

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
P - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
P - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF

PLATES (table is in inches)

JΤ	TYPE	PLATES	W	LEN	Υ	Χ
В	TMVW-t	MT20	4.0	8.0	1.50	3.00
С	TMWW-t	MT20	3.0	4.0	1.50	1.75
D	TTWW-m	MT20	4.0	6.0	1.75	2.25
Е	TMW+w	MT20	2.0	4.0		
F	TTWW-m	MT20	4.0	6.0	1.75	2.25
G	TMWW-t	MT20	3.0	4.0	1.50	1.75
Н	TMVW-t	MT20	4.0	8.0	1.50	3.00
J	BMV1+p	MT20	3.0	4.0		
K	BMWW-t	MT20	4.0	6.0	1.75	1.50
L	BMWW-t	MT20	3.0	4.0		
M	BSWWW-I	MT20	5.0	6.0	3.00	3.00
N	BMWW-t	MT20	3.0	4.0		
0	BMWW-t	MT20	4.0	6.0	1.75	1.50
Ρ	BMV1+p	MT20	3.0	4.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

	FACTOR	RED	MAXIMUM FACTORED I			INPUT	REQRD
	GROSS RE	EACTION	GROSS I	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Р	2296	0	2296	0	0	5-8	3-15
J	2296	0	2296	0	0	5-8	3-15

UNFACTORED REACTIONS

	1ST LCASE	MAX./ľ	иім. СОМРО	NENT REACTION	NS .		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ρ	1602	1174 / 0	0/0	0/0	0/0	429 / 0	0/0
J	1602	1174 / 0	0/0	0/0	0/0	429 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) P. J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.13 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	FACTORE	-D			WE	B S MAX. FACTO	DRED.
MEMB.		VERT. LOA		1 MAX	MAX.	MEMB.		MAX
	(LBS)	(PLF					(LBS)	CSI (LC)
FR-TO		FROM T			LENGTH			
A- B	0 / 36	-119.4 -1	19.4	0.16 (1)	10.00	O- C	-279 / 34	0.07 (1)
B- C	-3111 / 0	-119.4 -1	19.4	0.75 (1)	3.13	C- N	-633 / 0	0.63 (1)
C- D	-2596 / 0	-119.4 -1	19.4	0.67 (1)	3.49	N- D	0 / 443	0.10 (1)
D- E	-2429 / 0	-119.4 -1	19.4	0.23(1)	4.18	D- M	0 / 301	0.07 (1)
E-F	-2429 / 0	-119.4 -1	19.4	0.23(1)	4.18	M- E	-498 / 0	0.45 (1)
F- G	-2596 / 0	-119.4 -1	19.4	0.67 (1)	3.49	M- F	0 / 301	0.07 (1)
G- H	-3111 / 0	-119.4 -1	19.4	0.75(1)	3.13	L- F	0 / 443	0.10(1)
H- I	0 / 36	-119.4 -1	19.4	0.16(1)	10.00	L- G	-633 / 0	0.63(1)
P-B	-2247 / 0	0.0	0.0	0.23(1)	5.61	K- G	-279 / 34	0.07(1)
J- H	-2247 / 0	0.0	0.0	0.23(1)	5.61	B- O	0 / 2844	0.64(1)
						K- H	0 / 2844	0.64 (1)
P- 0	0/0	-18.2	18.2	0.15 (4)	10.00			
O- N	0 / 2816	-18.2	18.2	0.51 (1)	10.00			
N- M	0 / 2292	-18.2	18.2	0.42(1)	10.00			
M- L	0 / 2292	-18.2	18.2	0.42(1)	10.00			
L- K	0 / 2816	-18.2	18.2	0.51(1)	10.00			
K- J	0/0	-18.2	18.2	0.15 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS:									
TOP	CH.	LL	=	34.8	PS				
		DL		6.0	PS				
BOT	CH.	LL	=	0.0	PS				
		DL	=	7.3	PS				
TOTA	L LO	AD	=	48.1	PS				

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 . NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.15")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL) = L/999 (0.25")

CSI: TC=0.75/0.97 (B-C:1) , BC=0.51/0.97 (K-L:1) , WB=0.64/0.97 (H-K:1) , SSI=0.31/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

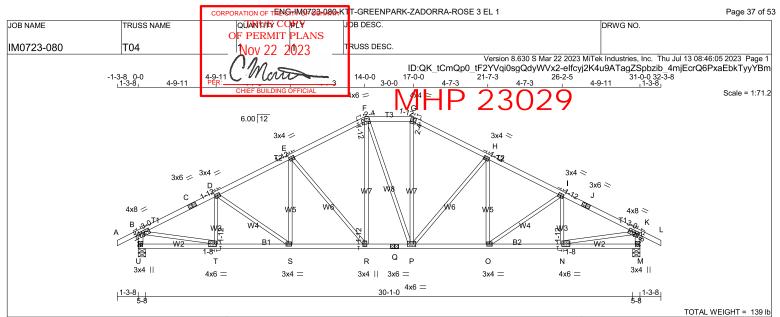

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (J) (INPUT = 0.90) JSI METAL= 0.67 (O) (INPUT = 1.00)

LUMBER	LUMBER								
N. L. G. A. R	ULES								
CHORDS	SIZE		LUMBER	DESCR.					
A - C	2x4	DRY	No.2	SPF					
C - F	2x4	DRY	No.2	SPF					
F - G	2x4	DRY	No.2	SPF					
G - J	2x4	DRY	No.2	SPF					
J - L	2x4	DRY	No.2	SPF					
U - B	2x4	DRY	No.2	SPF					
M - K	2x4	DRY	No.2	SPF					
U - Q	2x4	DRY	No.2	SPF					
Q - M	2x4	DRY	No.2	SPF					
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF					

PLATES (table is in inches)

J١	TYPE	PLATES	VV	LEN	Υ	Х	
В	TMVW-t	MT20	4.0	8.0	1.50	3.00	
С	TS-t	MT20	3.0	6.0			
D, I	Ξ, Η, Ι						
D	TMWW-t	MT20	3.0	4.0	1.50	1.75	
F	TTWW-m	MT20	4.0	6.0	1.75	2.25	
G	TTW-m	MT20	4.0	4.0	2.25	1.75	
J	TS-t	MT20	3.0	6.0			
K	TMVW-t	MT20	4.0	8.0	1.50	3.00	
M	BMV1+p	MT20	3.0	4.0			
N	BMWW-t	MT20	4.0	6.0	1.75	1.50	
0	BMWW-t	MT20	3.0	4.0			
Р	BMWWW-t	MT20	4.0	6.0			
Q	BS-t	MT20	3.0	6.0			
R	BMWW+t	MT20	3.0	4.0	1.75	1.50	
S	BMWW-t	MT20	3.0	4.0			
Т	BMWW-t	MT20	4.0	6.0	1.75	1.50	
U	BMV1+p	MT20	3.0	4.0			

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

	FACTOR		MAXIMUN		INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
U	2296	0	2296	0	0	5-8	3-15
M	2296	0	2296	0	0	5-8	3-15

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	MAX./MIN. COMPONENT REACTIONS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
U	1602	1174 / 0	0/0	0/0	0/0	429 / 0	0/0		
М	1602	1174 / 0	0/0	0/0	0/0	429 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) U. M.

BRACINGTOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.58 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CH	ORDS				W E	BS	
MAX	K. FACTORED	FACTORED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD LC	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TO		
A- B	0 / 36	-119.4 -119.4	0.16 (1)	10.00	T- D	-404 / 0	0.09 (1)
B- C	-3034 / 0	-119.4 -119.4	0.45 (1)	3.58	D-S	-210 / 0	0.11 (1)
C- D	-3034 / 0	-119.4 -119.4	0.45 (1)	3.58	S-E	0 / 213	0.05(1)
D- E	-2865 / 0	-119.4 -119.4	0.37(1)	3.77	E-R	-753 / 0	0.77 (1)
E-F	-2347 / 0	-119.4 -119.4	0.36(1)	4.11	R-F	0 / 634	0.14 (1)
F- G	-2087 / 0	-119.4 -119.4				0/7	0.00(1)
G- H	-2349 / 0	-119.4 -119.4			P- G	0 / 642	0.14 (1)
H- I	-2864 / 0	-119.4 -119.4			P- H	-747 / 0	0.77 (1)
I- J	-3034 / 0	-119.4 -119.4				0 / 207	0.05 (1)
J- K	-3034 / 0	-119.4 -119.4	0.45 (1)	3.58	O- I	-211 / 0	0.11 (1)
K-L	0 / 36				N- I	-403 / 0	0.09 (1)
U- B	-2254 / 0		0.23 (1)		B- T	0 / 2777	0.62 (1)
M- K	-2254 / 0	0.0 0.0	0.23 (1)	5.60	N-K	0 / 2777	0.62 (1)
U- T		-18.2 -18.2					
T-S	0 / 2734		0.48 (1)				
S-R	0 / 2562		0.45 (1)				
R-Q	0 / 2085	-18.2 -18.2					
Q-P	0 / 2085		0.38 (1)				
P- O		-18.2 -18.2					
O- N		-18.2 -18.2					
N- M	0/0	-18.2 -18.2	0.09 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS:								
TOP	CH.	LL	=	34.8	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LL	=	0.0	PSF			
		DL	=	7.3	PSF			
TOTA	L LO	AD	=	48.1	PSF			

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018, NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL)= L/999 (0.14")
ALLOWABLE DEFL.(TL)= L/360 (1.03")
CALCULATED VERT. DEFL.(TL)= L/999 (0.25")

CSI: TC=0.45/0.97 (I-K:1) , BC=0.48/0.97 (N-O:1) , WB=0.77/0.97 (E-R:1) , SSI=0.23/1.00 (I-K:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

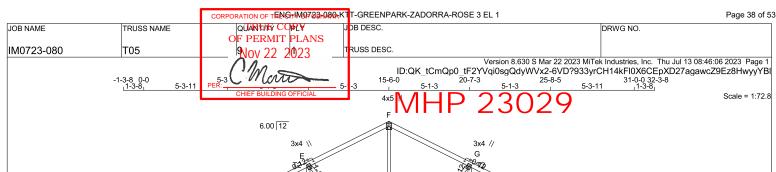

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (M) (INPUT = 0.90) JSI METAL= 0.65 (N) (INPUT = 1.00)

	6.00 = 3x4 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	w ₅	W6 W7 W6/	3x4 // G G VV5	3x4 \\ H	4x8 =	
W2	B1			B1	₩2 Ч-8		
R R	1-81-					₩.	
3x4	Q	Р	0	N	М	L 3x4	
	4x6 =	3x4 =	6x6 =	3x4 =	4x6 =		
5-8			30-1-0			5-8	
							EIGHT = 9 X 132 = 1184 lb

			' 5-8	
LUMBER N. L. G. A. R CHORDS A - C C - F F - I I - K R - B L - J R - O	SULES SIZE 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF SPF
Ö - L	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN	Υ	X
В	TMVW-t	MT20	4.0	8.0	1.50	3.00
С	TS-t	MT20	3.0	6.0		
D	TMWW-t	MT20	3.0	4.0	1.50	1.75
Е	TMWW+t	MT20	3.0	4.0	1.75	0.75
F	TTW+p	MT20	4.0	5.0		
G	TMWW+t	MT20	3.0	4.0	1.75	0.75
Н	TMWW-t	MT20	3.0	4.0	1.50	1.75
1	TS-t	MT20	3.0	6.0		
J	TMVW-t	MT20	4.0	8.0	1.50	3.00
L	BMV1+p	MT20	3.0	4.0		
M	BMWW-t	MT20	4.0	6.0	1.75	1.50
Ν	BMWW-t	MT20	3.0	4.0		
0	BSWWW-I	MT20	6.0	6.0		
Ρ	BMWW-t	MT20	3.0	4.0		
Q	BMWW-t	MT20	4.0	6.0	1.75	1.50
R	BMV1+p	MT20	3.0	4.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

	FACTOR	ED	MAXIMUN	/ FACTO	RED	INPUT	REQRD
	GROSS RE	ACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
R	2296	0	2296	0	0	5-8	3-15
L	2296	0	2296	0	0	5-8	3-15

UNFACTORED REACTIONS

ı		1ST LCASE	MAX./	MIN. COMPON	NENT REACTION	NS .		
l	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
ı	R	1602	1174 / 0	0/0	0/0	0/0	429 / 0	0/0
l	L	1602	1174 / 0	0/0	0/0	0/0	429 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) R. L.

BRACINGTOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.45 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 - 1x4 LATERAL BRACE(S) AT 1/2 LENGTH OF G-O, E-O. DBS = 20-0-0 . CBF = 110 LBS.

DBS = DIAGONAL BRACE SPACING (MAX). CBF = CUMULATIVE BRACING FORCE (PER BRACE). FASTEN LATERAL BRACE(S) USING (0.122"X3") SPIRAL NAILS: 1 NAIL FOR 2x3 BRACE(S), 2 FOR 1x4, 2x4, 2x5, 3 FOR 2x6, 4 FOR 2x8, 5 FOR 2x10, AND 6 FOR 2x12.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CH	ORDS		WEBS						
MAX	(. FACTORED	FACTOR	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOA	AD LC	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLI	F)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM '	TO		LENGTH	I FR-TO			
A- B	0 / 36	-119.4 -	-119.4	0.16 (1)	10.00	0- F		0.32 (1)	
B- C	-3065 / 0	-119.4 -	-119.4	0.55 (1)	3.45	0- G	-882 / 0	0.37(1)	
C- D	-3065 / 0	-119.4 -	-119.4	0.55 (1)	3.45	N- G	0 / 294	0.07(1)	
D- E	-2784 / 0	-119.4 -	-119.4	0.45 (1)	3.74	N- H	-334 / 0	0.23(1)	
E-F	-2174 / 0	-119.4 -	-119.4	0.42 (1)	4.16	M- H	-352 / 0	0.08 (1)	
F-G	-2174 / 0	-119.4 -	-119.4	0.42 (1)	4.16	E-O	-882 / 0	0.37 (1)	
G- H	-2784 / 0	-119.4 -	-119.4	0.45 (1)	3.74	P-E	0 / 294	0.07(1)	
H- I	-3065 / 0			0.55 (1)		D- P	-334 / 0	0.23(1)	
I- J	-3065 / 0	-119.4 -	-119.4	0.55 (1)	3.45	Q- D	-352 / 0	0.08 (1)	
J- K	0 / 36			0.16 (1)		B- Q	0 / 2800	0.63 (1)	
R-B	-2251 / 0	0.0	0.0	0.23 (1)	5.60	M- J	0 / 2800	0.63 (1)	
L- J	-2251 / 0	0.0	0.0	0.23 (1)	5.60				
R-Q	0/0	-18.2							
Q-P	0 / 2764	-18.2	-18.2	0.50(1)	10.00				
P- 0	0 / 2489	-18.2	-18.2	0.46 (1)	10.00				
O- N	0 / 2489	-18.2	-18.2	0.46 (1)	10.00				
N- M		-18.2							
M- L	0/0	-18.2	-18.2	0.10 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS:								
TOP	CH.	LL	=	34.8	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LL	=	0.0	PSF			
		DL	=	7.3	PSF			
TOTA	L LO	AD	=	48.1	PSF			

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03") CALCULATED VERT. DEFL.(LL)= L/ 999 (0.15") ALLOWABLE DEFL.(TL)= L/360 (1.03") CALCULATED VERT. DEFL.(TL)= L/999 (0.27")

CSI: TC=0.55/0.97 (H-J:1) , BC=0.50/0.97 (M-N:1) , WB=0.63/0.97 (J-M:1) , SSI=0.26/1.00 (H-J:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

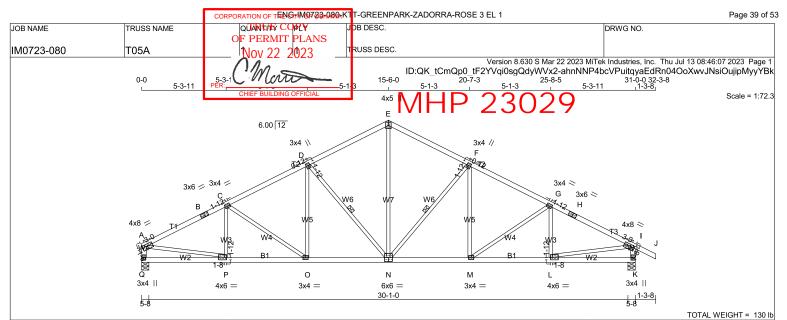

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (L) (INPUT = 0.90) JSI METAL= 0.66 (Q) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - E	2x4	DRY	No.2	SPF
E - H	2x4	DRY	No.2	SPF
H - J	2x4	DRY	No.2	SPF
Q - A	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
Q - N	2x4	DRY	No.2	SPF
N - K	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

PL	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Χ						
Α	TMVW-t	MT20	4.0	8.0	1.50	3.00						
В	TS-t	MT20	3.0	6.0								
С	TMWW-t	MT20	3.0	4.0	1.50	1.75						
D	TMWW+t	MT20	3.0	4.0	1.75	0.75						
Е	TTW+p	MT20	4.0	5.0								
F	TMWW+t	MT20	3.0	4.0	1.75	0.75						
G	TMWW-t	MT20	3.0	4.0	1.50	1.75						
Н	TS-t	MT20	3.0	6.0								
1	TMVW-t	MT20	4.0	8.0	1.50	3.00						
K	BMV1+p	MT20	3.0	4.0								
L	BMWW-t	MT20	4.0	6.0	1.75	1.50						
M	BMWW-t	MT20	3.0	4.0								
N	BSWWW-I	MT20	6.0	6.0								
0	BMWW-t	MT20	3.0	4.0								
Р	BMWW-t	MT20	4.0	6.0	1.75	1.50						
Q	BMV1+p	MT20	3.0	4.0								

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

טבת	111100						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	2134	0	2134	0	0	5-8	3-7
K	2296	0	2296	0	0	5-8	3-15

UNFACTORED REACTIONS

	1ST LCASE	MAX./	MIN. COMPO				
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1491	1079 / 0	0/0	0/0	0/0	412 / 0	0/0
K	1602	1174 / 0	0/0	0/0	0/0	429 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, K

BRACINGTOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.45 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 - 1x4 LATERAL BRACE(S) AT 1/2 LENGTH OF F-N, D-N. DBS = 20-0-0 . CBF = 110 LBS.

DBS = DIAGONAL BRACE SPACING (MAX). CBF = CUMULATIVE BRACING FORCE (PER BRACE). FASTEN LATERAL BRACE(S) USING (0.122"X3") SPIRAL NAILS: 1 NAIL FOR 2x3 BRACE(S), 2 FOR 1x4, 2x4, 2x5, 3 FOR 2x6, 4 FOR 2x8, 5 FOR 2x10, AND 6 FOR 2x12.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4) CHOPDS

	ORDS	FACTOR	OED.		W E B S MAX. FACTORED					
MEMB.	K. FACTORED FORCE	VERT. LO			MAX.			MAX		
VICIVID.	(LBS)				UNBRAC					
FR-TO	(LDS)	FROM					(LDS)	COI (LC)		
A- B	-3065 / 0	-119.4					0 / 1428	0.32(1)		
B- C	-3065 / 0			0.55 (1)			-882 / 0	0.37 (1)		
C- D	-2784 / 0			0.45 (1)			0 / 294	0.07 (1)		
D- E	-2174 / 0			0.42 (1)			-334 / 0	0.23 (1)		
E-F	-2174 / 0			0.42 (1)		L- G	-352 / 0	0.08 (1)		
F- G	-2784 / 0			0.45 (1)		D- N	-882 / 0	0.37 (1)		
G- H	-3065 / 0	-119.4	-119.4	0.55 (1)	3.45	O- D	0 / 294	0.07 (1)		
H- I	-3065 / 0	-119.4	-119.4	0.55 (1)	3.45	C-O	-334 / 0	0.23 (1)		
l- J	0 / 36	-119.4	-119.4	0.16(1)	10.00	P-C	-352 / 0	0.08(1)		
Q- A	-2089 / 0	0.0	0.0	0.21(1)	5.78	A-P	0 / 2800	0.63(1)		
K- I	-2251 / 0	0.0	0.0	0.23 (1)	5.60	L- I	0 / 2800	0.63 (1)		
Q-P	0/0	-18.2	-18 2	0.10 (4)	10.00					
P- 0	0 / 2764			0.50 (1)						
O- N	0 / 2489			0.46 (1)						
N- M	0 / 2489			0.46 (1)						
M- L	0 / 2764			0.50 (1)						
L- K	0/0	-18.2		0.10 (4)						
				- (-)						

DESIGN CRITERIA

SPEC	IFIED	LOAI	OS:		
TOP	CH.	LL	=	34.8	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.3	PSF
TOTA	L LO	AD	=	48.1	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.15")
ALLOWABLE DEFL.(TL)= L/360 (1.03") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.27")

CSI: TC=0.55/0.97 (A-C:1), BC=0.50/0.97 (L-M:1),

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

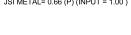
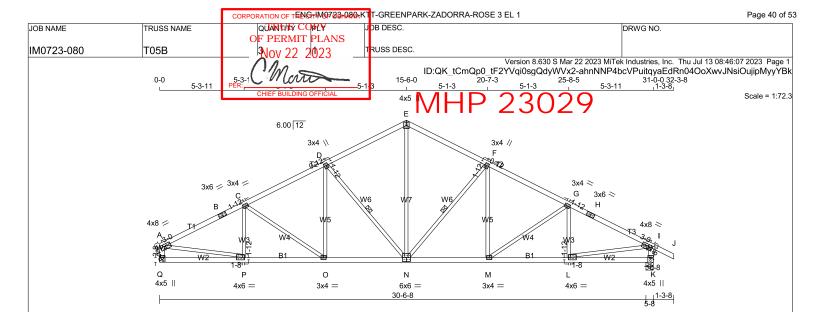

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (K) (INPUT = 0.90) JSI METAL= 0.66 (P) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - E	2x4	DRY	No.2	SPF
E - H	2x4	DRY	No.2	SPF
H - J	2x4	DRY	No.2	SPF
Q - A	2x4	DRY	No.2	SPF
K - I	2x4	DRY	No.2	SPF
Q - N	2x4	DRY	No.2	SPF
Ñ - K	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT			· · · · · · ·	•
	2x3	DRY	No.2	SPF

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Y X						
Α	TMVW-t	MT20	4.0	8.0	1.50 3.	00					
В	TS-t	MT20	3.0	6.0							
С	TMWW-t	MT20	3.0	4.0	1.50 1.	75					
D	TMWW+t	MT20	3.0	4.0	1.75 0.	75					
Е	TTW+p	MT20	4.0	5.0							
F	TMWW+t	MT20	3.0	4.0	1.75 0.	75					
G	TMWW-t	MT20	3.0	4.0	1.50 1.	75					
Н	TS-t	MT20	3.0	6.0							
1	TMVW-t	MT20	4.0	8.0	1.50 3.	00					
K	BMV1+t	MT20	4.0	5.0	Edge 0.	50					
L	BMWW-t	MT20	4.0	6.0	1.75 1.	50					
M	BMWW-t	MT20	3.0	4.0							
N	BSWWW-I	MT20	6.0	6.0							
0	BMWW-t	MT20	3.0	4.0							
Р	BMWW-t	MT20	4.0	6.0	1.75 1.	50					
Ω	BMV1+t	MT20	4.0	5.0	3.50						

 $\ensuremath{\mathsf{Edge}}$ - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

	FACTORED		MAXIMU	M FACTO	INPUT	REQRD	
	GROSS RI	EACTION	GROSS	REACTIC	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	2134	0	2134	0	0	MECHAN	IICAL
K	2296	0	2296	0	0	5-8	3-15

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT Q. MINIMUM BEARING LENGTH AT JOINT Q = 3-8.

UNFACTORED REACTIONS

	151 LUASE	IVIAX./I	VIIN. COMPO	NENT REACTION	VO		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1491	1079 / 0	0/0	0/0	0/0	412 / 0	0/0
K	1602	1174 / 0	0/0	0/0	0/0	429 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.45 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 - 1x4 LATERAL BRACE(S) AT 1/2 LENGTH OF F-N, D-N. DBS = 20-0-0 . CBF = 110 LBS.

DBS = DIAGONAL BRACE SPACING (MAX), CBF = CUMULATIVE BRACING FORCE (PER BRACE). FASTEN LATERAL BRACE(S) USING (0.122"X3") SPIRAL NAILS: 1 NAIL FOR 2x3 BRACE(S), 2 FOR 1x4, 2x4, 2x5, 3 FOR 2x6, 4 FOR 2x8, 5 FOR 2x10, AND 6 FOR 2x12.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX LINBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

СН	CHORDS				WEBS					
MAX	(. FACTORED	FACTOR	ΞD				MAX. FACTO	RED		
MEMB.	FORCE	VERT. LOA	D LC	1 MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PLF)	CSI (LC)	UNBRAC	:	(LBS)	CSI (LC)		
FR-TO		FROM T	Ó		LENGTH	FR-TO				
A-B	-3065 / 0	-119.4 -	119.4	0.55 (1)	3.45	N-E	0 / 1428	0.32(1)		
B- C	-3065 / 0	-119.4 -	119.4	0.55 (1)	3.45	N- F	-882 / 0	0.37(1)		
C- D	-2784 / 0	-119.4 -	119.4	0.45 (1)	3.74		0 / 294	0.07(1)		
D- E	-2174 / 0	-119.4 -	119.4	0.42 (1)	4.16	M- G	-334 / 0	0.23(1)		
E-F	-2174 / 0	-119.4 -	119.4	0.42 (1)	4.16	L- G	-352 / 0	0.08 (1)		
F- G	-2784 / 0	-119.4 -	119.4	0.45 (1)	3.74	D- N	-882 / 0	0.37 (1)		
G- H	-3065 / 0	-119.4 -	119.4	0.55 (1)	3.45	O- D	0 / 294	0.07 (1)		
H- I	-3065 / 0	-119.4 -				C-O	-334 / 0	0.23 (1)		
I- J	0 / 36	-119.4 -					-352 / 0	0.08 (1)		
Q- A	-2089 / 0	0.0	0.0	0.21 (1)	5.78	A-P	0 / 2800	0.63 (1)		
K- I	-2251 / 0	0.0	0.0	0.23 (1)	5.60	L- I	0 / 2800	0.63 (1)		
Q-P	0/0	-18.2	-18 2	0.10 (4)	10.00					
P- O	0 / 2764			0.50 (1)						
O- N	0 / 2489			0.46 (1)						
N- M	0 / 2489			0.46 (1)						
M- L				0.50(1)						
L- K	0/0			0.10 (4)						

DESIGN CRITERIA

SPEC	IFIED	LOAD:	S:		
TOP	CH.	LL :	=	34.8	PSF
		DL :	=	6.0	PSF
BOT	CH.	LL :	=	0.0	PSF
		DL :	=	7.3	PSF
TOTA	L LO	AD :	=	48.1	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

TOTAL WEIGHT = 3 X 130 = 390 lb

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03")
CALCULATED VERT. DEFL.(LL) = L/999 (0.15")
ALLOWABLE DEFL.(TL)= L/360 (1.03") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.27")

CSI: TC=0.55/0.97 (A-C:1), BC=0.50/0.97 (L-M:1),

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (P) (INPUT = 0.90) JSI METAL= 0.66 (P) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - E	2x4	DRY	No.2	SPF
E - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
Q - A	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
Q - N	2x4	DRY	No.2	SPF
N - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

PL/	PLATES (table is in inches)										
JΤ	TYPE	PLATES	W	LEN	Υ	X					
Α	TMVW+p	MT20	5.0	5.0	1.50	2.50					
В	TTWW+m	MT20	6.0	6.0	2.00	2.25					
С	TMW+w	MT20	2.0	4.0							
D	TMWW-t	MT20	3.0	4.0							
Е	TS-t	MT20	3.0	6.0							
F	TTWW+m	MT20	6.0	6.0	2.00	2.25					
G	TMWW-t	MT20	3.0	4.0	1.50	1.25					
Н	TMVW+p	MT20	5.0	6.0	2.00	2.00					
J	BMV1+p	MT20	3.0	4.0	2.00						
K	BMWW-t	MT20	3.0	6.0	1.50	1.75					
L	BMWW-t	MT20	3.0	4.0							
M	BMWW-t	MT20	4.0	4.0	2.00	1.75					
N	BS-t	MT20	3.0	6.0							
0	BMWWW-t	MT20	5.0	6.0	2.00	2.00					
Ρ	BMWW-t	MT20	4.0	4.0	1.50	1.50					
Q	BMV1+t	MT20	4.0	5.0	3.50						

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

	FACTORED		MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	2134	0	2134	0	0	MECHANIC	CAL
J	2299	0	2299	0	0	5-8	4-0

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT Q. MINIMUM BEARING LENGTH AT JOINT Q = 3-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	<u>иім. сомро</u>	<u>NENT REACTION</u>	NS .		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Q	1491	1079 / 0	0/0	0/0	0/0	412 / 0	0/0
J	1604	1176 / 0	0/0	0/0	0/0	429 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

BRACINGTOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.43 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

2x4 DRY SPF No.2 T-BRACE AT D-O

FASTEN T AND I-BRACES TO NARROW EDGE OF WEB WITH ONE ROW PER PLY OF 3" COMMON WIRE NAILS @ 6" O.C. WITH 3" MINIMUM END DISTANCE. BRACE MUST COVER 90% OF WEB LENGTH.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

CHORDS				WEBS						
MAX	C. FACTORED	FACTO	RED				MAX. FACTO	ORED		
MEMB.	FORCE	VERT. LC	AD LC	1 MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PI	_F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO				
A- B	-1667 / 0	-119.4	-119.4	0.70(1)	4.18	P-B	-598 / 0	0.64 (1)		
B- C	-2164 / 0	-119.4	-119.4	0.81 (1)	3.52	B-O	0 / 1379	0.31 (1)		
C- D	-2165 / 0	-119.4	-119.4	0.80(1)	3.52	O- C	-803 / 0	0.86 (1)		
D- E	-2282 / 0	-119.4	-119.4	0.83 (1)	3.43	O- D	-182 / 0	0.13 (1)		
E-F	-2282 / 0			0.83 (1)		M- D	-663 / 0	0.71 (1)		
F- G	-2142 / 0	-119.4	-119.4	0.32(1)	4.29	M- F	0 / 1023	0.23 (1)		
G- H	-2085 / 0	-119.4	-119.4	0.32(1)	4.35	L- F	0 / 111	0.03 (4)		
H- I	0 / 53	-119.4	-119.4	0.16 (1)	10.00	L- G	-15 / 6	0.01 (1)		
Q- A	-2098 / 0	0.0		0.39 (1)		K- G	-518 / 0	0.17 (1)		
J- H	-2266 / 0	0.0	0.0	0.24 (1)	5.58	A-P	0 / 1466			
						K- H	0 / 1723	0.39 (1)		
Q-P	0/0			0.14 (4)						
P- 0	0 / 1269			0.29 (1)						
O- N	0 / 2281	-18.2	-18.2	0.44 (1)	10.00					
N- M	0 / 2281	-18.2	-18.2	0.44 (1)	10.00					
M- L	0 / 1617	-18.2	-18.2	0.33 (1)	10.00					
L- K	0 / 1625	-18.2	-18.2	0.32(1)	10.00					
K- J	0/0	-18.2	-18.2	0.06 (4)	10.00					

SPECIFIED LOADS:								
CH.	LL	=	34.8	PSF				
	DL	=	6.0	PSF				
CH.	LL	=	0.0	PSF				
	DL	=	7.3	PSF				
L LO	AD	=	48.1	PSF				
	CH.	CH. LL DL CH. LL	CH. LL = DL = CH. LL = DL =	CH. LL = 34.8 DL = 6.0 CH. LL = 0.0 DL = 7.3				

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 . NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (1.03") CALCULATED VERT. DEFL.(LL)= L/999 (0.10") ALLOWABLE DEFL.(TL)= L/360 (1.03") CALCULATED VERT. DEFL.(TL)= L/999 (0.18")

CSI: TC=0.83/0.97 (D-F:1) , BC=0.44/0.97 (M-O:1) , WB=0.86/0.97 (C-O:1) , SSI=0.35/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

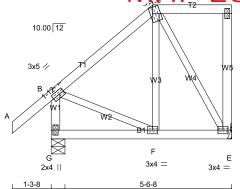
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (H) (INPUT = 0.90) JSI METAL= 0.69 (N) (INPUT = 1.00)

RUSS DESC.


JOB NAME IM0723-080 T07

OF PERMIT PLANS Nov 22 2023

Version 8,630 S Mar 22 2023 MiTek Industries, Inc. Thu Jul 13 08:46:09 2023 Page 1 ID:QK_tCmQp0_tF2YVqi0sgQdyWVx2-W4v7n55r87fcxBzKhfgvsR9pBKjCnPZ?sCCptFyyYBi 3-4-8

Scale = 1:38.3

TOTAL WEIGHT = 32 lb

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
C - D	2x4	DRY	No.2	SPF
E - D	2x4	DRY	No.2	SPF
G - B	2x4	DRY	No.2	SPF
G - E	2x4	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN	Y X
В	TMVW-t	MT20	3.0	5.0	1.50 1.75
С	TTWW+m	MT20	4.0	6.0	Edge 1.00
D	TMV+p	MT20	2.0	4.0	-
Е	BMVW1-t	MT20	3.0	4.0	
F	BMWW-t	MT20	3.0	4.0	
G	BMV1+p	MT20	2.0	4.0	

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

<u> 3EA</u>	<u>rings</u>						
	FACTOR	RED	MAXIMUN	/ FACTO	INPUT	REQRD	
	GROSS REACTION		GROSS F	REACTIO	BRG	BRG	
T	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Ξ	413	0	413	0	0	MECHANIC	AL
3	578	0	578	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
Ε	289	209 / 0	0/0	0/0	0/0	80 / 0	0/0			
G	402	305 / 0	0/0	0/0	0/0	96 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	CHORDS				WEBS						
MAX.	FACTORED	FACTORED			MAX. FACTORED						
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX			
	(LBS)	(PL	F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)			
FR-TO		FROM	TO		LENGTH	FR-TO					
A- B	0 / 53	-119.4	-119.4	0.16(1)	10.00	F- C	0 / 60	0.02(4)			
B- C	-198 / 0	-119.4	-119.4	0.23(1)	6.25	C-E	-284 / 0	0.10(1)			
C- D	0/0	-119.4	-119.4	0.14(1)	10.00	B- F	0 / 162	0.04(1)			
E- D	-157 / 0	0.0	0.0	0.05(1)	7.81						
G-B	-551 / 0	0.0	0.0	0.06(1)	7.81						
G-F	0/0	-18.2	-18.2	0.05(4)	10.00						
F-E	0 / 152	-18.2	-18.2	0.06(4)	10.00						

SPECIFIED LOADS: 34.8 6.0 PSF PSF PSF TOP CH. 0.0 7.3 LL TOTAL LOAD 48.1 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 . NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.23/0.97 (B-C:1) , BC=0.06/0.97 (E-F:4) , WB=0.10/0.97 (C-E:1) , SSI=0.12/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

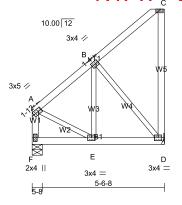
MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.47 (B) (INPUT = 0.90) JSI METAL= 0.12 (B) (INPUT = 1.00)



CORPORATION OF TENGTIMO723-0804KTT-GREENPARK-ZADORRA-ROSE 3 EL 1 Page 43 of 53 TRUSS NAME QUARTERY COPLY DB DESC JOB NAME DRWG NO. OF PERMIT PLANS IM0723-080 T08 RUSS DESC.

Nov 22 2023 ID:QK_tCmQp0_tF2YVqi0sgQdyWVx2-W4v7n55r87fcxBzKhfgvsR9qfKjCnPN?sCCptFyyYBi 5-4-8 6-0-0 -7-8 2-9-8 2-7-0 CHIEF BUILDING OFFICIAL 2x4 = D

Scale = 1:52.2

TOTAL WEIGHT = 32 lb

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - C	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - A	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN	Y X
Α	TMVW-t	MT20	3.0	5.0	1.50 1.75
В	TMWW-t	MT20	3.0	4.0	1.50 1.25
С	TMV-p	MT20	2.0	4.0	Edge
D	BMVW1-t	MT20	3.0	4.0	
Е	BMWW-t	MT20	3.0	4.0	
F	BMV1+p	MT20	2.0	4.0	

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

DEA	KINGS						
	FACTORED		MAXIMU	M FACTO	INPUT	REQRD	
	GROSS REACTION		GROSS	REACTIC	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	413	0	413	0	0	MECHAN	NICAL
F	413	0	413	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
D	289	209 / 0	0/0	0/0	0/0	80 / 0	0/0			
F	289	209 / 0	0/0	0/0	0/0	80 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHO	DRDS				WEBS				
MAX.	FACTORED	FACTORED			MAX. FACTORED				
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	F) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	I FR-TO			
A-B	-243 / 0	-119.4	-119.4	0.14(1)	6.25	E-B	-34 / 49	0.02(4)	
B- C	-27 / 0	-119.4	-119.4	0.14(1)	6.25	B- D	-318 / 0	0.12(1)	
D- C	-150 / 0	0.0	0.0	0.12(1)	7.81	A-E	0 / 232	0.05 (1)	
F- A	-393 / 0	0.0	0.0	0.04 (1)	7.81				
	0.10	40.0	40.0	0.04 (4)	40.00				
F-E	0/0			0.04 (4)	10.00				
E- D	0 / 210	-18.2	-18.2	0.06(4)	10.00				

DESIGN CRITERIA

Version 8.630 S Mar 22 2023 MiTek Industries, Inc. Thu Jul 13 08:46:09 2023 Page 1

SPEC	IFIED	LOAI	OS:		
TOP	CH.	LL	=	34.8	PSI
		DL	=	6.0	PSI
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.3	PSI
TOTA	L LO	AD	=	48.1	PSI

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20") CALCULATED VERT. DEFL.(LL) = L/999 (0.00") ALLOWABLE DEFL.(TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

CSI: TC=0.14/0.97 (A-B:1) , BC=0.06/0.97 (D-E:4) , WB=0.12/0.97 (B-D:1) , SSI=0.14/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.39 (B) (INPUT = 0.90) JSI METAL= 0.10 (A) (INPUT = 1.00)

LUMBER

CHORDS

A - C C - E E - H P - A

A G

ALL WEBS 2x3

TMVW-t

TMWW-t

TMW+w

TMWW-t

BMV1+t

BMWW-

BMWW-t

BMWW-t

RMWW-t

BMV1+t

BMWWW-t

BS-t

G TMVW-t

TTWW+m

N. L. G. A. RULES

2x4

2x4 2x4

2x4 2x4

2x4

DRY: SEASONED LUMBER

PLATES (table is in inches)

QUARTERY COPLY OF PERMIT PLANS Nov 22 2023

0-0

LUMBER

No.2

No.2 No.2

No.2

No.2

No.2

No.2

LEN Y

5.0

4.0 5.0 4.0 5.0

5.0 6.0 4.0

6.0

5.0 5.0

3.0

5.0

2.0 5.0

3.0

4.0

3.0

3.0

3.0

3.0 4.0 6.0 5.0

3.0

4.0

1.50 1.75 1.50 1.25

2.25 1.50

2.25 1.50 1.50 1.25 1.50 1.75

Edge 0.50

150 250

1.50 2.50

3.50

DRY

DRY

DRY

DRY DRY

DRY

DRY

MT20

MT20

MT20 MT20

MT20

MT20

MT20

MT20

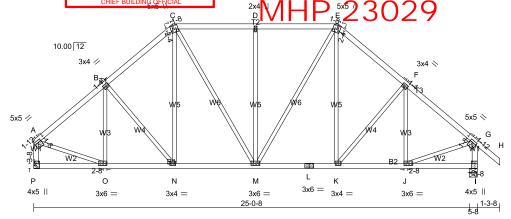
MT20

MT20

MT20

MT20

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.


RUSS DESC Version 8,630 S Mar 22 2023 MiTek Industries, Inc. Thu Jul 13 08:46:10 2023 Page 1 ID:QK_tCmQp0_tF2YVqi0sqQdyWVx2_GTV?R6TvQnTZLYWFNB8Pfjywk?PWfp84sxMQhyyYBh 12-9-0

25-6-026-9-8 1-3-8 3-10-12 4-1-4

DRWG NO

Scale = 1:66.2

TOTAL WEIGHT = 125 lb

CORPORATION OF TENGTIM0723-0804KTT-GREENPARK-ZADORRA-ROSE 3 EL 1

DB DESC

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER DESCR SPF FACTORED GROSS REACTION VERT HORZ SPF SPF 1755

SPF SPF

SPF

SPF

2-12

1755

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT P. MINIMUM BEARING LENGTH AT JOINT P = 3-8.

MAXIMUM FACTORED

GROSS REACTION DOWN HORZ L

UNFACTORED REACTIONS
1ST LCASE ____MA

MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERMINT JT WIND DEAD SOIL COMBINED 888 / 0 339 / 0 356 / 0 0/0 984 / 0

REQRD

IN-SX

BRG IN-SX

MECHANICAL

WERS

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.80 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS

СН	ORDS		WEBS						
MAX	C. FACTORED	FACTOR	ED				MAX. FACTO	DRED	
MEMB.	FORCE	VERT. LOA	D LC	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF	•)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM 1	О		LENGTH	FR-TO			
A- B	-1697 / 0	-119.4 -	119.4	0.28 (1)	4.80	O-B	-348 / 0	0.13 (1)	
B- C	-1612 / 0	-119.4 -	119.4	0.27 (1)	4.90	B- N	-191 / 0	0.13 (1)	
C- D	-1439 / 0	-119.4 -	119.4	0.36(1)	4.98	N- C	0 / 228	0.05 (1)	
D- E	-1439 / 0	-119.4 -	119.4	0.36(1)	4.98	C- M	0 / 449	0.10(1)	
E-F	-1612 / 0	-119.4 -	119.4	0.27 (1)	4.90	M- D	-688 / 0	0.94 (1)	
F- G	-1697 / 0	-119.4 -	119.4	0.28 (1)	4.80	M- E	0 / 449	0.10 (1)	
G- H	0 / 53	-119.4 -	119.4	0.16 (1)	10.00	K-E	0 / 228	0.05 (1)	
P- A	-1722 / 0	0.0		0.18 (1)		K- F	-191 / 0	0.13 (1)	
I- G	-1887 / 0	0.0	0.0	0.20 (1)	6.03	J- F	-348 / 0	0.13 (1)	
						A- O	0 / 1396	0.31 (1)	
P- 0	0/0	-18.2	-18.2	0.06 (4)	10.00	J- G	0 / 1396	0.31 (1)	
O- N	0 / 1330	-18.2	-18.2	0.25 (1)	10.00				
N- M	0 / 1210	-18.2	-18.2	0.23 (1)	10.00				
M- L	0 / 1210	-18.2	-18.2	0.23 (1)	10.00				
L- K	0 / 1210			0.23 (1)					
K- J	0 / 1330	-18.2	-18.2	0.25 (1)	10.00				
J- I	0/0	-18.2	-18.2	0.06(4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS 34.8 6.0 TOP CH. BOT CH. = 0.0 7.3 PSF LL TOTAL LOAD 48.1 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 . NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.85") CALCULATED VERT. DEFL.(LL)= L/999 (0.05") ALLOWABLE DEFL.(TL)= L/360 (0.85") CALCULATED VERT. DEFL.(TL)= L/999 (0.09")

CSI: TC=0.36/0.97 (C-D:1) , BC=0.25/0.97 (J-K:1) , WB=0.94/0.97 (D-M:1) , SSI=0.27/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

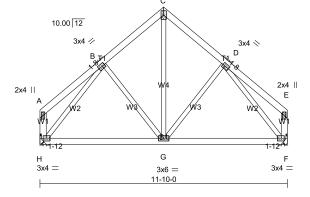
MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (O) (INPUT = 0.90) JSI METAL= 0.56 (G) (INPUT = 1.00)


RUSS DESC

OF PERMIT PLANS Nov 22 2023

Version 8.630 S Mar 22 2023 MiTek Industries, Inc. Thu Jul 13 08:46:11 2023 Page 1 ID:QK_tCmQp0_tF2YVqi0sgQdyWVx2-SS1uCn75gkvKBV7jp4iNxsEAo8LGFG7IJWhvy7yyYBg

5-11-0 2-10-4 3-0-12

Scale = 1:55.1

TOTAL WEIGHT = 3 X 54 = 161 lb

LUMBER N. L. G. A. RULES DESCR. SPF SPF SPF SPF CHORDS SIZE LUMBER A - C C - E H - A F - E H - F DRY No.2 No.2 No.2 2x4 2x4 2x4 DRY DRY 2x4 DRY No.2 SPF ALL WEBS 2x3 DRY No.2 SPF EXCEPT

T10

DRY: SEASONED LUMBER.

IM0723-080

PLATES (table	is	in	inches)	

JΤ	TYPE	PLATES	W	LEN	Υ	Χ
Α	TMV+p	MT20	2.0	4.0		
В	TMWW-t	MT20	3.0	4.0	1.50	1.50
С	TTW+p	MT20	3.0	5.0		
D	TMWW-t	MT20	3.0	4.0	1.50	1.50
Е	TMV+p	MT20	2.0	4.0		
F	BMVW1-t	MT20	3.0	4.0	1.50	1.75
G	BMWWW-t	MT20	3.0	6.0		
Н	BMVW1-t	MT20	3.0	4.0	1.50	1.75

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

	DLA	I TII TOO						
		FACTO	MAXIMU	M FACTO	INPUT	REQRD		
GROSS REACTION				GROSS	REACTIC	BRG	BRG	
	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	Н	815	0	815	0	0	MECHANI	CAL
	F	815	0	815	0	0	MECHANI	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H, F. MINIMUM BEARING LENGTH AT JOINT H = 1-8, JOINT F = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
Н	569	412 / 0	0/0	0/0	0/0	157 / 0	0/0			
F	569	412 / 0	0/0	0/0	0/0	157 / 0	0/0			

BRACING

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	CHORDS					WEBS			
MAX.	FACTORED	FACTORE	D				MAX. FACTO	DRED	
MEMB.	FORCE	VERT. LOAI	D LC1	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM T	0		LENGTH	FR-TO			
A- B	0 / 25	-119.4 -1	19.4	0.16(1)	10.00	G-C	0 / 391	0.09(1)	
B- C	-543 / 0	-119.4 -1	19.4	0.13(1)	6.25	G- D	-164 / 0	0.06(1)	
C- D	-543 / 0	-119.4 -1	19.4	0.13(1)	6.25	B- G	-164 / 0	0.06(1)	
D- E	0 / 25	-119.4 -1	19.4	0.16(1)	10.00	H- B	-807 / 0	0.29(1)	
H- A	-138 / 0	0.0	0.0	0.01(1)	7.81	D- F	-807 / 0	0.29(1)	
F-E	-138 / 0	0.0	0.0	0.01(1)	7.81				
H- G	0 / 499	-18.2	18.2	0.21(4)	10.00				
G-F	0 / 499	-18.2	18.2	0.21 (4)	10.00				

SPECIFIED LOADS:									
TOP	CH.	LL	=	34.8	PSF				
		DL	=	6.0	PSF				
BOT	CH.	LL	=	0.0	PSF				
		DL	=	7.3	PSF				
TOTA	L LO	AD	=	48.1	PSF				

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.39") CALCULATED VERT. DEFL.(LL) = L/ 999 (0.01") ALLOWABLE DEFL.(TL)= L/360 (0.39") CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSI: TC=0.16/0.97 (D-E:1) , BC=0.21/0.97 (F-G:4) , WB=0.29/0.97 (B-H:1) , SSI=0.13/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION

(PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (F) (INPUT = 0.90) JSI METAL= 0.27 (D) (INPUT = 1.00)

CORPORATION OF TENGTIMO723-0804KTT-GREENPARK-ZADORRA-ROSE 3 EL 1 Page 46 of 53 TRUSS NAME QUARTERY COPLY DB DESC JOB NAME DRWG NO. OF PERMIT PLANS IM0723-080 Nov 22 2023 RUSS DESC. T11

Version 8.630 S Mar 22 2023 MiTek Industries, Inc. Thu Jul 13 08:46:12 2023 Page 1 ID:QK_tCmQp0_tF2YVqi0sgQdyWVx2-xfaGQ68jQ21BofivNnDcU3nLeYca_m?RYAQTUZyyYBf 5-5-0 5-10-0 6-9-8 15-0, 11-8 2-9-12

2x4¶

6.00 12 3x5 / В G 3x4 =3x4 =2x4 ||

Scale = 1:34.3

TOTAL WEIGHT = 28 lb

LUMBER N. L. G. A. RULES DESCR. SPF SPF CHORDS LUMBER A - D F - D H - B DRY 2x4 No.2 2x4 2x4 DRY DRY No.2 No.2 SPF H - E DRY No.2 ALL WEBS 2x3 DRY SPF No.2 **EXCEPT**

DRY: SEASONED LUMBER.

PLATES (table is in inches)

JI	ITPE	PLATES	VV	LEN	Ť	
В	TMVW-t	MT20	3.0	5.0	1.50	2.25
С	TMWW-t	MT20	3.0	4.0	1.50	1.75
D	TMV+p	MT20	2.0	4.0		
F	BMVW-t	MT20	3.0	4.0		
G	BMWW-t	MT20	3.0	4.0		
Н	BMV1+p	MT20	2.0	4.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

6-4-8

	FACTOR GROSS RE		MAXIMUN GROSS F		INPUT BRG	REQRD BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Н	622	0	622	0	0	3-8	1-8
E	361	0	361	0	0	1-8	1-8

UNFACTORED REACTIONS

1-3-8

	1ST LCASE	MAX./N	им. СОМРО				
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Н	432	326 / 0	0/0	0/0	0/0	106 / 0	0/0
Ε	254	174 / 0	0/0	0/0	0/0	80 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H. E

BRACINGTOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

RDS FACTORED	FACTO	RFD			W E)RFD
FORCE	VERT. LC	AD LC				FORCE	MAX
(LBS)			CSI (LC)			(LBS)	CSI (LC)
0.100			0.40 (4)			0.700	0.00 (4)
							0.03 (4)
					C-F		0.12 (1)
-17 / 0	-119.4	-119.4	0.12(1)	6.25	B- G	0 / 442	0.10 (1)
-142 / 0	0.0	0.0	0.04(1)	7.81			
-629 / 0	0.0	0.0	0.06 (1)	7.81			
0/0	-18.2	-18.2	0.13 (1)	10.00			
0 / 423	-18.2	-18.2	0.53 (1)	10.00			
0/0	-18.2	-18.2	0.46 (1)	10.00			
	FACTORED FORCE (LBS) 0 / 36 -454 / 0 -17 / 0 -142 / 0 -629 / 0 0 / 0 0 / 423	FACTORED FORCE (LBS) (LBS) (FROM -119.4 -145.4) 0 -36 -454.0 -119.4 -142.0 0.0 -629.0 0.0 0.0 0.0 0.0 -18.2 0.7423 -18.2	FACTORED FORCE (LBS) (PLF) (PL	FACTORED FORCE VERT. LOAD LC1 MAX (LBS) (PLF) CSI (LC) FROM TO -119.4 -119.4 0.12 (1) -17.7 (0 -119.4 -119.4 0.12 (1) -142.7 (0 -0.0 0.0 0.04 (1) -629.7 (0 -18.2 -18.2 0.13 (1) 0.7423 -18.2 -18.2 0.53 (1)	FACTORED FORCE (LBS) (PLF) CSI (LC) UNBRAC (LBS) (PLF) CSI (LC) UNBRAC (LBS) (PLF) CSI (LC) UNBRAC (LBC) (LB	FACTORED FORCE (LBS) FACTORED (PLF) CSI (LC) UNBRAC (LBS) WEMB. (PLF) CSI (LC) UNBRAC (LBC) CSI (LC) UNBRAC (LBC) FROM TO (LBC) ENOGTH FR-TO (LBC) FROM TO (LBC) CSI (LC) UNBRAC (LBC) FROM TO (LBC) CBC (LBC) FR-TO (LBC) CBC (LBC) FR-TO (LBC) CBC (LBC)	FACTORED FORCE (LBS) (PLF) CSI (LC) UNBRAC (LBS) (PLF) CSI (LC) UNBRAC (LBS) (

DESIGN CRITERIA

SPEC	IFIED	LOAI	DS:		
TOP	CH.	LL	=	34.8	PSI
		DL	=	6.0	PSI
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.3	PSI
TOTA	1 10	۸D	_	1Ω1	DCI

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.23")
CALCULATED VERT. DEFL.(LL) = L/999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (0.23") CALCULATED VERT. DEFL.(TL) = L/ 845 (0.10")

CSI: TC=0.16/0.97 (A-B:1) , BC=0.53/0.97 (F-G:1) , WB=0.12/0.97 (C-F:1) , SSI=0.28/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

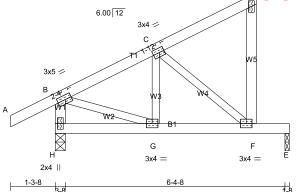
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.66 (F) (INPUT = 0.90) JSI METAL= 0.17 (B) (INPUT = 1.00)



OF PERMIT PLANS Nov 22 2023 RUSS DESC.

Version 8.630 S Mar 22 2023 MiTek Industries, Inc. Thu Jul 13 08:46:12 2023 Page 1 ID:QK_tCmQp0_tF2YVqi0sgQdyWVx2-xfaGQ68jQ21BofivNnDcU3nLeYcb_m1RYAQTUZyyYBf 2-11-0 5-10-0 6-9-8 11-8

6.00 12 С

Scale = 1:33.4

TOTAL WEIGHT = 2 X 28 = 56 lb

LUMBER N. L. G. A. RULES DESCR. SPF SPF SPF CHORDS LUMBER A - D F - D H - B 2x4 2x4 2x4 DRY No.2 No.2 No.2 DRY SPF H - E DRY No.2 ALL WEBS 2x3 DRY SPF No.2 **EXCEPT**

T12

DRY: SEASONED LUMBER.

IM0723-080

PLATES (table is in inches)

JI	TYPE	PLATES	vv	LEN	Y	Х
В	TMVW-t	MT20	3.0	5.0	1.50	2.25
С	TMWW-t	MT20	3.0	4.0	1.50	1.75
D	TMV+p	MT20	2.0	4.0		
F	BMVW-t	MT20	3.0	4.0		
G	BMWW-t	MT20	3.0	4.0		
Н	BMV1+p	MT20	2.0	4.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

FACTORED MAXIMUM FACTORED INPUT GROSS REACTION GROSS REACTION BRG	BRG
JT VERT HORZ DOWN HORZ UPLIFT IN-SX	IN-SX
H 622 0 622 0 0 3-8	1-8
E 361 0 361 0 0 1-8	1-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./ľ	иім. СОМРОІ				
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Н	432	326 / 0	0/0	0/0	0/0	106 / 0	0/0
Ε	254	174 / 0	0/0	0/0	0/0	80 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) H. E

BRACINGTOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	R D S FACTORED	FACTO	RED			WE	B S MAX. FACTO	RED
MEMB.	FORCE (LBS)	VERT. LC	AD LC		MAX. UNBRAC	МЕМВ.	FORCE (LBS)	MAX CSI (LC)
FR-TO	` '	FROM	ΤΌ	. ,	LENGTH	FR-TO	, ,	. ,
A- B	0 / 36	-119.4	-119.4	0.16 (1)	10.00	G- C	0 / 108	0.03 (4)
B- C	-446 / 0	-119.4	-119.4	0.12(1)	6.25	C-F	-530 / 0	0.12(1)
C- D	-18 / 0	-119.4	-119.4	0.12(1)	6.25	B- G	0 / 432	0.10 (1)
F- D	-134 / 0	0.0	0.0	0.03 (1)	7.81			. ,
H- B	-626 / 0	0.0	0.0	0.06 (1)	7.81			
H- G G- F F- E	0 / 0 0 / 415 0 / 0	-18.2 -18.2 -18.2	-18.2	0.12 (1) 0.53 (1) 0.46 (1)				

DESIGN CRITERIA

SPEC	IFIED	Loai	DS:		
TOP	CH.	LL	=	34.8	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.3	PSF
TOTA	L LO	AD	=	48.1	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.23")
CALCULATED VERT. DEFL.(LL) = L/999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (0.23") CALCULATED VERT. DEFL.(TL) = L/874 (0.09")

CSI: TC=0.16/0.97 (A-B:1) , BC=0.53/0.97 (F-G:1) , WB=0.12/0.97 (C-F:1) , SSI=0.28/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.66 (F) (INPUT = 0.90) JSI METAL= 0.17 (B) (INPUT = 1.00)

6.00 12 3x4 / W3 В 1/1 Ε 3x4 =2x4 ||

2-6-0

3-5-8

TOTAL WEIGHT = 6 X 13 = 81 lb

Scale = 1:20.3

LUMBER							
N. L. G. A.	RULES						
CHORDS	SIZE		LUMBER	DESCR.			
A - C	2x4	DRY	No.2	SPF			
E - C	2x4	DRY	No.2	SPF			
F - B	2x4	DRY	No.2	SPF			
F - D	2x4	DRY	No.2	SPF			
ALL WEBS	2x3	DRY	No.2	SPF			
DRY: SEASONED LUMBER.							

PLATES (table is in inches)

JΤ	TYPE	PLATES	W	LEN	Υ	Χ	
В	TMVW-t	MT20	3.0	4.0	1.50	1.25	
С	TMV+p	MT20	2.0	4.0			
Е	BMVW-t	MT20	3.0	4.0			
F	BMV1+p	MT20	2.0	4.0			

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

3-0-8

	FACTOR GROSS RE		MAXIMUM FACTORED GROSS REACTION			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
=	384	0	384	0	0	3-8	1-8
)	139	0	139	0	0	1-8	1-8

UNFACTORED REACTIONS

1-3-8

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
F	266	206 / 0	0/0	0/0	0/0	61 / 0	0/0		
D	99	63 / 0	0/0	0/0	0/0	36 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F. D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (7)

CHC	CHORDS				WEBS				
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	.F) (CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 36	-119.4	-119.4	0.16 (5)	10.00	B- E	0/0	0.00(1)	
B- C	0/0	-119.4	-119.4	0.13(1)	10.00				
E- C	-149 / 0	0.0	0.0	0.02(1)	7.81				
F- B	-311 / 0	0.0	0.0	0.03(1)	7.81				
F-E	0/0	-18.2	-18.2	0.17 (6)	10.00				
E- D	0/0	-18.2	-18.2	0.17(1)	10.00				

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

DESIGN CRITERIA

SPEC	IFIED	LOAI	DS:		
TOP	CH.	LL	=	34.8	PSI
		DL	=	6.0	PSI
BOT	CH.	LL	=	0.0	PSI
		DL	=	7.3	PSI
TOTA	1 10	۸ ا	_	101	DOL

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.19") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.03")

CSI: TC=0.16/0.97 (A-B:5) , BC=0.17/0.97 (E-F:6) , WB=0.00/0.97 (B-E:1) , SSI=0.11/1.00 (A-B:5)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

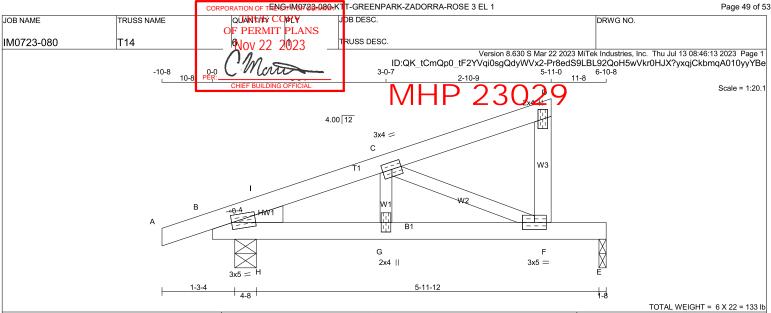

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.27 (B) (INPUT = 0.90) JSI METAL= 0.07 (F) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
B - E	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEAS	ONED LI	JMBER.		

PL	PLATES (table is in inches)							
JT	TYPE	PLATES	W	LEN	Υ	Χ		
В	TMBH1-m	MT20	3.0	5.0	1.50	0.25		
С	TMWW-t	MT20	3.0	4.0				
D	TMV+p	MT20	2.0	4.0				
F	BMVW-t	MT20	3.0	5.0				
G	BMW+w	MT20	2.0	4.0				

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

טבתו	111100							
	FACTOR	ED	MAXIMUN	/ FACTO	DRED	INPUT	REQRD	
	GROSS RE	ACTION	GROSS F	REACTIO	N	BRG	BRG	HEEL
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX	WEDGE
В	575	0	575	0	0	4-8	1-8	2x4 L
Ε	367	0	367	0	0	1-8	1-8	

UNFACTORED REACT	IONS	
40710405		/8

	1ST LCASE	MAX./N	IIN. COMPOI	NENT REACTION	NS .		
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
В	400	299 / 0	0/0	0/0	0/0	102 / 0	0/0
Ε	258	177 / 0	0/0	0/0	0/0	81 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B. E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	ORDS				WE	BS		
MAX.	FACTORED	FACTORED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOAD LO	1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	I FR-TO			
A-B	0/8	-119.4 -119.4	0.07 (1)	10.00	G-C	0 / 240	0.05(1)	
B- I	-855 / 0	-119.4 -119.4	0.03 (1)	6.25	C-F	-831 / 0	0.16(1)	
I- C	-805 / 0	-119.4 -119.4	0.07 (1)	6.25	H- I	-45 / 8	0.00(1)	
C- D	-6 / 0	-119.4 -119.4	0.12 (1)	10.00				
F- D	-152 / 0	0.0 0.0	0.02 (1)	7.81				
B- H	0 / 768	-18.2 -18.2	2 0.15 (1)	10.00				
H- G	0 / 768	-18.2 -18.2	2 0.23 (1)	10.00				
G-F	0 / 768	-18.2 -18.2	2 0.59 (1)	10.00				
F-E	0/0	-18.2 -18.2	2 0.47 (1)	10.00				

DESIGN CRITERIA

SPEC	IFIED	LOA	DS:		
TOP	CH.	LL	=	34.8	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.3	PS
TOTA	1 10	AD	=	48 1	PS

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.23")
CALCULATED VERT. DEFL.(LL) = L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.23") CALCULATED VERT. DEFL.(TL) = L/804 (0.10")

CSI: TC=0.12/0.97 (C-D:1) , BC=0.59/0.97 (F-G:1) , WB=0.16/0.97 (C-F:1) , SSI=0.29/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.80 (F) (INPUT = 0.90) JSI METAL= 0.24 (C) (INPUT = 1.00)

STANDARD DETAIL MSD2015-H

Issued:

MARCH 1, 2022 **APRIL 30, 2024**

MHP 23029 Expiry:

Top view

TOE-NAIL CAPACITY DETAILS

LATERAL AND WITHDRAWAL RESISTANCE OF BEARING ANCHORAGE BY TOE-NAILS

	Length	Diameter	LATERAL Resistance per nail		WITHDRAWAL Resistance per nail	
NAIL TYPE			(L	.bs.)	(L	.bs.)
	(in)	(in)	SPF	D. FIR	SPF	D. FIR
CORABAON	3.00	0.144	122	139	30	42
COMMON WIRE	3.25	0.144	127	144	32	45
	3.50	0.160	152	173	38	52
CONANAON	3.00	0.122	96	108	26	36
COMMON SPIRAL	3.25	0.122	97	108	28	40
	3.50	0.152	142	161	36	50
3.25" Gun nail	3.25	0.120	94	105	28	39

Note: If using truss with D. Fir lumber and SPF bearing plate, use tabulated SPF values in table.

Nail type:		Common wire	Common spiral	Common wire	Common spiral	Gun Nail	
Diameter	(in.)	0.160	0.152	0.144	0.122	0.120	
Length	(in.)	3.50	3.50	3.00	3.00	3.25	
LUMBER		MAXIMUM NUMBER OF TOE-NAILS					
2x4 SPF		2	2	3	3	3	
2x6 SPF		4	4	4	5	5	
2x4 D. FI	R	2	2	2	2	2	
2x6 D. FI	R	3	3	3	4	4	

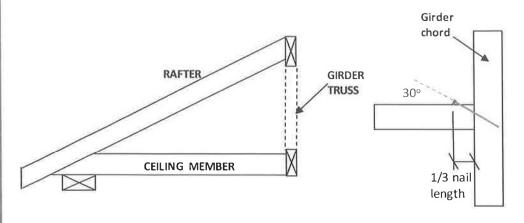


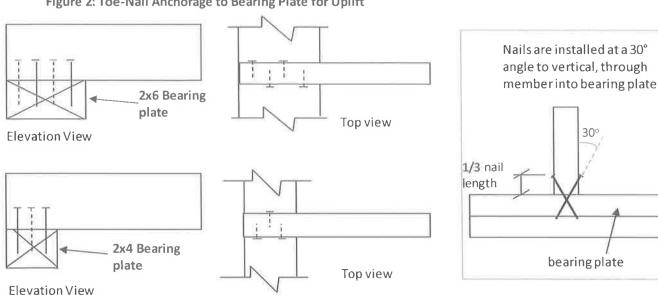
Figure 1: Toe-Nailing Rafter / Ceiling Member to Girder Truss

Page 1 of 2 ©2020 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, www.mitek.ca

PEQ Certificate No. 10889485

STANDARD DETAIL MSD2015-H

Issued: MHP 23029 Expiry:


MARCH 1, 2022

309

APRIL 30, 2024

TOE-NAIL CAPACITY DETAILS

Figure 2: Toe-Nail Anchorage to Bearing Plate for Uplift

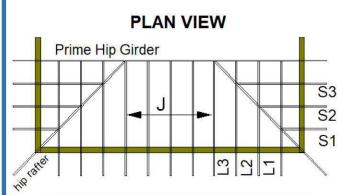
NOTES:

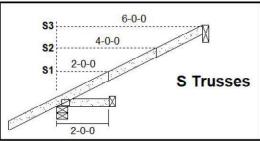
- 1. Rafter and ceiling members may be connected to top and bottom chords of girder truss by toe-nailing the members into the girder chords (see fig. 1), provided the factored vertical reactions of the supported members do not exceed the lateral resistance of the toe-nails. Mechanical connectors (hangers) are required if factored vertical reactions exceed the toe-nail capacity, or if the connection must resist horizontal loads (loads perpendicular to the face of girder or rafter).
- 2. Trusses, rafters or ceiling members may be anchored to the bearing plate with toe-nails (see fig. 2), provided that the factored uplift reactions due to wind or earthquake loads do not exceed the withdrawal resistance of the toe-nails. Mechanical anchors (tie-downs) are required for reactions that exceed the toe-nail withdrawal capacity. Toe-nail anchorage to bearing plates is NOT permitted if uplift reactions are generated from gravity loads (snow, floor live, dead).
- 3. Tabulated toe-nail resistances on page 1 are for one toe-nail. Multiply unit values by the number of nails used in the connection. Maximum number of nails in a connection shall not exceed the tabulated limits shown on page 1 for a given lumber size /species.
- 4. Nail values are based on specific gravity of G = 0.42 (SPF) and G = 0.49 (D. Fir).
- 5. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member.
- 6. For wind / earthquake loads, tabulated lateral resistances may be multiplied by 1.15 (K_D factor). No increases are permitted for tabulated withdrawal resistances.
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA 086-19, Clause 12.9.

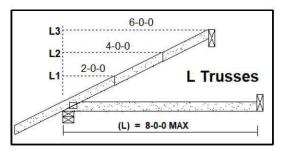
PROFESSIONAL TIL **PEO** Certificate No. 10889485 POVINCE OF ONTAR

Page 2 of 2

©2020 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434, www.mitek.ca

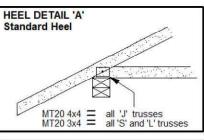


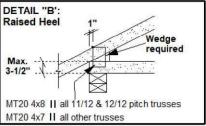

STANDARD DETAIL MSD2015-J

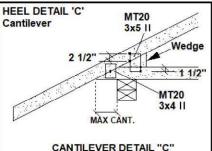

Issued: MARCH 17, 2021 Expiry: APRIL 30, 2024

MHP 23029

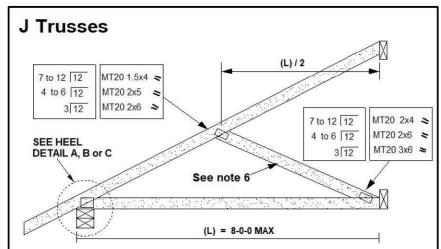
STANDARD HIP END FRAMING






Specified Load Rating:

Top chord Live: 51.0 PSF or less 6.0 PSF or less Top chord Dead: Bottom chord Live: 0.0 PSF

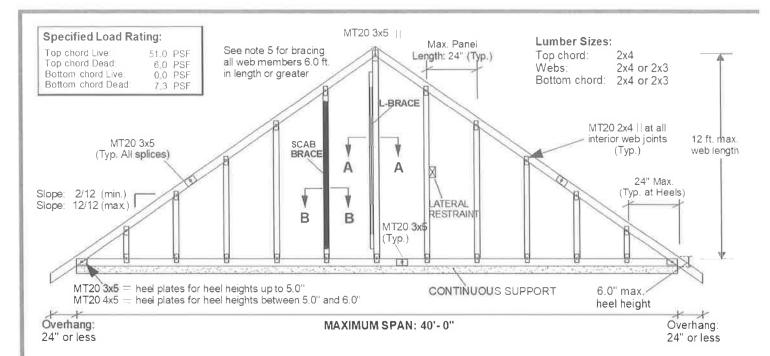

Bottom chord Dead: 7.3 PSF or less

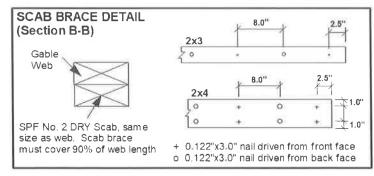
OMITHELY ENDERFALL O							
SLOPE	MAX CANT.	WEDGE PLATE	WEDGE SIZE				
3/12	17"	3 X 5	2 X 3				
4/12	14"	3 X 5	2 X 3				
5/12	12"	3 X 5	2 X 4				
6/12	10"	3 X 5	2 X 4				
7/12	9"	3 X 5	2 X 6				
8/12	8.5"	3 X 5	2 X 6				
9/12	8"	3 X 5	2 X 6				
10/12	7.5"	3 X 5	2 X 6				

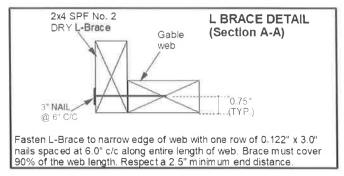
NOTES:

- 1. This detail is valid only for projects conforming to PART 9 NBCC 2015 that do not require a wind analysis to be incorporated into the design of the trusses.
- 2. Overhang length shall not exceed 24 inches.
- 3. All lumber shall be 2x4 SPF (or D-Fir) DRY No. 2 grade or better.
- 4. All plates specified are MITEK MT20, pressed into both faces of each truss. Heel plates of all trusses shall conform to heel details 'A', 'B' or 'C'.
- 5. Diagonal hip rafter design shall conform to section 9.23.14.6 of NBCC 2015.
- 6. For 6.0 ft. or less span, diagonal web on truss 'J" is optional. Girder design must reflect choice of partial jack ('J' with diagonal web) or open jack ('J' without diagonal web)
- 7. All truss-to-rafter and truss-to-truss connections shall be specified as per MITEK standard detail 'MSD2015-H: Toe-Nail Capacity Details'

April 24, 2023




STANDARD DETAIL MSD2015-K


MHP 23029

Issued: MARCH 1, 2022 Expiry: APRIL 30, 2024

STANDARD GABLE END DETAIL

Notes:

- This detail is only valid for projects conforming to Part 9, NBCC 2015 that do not require a wind analysis to be incorporated into the design of the truss.
- 2. This detail is for vertical (gravity) load rating of the truss only. Truss must be continuously supported over the entire length of bottom chord.
- 3. Maximum web length not to exceed 12.0 ft. Spacing of gable stud webs in the truss not to exceed 24
- 4. Splice joints shall not be located in the first panel adjacent to the heel joint or peak joint.
- 5. Lateral restraint required at half-length of all webs over 6.0 ft. long. Alternatively install an L-Brace or scab brace as shown above. Scab braces shall be limited to 10 ft. long webs or less.
- 6. All plates are MITEK MT20 pressed into both faces of truss.
- All lumber to be SPF (or D-Fir) DRY and of No.2 grade or better. 7.
- Additional building bracing is typically installed to brace the face of the end wall assembly. See BCSI Canada 'Building Designer Responsibilities for Gable End Frame Bracing' for additional information on building bracing for gable-end assemblies.

