTI49		3% 49	49	(32) 10d x 11/2"	13.86	15.93	12.69	. 14.59	
ſ	LSTI73		23/	72	(48) 10d x 11/2"	4670	5370	4280	4920	
1	1311/3		3¾ 73	/3		20.77	23.89	19.04	21.89	
-	MSTA9	[]	11/4	9	(6) 10d	670	770	625	715	
1		18	11/4	9	(8) 10d	2.98	3.43	2.78	3.18	
,	MSTA12			12		895	1030	830	955	
						3.98	4,58	3.69	4.25	
,	MSTA15]	11/4	15	(10) 10d	1120	1285	1040	1195	
-			-		(10) 100	4.98	5.72	4.63	5.32	
	MSTA18		11/4	18	(12) 10d	1340	1545	1245	1430	
}					- 1	5.96	6.87	5.54	6.36	
,	MSTA21		11/4	21	(14) 10d	1565	1800	1455	1670	
ŀ			11/4	-		6.96	8.01	6.47	7.43	
١	MSTA24			24	(16) 10d	1790 7.96	2060 9.16	1660	1910	
					 	2470	2840	7.38 2260	8.50 2595	
Ŋ	MSTA30 .		11/4	30	(20) 10d (24) 10d	10.99	12.63	10.05	11.54	
						2965	3070	2710	3070	
•	MSTA36			36		13.19	13.66	12.06	13.66	
Ì	14071.15	1			(25) 5 :	2725	2725	2545	2725	
	MSTA49		11/4	49	(28) 8d	12.12	12.12	11.32	12.12	
ı	OTCO45	1	21/s 165/s	105/	(40) 0	1405	1615	1300	1500	
	ST6215	16		169/16	(16) 8d	6.25	7.18	5.78	6.67	
	PTG004		21/s 235/s	005/	(04) 04	2305	2650	2155	2475	
	ST6224			23716	(24) 8d	10.25	11.79	9.59	11.01	
	ST9			0	(E) 04	525	605	490	560	
	015		1 74	11/4 9	(6) 8d	2.34	2.69	2.18	2.49	
	ST12		11/4	1154	(8) 8d	70 0	805	650	750	
	UTIZ		1 74	11%		3.11	3.58	2.89	3.34	
	ST18		11/4	173/4	(12) 94	1050	1210	975	1125	
	3110		11/4	11 74	(12) 8d	4.67	5.38	4.34	5.00	
	ST22		114	215%	(10) 84	1580	1790	1465	1685	
	UILL		11/4	21%	(18) 8d	7.03	7.96	6.52	7.50	

Typical LSTA Installation (hanger not shown) Bend strap one time only

Typical LSTA Installation (hanger not shown) Bend strap one time only

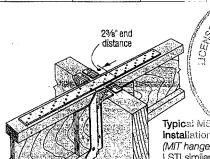
- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- Use half of the nails in each member being connected to achieve the listed resistances.

Straps and Ties

HRS/HST/ST/PS/LSTA/LSTI/MST/MSTA/MSTC/MSTI

Strap Ties (cont.)

These products are available with additional corrosion protection. For more information, see p. 20.


Many of these products are approved for installation with Strong-Drive® SD Connector screws. See pp. 366–370 for more Information.

		Dimensions (in.)			Factored Tensile Resistance				
					D.F	ir–L	S-I	S-P-F	
Model No.	Ga.			Fasteners (Total)	(K _D = 1.00)	$(K_D = 1.15)$	$(K_D = 1.00)$	$(K_D = 1.15)$	
1101		w	L		lb.	lb.	ib.	ib.	
					kN	. kN	kN	kN	
MCTOOD	16	3	281/4	(32) 10d	3955	4545	3615	4155	
MSTC28					17.59	20.22	16.08	18.48	
LIOTO 40		3	401/4	(48) 10d	5930	6820	5420	6235	
MSTC40					26.38	30.34	24.11	27.74	
MOTOGO		3	521/4	(54) 10d	6670	6940	6100	6940	
MSTC52					29.67	30.87	27.14	30.87	
MOTORO	14	3	65¾	(66) 10d	8515	8565	7455	8565	
MSTC66					37.88	38.10	33,16	38.10	
		3	77¾	(66) 10d	8515	8565	7455	8565	
MSTC78					37.88	38.10	33.16	38.10	
070000		21/16	331346	(36) 8d	3735	4295	3270	3760	
ST6236					16.61	19.11	14.55	16.73	
		21/16	26	(22) 10d x 1 ½"	2825	3250	2475	2850	
MSTI26					12,57	14.46	11.01	12.68	
		2⅓₅	36	(32) 10d x 1½"	4110	4725	3600	4140	
MSTI36					18.28	21.02	16.01	18.42	
1407140		21/s	48	(44) 10d x 1 ½"	5650	6500	4955	5695	
MSTI48					25,13	28.91	22.04	25.33	
MOTION	1	21/16	60	(56) 10d x 1½"	7195	7360	6305	7250	
MSTI60					32.01	32.74	28.05	32.25	
	٦	21/18	72	(68) 10d x 1½"	7360	7360	7240	7360	
MSTI72	12				32.74	32.74	32,21	32.74	
мотоя		21/18	27	(26) 8d	2685	3090	2355	2710	
MST27	,				11.94	13.75	10.48	12.06	
MOTOR	1	21/s	37½	(38) 8d	3930	4515	3440	3960	
MST37					17.48	20.08	15.30	17.62	
MOTAG	7	2%6	48	(50) 8d	5170	5945	4530	5210	
MST48					23.00	26.45	20.15	23.18	
UDO4407	7	31/4	10	(16) 1/4" x 1 1/2" SDS	2400	2760	2120	2440	
HRS416Z	1 .		16		10.68	12:28	9.43	10.85	
MOTOO		21/16	60	(64) 8d	6620	7610	5800	6670	
MST60	10				29.45	33.85	25.80	29.67	
MOTZO	10	21/18	72	. (78) 8d	8065	9135	7065	8125	
MST72					35.88	40.64	31.43	36.14	

 Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.

 Use half of the nalls in each member being connected to achieve the listed resistances.

3. Nails: 10d = 0.148" dia. x 3" long, 10d x 1½" = 0.148" dia. x 1½" long, 8d = 0.131" dia. x 2½" long. See pp. 22–23 for other nail sizes and information.

Jan. 5, 2021
G. V. LUBARSKY
100044463

C-C-CAN2020 @ 2020 SIMPSON STRONG-TIE COMPANY INC.

Typical MST VOE OF Christallation (MT hanger shown)
LSTI similar

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated. Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss and fully embed teeth.

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 x 4

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated.

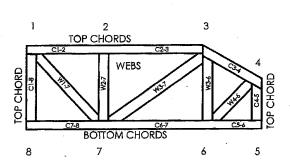
BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

Industry Standards:

TPIC: Truss Des

Truss Design Procedures and Specifications for Light Metal Plate Connected Wood Trusses


DSB-89: Design Standard for Bracing.

DOR-SA:

Design Standard for Bracking.
Building Component Safety Information,
Guide to Good Practice for Handling,
Installing & Bracking of Metal Plate
Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: Mil-7473C rev. 10-'08

Λ

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g., diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or atternative T, I, or Eliminator bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint lacations are regulated by TPIC.
- 7. Design assumes trusses will be suitably protected from the environment in accord with TPIC.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed ar purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no celling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with TPIC Quality Criteria.