
CORPORATION OF THE CITY OF OSHAWA TRUE COPY OF PERMIT PLANS NOV 14 2023

Hanger Name	Symbol	QTY
LUS24	A	23
LJS26DS		2

ALL CONVENTIONAL FRAMING TO CONFORM WITH PART 9
OF THE OBC. ROOF RAFTERS THAT CROSS OVER TRUSSES
TO BE MIN. 2x4 SPF @ 24" C/C WITH A 2x4 VERTICAL POST
TO THE TRUSS BELOW. VERTICAL POSTS TO BE LATERALLY
BRACED SO THAT UNBRACED LENGTH DOES NOT EXCEED
6'. DESIGN OF CONVENTIONAL FRAMING IS THE
RESPONSIBILITY OF THE PROJECT ENGINEER.

JOB INFORMATION					
Customer	GREENPARK HOMES				
Job #	23-00105R0				
Address	ZADORRA ESTATES OSHAWA,ON				
Model	VILLA 2 ELEV- 2				
Sales Rep	RALPH MIRIGELLO				
Designer	RB				
Date	6/02/23				
Path	C:\MITEK\CA\JOBS\GREENPARK\ZADORRA ESTATES\VILLA 2-ELEV 2\VILLA 2 ELEV-2\				

DESIG	N INFORMATION				
Code	NBCC 2015				
Bldg	Residential - HSB (NBCC Part 9)				
TC LL	34.8 lb/ft²				
TC DL	6.0 lb/ft²				
BC LL	0.0 lb/ft²				
BC DL	7.3 lb/ft²				
Deflection	LL=L/360 TL=L/360				
Spacing	24" O/C unless otherwise				
Spacing	noted				
Complies With	OBC 2012 (2019 Amendment) CSA 086-14 and TPIC 2014				

IMPORTANT INFORMATION

Hangers and Fasteners to be installed as per manufacturer

Refer to truss drawings in the Truss Engineering Package for ply-to-ply attachment notes

For site-framed valleys: top chords of all roof trusses must be laterally supported using 2x4 continuous bracing @24 O/C - all bracing must be anchored at ends as per TPIC Installation Guidelines

Read all notes on this page in addition to those shown on the KOTT Truss Engineering package

Field erection, handling and bracing are not the responsibility of KOTT, or KOTT Engineering

Unless noted otherwise, hurricane ties are to be installed at the bearings of all trusses > 40 ft clear span, and any girder or beam supporting trusses with a clear span >40 ft. See hanger legend for type.

Unless noted otherwise, for Part 9 bldgs, all trusses are to be anchored to the top of supporting walls as follows: trusses with a clear span <40 ft use 3-1/4" nails @ each bearing; trusses with a clear span >40 ft use 3-1/4" nails @ each bearing in addition to the appropriate hurricane tie.

KOTT Inc.

14 Anderson Blvd. Uxbridge, ON 905.642.4400

Engineering Notes: Trusses

NE0723-088 GREENPARK - ZADORRA ESTATES - VILLA 2-2 MHP 23034

CORPORATION OF THE CITY OF OSHAW.
TRUE COPY
OF PERMIT PLANS

TO INSTALLATION OF THE COMPONENT

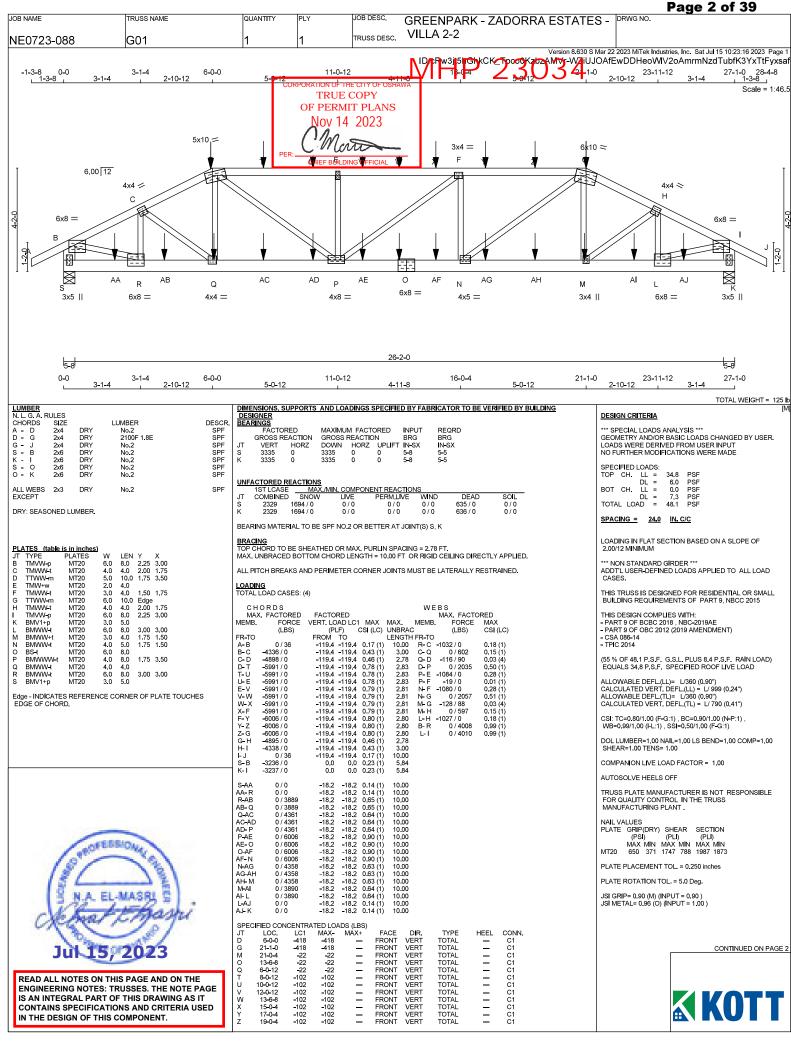
RESPONSIBILITIES

THE UNDERSIGNED ENGINEER IS ONLY RESPONSIBLE FOR THE STRUCTURAL INTEGRITY OF THIS BUILDING COMPONENT FOR THE CONDITIONS AND LOADS SHOWN ON CALCULATION PAGE. THE STRUCTURAL INTEGRITY OF THE BUILDING AND THE VERIFICATION OF THE DIMENSIONS AND THE DESIGN LOADS USED ARE THE RESPONSIBILITY OF THE BUILDING DESIGNER. THE UNDERSIGNED ENGINEER DISCLAIMS ANY RESPONSIBILITY FOR DAMAGES AS A RESULT OF FAULTY OR INCORRECT INFORMATION, SPECIFICATION AND/OR DESIGNS FURNISHED TO THE ENGINEER.

IT IS THE RESPONSIBILITY OF KOTT Inc. TO ENSURE THAT TRUSSES ARE MANUFACTURED IN CONFORMANCE WITH THESE DESIGNS AND WITH THE SPECIFICATIONS OUTLINED BELOW. THE UNDERSIGNED ENGINEER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

DESIGN INFORMATION

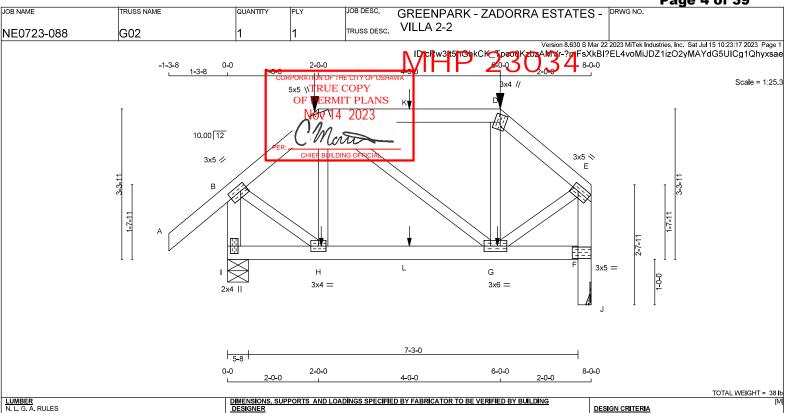
THIS DESIGN IS FOR AN INDIVIDUAL BUILDING COMPONENT AND HAS BEEN BASED ON INFORMATION PROVIDED BY KOTT DESIGN.


- 1. THE BUILDING USE AND OCCUPANCY TYPE IS AS INDICATED ON THE DRAWING.
- 2. GEOMETRY OF THE TRUSS AND DIMENSIONS INDICATED ON THE DRAWING ARE IDENTICAL TO THOSE OF THE INSTALLED TRUSS.
- 3. THE TRUSS LOADING INTENSITY AND DISTRIBUTION AS WELL AS LOAD TRANSFER MECHANISM IS THAT INDICATED ON THE DRAWING. NO BUILDINGS, TREES, PARAPETS OR OTHER PROJECTIONS HIGHER THAN THE ROOF FOR WHICH THE TRUSSES ARE USED ARE LOCATED WITHIN A DISTANCE LESS THAN TEN (10) TIMES THE DIFFERENCE IN HEIGHT, OR FIVE METERS (16 FT) WHICHEVER IS GREATER, UNLESS THE DRAWING INDICATES THAT THE SNOW DRIFTING HAS BEEN TAKEN INTO ACCOUNT.
- 4. THE TRUSSES ARE TO BE SUPPORTED AT THE BEARING POINTS INDICATED AND ANCHORED TO THE SUPPORTS WHERE CONSIDERED NECESSARY BY THE DESIGNER OF THE OVERALL STRUCTURE. BEARING SIZES SHOWN ARE THE MINIMUM REQUIRED TO PREVENT CRUSHING OF THE TRUSS MEMBERS AND DO NOT NECESSARILY TAKE INTO ACCOUNT STABILITY OF THE OVERALL BUILDING STRUCTURE. ELEVATION OF BEARINGS MUST BE CAREFULLY CHECKED AND SHIMMED TO ALIGNMENT FOR SOLID BEARINGS. ADEQUATE WOOD TRUSS BEARING IS THE RESPONSIBILITY OF THE BUILDING DESIGNER.

CODE

TRUSSES ARE DESIGNED IN CONFORMANCE WITH THE RELEVANT SECTIONS OF THE NATIONAL BUILDING CODE OF CANADA OR THE CANADIAN CODE FOR FARM BUILDINGS, WHICHEVER APPLIES TO THE BUILDING TYPE INDICATED ON THE DRAWING, THE ONTARIO BUILDING CODE, TPIC AND CANADIAN STANDARDS ASSOCIATION GUIDELINES.

HANDLING, INSTALLATION AND BRACING


- 1. THE TRUSSES MUST BE HANDLED AND INSTALLED BY A QUALIFIED PROFESSIONAL AS PER THE SUPPLIED DOCUMENT TITLED INFORMATION FOR TRUSS INSTALLERS AND THE BCSI-B1 AND BCSI-B3 SUMMARY SHEETS.
- 2. THE COMPRESSION CHORDS ARE LATERALLY BRACED BY CONTINUOUS RIGID DIAPHRAGM SHEATHING OR AS SPECIFIED ON THE DRAWING.
- 3. TEMPORARY AND PERMANENT BRACING MUST BE INSTALLED AS INDICATED ON THE TRUSS DRAWING AND ACCORDING TO THE BCSI-B1 AND BCSI-B3 SUMMARY SHEETS. BRACING FOR THE LATERAL STABILITY OF THE TRUSS IS TO BE PROVIDED BY THE BUILDING DESIGNER.
- 4. IT IS RECOMMENDED THAT A PROFESSIONAL ENGINEER'S ADVICE BE OBTAINED FOR THE BRACING OF TRUSSES SPANNING MORE THAN 12.37M (40'-7").

Page 3 of 39

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	GREENPARI	K - ZADORRA EST	ATES -	DRWG NO.
NE0723-088	G01	1	1	TRUSS DESC.	VILLA 2-2			
	1 -	-1	-1	1	N ID#Bu3#5⊨	Version	8.630 S Mar 22	I 2023 MiTek Industries, Inc. Sat Jul 15 10:23:16 2023 Page 2 EWDDHeoWIV2oAmrmNzdTubfK3YxTtFyxsa
					J Wajjale	2303	4	LWDD 1100 VVIV ZOMIIIIIIVZU TUDINO TXTEFYXSA
		SPECIFIED CONC JT LO 2, AA 20-2, AB 40-2, AB 40-2, AB 10-0-2, AB 12-0-2, AB 15-0-4, AG 17-0-4, AG 17-0-4, AG 17-0-4, AG 18-0-4, AG 1	PRPORATION OF T ENTRATED LOAD LC1 MAXUE -20F PERM -22 -22 1	HE CITY OF OSHA SALBSDY MAXAY FACE HIT-PLARONT FRONT	AWA DIF. TYPE VER TOTAL VER TOTAL VER TOTAL	HEEL CONN.		
		AD 10-0-2 AE 12-0-2 AF 15-04 AG 17-04 AH 19-04	C/M	DING OFFICE ANT	VER TOTAL	— C1 — C1 — C1 — C1		
		Al 23-0 <mark>-4</mark> AJ 25-0-4	22 22	- FRONT	VERT TOTAL VERT TOTAL	— C1 — C1		
		CONNECTION RE	QUIREMENTS					
		1) C1: A SUITAE	BLE HANGER/MEC	HANICAL CONNE	CTION IS REQUIRED.			
NA EL-	MASRI S							
Jul 15,	2023							
READ ALL NOTES ON THIS	PAGE AND ON THE							
ENGINEERING NOTES: TRI IS AN INTEGRAL PART OF CONTAINS SPECIFICATION IN THE DESIGN OF THIS CO	THIS DRAWING AS IT IS AND CRITERIA USED							KOTT

Page 4 of 39

LUMBER						
N. L. G. A. R	ULES					
CHORDS	SIZE		LUMBER	DESCR.		
A - C	2x4	DRY	No.2	SPF		
C - D	2x4	DRY	No.2	SPF		
D - E	2x4	DRY	No.2	SPF		
I - B	2x4	DRY	No.2	SPF		
J - E	2x4	DRY	No.2	SPF		
I - F	2x4	DRY	No.2	SPF		
ALL WEBS	2x3	DRY	No.2	SPF		
EXCEPT						
DDV OF A COMED A MADED						

DRY: SEASONED LUMBER.

FLATES (table is ill littles)								
JT	TYPE	PLATES	w	LEN	Υ	Χ		
В	TMVW-t	MT20	3.0	5.0	1.50	1.75		
С	TTWW+m	MT20	5.0	5.0	2.25	1.50		
D	TTW+m	MT20	3.0	4.0				
Е	TMVW -t	MT20	3.0	5.0	1.50	1.75		
F	BVM-I	MT20	3.0	5.0	1.50	1.50		
G	BMWWW-t	MT20	3.0	6.0				
Н	BMWW -t	MT20	3.0	4.0				
1	BMV1+p	MT20	2.0	4.0				

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIC	N	BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
1	720	0	720	0	0	5-8	1-8
J	554	0	554	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT J. MINIMUM BEARING LENGTH AT JOINT J = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
1	501	375 / 0	0/0	0/0	0/0	126 / 0	0/0			
J	388	278 / 0	0/0	0/0	0/0	109 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) I

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS								
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	_F) (CSI (LC)	UNBRAC	3	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	0 / 53	-119.4	-119.4	0.18(1)	10.00	H-C	-118 / 17	0.02(1)
B-C	-378 / 0	-119.4	-119.4	0.09(1)	6.25	C-G	0/0	0.00(1)
C-K	-284 / 0	-119.4	-119.4	0.36(1)	6.25	G-D	-118 / 17	0.02(1)
K-D	-284 / 0	-119.4	-119.4	0.36(1)	6.25	B- H	0 / 340	0.08 (1)
D-E	-378 / 0	-119.4	-119.4	0.09(1)	6.25	G-E	0 / 339	0.08(1)
I-B	- 707 / 0	0.0	0.0	0.08(1)	7.81			
J-F	-554 / 0	0.0	0.0	0.06(1)	7.81			
F-E	-542 / 0	0.0	0.0	0.06(1)	7.81			
I- H	0/0	-18.2	-18.2	0.04 (4)	10.00			
H-L	0 / 284	-18.2	-18.2	0.08(1)	10.00			
L-G	0 / 284	-18.2	-18.2	0.08(1)	10.00			
G-F	0/0	-18.2	-18.2	0.05 (4)	10.00			

SPECIFIED CONCENTRATED LOADS (LBS)

JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
С	2-0-0	-3	-3	_	BACK	VERT	TOTAL	_	C1
D	6-0-0	-3	-3	_	BACK	VERT	TOTAL	_	C1
G	5-11-4	1	1	_	BACK	VERT	TOTAL	_	C1
Н	2-0-12	1	1	_	BACK	VERT	TOTAL	_	C1
K	4-0-0	1	1	_	BACK	VERT	TOTAL	_	C1
L	4-0-0	1	1	_	BACK	VERT	TOTAL	_	C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER.
LOADS WERE DERNED FROM USER INPUT
NO FURTHER MODIFICATIONS WERE MADE

SPEC	IFIED	LOA	DS:		
TOP	CH.	LL	=	34.8	PSI
		DL	=	6.0	PSI
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.3	PSI
TOTA	L LO	AD	=	48.1	PSI

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

*** NON STANDARD GIRDER ***
ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.27")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.27")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.36/1.00 (C-D:1) , BC=0.08/1.00 (G-H:1) , WB=0.08/1.00 (B-H:1) , SSI=0.20/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

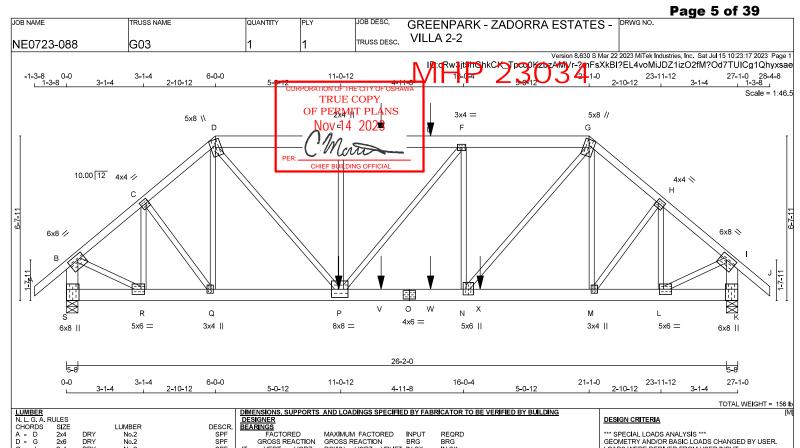

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg

JSI GRIP= 0.62 (B) (INPUT = 0.90) JSI METAL= 0.16 (B) (INPUT = 1.00)

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x6	DRY	No.2	SPF
G - J	2x4	DRY	No.2	SPF
S - B	2x6	DRY	No.2	SPF
K - I	2x6	DRY	No.2	SPF
S - O	2x6	DRY	No.2	SPF
0 - K	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

DRY: SEASONED LUMBER.

PLATES (table is in inches)								
JΤ	TYPE	PLATES	W	LEN	Y X			
В	TMVW-t	MT20	6.0	8.0	2.25 3.25			
С	TMWW-t	MT20	4.0	4.0	2.00 1.25			
D	TTWW+m	MT20	5.0	8.0	Edge			
E	TMW+w	MT20	2.0	4.0	-			
F	TMWW-t	MT20	3.0	4.0	1.50 1.75			
G	TTWW+m	MT20	5.0	8.0	Edge			
Н	TMWW-t	MT20	4.0	4.0	2.00 1.00			
1	TMVW-t	MT20	6.0	8.0	2.25 3.25			
K	BMV1+t	MT20	6.0	8.0	Edge 0.50			
L	BMWW-t	MT20	5.0	6.0	2.50 2.00			
М	BMWW+t	MT20	3.0	4.0				
N	BMWW+t	MT20	5.0	6.0	2.75 1.50			
0	BS-t	MT20	4.0	6.0				
Ρ	BMWWW-t	MT20	8.0	8.0	4.00 3.25			
Q	BMWW+t	MT20	3.0	4.0				
R	BMWW-t	MT20	5.0	6.0	2.50 1.75			
S	BMV1+t	MT20	6.0	8.0	5.50			

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

READ ALL NOTES ON THIS PAGE AND ON THE **ENGINEERING NOTES: TRUSSES. THE NOTE PAGE** IS AN INTEGRAL PART OF THIS DRAWING AS IT **CONTAINS SPECIFICATIONS AND CRITERIA USED** IN THE DESIGN OF THIS COMPONENT.

FACTORED			MAXIMU	M FACTO	INPUT	REQRD	
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
S	3507	0	3507	0	0	5-8	5-8
K	3482	0	3482	0	0	5-8	5-8

UNF	ACTORED REA	ACTIONS	
	1ST LCASE	MAX./M	IN. COM
17	COMPINED	CNOW	LIVE

	1ST LCASE	MAX./IV	IIN. COMPO	NENT REACTION	1 S		
JT	COMBINED	SNOW	LIVE	PERM LIVE	WIND	DEAD	SOIL
S	2445	1804 / 0	0/0	0/0	0/0	641 / 0	0/0
K	2427	1791 / 0	0/0	0/0	0/0	636 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) S, K BEARING SIZE FACTOR = 1.15 AT JNT(S) S, K (BASED ON SUPPORT DEPTH = 1-8)

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.30 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS				WE	BS	
MAX	(. FACTORED					MAX. FACTO	
MEMB.	FORCE	VERT. LOAD LO					MAX
	(LBS)	(PLF)	CSI (LC)			(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH			
A-B	0 / 53	-119.4 -119.	4 0.18 (1)	10.00	R-C	-1052 / 0	0.28 (1)
B-C	-3306 / 0	-119.4 -119.	4 0.34 (1)	3.53	C-Q	0 / 491	0.12(1)
C-D	-3720 / 0	-119.4 -119.4	4 0.38 (1)	3.30	Q-D	-200 / 2	0.13 (1)
D-E	-4 641 / 0	-119.4 -119.	4 0.35 (1)	3.73	D-P	0 / 2828	0.70(1)
E-T	-4 640 / 0	-119.4 -119.	4 0.38 (1)	3.69	P-E	-803 / 0	0.52(1)
T-U	-4 640 / 0	-119.4 -119.	4 0.38 (1)	3.69	P-F	0 / 138	0.03(1)
U-F	-4 640 / 0	119.4 -119.4	4 0.38 (1)	3.69	N-F	-955 / 0	0.62(1)
F-G	-4 554 / 0	-119.4 -119.4	4 0.38 (1)	3.72	N- G	0 / 2710	0.67(1)
G-H	-3707 / 0	-119.4 -119.	4 0.38 (1)	3.31	M-G	-109 / 25	0.07(1)
H- I	-3273 / 0	-119.4 -119.	4 0.34(1)	3.56	M- H	0 / 517	0.13(1)
I- J	0 / 53	-119.4 -119.4	4 0.18 (1)	10.00	L-H	-1085 / 0	0.29(1)
S-B	-3451 / 0	0.0 0.0	0.25(1)	5.68	B-R	0 / 2748	0.68 (1)
K-I	-3420 / 0	0.0 0.0	0 0.25 (1)	5.71	L- I	0 / 2721	0.67(1)
S-R	0/0	-18.2 -18.3	2 0.06 (1)	10.00			
R-Q	0 / 2558	-18.2 -18.3	2 0.42 (1)	10.00			
Q-P	0 / 2852	-18.2 -18.3	2 0.47 (1)	10.00			
P-V	0 / 4554	-18.2 -18.3	2 0.79 (1)	10.00			
V-0	0 / 4554	-18.2 -18.3	2 0.79 (1)	10.00			
0- W	0 / 4554	-18.2 -18.3	2 0.79 (1)	10.00			
W-N	0 / 4554	-18.2 -18.3	2 0.79 (1)	10.00			
N-X	0 / 2840	-18.2 -18.3	2 0.65 (1)	10,00			
X-M	0 / 2840	-18.2 -18.3	2 0.65 (1)	10,00			
M-L	0 / 2532	-18.2 -18.3	2 0.48 (1)	10.00			
L-K	0/0	-18.2 -18.3	2 0.08 (1)	10.00			

SPE	CIFIED CON	NCENTRA	TED LOA	(DS (LBS)					
JΤ	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
Ρ	10-11-12	-1051	-1051	_	BACK	VERT	TOTAL	_	C1
Т	12-8-4	-102	-102	_	BACK	VERT	TOTAL	_	C1
U	14-8-4	-102	-102	_	BACK	VERT	TOTAL	_	C1
V	12-8-4	-23	-23	_	BACK	VERT	TOTAL	_	C1
W	14-8-4	-23	-23	_	BACK	VERT	TOTAL	_	C1
X	16-8-4	-740	-740	_	BACK	VERT	TOTAL	_	C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER.
LOADS WERE DERIVED FROM USER INPUT
NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS:								
TOP	CH.	LL	=	34.8	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LL	=	0.0	PSF			
		DL	=	7.3	PSF			
TOTA	L LO	٩D	=	48.1	PSF			

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

*** NON STANDARD GIRDER ***
ADDT'L USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.90")
CALCULATED VERT. DEFL.(LL) = L/999 (0.14")
ALLOWABLE DEFL.(TL) = L/360 (0.90")
CALCULATED VERT. DEFL.(TL) = L/999 (0.23")

CSI: TC=0.38/1.00 (E-F:1) , BC=0.79/1.00 (N-P:1) WB=0.70/1.00 (D-P:1) , SSI=0.65/1.00 (M-N:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.90 (N) (INPUT = 0.90) JSI METAL= 0.97 (O) (INPUT = 1.00)

Page 6 of 39

TRUSS NAME GREENPARK - ZADORRA ESTATES - DRWG NO. VILLA 2-2 TRUSS DESC. NE0723-088 G04 Version 8.630 S Mar 22 2023 MiTek Industries, Inc. Sat Jul 15 10:23:18 2023 Page cRw3t5hBhkoK_Troolkzyz/mV/rTypFldCwmYTxWyxutw4GFBwFEmMhMdNdXsQay8yxsad CORPORATION OF THE CITY OF O Scale = 1:38.0 TRUE COPY 2x4 || OF PERMIT PLANS Nov 14 2023 В 4x4 ||

JOB DESC.

LUMBER								
N. L. G. A. R				DE00D				
CHORDS	SIZE		LUMBER	DESCR.				
A - C	2x4	DRY	No.2	SPF				
D - C	2x4	DRY	No.2	SPF				
F - A	2x4	DRY	No.2	SPF				
F - D	2x4	DRY	No.2	SPF				
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF				
DRY: SEASO	DRY: SEASONED LUMBER							

JOB NAME

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Χ				
Α	TMVW+p	MT20	4.0	4.0	1.00	2.25				
В	TMVVVV-t	MT20	4.0	4.0	1.50	1.00				
С	TMV+p	MT20	2.0	4.0						
D	BMVW1-t	MT20	4.0	4.0						
Е	BMWW+t	MT20	4.0	6.0	3.00	1.75				
F	BMV1+p	MT20	2.0	4.0						

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING

F 4x6 ||

3-0-0

Н

4x4 =

6-0-0

REA	BEARINGS									
	FACTOR	MAXIMUN	/ FACTO	DRED	INPUT	REQRD				
	GROSS REACTION			GROSS REACTION			BRG			
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX			
D	1529	0	1529	0	0	MECHANIC	CAL			
F	1498	0	1498	0	0	5-8	1-10			

G

2x4 ||

1₅₋₈1 0-0

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-11.

UNFACTORED REACT	IONS
40T1040E	1 4 A V

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS						
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
D	1066	787 / 0	0/0	0/0	0/0	279 / 0	0/0		
F	1044	771 / 0	0/0	0/0	0/0	273 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

QUANTITY

BRACING TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6,06 FT. MAX. UNBRACED BOTTOM CHORD LENGTH = 10,00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS			WEBS						
MAX	(. FACTORED	FACTO	RED				MAX. FACTO	RED		
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PL	.F) (CSI (LC)	UNBRAG	2	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO				
A-B	- 961 / 0	-119.4	-119.4	0.20(1)	6.06	E-B	0 / 1154	0.29(1)		
B-C	- 26 / 0	-119.4					-1224 / 0	0.47 (1)		
D-C	- 139 / 0	0.0	0.0	0.12(1)	7.81	A-E	0 / 827	0.20(1)		
F-A	- 1100 / 0	0.0	0.0	0.13(1)	7.51					
F-G	0/0	-18.2	-18.2	0.62 (1)	10.00					
G-E	0/0	-18.2	-18.2	0.62 (1)	10.00					
E-H	0 / 758	-18.2	-18.2	0.72(1)	10.00					
H-D	0 / 758	-18.2	-18.2	0.72 (1)	10.00					

SPECIFIED CONCENTRATED LOADS (LBS) JT LOC. LC1 MAX- MAX+

Т	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
	3-0-12	-511	- 511	_	FRONT	VERT	TOTAL	_	C1
;	1-0-12	-511	- 511	_	FRONT	VERT	TOTAL	_	C1
	5-0-12	-511	-511	_	FRONT	VERT	TOTAL	_	C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER.
LOADS WERE DERNED FROM USER INPUT
NO FURTHER MODIFICATIONS WERE MADE

TOTAL WEIGHT = 33 lb

SPEC	IFIED	LOA	DS:		
TOP	CH.	LL	=	34.8	PS
		DL	=	6.0	PS
BOT	CH.	LL	=	0.0	PS
		DL	=	7.3	PS
TOTA	1 10	۸D	_	18 1	DC

SPACING = 24.0 IN. C/C

*** NON STANDARD GIRDER *** ADDTL USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.20/1.00 (A-B:1) , BC=0.72/1.00 (D-E:1) , WB=0.47/1.00 (B-D:1) , SSI=0.37/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL = 5.0 Deg.

JSI GRIP= 0.90 (D) (INPUT = 0.90) JSI METAL= 0.34 (E) (INPUT = 1.00)

Page 7 of 39

VILLA 2-2 TRUSS DESC. Version 8.630 S Mar 22 2023 MiTek Industries, Inc. Sat Jul 15 10:23:19 2023 Page WBit5 In This K Troco No by This BNAY QDYXrbo86W5QebVnOTP_Ajj55bmmW97Uayxsac CORPORATION OF THE CITY OF OS Scale = 1:38.0 TRUE COPY 2x4 || OF PERMIT PLANS Nov 14 2023 F В 4x4 || Н G F D 4x5 || 2x4 || 4x4 = 5-6-8 5-8 0-0 3-0-0 6-0-0

GREENPARK - ZADORRA ESTATES - DRWG NO.

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER DESCR. A - C D - C F - A F - D No.2 No.2 No.2 No.2 No.2 SPF SPF SPF SPF DRY ALL WEBS EXCEPT DRY SPF 2x3 No.2

TRUSS NAME

G05

QUANTITY

DRY: SEASONED LUMBER.

JOB NAME

NE0723-088

PLATES (table is in inches)											
JT	TYPE	PLATES	w	LEN	Υ	Х					
Α	TMVW+p	MT20	4.0	4.0	1.00	2.00					
В	TMWW-t	MT20	4.0	4.0	2.00	1.00					
С	TMV+p	MT20	2.0	4.0							
D	BMVW1-t	MT20	4.0	4.0							
Е	BMWW+t	MT20	4.0	5.0	2.75	2.00					
F	BMV1+p	MT20	2.0	4.0							

<u>DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING</u>

DEA	RINGS						
	FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD	
	GROSS RI	EACTION	GROSS	REACTIC	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	1082	0	1082	0	0	MECHANIC	CAL
F	1130	0	1130	0	0	5-8	1-8

JOB DESC.

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
D	754	556 / 0	0/0	0/0	0/0	198 / 0	0/0			
F	788	581 / 0	0/0	0/0	0/0	207 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS					W E	BS		
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	I MAX	MAX.	MEMB	FORCE	MAX	
	(LBS)	(Pl	_F) ·	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	-830 / 0	-119.4	-119.4	0.20(1)	6.25	E-B	0 / 941	0.23 (1)	
B-C	-26 / 0	-119.4	-119.4	0.18 (1)	6.25	B - D	-1062 / 0	0.40 (1)	
D-C	- 138 / 0	0.0	0.0	0.12(1)	7.81	A-E	0 / 717	0.18 (1)	
F-A	- 972 / 0	0.0	0.0	0.11 (1)	7.81				
F-G	0/0	-18.2	-18.2	0.56 (1)	10.00				
G - E	0/0	- 18.2	-18.2	0.56(1)	10.00				
E-H	0 / 658	-18.2	-18.2	0.67 (1)	10.00				
H-D	0 / 658	-18.2	-18.2	0.67(1)	10.00				

SPECIFIED CONCENTRATED LOADS (LBS)

JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN
G	1-10-12	-4 83	-4 83	_	BACK	VERT	TOTAL	_	C1
н	3_10_12	-483	-483	_	BACK	VERT	TOTAL	_	C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER.
LOADS WERE DERNED FROM USER INPUT
NO FURTHER MODIFICATIONS WERE MADE

TOTAL WEIGHT = 33 lb

SPEC	IFIED	LOA	DS:		
TOP	CH.	LL	=	34.8	PS
		DL	=	6.0	PS
зот	CH.	LL	=	0.0	PS
		DL	=	7.3	PS
$T \cap T \Delta$		ΔD	=	48 1	P.S

SPACING = 24.0 IN. C/C

*** NON STANDARD GIRDER *** ADDTL USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , NBC-2019AE - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.02")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/999 (0.04")

CSI: TC=0.20/1.00 (A-B:1) , BC=0.67/1.00 (D-E:1) , WB=0.40/1.00 (B-D:1) , SSI=0.55/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

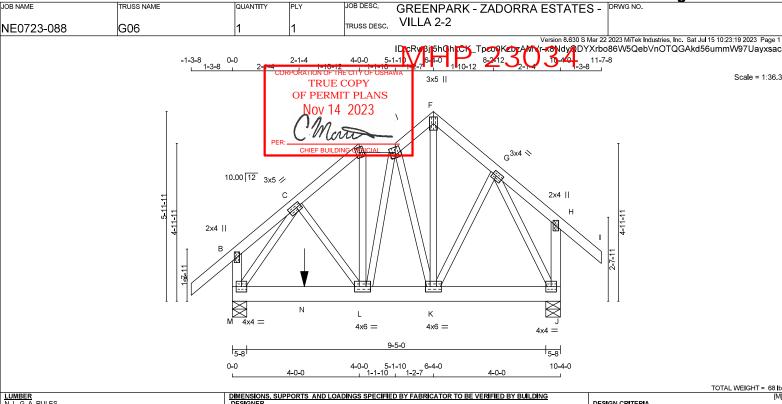
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.86 (B) (INPUT = 0.90) JSI METAL= 0.30 (E) (INPUT = 1.00)

Page 8 of 39

JOB DESC.

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - E	2x4	DRY	No.2	SPF
E - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
M - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
M - J	2x6	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
DDV OF LOC	SAIFF	MADED		

TRUSS NAME

DRY: SEASONED LUMBER.

JOB NAME

PL	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Χ						
В	TMV+p	MT20	2.0	4.0								
С	TMWW-t	MT20	3.0	5.0	1.50	1.75						
D	TTW+m	MT20	3.0	4.0	2.00	1.25						
Е	TTWW+m	MT20	4.0	4.0								
F	TTW+p	MT20	3.0	5.0								
G	TMWW-t	MT20	3.0	4.0	1.50	1.50						
Н	TMV+p	MT20	2.0	4.0								
J	BMVW1 -t	MT20	4.0	4.0								
K	BMWWW-t	MT20	4.0	6.0								
L	BMWWW-t	MT20	4.0	6.0								
М	BMVW1-t	MT20	4.0	4.0								

DIMENSIONS,	SUPPORTS	AND LOADINGS	SPECIFIED BY	FABRICATOR	TO BE \	<u>/ERIFIED BY</u>	BUILDING
DESIGNER							
BEARINGS							

ı		FACTO	RED	MAXIMU	M FACTO	INPUT	REQRD		
ı		GROSS RI	EACTION	GROSS	REACTIC	BRG	BRG		
ı	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX	
ı	M	1568	0	1568	0	0	5-8	1-11	
	J	1071	0	1071	0	0	5-8	1-8	

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX /MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM LIVE	WIND	DEAD	SOIL			
M	1089	824 / 0	0/0	0/0	0/0	266 / 0	0/0			
J	745	560 / 0	0/0	0/0	0/0	186 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) M, J

QUANTITY

BRACING
TO BE SHEATHED OR MAX. PURLIN SPACING = 6.24 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CH	ORDS			WEBS					
MAX	. FACTORED	FACTOR	ED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LOA	ND LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF	=)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)	
FR-TO		FROM -	ΤΌ		LENGTH	FR-TO			
A-B	0 / 53	-119.4 -	119.4	0.18 (1)	10.00	C-L	0 / 94	0.02(1)	
B-C	0 / 11	-119.4 -	119.4	0.07(1)	10.00	L-D	0 / 444	0.11 (1)	
C-D	-960 / 0	-119.4	119.4	0.08(1)	6.24	L-E	0 / 335	0.08 (1)	
D-E	-735 / 0				6.25	E-K	- 856 / 0	0.32 (1)	
E-F	-573 / 0				6.25	K-F	0 / 563	0.14 (1)	
F-G	-591 / 0	-119.4 -	119.4	0.06(1)	6.25	K-G	0 / 118	0.03 (1)	
G-H	0 / 12	-119.4 -	119.4	0.07(1)	10.00	M-C	-1173 / 0	0.27 (1)	
H-I	0 / 53	-119.4	119.4	0.18 (1)	10.00	G-J	-849 / 0	0.26(1)	
M-B	-268 / 0	0.0	0.0	0.03(1)	7.81				
J-Η	-268 / 0	0.0	0.0	0.04(1)	7.81				
M-N	0 / 670	-18.2	-18.2	0.61 (1)	10.00				
N-L	0 / 670			0.61 (1)					
L-K	0 / 661	-18.2	-18.2	0.38 (1)	10.00				
K-J	0 / 391	-18.2	-18.2	0.10(1)	10.00				
SPECIE	IED CONCENT	RATEDIOA	DS (LE	35)					

MAX+ LC1 MAX--614 -614 FACE DIR. FRONT VERT HEEL CONN. LOC. 2-3-4

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER.
LOADS WERE DERIVED FROM USER INPUT
NO FURTHER MODIFICATIONS WERE MADE

SPEC	IFIED	LOAI	DS:		
TOP	CH.	LL	=	34.8	PS
		DL	=	6.0	PS
вот	CH.	LL	=	0.0	PS
		DL	=	7.3	PS
$\Delta T \cap T$	1 10	ΔD	=	48 1	PS

SPACING = 24.0 IN. C/C

LOADING IN ALL FLAT SECTIONS BASED ON A SLOPE OF 2.00/12 MINIMUM

*** NON STANDARD GIRDER ***
ADDTL USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.34")
CALCULATED VERT. DEFL.(LL) = L/999 (0.04")
ALLOWABLE DEFL.(TL) = L/360 (0.34")
CALCULATED VERT. DEFL.(TL) = L/999 (0.06")

CSI: TC=0.18/1.00 (A-B:1) , BC=0.61/1.00 (L-M:1) , WB=0.32/1.00 (E-K:1) , SSI=0.41/1.00 (L-M:1)

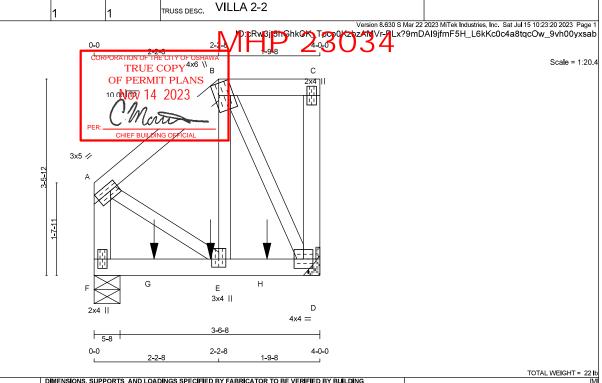
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.86 (G) (INPUT = 0.90) JSI METAL= 0.32 (C) (INPUT = 1.00)

Page 9 of 39

GREENPARK - ZADORRA ESTATES - DRWG NO.

LUMBER				
N. L. G. A. R	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - C	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - A	2x4	DRY	No.2	SPF
F - D	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				

LEN V

TRUSS NAME

G07

QUANTITY

DRY: SEASONED LUMBER.

JOB NAME

NE0723-088

PLA	TES	(table	is	in	inches)	
IT	TYDE		ū	1 6	TEC	۱۸

JI	ITPE	PLATES	vv	LEIN	T /
Α	TMVW-t	MT20	3.0	5.0	1.50 1.75
В	TTWW+m	MT20	4.0	6.0	Edge 1.00
С	TMV+p	MT20	2.0	4.0	
D	BMVW1-t	MT20	4.0	4.0	
Е	BMWW+t	MT20	3.0	4.0	1.75 1.50
F	BMV1+p	MT20	2.0	4.0	

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

JOB DESC.

BEA	RINGS						
	FACTO	RED	MAXIMU	M FACT	ORED	INPUT	REQRD
	GROSS R	EACTION	GROSS	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
D	904	0	904	0	0	MECHAI	NICAL
F	850	0	850	0	0	5-8	1-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS								
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL				
D	629	471 / 0	0/0	0/0	0/0	158 / 0	0/0				
F	592	441 / 0	0/0	0/0	0/0	151 / 0	0/0				

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СНС	RDS				WEBS			
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	_F)	CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	-4 50 / 0	-119.4	-119.4	0.11 (1)	6.25	E-B	0 / 700	0.17 (1)
B-C	0/0	-119.4	-119.4	0.07 (1)	10.00	B-D	- 745 / 0	0.18 (1)
D-C	-107 / 0	0.0	0.0	0.02(1)	7.81	A-E	0 / 395	0.10(1)
F-A	-616 / 0	0.0	0.0	0.07 (1)	7.81			
F-G	0/0	-18.2	-18.2	0.36 (1)	10.00			
G - E	0/0	-18.2	-18.2	0.36(1)	10.00			
E-H	0 / 367	-18.2	-18.2	0.33 (1)	10.00			
H-D	0 / 367	-18.2	-18.2	0.33(1)	10.00			

SPECIFIED CONCENTRATED LOADS (LBS)

JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
E	2-0-12	- 92	- 92	_	BACK	VERT	TOTAL	_	C1
G	1-0-12	-373	-373	_	FRONT	VERT	TOTAL	_	C1
н	3_0_12	-371	-371	_	FRONT	VERT	TOTAL	_	C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

*** SPECIAL LOADS ANALYSIS ***
GEOMETRY AND/OR BASIC LOADS CHANGED BY USER.
LOADS WERE DERNED FROM USER INPUT
NO FURTHER MODIFICATIONS WERE MADE

SPECIFIED LOADS:										
TOP	CH.	LL	=	34.8	PS					
		DL	=	6.0	PS					
зот	CH.	LL	=	0.0	PS					
		DL	=	7.3	PS					
TOTA	1 10	۸D	_	19 1	DC					

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

*** NON STANDARD GIRDER ***
ADDTL USER-DEFINED LOADS APPLIED TO ALL LOAD CASES.

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL) = L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.11/1.00 (A-B:1) , BC=0.36/1.00 (E-F:1) , WB=0.18/1.00 (B-D:1) , SSI=0.36/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.80 (E) (INPUT = 0.90) JSI METAL= 0.25 (E) (INPUT = 1.00)

Page 10 of 39

DRWG NO. JOB NAME TRUSS NAME QUANTITY JOB DESC. GREENPARK - ZADORRA ESTATES -VILLA 2-2 TRUSS DESC. NE0723-088 GE01 Version 8.630 S Mar 22 2023 MiTek Industries, Inc. Sat Jul 15 10:23:20 2023 Page CRW JITMShKCK TPCOK DE AMY 1-PLX?9mDAI9jfmF5H_L6kKc0bGaD_qckw_9vh00yxsab 1-3-8 Scale = 1:34.3 x4 || TRUE COPY OF PERMIT PLANS Nov 14 2023 10.00 12 D G С 囪 10-11-0 3-5-8 7-5-8 9-5-8 1-5-8 TOTAL WEIGHT = 48 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING

LUMBER N. L. G. A. RULES
CHORDS SIZE
O - B 2x4
A - E 2x4
E - H 2x4 SIZE LUMBER DESCR. No.2 No.2 No.2 No.2 No.2 No.2 SPF SPF SPF SPF SPF DRY DRY DRY DRY DRY DRY SPF 2x3 No.2 ALL GABLE WEBS DRY No.2 SPF DRY: SEASONED LUMBER.

GABLE STUDS SPACED AT 2-0-0 OC.

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Χ					
В	TMV+p	MT20	2.0	4.0							
C, [D, F, G										
С	TMW+w	MT20	2.0	4.0							
	TTW+p	MT20	3.0	4.0	2.50	1.50					
Н	TMV+p	MT20	2.0	4.0							
1	BMV1+p	MT20	2.0	4.0							
J, K	, L, M, N										
J	BMW1+w	MT20	2.0	4.0							
0	BMV1+p	MT20	2.0	4.0							

DESIGNER BEARINGS

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

BRAGING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX, UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX.				WEBS MAX. FACTORED				
MEMB.	FORCE	VERT, LOAD LO	C1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAG	2	(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH	FR-TO			
O- B	-298 / 0	0.0 0.	0 0.04 (1)	7.81	L-E	-266 / 0	0.16 (1)	
A-B	0 / 53	-119.4 -119.	4 0.16 (1)	10.00	M-D	-259 / 0	0.08 (1)	
B-C	-31 / 0	-119.4 -119.	4 0.12 (1)	6.25	N-C	-128 / 0	0.02(1)	
C-D	0 / 20	-119.4 -119.	4 0.07 (1)	10.00	K-F	-248 / 0	0.07(1)	
D-E	0 / 15	-119.4 -119.	4 0.07 (1)	10.00	J-G	-209 / 0	0.04(1)	
E-F	0 / 16	-119.4 -119.	4 0.06 (1)	10.00				
F-G	0 / 14	-119.4 -119.	4 0.06 (1)	10.00				
G-H	0 / 13	-119.4 -119.	4 0.05 (1)	10.00				
I- H	-61 / 0	0.0 0.	0 0.01 (1)	7.81				
O- N	- 2/0	-18.2 -18.	2 0.03 (1)	10.00				
N - M	- 7 / 0	-18.2 -18.	2 0.02 (4)	10.00				
M– L	-13 / 0	-18.2 -18.	2 0.02 (4)	6.25				
L-K			2 0.01 (4)					
K-J	-8/0	-18.2 -18.	2 0.01 (4)	10.00				
J-	0/0	-18.2 -18.	2 0.01 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS:
TOP CH. LL =
DL =
BOT CH. LL =
DL =
TOTAL LOAD = 34.8 6.0 0.0 7.3 48.1

SPACING = 24.0 IN C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.16/1.00 (A-B:1) , BC=0.03/1.00 (N-O:1) , WB=0.16/1.00 (E-L:1) , SSI=0.10/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

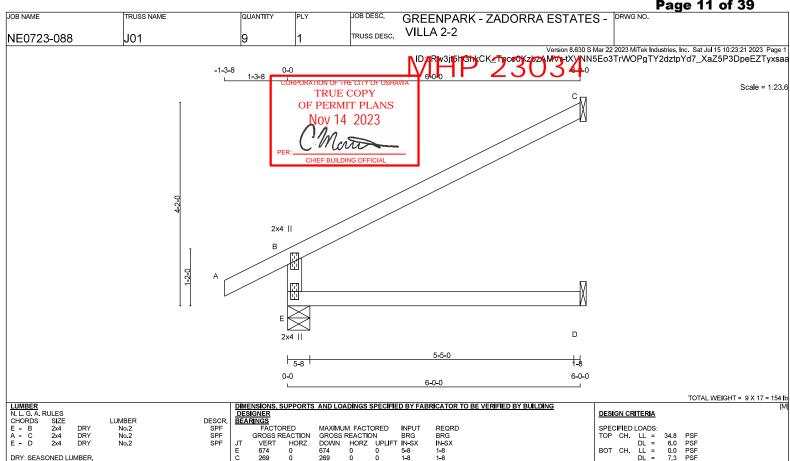
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.34 (E) (INPUT = 0.90) JSI METAL= 0.16 (B) (INPUT = 1.00)

Page 11 of 39

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 E
 BMV1+p
 MT20
 W LEN Y X 2.0 4.0 2.0 4.0

		FACTO	MAXIMUM FACTORED			INPUT	REQRE	
GROSS REACTION			GROSS REACTION			BRG	BRG	
	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
	E	674	0	674	0	0	5-8	1-8
	С	269	0	269	0	0	1-8	1-8
	D	45	0	51	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
Е	468	355 / 0	0/0	0/0	0/0	113 / 0	0/0			
С	184	157 / 0	0/0	0/0	0/0	27 / 0	0/0			
D	36	0/0	0/0	0/0	0/0	36 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

WEBS				
TORED				
E MAX				
CSI (LC)				

34.8 6.0 0.0 7.3 48.1

SPACING = 24.0 IN C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.03")

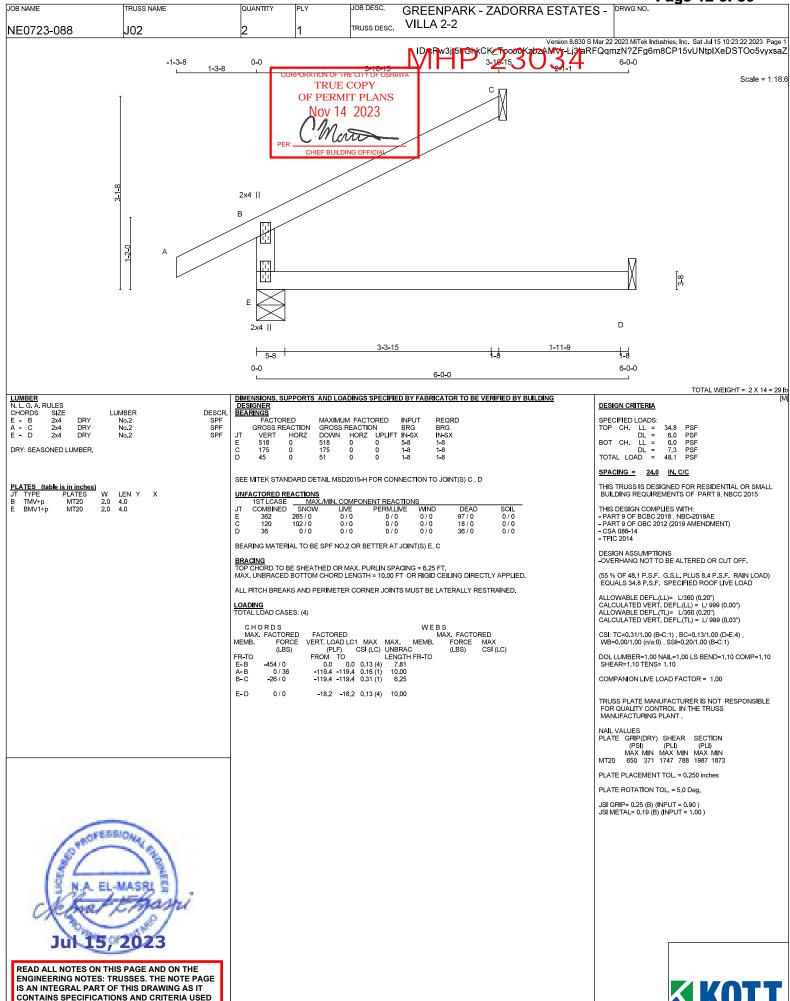
CSI: TC=0.73/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.31/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

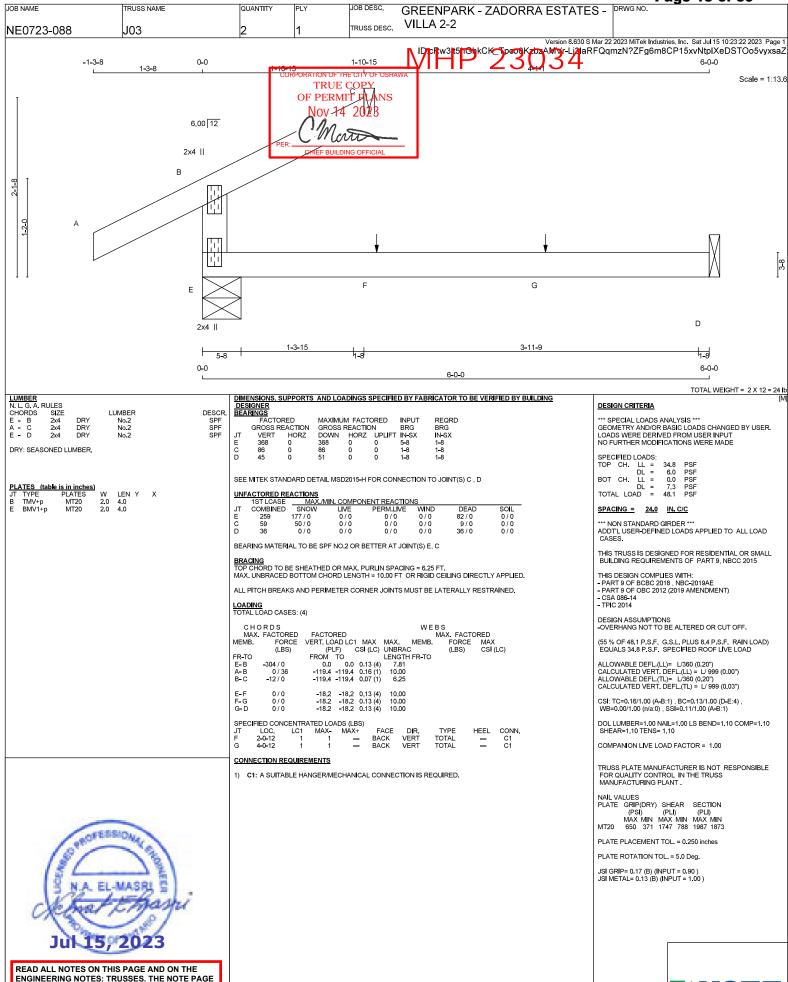
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

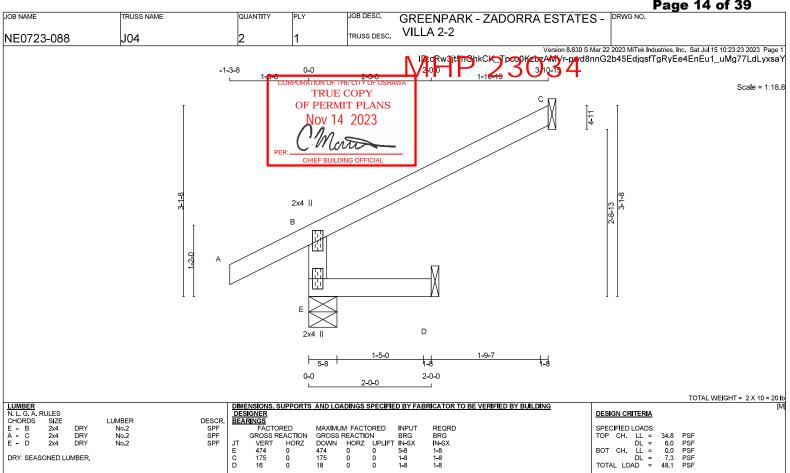

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.34 (B) (INPUT = 0.90) JSI METAL= 0.25 (B) (INPUT = 1.00)



Page 12 of 39

IN THE DESIGN OF THIS COMPONENT.


Page 13 of 39

IS AN INTEGRAL PART OF THIS DRAWING AS IT CONTAINS SPECIFICATIONS AND CRITERIA USED IN THE DESIGN OF THIS COMPONENT.

Page 14 of 39

PLATES (table is in inches)

JI	ITPE	PLATES	vv	LEIN T	^
В	TMV+p	MT20	2.0	4.0	
Е	BMV1+p	MT20	2.0	4.0	

BEA	RINGS						
	FACTORED		MAXIMUM FACTORED			INPUT	REQR
GROSS REACTION			GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	474	0	474	0	0	5-8	1-8
С	175	0	175	0	0	1-8	1-8
D	16	0	18	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D

UNFACTORED REACTIONS

	1ST LCASE	MAX./I	MAX./MIN. COMPONENT REACTIONS						
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL		
Е	326	265 / 0	0/0	0/0	0/0	62 / 0	0/0		
С	120	102 / 0	0/0	0/0	0/0	18 / 0	0/0		
D	13	0/0	0/0	0/0	0/0	13 / 0	0/0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHC	CHORDS				WEBS				
MAX.	FACTORED	FACTO	RED		MAX. FACTORED				
MEMB.	FORCE	VERT. LC	AD LC1	I MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PI	_F) '	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
E-B	-454 / 0	0.0		0.01 (4)					
A-B	0 / 36			0.16 (1)	10.00				
B-C	-26 / 0	-119.4	-119.4	0.31 (1)	6.25				
E-D	0/0	-18.2	-18.2	0.02 (4)	10.00				

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

READ ALL NOTES ON THIS PAGE AND ON THE ENGINEERING NOTES: TRUSSES. THE NOTE PAGE IS AN INTEGRAL PART OF THIS DRAWING AS IT CONTAINS SPECIFICATIONS AND CRITERIA USED IN THE DESIGN OF THIS COMPONENT.

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

CSI: TC=0.31/1.00 (B-C:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.20/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

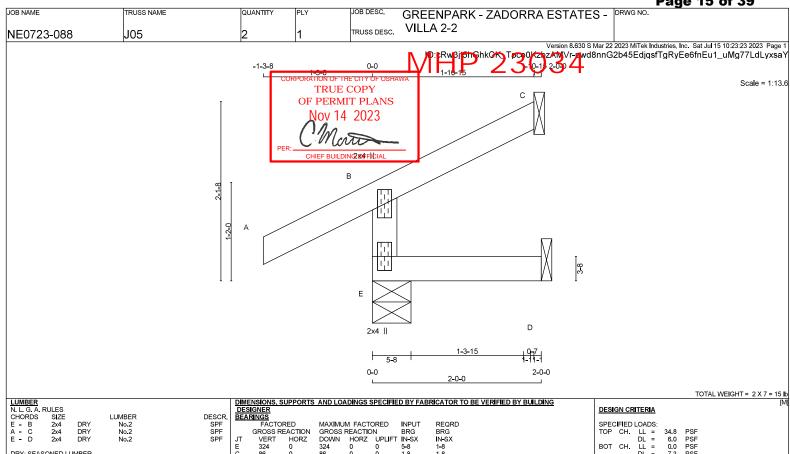

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.25 (B) (INPUT = 0.90) JSI METAL= 0.19 (B) (INPUT = 1.00)

Page 15 of 39

PL/	ATES (tab	e is in inches)			
JT	TYPE	PLATES	W	LEN Y	Х
В	TMV+p	MT20	2.0	4.0	
Е	BMV1+p	MT20	2.0	4.0	

DEA	RINGS						
	FACTORED		MAXIMUM FACTORED			INPUT	REQRD
	GROSS F	REACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	324	0	324	0	0	5-8	1-8
С	86	0	86	0	0	1-8	1-8
D	16	0	18	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
Е	224	177 / 0	0/0	0/0	0/0	47 / 0	0/0			
С	59	50 / 0	0/0	0/0	0/0	9/0	0/0			
D	13	0/0	0/0	0/0	0/0	13 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHC	CHORDS			WEBS				
MAX.	FACTORED	FACTORE	D				MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAD	LC1	I MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PLF)		CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM TO)		LENGTH	FR-TO		
E-B	-304 / 0	0.0		0.01 (4)				
A-B	0 / 36	-119.4 -1	19.4	0.16 (1)	10.00			
B-C	-12 / 0	-119.4 -1	19.4	0.07 (1)	6.25			
E-D	0/0	-18.2	18.2	0.02 (4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

READ ALL NOTES ON THIS PAGE AND ON THE **ENGINEERING NOTES: TRUSSES. THE NOTE PAGE** IS AN INTEGRAL PART OF THIS DRAWING AS IT **CONTAINS SPECIFICATIONS AND CRITERIA USED** IN THE DESIGN OF THIS COMPONENT.

SPECIFIED LOADS:										
TOP	CH.	LL	=	34.8	P					
		DL	=	6.0	Ρ					
BOT	CH.	LL	=	0.0	Ρ					
			=	7.3	Р					
TOTA	L LO	AD	=	48.1	Ρ					

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.11/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

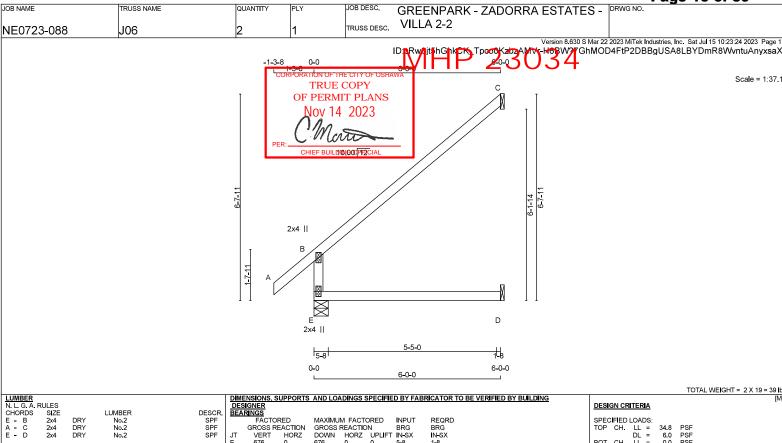

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.17 (B) (INPUT = 0.90) JSI METAL= 0.13 (B) (INPUT = 1.00)

Page 16 of 39

JOB DESC.

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN Y	Х
В	TMV+p	MT20	2.0	4.0	
Е	BMV1+p	MT20	2.0	4.0	

BEA	RNGS						
	FACTO	RED	MAXIMU	MAXIMUM FACTORED			REQRE
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
E	676	0	676	0	0	5-8	1-8
С	269	0	269	0	0	1-8	1-8
D	46	0	52	0	0	1-8	1-8

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D

UNF	UNFACTORED REACTIONS									
	1ST LCASE	MAX./I	MAX./MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL			
Е	469	357 / 0	0/0	0/0	0/0	112 / 0	0/0			
С	184	157 / 0	0/0	0/0	0/0	27 / 0	0/0			
D	37	0/0	0/0	0/0	0/0	37 / 0	0/0			

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	R D S FACTORED	FACTORE)			WE		FACTO	RED
MEMB.	FORCE	VERT. LOAD	LC1	MAX	MAX.	MEMB.	FC	DRCE	MAX
	(LBS)	(PLF)	(CSI (LC)	UNBRAC		(LI	BS)	CSI (LC)
FR-TO		FROM TO			LENGTH	FR-TO			
E-B	-613 / 0	0.0	0.0	0.12 (4)	7.81				
A-B	0 / 53	-119.4 -11	9.4	0.16 (1)	10.00				
B-C	- 57 / 0	-119.4 -11	9.4	0.74 (1)	6.25				
E-D	0/0	-18.2 -1	8.2	0.14 (4)	10.00				

SPECIFIED LOADS:									
TOP	CH.	LL	=	34.8	PS				
		DL	=	6.0	PS				
BOT	CH.	LL	=	0.0	PS				
		DL	=	7.3	PS				
TOTA	L LO	AD	=	48.1	PS				

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.04")

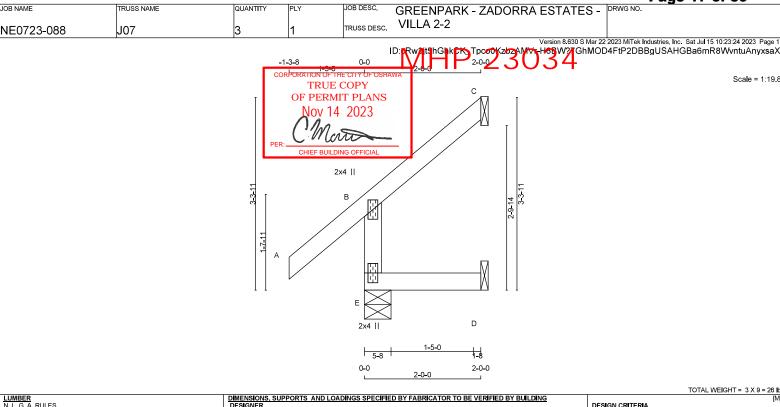
CSI: TC=0.74/1.00 (B-C:1) , BC=0.14/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.27/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.42 (B) (INPUT = 0.90) JSI METAL= 0.33 (B) (INPUT = 1.00)

Page 17 of 39

JOB DESC.

LUMBER
N. L. G. A. RULES
CHORDS SIZE
E - B 2x4
A - C 2x4 LUMBER DESCR. No.2 No.2 No.2 No.2 SPF SPF SPF DRY E - D DRY: SEASONED LUMBER.

TRUSS NAME

QUANTITY

DESIGNER BEARINGS FACTORED MAXIMUM FACTORED INPUT REQRD | MAXIMUM FACTORED | INFUT | I GROSS REACTION
VERT HORZ
334 0
90 0 IN-SX 1-8 1-8 1-8

SEE MITEK STANDARD DETAIL MSD2015-H FOR CONNECTION TO JOINT(S) C . D

PLATES (table is in inches)
JT TYPE PLATES W LEN Y X 2.0 4.0 2.0 4.0 TMV+p BMV1+p

JOB NAME

| SNOW | Color MAX SNOW 183 / 0 53 / 0 0 / 0 JT E D 13

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX. MEMB. (PLF) CSI (LC) UNBRAC FROM TO LENGTH FR-TO 0.0 0.0 0.01 (4) 7.8 H r.1194. -11194. 0.16 (1) 10.00 -1194. -11194. 0.08 (1) 6.25 MEMB. FORCE FORCE MAX CSI (LC) (LBS) FR-TO E-B A-B B-C -314 / 0 0 / 53 -19 / 0 E-D -18.2 -18.2 0.02(4) 10.00 0/0

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

READ ALL NOTES ON THIS PAGE AND ON THE **ENGINEERING NOTES: TRUSSES. THE NOTE PAGE** IS AN INTEGRAL PART OF THIS DRAWING AS IT **CONTAINS SPECIFICATIONS AND CRITERIA USED** IN THE DESIGN OF THIS COMPONENT.

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = 34.8 DL = 6.0 BOT CH. LL = 0.0 DL = 7.3 TOTAL LOAD = 48.1

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.00")

CSI: TC=0.16/1.00 (A-B:1), BC=0.02/1.00 (D-E:4) WB=0.00/1.00 (n/a:0) , SSI=0.10/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

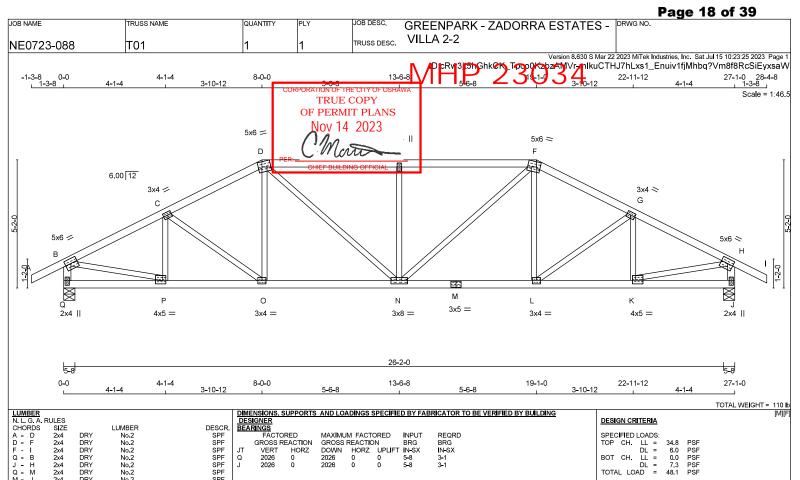

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.22 (B) (INPUT = 0.90) JSI METAL= 0.17 (B) (INPUT = 1.00)

LUMBER									
N. L. G. A. R	ULES								
CHORDS	SIZE		LUMBER	DESCR.					
A - D	2x4	DRY	No.2	SPF					
D - F	2x4	DRY	No.2	SPF					
F - I	2x4	DRY	No.2	SPF					
Q - B	2x4	DRY	No.2	SPF					
J - H	2x4	DRY	No.2	SPF					
Q - M	2x4	DRY	No.2	SPF					
M - J	2x4	DRY	No.2	SPF					
ALL WEBS	2x3	DRY	No.2	SPF					
EXCEPT									

DRY: SEASONED LUMBER.

ı										
ı	PL/	ATES (table	is in inches)							
	JT	TYPE	PLATES	W	LEN	Υ	Χ			
	В	TMVW-t	MT20	5.0	6.0	2.25	2.75			
	С	TMWW-t	MT20	3.0	4.0	1.50	1.75			
	D	TTWW-m	MT20	5.0	6.0	2.50	1.75			
	E	TMW+w	MT20	2.0	4.0					
	F	TTWW-m	MT20	5.0	6.0	2.50	1.75			
	G	TMWW-t	MT20	3.0	4.0	1.50	1.75			
	Н	TMVW-t	MT20	5.0	6.0	2.25	2.75			
	J	BMV1+p	MT20	2.0	4.0	2.25	1.00			
	K	BMWW-t	MT20	4.0	5.0	1.50	1.50			
	L	BMWW-t	MT20	3.0	4.0					
	M	BS-t	MT20	3.0	5.0					
	N	BMWWW-t	MT20	3.0	8.0					
	0	BMWW-t	MT20	3.0	4.0					
	Ρ	BMWW-t	MT20	4.0	5.0	1.50	1.50			
	Q	BMV1+p	MT20	2.0	4.0	2.25	1.00			

ı	DEA	RINGS						
ı		FACTORED		MAXIMUM FACTORED			INPUT	REQRD
ı		GROSS RE	ACTION	0110001121011011			BRG	BRG
ı	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
ı	Q	2026	0	2026	0	0	5-8	3-1
ı	J	2026	0	2026	0	0	5-8	3-1

	151 LCASE	IVIAA./I	VIIN. COMPO	NENT REACTION	45		
JT	COMBINED	SNOW	LIVE	PERM LIVE	WIND	DEAD	SOIL
Q	1414	1037 / 0	0/0	0/0	0/0	376 / 0	0/0
J	1414	1037 / 0	0/0	0/0	0/0	376 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

BRACING
TO BE SHEATHED OR MAX. PURLIN SPACING = 3.63 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	ORDS		WEBS					
MAX	K. FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	_F) ·	CSI (LC)	UNBRAG	3	(LBS)	CSI (LC)
FR-TO					LENGTH	FR-TO		
A-B	0 / 36			0.16 (1)		P-C	-4 19 / 0	0.08 (1)
B-C	-2549 / 0	-119.4	-119.4	0.30(1)	4.06	C- O	-168 / 0	0.07(1)
C-D	-2446 / 0	-119.4	-119.4	0.29(1)	4.14	0- D	0 / 198	0.04(1)
D-E	-2685 / 0	-119.4	-119.4	0.57 (1)	3.63	D-N	0 / 687	0.15 (1)
E-F	-2685 / 0	-119.4	-119.4	0.57 (1)	3.63	N-E	-811 / 0	0.32(1)
F-G	-2446 / 0			0.29 (1)		N-F	0 / 687	0.15 (1)
G-H	-2549 / 0			0.30(1)		L- F	0 / 198	0.04 (1)
H-I	0 / 36			0.16 (1)		L- G	-168 / 0	0.07 (1)
Q-B	-1988 / 0			0.20 (1)		K-G	- 419 / 0	0.08 (1)
J-H	- 1988 / 0	0.0	0.0	0.20(1)	5.98	B-P	0 / 2350	0.53 (1)
						K - H	0 / 2350	0.53 (1)
Q-P	0/0			0.07 (4)				
P-0	0 / 2301			0.42 (1)				
0- N	0 / 2169			0.40(1)				
N-M	0 / 2169	-18.2	-18.2	0.40(1)	10.00			
M-L	0 / 2169			0.40 (1)				
L-K	0 / 2301	-18.2	-18.2	0.42(1)	10.00			
K-J	0/0	-18.2	-18.2	0.07 (4)	10.00			

34.8 6.0 0.0 7.3 48.1

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.90")
CALCULATED VERT. DEFL.(LL) = L/999 (0.12")
ALLOWABLE DEFL.(TL) = L/360 (0.90")
CALCULATED VERT. DEFL.(TL) = L/999 (0.21")

CSI: TC=0.57/1.00 (D-E:1) , BC=0.42/1.00 (K-L:1) , WB=0.53/1.00 (H-K:1) , SSI=0.32/1.00 (D-E:1)

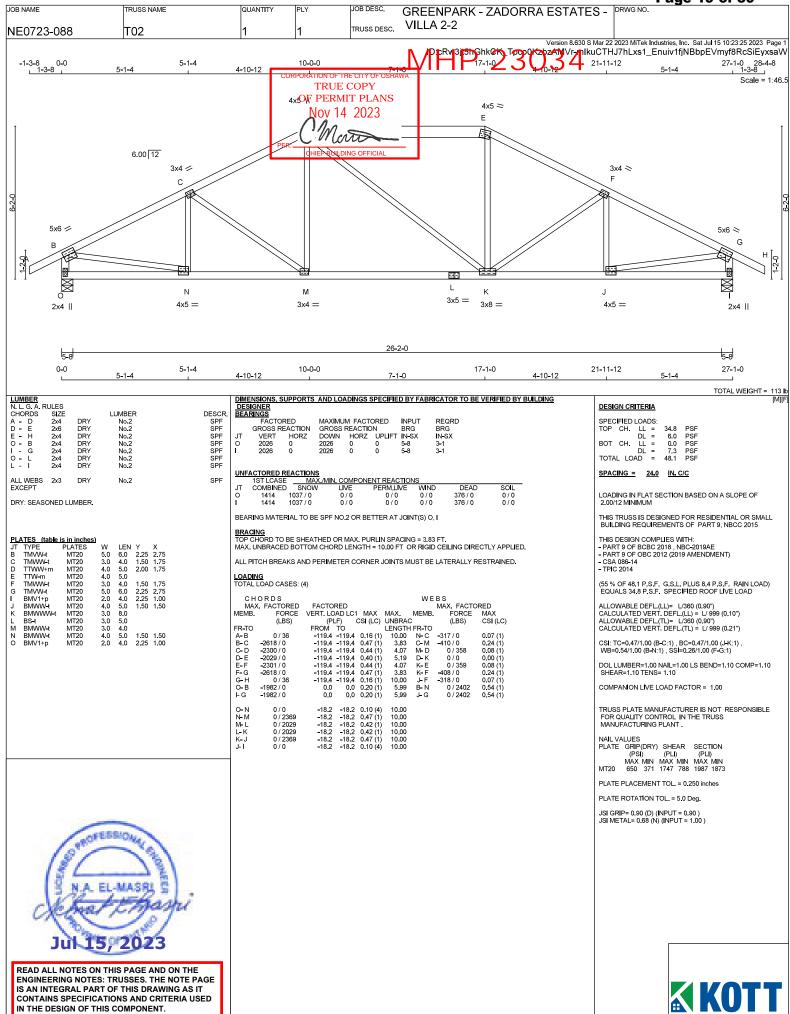
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

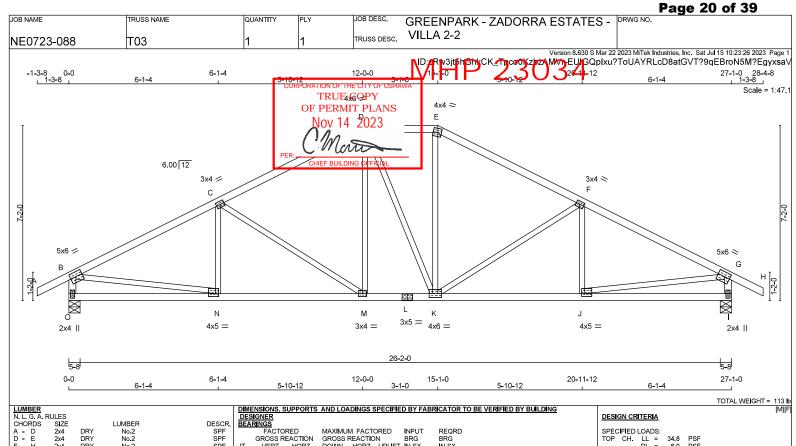
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS

PLATE PLACEMENT TOL = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


MANUFACTURING PLANT


JSI GRIP= 0.88 (P) (INPUT = 0.90) JSI METAL= 0.69 (M) (INPUT = 1.00)

Page 19 of 39

LUMBER										
N. L. G. A. R	ULES									
CHORDS SIZE		LUMBER	DESCR.							
A - D	2x4	DRY	No.2	SPF						
D - E	2x4	DRY	No.2	SPF						
E - H	2x4	DRY	No.2	SPF						
O - B	2x4	DRY	No.2	SPF						
I - G	2x4	DRY	No.2	SPF						
0 - L	2x4	DRY	No.2	SPF						
L - I	2x4	DRY	No.2	SPF						
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF						
DRY: SEASO	DRY: SEASONED LUMBER.									

l PL	ATES (table					
JT	TYPE	PLATES	W	LEN	Υ	Χ
В	TMVW-t	MT20	5.0	6.0	2.25	2.75
С	TMWW-t	MT20	3.0	4.0	1.50	1.75
D	TTWW-m	MT20	4.0	6.0	1.75	2.25
E	TTW-m	MT20	4.0	4.0	2.00	1.75
F	TMVVV-t	MT20	3.0	4.0	1.50	1.75
G	TMVW-t	MT20	5.0	6.0	2.25	2.75
1	BMV1+p	MT20	2.0	4.0	2.25	1.00
J	BMWW-t	MT20	4.0	5.0	1.50	1.50
K	BMWWW-t	MT20	4.0	6.0		
L	BS-t	MT20	3.0	5.0		
M	BMWW-t	MT20	3.0	4.0		
N	BMWW-t	MT20	4.0	5.0	1.50	1.50
0	BMV1+p	MT20	2.0	4.0	2.25	1.00

.	DEA	NINGS							
		FACTORED		MAXIMU	M FACTO	INPUT	REQRD		
	GROSS REACTION		GROSS REACTION			BRG	BRG		
	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX	
	0	2026	0	2026	0	0	5-8	3-1	
	1	2026	0	2026	0	0	5-8	3-1	

UNFACTORED REAC	TIONS	
1ST LCASE	MAX./MIN. COMPONENT REACTIONS	

JT	COMBINED	SNOW	LIVE	PERM LIVE	WIND	DEAD	SOIL
0	1414	1037 / 0	0/0	0/0	0/0	376 / 0	0/0
1	1414	1037 / 0	0/0	0/0	0/0	376 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O, I

BRACING
TO BE SHEATHED OR MAX. PURLIN SPACING = 3.50 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS				WEBS				
MAX	K. FACTORED						MAX. FACTO	RED	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	F) (CSI (LC)	UNBRAG	2	(LBS)	CSI (LC)	
FR-TO		FROM				FR-TO			
A-B	0 / 36			0.16(1)		N-C	-216 / 53	0.06 (1)	
B-C	-2643 / 0			0.69 (1)		C-M	-698 / 0	0.69 (1)	
C-D	-2066 / 0	-119.4	-119.4	0.62(1)	3.98	M-D	0 / 456	0.10(1)	
D-E	-1821 / 0			0.18 (1)		D-K	0/4	0.00(1)	
E-F	-2068 / 0			0.62(1)		K-E	0 / 460	0.10(1)	
F-G	- 2642 / 0	-119.4	-119.4	0.69(1)	3.50	K-F	-696 / 0	0.69 (1)	
G-H	0 / 36	-119.4	-119.4	0.16(1)	10.00	J-F	- 218 / 52	0.06(1)	
O- B	- 1979 / 0	0.0	0.0	0.20(1)	6.00	B-N	0 / 2421	0.54(1)	
I-G	- 1978 / 0	0.0	0.0	0.20(1)	6.00	J-G	0 / 2421	0.54 (1)	
0-N	0/0			0.16 (4)					
N-M	0 / 2398			0.45 (1)					
M-L	0 / 1819			0.35(1)					
L-K	0 / 1819	-18.2	-18.2	0.35(1)	10.00				
K-J	0 / 2397	-18.2	-18.2	0.45 (1)	10.00				
J-I	0/0	-18.2	-18.2	0.16 (4)	10.00				

34.8 PSF 6.0 PSF 0.0 PSF 7.3 PSF 48.1 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.90")
CALCULATED VERT. DEFL.(LL)= L/999 (0.11")
ALLOWABLE DEFL.(TL)= L/360 (0.90")
CALCULATED VERT. DEFL.(TL) = L/999 (0.20")

CSI: TC=0.69/1.00 (B-C:1) , BC=0.45/1.00 (M-N:1) , WB=0.69/1.00 (C-M:1) , SSI=0.31/1.00 (F-G:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

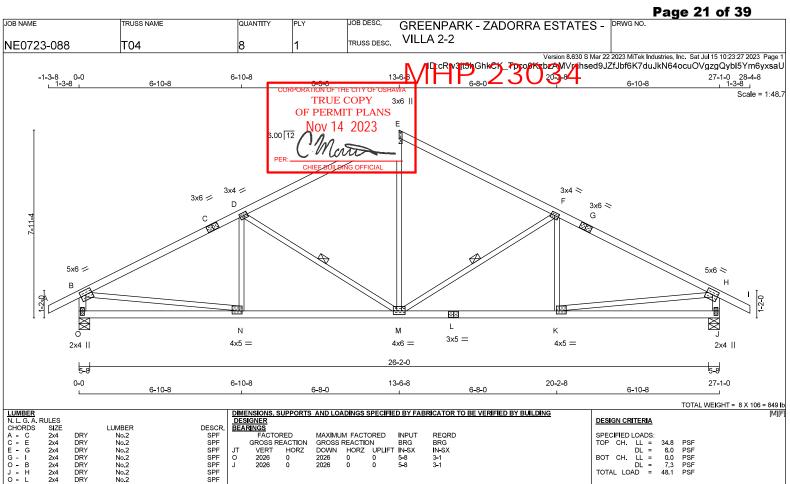

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (B) (INPUT = 0.90) JSI METAL= 0.68 (N) (INPUT = 1.00)

No.2 No.2 No.2 No.2 No.2 No.2 No.2 DRY DRY DRY DRY DRY DRY J 2x4 DRY No.2 SPF SPF ALL WEBS 2x3 DRY No.2 EXCEPT

DRY: SEASONED LUMBER.

O BMV1+p

PL/	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Χ					
В	TMVW-t	MT20	5.0	6.0	2.25	2.75					
С	TS-t	MT20	3.0	6.0							
D	TMVVVV-t	MT20	3.0	4.0	1.50	1.75					
Е	TTW+p	MT20	3.0	6.0							
F	TMWW-t	MT20	3.0	4.0	1.50	1.75					
G	TS-t	MT20	3.0	6.0							
Н	TMVW-t	MT20	5.0	6.0		2.75					
J	BMV1+p	MT20	2.0	4.0	2.25	1.00					
K	BMWW-t	MT20	4.0	5.0	1.50	1.50					
L	BS-t	MT20	3.0	5.0							
М	BMWWW - t	MT20	4.0	6.0	1.75	3.00					
Ν	BMWW-t	MT20	4.0	5.0	1.50	1.50					
0	BMV1+p	MT20	2.0	4.0	2.25	1.00					

UNFACTORED REACTIONS

	131 LUASE	IVIAA./I	VIIIN. COMPO	VENT KEACTION	40 64		
JT	COMBINED	SNOW	LIVE	PERM LIVE	WIND	DEAD	SOIL
0	1414	1037 / 0	0/0	0/0	0/0	376 / 0	0/0
J	1414	1037 / 0	0/0	0/0	0/0	376 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O, J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 3.08 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 - 1x4 LATERAL BRACE(S) AT 1/2 LENGTH OF F-M, D-M. DBS = 20-0-0 . CBF = 109 LBS.

DBS = DIAGONAL BRACE SPACING (MAX), CBF = CUMULATIVE BRACING FORCE (PER BRACE), FASTEN LATERAL BRACE(S) USING (0.122"X3") SPIRAL NAILS: 1 NAIL FOR 2x3 BRACE(S), 2 FOR 1x4, 2x4, 2x5, 3 FOR 2x6, 4 FOR 2x8, 5 FOR 2x10, AND 6 FOR 2x12.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS	FACTORED			WE	B S MAX. FACTO	ORED
MEMB.		VERT, LOAD L		MAX.	MEMB.		
		(PLF)					
FR-TO	, ,	FROM TO	. ,	LENGTH	FR-TO	. ,	. ,
A-B	0 / 36	-119.4 -119.	4 0.16 (1)	10.00	M-E	0 / 1065	0.24(1)
B-C	-2634 / 0	-119.4 -119.	4 0.91 (1)	3.08	M-F	-870 / 0	0.37 (1)
C-D	-2634 / 0	-119.4 -119.	4 0.91 (1)	3.08	K-F	-167 / 76	0.05 (1)
D-E	-1904 / 0	-119.4 -119.	4 0.79 (1)	3.75	D-M	-870 / 0	0.37(1)
E-F	-1904 / 0	-119.4 -119.	4 0.79 (1)	3.75	N-D	-167 / 76	0.05 (1)
F-G	-2634 / 0	-119.4 -119.	4 0.91 (1)	3.08		0 / 2413	0.54 (1)
G-H	-2634 / 0	-119.4 -119.	4 0.91 (1)	3.08	K- H	0 / 2413	0.54 (1)
H-I	0 / 36	-119.4 -119.	4 0.16 (1)	10.00			
O-B	-1973 / 0	0.0 0.	0 0.20 (1)	6.00			
J-Η	-1973 / 0	0.0 0.	0 0.20 (1)	6.00			
O- N	0/0	-18.2 -18.					
N-M	0 / 2394	-18.2 -18.					
M-L	0 / 2394						
L-K	0 / 2394						
K-J	0/0	-18.2 -18.	2 0.20 (4)	10.00			

48.1

SPACING = 24.0 IN C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.90")
CALCULATED VERT. DEFL.(LL)= L/999 (0.12")
ALLOWABLE DEFL.(TL)= L/360 (0.90")
CALCULATED VERT. DEFL.(TL)= L/999 (0.21")

CSI: TC=0.91/1.00 (B-D:1) , BC=0.47/1.00 (K-M:1) , WB=0.54/1.00 (H-K:1) , SSI=0.35/1.00 (B-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

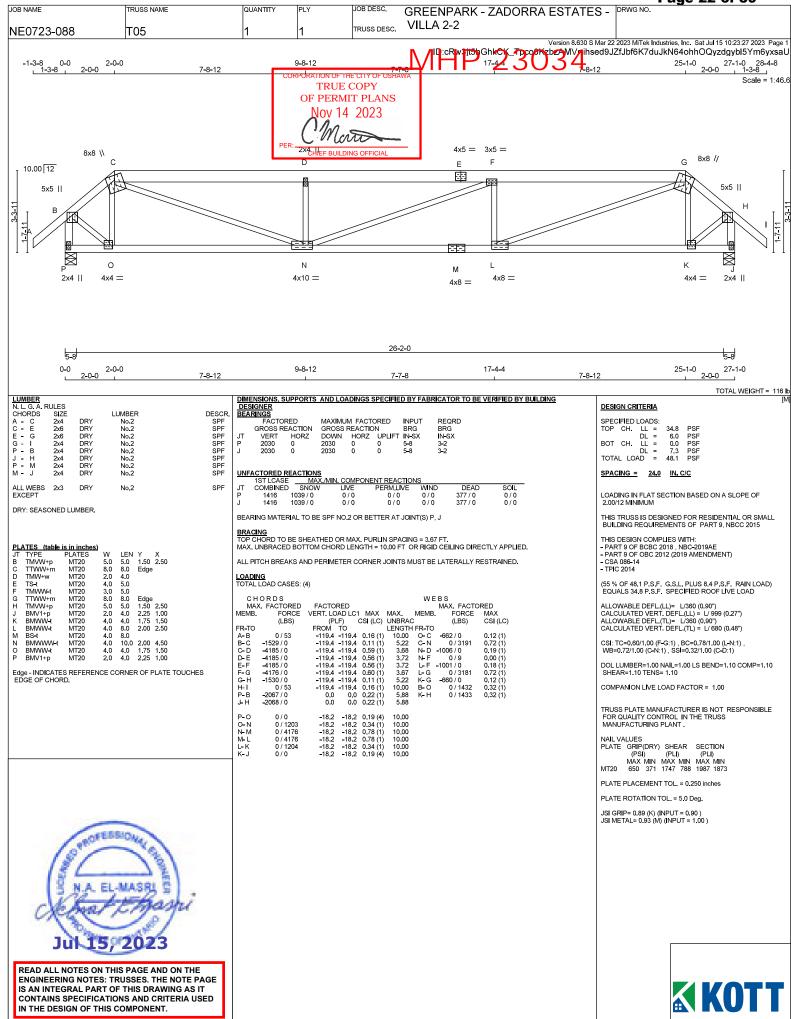
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

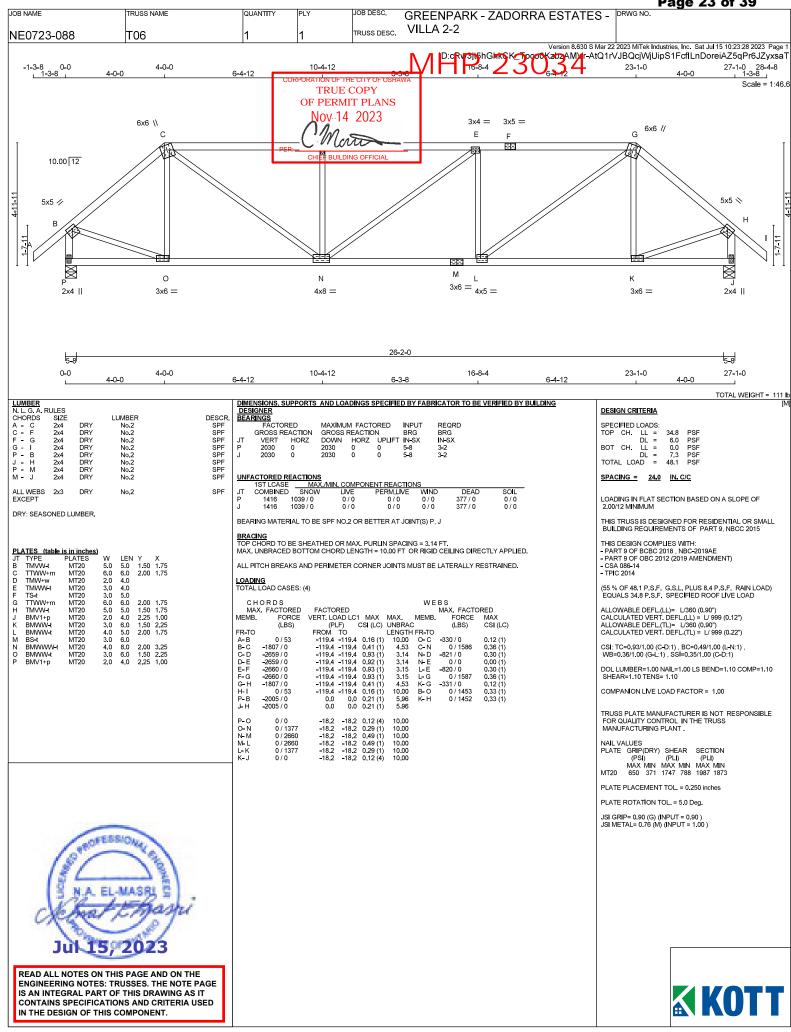
NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

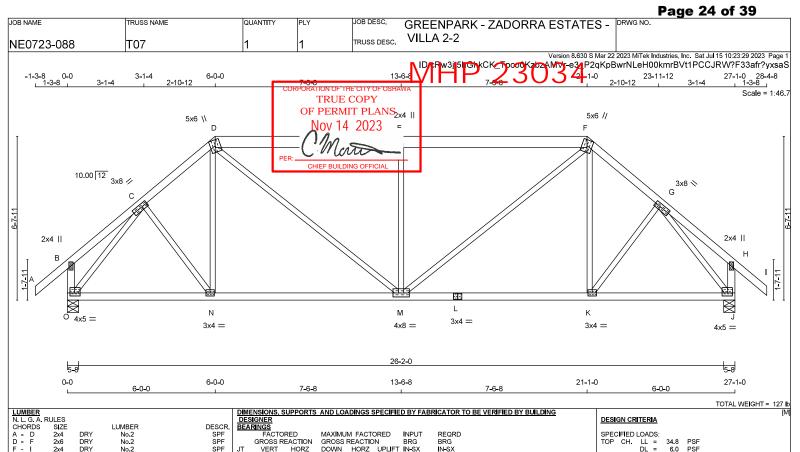
MAX MIN MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.89 (B) (INPUT = 0.90) JSI METAL= 0.74 (L) (INPUT = 1.00)





Page 22 of 39

Page 23 of 39

No.2 No.2 No.2 No.2 No.2 No.2 SPF SPF SPF SPF SPF SPF DRY DRY DRY DRY DRY DRY DRY No.2 No.2 ALL WEBS EXCEPT 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)											
JT	TYPE	PLATES	W	LEN	Υ	Χ						
В	TMV+p	MT20	2.0	4.0								
С	TMWW-t	MT20	3.0	8.0	1.50	3.00						
D	TTWW+m	MT20	5.0	6.0	Edge							
Е	TMW+w	MT20	2.0	4.0								
F	TTWW+m	MT20	5.0	6.0	Edge							
G	TMWW-t	MT20	3.0	8.0	1.50	3.00						
Н	TMV+p	MT20	2.0	4.0								
J	BMVW1-t	MT20	4.0	5.0	1.50	2.25						
K	BMWW -t	MT20	3.0	4.0								
L	BS-t	MT20	3.0	4.0								
M	BMWWW-t	MT20	4.0	8.0								
Ν	BMWW -t	MT20	3.0	4.0								
0	BMVW1-t	MT20	4.0	5.0	1.50	2.25						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

FACTORED			MAXIMU	M FACTO	INPUT	REQRD	
	GROSS R	EACTION	GROSS REACTION			BRG	BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
0	2030	0	2030	0	0	5-8	2-3
J	2030	0	2030	0	0	5-8	2-3

UNFACTORED REACTIONS

	101 LUAGE	IVIAA./I	VIIIN, COIVIPOI				
JT	COMBINED	SNOW	LIVE	PERM LIVE	WIND	DEAD	SOIL
0	1416	1039 / 0	0/0	0/0	0/0	377 / 0	0/0
J	1416	1039 / 0	0/0	0/0	0/0	377 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) O, J

BRACING
TO BE SHEATHED OR MAX. PURLIN SPACING = 4.75 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS								
	K. FACTORED						MAX. FACTO	
MEMB.	FORCE	VERT. LO	AD LC1	MAX	MAX.	MEMB	FORCE	MAX
	(LBS)	(PL	F) (CSI (LC)	UNBRAC	2	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	0 / 53	-119.4	-119.4	0.16(1)	10.00	C-N	0 / 117	0.03(1)
B-C	0 / 23	-119.4	-119.4	0.15(1)	10.00	N-D	0 / 95	0.03 (4)
C-D	-1837 / 0	-119.4	-119.4	0.20(1)	4.76	D-M	0 / 984	0.22 (1)
D-E	-2154 / 0	-119.4	-119.4	0.59(1)	4.75	M-E	-1120 / 0	0.76 (1)
E-F	-2154 / 0	-119.4	-119.4	0.59(1)	4.75	M-F	0 / 984	0.22(1)
F-G	-1837 / 0	-119.4	-119.4	0.20(1)	4.76	K-F	0 / 95	0.03(4)
G-H	0 / 23	-119.4	-119.4	0.15 (1)	10.00	K-G	0 / 117	0.03(1)
H-I	0 / 53	-119.4	-119.4	0.16(1)	10.00	0- C	-2141 / 0	0.79(1)
O- B	-310 / 0	0.0	0.0	0.03(1)	7.81	G-J	-2141 / 0	0.79(1)
J- H	-310 / 0	0.0	0.0	0.03(1)	7.81			
0-N	0 / 1328	-18.2	-18.2	0.32(1)	10.00			
N-M	0 / 1397	-18.2	-18.2	0.34(1)	10.00			
M-L	0 / 1397	-18.2	-18.2	0.34(1)	10.00			
L-K	0 / 1397	-18.2	-18.2	0.34(1)	10.00			
K-J	0 / 1328	-18.2	-18.2	0.32 (1)	10.00			
1								

34.8 6.0 0.0 7.3 48.1

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14 - TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.90")
CALCULATED VERT. DEFL.(LL)= L/999 (0.97")
ALLOWABLE DEFL.(TL)= L/360 (0.90")
CALCULATED VERT. DEFL.(TL) = L/999 (0.15")

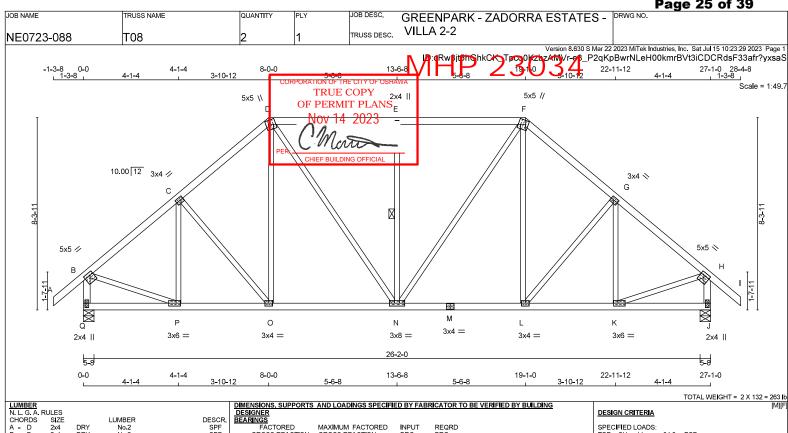
CSI: TC=0.59/1.00 (D-E:1) , BC=0.34/1.00 (K-M:1) , WB=0.79/1.00 (C-O:1) , SSI=0.33/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (J) (INPUT = 0.90) JSI METAL= 0.47 (L) (INPUT = 1.00)

Page 25 of 39

LUMBER				
N. L. G. A. R				
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - F	2x4	DRY	No.2	SPF
F - I	2x4	DRY	No.2	SPF
Q - B	2x4	DRY	No.2	SPF
J - H	2x4	DRY	No.2	SPF
Q - M	2x4	DRY	No.2	SPF
M - J	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
EXCEPT				
DRV- SEASO	ONEDII	IMBED		

PL	PLATES (table is in inches)													
JT														
В	TMVW-t	MT20	5.0	5.0	1.50	1.75								
С	TMWW-t	MT20	3.0	4.0	1.50	1.25								
D	TTWW+m	MT20	5.0	5.0	2.00	1.50								
Е	TMW+w	MT20	2.0	4.0										
F	TTWW+m	MT20	5.0	5.0	2.00	1.50								
G	TMWW-t	MT20	3.0	4.0	1.50	1.25								
Н	TMVW-t	MT20	5.0	5.0	1.50	1.75								
J	BMV1+p	MT20	2.0	4.0	2.25	1.00								
K	BMWW-t	MT20	3.0	6.0	1.50	2.25								
L	BMWW -t	MT20	3.0	4.0										
M	BS-t	MT20	3.0	4.0										
N	BMWWW-t	MT20	3.0	8.0										
0	BMWW -t	MT20	3.0	4.0										
Ρ	BMWW -t	MT20	3.0	6.0	1.50	2.25								
Q	BMV1+p	MT20	2.0	4.0	2.25	1.00								

	FACTOR	MAXIMUN	/ FACTO	INPUT	REQRD		
GROSS REACTION			GROSS F	REACTIO	BRG	BRG	
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
Q	2030	0	2030	0	0	5-8	3-2
J	2030	0	2030	0	0	5-8	3-2

UNF	UNFACTORED REACTIONS											
	1ST LCASE MAX./MIN. COMPONENT REACTIONS											
JT	COMBINED	SNOW	LIVE	PERM LIVE	WIND	DEAD	SOIL					
Q	1416	1039 / 0	0/0	0/0	0/0	377 / 0	0/0					
J	1416	1039 / 0	0/0	0/0	0/0	377 / 0	0/0					

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) Q, J

BRACING
TO BE SHEATHED OR MAX. PURLIN SPACING = 4.57 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 - 1x4 LATERAL BRACE(S) AT 1/2 LENGTH OF E-N. DBS = 20-0-0 . CBF = 101 LBS.

DBS = DIAGONAL BRACE SPACING (MAX), CBF = CUMULATIVE BRACING FORCE (PER BRACE), FASTEN LATERAL BRACE(S) USING (0.122"X3") SPIRAL NAILS: 1 NAIL FOR 2x3 BRACE(S), 2 FOR 1x4, 2x4, 2x5, 3 FOR 2x6, 4 FOR 2x8, 5 FOR 2x10, AND 6 FOR 2x12.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS				WEBS				
MAX	. FACTORED	FACTO	RED				MAX. FACTO	RED	
иемв.	FORCE	VERT. LC	AD LC1	I MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PI	LF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
R-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 53	-119.4	-119.4	0.16 (1)	10.00	P- C	-381 / 0	0.14(1)	
B-C	- 1820 / 0	-119.4	-119.4	0.29(1)	4.69	C- O	-167 / 0	0.11(1)	
C-D	-1757 / 0	-119.4	-119.4	0.28 (1)	4.77	O- D	0 / 218	0.05(1)	
D-E	-1635 / 0	-119.4	-119.4	0.50(1)	4.57	D-N	0 / 553	0.12(1)	
E-F	-1635 / 0	-119.4	-119.4	0.50(1)	4.57	N-E	-808 / 0	0.35(1)	
F-G	-1757 / 0	-119.4	-119.4	0.28 (1)	4.77	N-F	0 / 553	0.12(1)	
G-H	-1820 / 0	-119.4	-119.4	0.29(1)	4.69	L- F	0 / 218	0.05(1)	
H- I	0 / 53	-119.4	-119.4	0.16 (1)	10.00	L- G	-167 / 0	0.11(1)	
Q-B	-1996 / 0	0.0	0.0	0.21(1)	5.97	K-G	-381 / 0	0.14(1)	
J-Η	-1996 / 0	0.0	0.0	0.21 (1)	5.97	B-P	0 / 1495	0.34(1)	
						K- H	0 / 1495	0.34(1)	
Q-P	0/0	-18.2	-18.2	0.06(4)	10.00				
P- 0	0 / 1425	-18.2	-18.2	0.28 (1)	10.00				
O- N	0 / 1320	-18.2	-18.2	0.27(1)	10.00				
N-M	0 / 1320	-18.2	-18.2	0.27(1)	10.00				
M-L	0 / 1320	-18.2	-18.2	0.27(1)	10.00				
L-K	0 / 1425	-18.2	-18.2	0.28 (1)	10.00				
K-J	0/0	-18.2	-18.2	0.06 (4)	10.00				

34.8 6.0 0.0 7.3 48.1

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.90")
CALCULATED VERT. DEFL.(LL) = L/999 (0.06")
ALLOWABLE DEFL.(TL) = L/360 (0.90")
CALCULATED VERT. DEFL.(TL) = L/999 (0.11")

CSI: TC=0.50/1.00 (D-E:1) , BC=0.28/1.00 (K-L:1) , WB=0.35/1.00 (E-N:1) , SSI=0.32/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

PLATE PLACEMENT TOL = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.88 (P) (INPUT = 0.90) JSI METAL= 0.59 (B) (INPUT = 1.00)

Page 26 of 39

DRWG NO. TRUSS NAME GREENPARK - ZADORRA ESTATES -VILLA 2-2 TRUSS DESC. NE0723-088 T09 Version 8.630 S Mar 22 2023 MiTek Industries, Inc. Sat Jul 15 10:23:30 2023 Page wSit5hottiscK_Pproofxtbz-MV7=6GY1FALRXE_EzosCaRl4kiQG4cbXA8QOHjKDNRyxsaR -1-3-8 0-0 ____1-3-8 ___ Scale = 1:39.0 3x4 II TRUE COPY OF PERMIT PLANS C Nov 14 2023 10.00 12 3x5 📏 D 3x5 // 3x6 = 2x4 II 2x4 || 5-8 5-8 0-0 5-9-3 10-4-0 TOTAL WEIGHT = 3 X 47 = 140 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING LUMBER DESIGN CRITERIA DESCR.

JOB DESC.

N. L. G. A. RULES
CHORDS SIZE
A - C 2x4
C - D 2x4
G - B 2x4
E - D 2x4
G - E 2x4 LUMBER JMBER 2100F 1.8E No.2 No.2 No.2 No.2 DRY DRY DRY DRY DRY DRY No.2 ALL WEBS EXCEPT 2x3

DRY: SEASONED LUMBER.

JOB NAME

PLATES (table is in inches)

J١	TYPE	PLATES	vv	LEIN	Y	X
В	TMVW-t	MT20	3.0	5.0	1.50	1.75
С	TTW+p	MT20	3.0	4.0	2.50	1.50
D	TMVW-t	MT20	3.0	5.0	1.50	1.75
	BMV1+p	MT20	2.0	4.0		
F	BMWWW-t	MT20	3.0	6.0		
G	BMV1+p	MT20	2.0	4.0		

		FACTO	MAXIMU	M FACT	INPUT	REQRD		
	GROSS REACTION			GROSS REACTION			BRG	BRG
ı	JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
ı	G	877	0	877	0	0	5-8	1-8
	E	711	0	711	0	0	5-8	1-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./	MAX /MIN. COMPONENT REACTIONS							
JT	COMBINED	SNOW	LIVE	PERM LIVE	WIND	DEAD	SOIL			
G	610	456 / 0	0/0	0/0	0/0	154 / 0	0/0			
Е	497	360 / 0	0/0	0/0	0/0	137 / 0	0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, E

SPF SPF SPF SPF SPF

SPF

QUANTITY

BRACING
TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS		WEBS							
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED		
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX		
	(LBS)	(PI	_F) '	CSI (LC)	UNBRAG	2	(LBS)	CSI (LC)		
FR-TO		FROM	TO		LENGTH	FR-TO				
A-B	0 / 53	-119.4	-119.4	0.11 (1)	10.00	F-C	-106 / 66	0.07 (1)		
B-C	-399 / 0	-119.4	-119.4	0.34(1)	6.25	B-F	0 / 314	0.07 (1)		
C-D	-399 / 0	-119.4	-119.4	0.32(1)	6.25	F-D	0 / 343	0.08(1)		
G-B	-834 / 0	0.0	0.0	0.09(1)	7.81					
E-D	-683 / 0	0.0	0.0	0.10(1)	7.81					
G-F	0/0	-18.2		0.14 (4)						
F-E	0/0	-18.2	-18.2	0.14(4)	10.00					

34.8 6.0 0.0 7.3 48.1

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.34")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.34")
CALCULATED VERT. DEFL.(TL)= L/999 (0.03")

CSI: TC=0.34/1.00 (B-C:1) , BC=0.14/1.00 (F-G:4) , WB=0.08/1.00 (D-F:1) , SSI=0.21/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT .

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.71 (B) (INPUT = 0.90) JSI METAL= 0.21 (B) (INPUT = 1.00)

Page 27 of 39

JOB DESC.

N. L. G. A. RULES
CHORDS SIZE
A - C 2x4
C - D 2x4
G - B 2x4
H - D 2x4
G - E 2x4 No.2 No.2 No.2 No.2 No.2 No.2 SPF SPF SPF SPF SPF DRY DRY DRY DRY DRY ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF No.2

TRUSS NAME

QUANTITY

DESIGNER BEARINGS FACTORED MAXIMUM FACTORED INPUT REQRD BRG BRG IN-SX IN-SX 5-8 1-8 MECHANICAL GROSS REACTION VERT HORZ 716 0 551 0 GROSS REACTION BRG
DOWN HORZ UPLIFT IN-SX
716 0 0 5-8
551 0 0 MECH

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT H. MINIMUM BEARING LENGTH AT JOINT H = 1-8.

LEN 5.0 4.0 5.0 5.0 6.0 Y X 1.50 1.75 2.50 1.50 1.50 1.75 1.50 1.50 W 3.0 3.0 3.0 3.0 3.0 2.0 BMWWW-t MT20

BMV1+p

JOB NAME

UNFACTORED REACTIONS

1ST LCASE MAX./MIN. COMPONENT REACTIONS

JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G	498	375 / 0	0/0	0/0	0/0	123 / 0	0/0
Н	385	278 / 0	0/0	0/0	0/0	106 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СНО	ORDS					WE	BS		
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	_F) (CSI (LC)	UNBRAG	2	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 53	-119.4	-119.4	0.16(1)	10.00	F-C	-71 / 54	0.02(1)	
B-C	-318 / 0	-119.4	-119.4	0.33(1)	6.25	B-F	0 / 257	0.06(1)	
C-D	-318 / 0	-119.4	-119.4	0.33(1)	6.25	F-D	0 / 257	0.06(1)	
G-B	-688 / 0	0.0	0.0	0.07(1)	7.81				
H-E	-551 / 0	0.0	0.0	0.06(1)	7.81				
E-D	-522 / 0	0.0	0.0	0.06 (1)	7.81				
о F	0.40	10.0	10.0	0.09 (4)	10.00				
G-F	0/0	-18.2		0.08 (4)					
F-E	0/0	-18.2	-18.2	0.08(4)	10.00				

34.8 6.0 0.0 7.3 48.1

SPACING = 24.0 IN C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.27")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.27")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.01")

CSI: TC=0.33/1.00 (C-D:1) , BC=0.08/1.00 (E-F:4) , WB=0.06/1.00 (B-F:1) , SSI=0.14/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE HEELS OFF

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.58 (B) (INPUT = 0.90) JSI METAL= 0.16 (B) (INPUT = 1.00)

Page 28 of 39

DRWG NO. TRUSS NAME GREENPARK - ZADORRA ESTATES -VILLA 2-2 TRUSS DESC. NE0723-088 T11 Version 8.630 S Mar 22 2023 MiTek Industries, Inc. Sat Jul 15 10:23:31 2023 Page TMV-3S69TWM4iX65ayRO79pJGwzSM0xbvbaYWN3mvtyxsaQ -1-3-8 0-0 1-3-8 Scale = 1:37.5 4 || TRUE COPY OF PERMIT PLANS Nov 14 2023 10.00 12 3x5 ╲ 3x5 // D F 3x6 = 2x4 II 2x4 || 10-5-8 5-8 0-0 5-5-8 10-11-0 TOTAL WEIGHT = 3 X 47 = 14 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING LUMBER

JOB DESC.

N. L. G. A. RULES
CHORDS SIZE
A - C 2x4
C - D 2x4
G - B 2x4
E - D 2x4
G - E 2x4 LUMBER DESCR. 2100F 1.8E 2100F 1.8E 2100F 1.8E No.2 No.2 No.2 SPF SPF SPF SPF SPF DRY DRY DRY DRY DRY SPF DRY No.2 ALL WEBS EXCEPT 2x3

DRY: SEASONED LUMBER.

JOB NAME

LEN 5.0 4.0 5.0 4.0 6.0 4.0 Y X 1.50 1.75 2.50 1.50 1.50 1.75 W 3.0 3.0 3.0 2.0 3.0 2.0 BMV1+p

DESIGNER BEARINGS FACTORED MAXIMUM FACTORED INPUT REQRD BRG BRG IN-SX IN-SX 5-8 1-8 MECHANICAL GROSS REACTION VERT HORZ 917 0 751 0 GROSS REACTION BRG
DOWN HORZ UPLIFT IN-SX
917 0 0 5-8
751 0 0 MECH

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

QUANTITY

 UNFACTORED REACTIONS

 1ST LCASE
 MAX./MIN. COMPONENT REACTIONS

 JT
 COMBINED

 SNOW
 LIVE
 PERM.LIVE
 WIND

 G
 638
 476 / 0
 0 / 0
 0 / 0
 0 / 0

 E
 525
 380 / 0
 0 / 0
 0 / 0
 0 / 0
 DEAD 162 / 0 145 / 0 SOIL 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6,25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10,00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	DRDS					WE	BS	
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PI	_F) (CSI (LC)	UNBRAG	2	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO		
A-B	0 / 53	-119.4	-119.4	0.11 (1)	10.00	F-C	-50 / 87	0.03 (4)
B-C	-4 70 / 0	-119.4	-119.4	0.30(1)	6.25	B-F	0 / 371	0.08 (1)
C-D	-4 70 / 0	-119.4	-119.4	0.30(1)		F-D	0 / 371	0.08 (1)
G-B	-879 / 0	0.0	0.0	0.09(1)	7.81			
E-D	- 713 / 0	0.0	0.0	0.08(1)	7.81			
G - F	0/0			0.16 (4)				
	0.70	19.2	192	0.16 (4)	10.00			

DESIGN CRITERIA

34.8 6.0 0.0 7.3 48.1

SPACING = 24.0 IN C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.36")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.36")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02")

CSI: TC=0.30/1.00 (C-D:1) , BC=0.16/1.00 (E-F:4) , WB=0.08/1.00 (B-F:1) , SSI=0.20/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

| NAIL VALUES | SHEAR | SECTION (PSI) | SHEAR | (PLI) | (PLI)

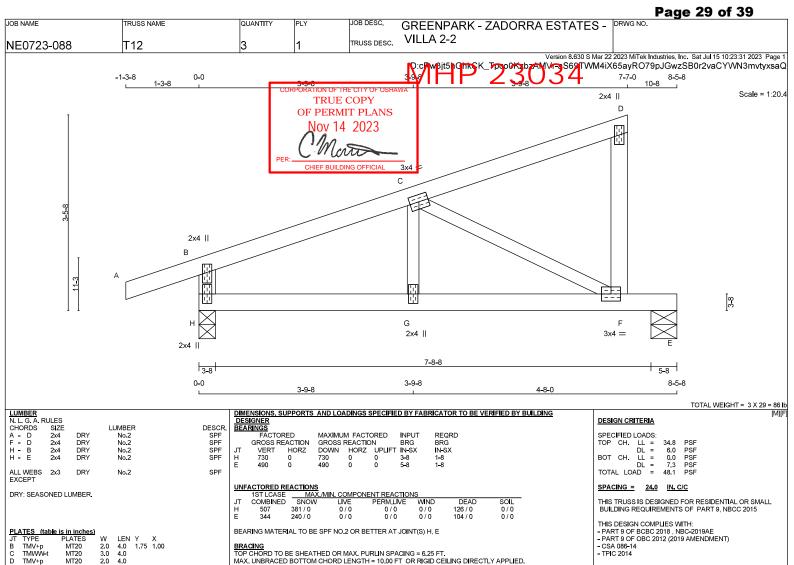

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.74 (D) (INPUT = 0.90) JSI METAL= 0.22 (B) (INPUT = 1.00)

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 C
 TMWW-t
 MT20
 LEN Y X 4.0 1.75 1.00 4.0 4.0 4.0 4.0 4.0 2.0 3.0 2.0 3.0 2.0 MT20 MT20 MT20 TMV+p BMVW-t BMW+w BMV1+p

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHC	RDS					WE	BS		
MAX.	FACTORED	FACTO	RED				MAX. FACTO	RED	
MEMB.	FORCE	VERT. LC	AD LC1	MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	_F) (CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO			
A-B	0 / 25	-119.4	-119.4	0.15(1)	10.00	G-C	0 / 84	0.03(4)	
B-C	- 739 / 0	-119.4	-119.4	0.25 (1)	6.25	C-F	-609 / 0	0.17(1)	
C-D	-145 / 0	-119.4	-119.4	0.17(1)	6.25				
F-D	-200 / 0	0.0	0.0	0.31(1)	7.81				
H-B	-656 / 0	0.0	0.0	0.31 (1)	7.81				
H-G	0 / 689	-18.2	-18.2	0.30(1)	10.00				
G-F	0 / 689	-18.2	-18.2	0.29(1)	10.00				
F-E	0/0	-18.2	-18.2	0.57(1)	10.00				

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL)= L/999 (0.10")

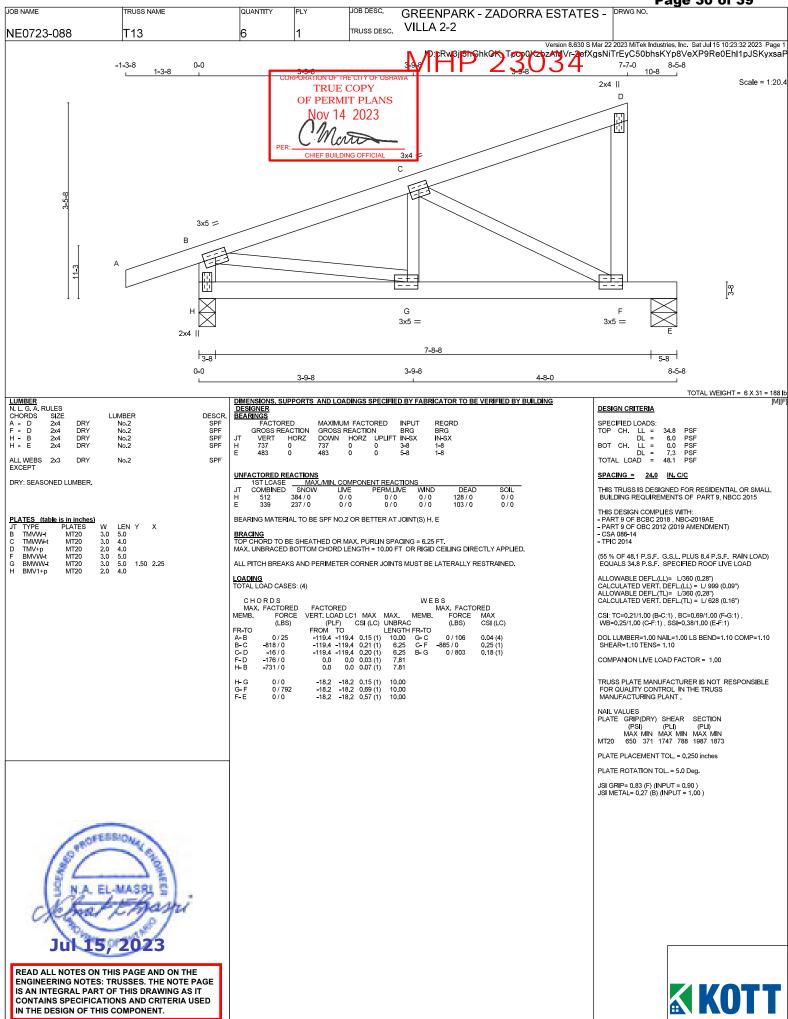
CSI: TC=0.31/1.00 (B-H:1) , BC=0.57/1.00 (E-F:1) , WB=0.17/1.00 (C-F:1) , SSI=0.54/1.00 (B-H:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.83 (H) (INPUT = 0.90) JSI METAL= 0.80 (B) (INPUT = 1.00)

Page 30 of 39

Page 31 of 39

VILLA 2-2 TRUSS DESC. NE0723-088 T14 Version 8.630 S Mar 22 2023 MiTek Industries, Inc. Sat Jul 15 10:23:32 2023 Page ID:cFwpti5hGhkCK_Tpccott2bz3MV_22efXgsNiTrEyC50bhsKYp8VfEPJre37hl1pJSKyxsaF 2-0-8/2-2-8 CORPORATION OF THE CITY OF Scale = 1:19.8 2x4 || TRUE COPY OF PERMIT PLANS Nov 14 2023 3x5 // В D 3x4 =5-8 1-1-4 2-2-8 TOTAL WEIGHT = 14 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING

JOB DESC.

GREENPARK - ZADORRA ESTATES - | DRWG NO.

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER DESCR. No.2 No.2 No.2 No.2 No.2 SPF SPF SPF SPF A - C D - C DRY DRY DRY DRY ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. SPF No.2

TRUSS NAME

QUANTITY

DESIGNER BEARINGS FACTORED MAXIMUM FACTORED INPUT REQRD

| MAXIMUM | PACTOR | NPC BRG IN-SX

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

JOB NAME

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMVW+
 MT20

 C
 TMV+p
 MT20

 D
 BMVW1+
 MT20

 F
 BMW41+
 MT20
 W 3.0 2.0 3.0 2.0 LEN Y X 5.0 1.50 1.75 4.0 4.0 4.0 BMV1+p

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED FACT ORED VERT. LOAD LC1 MAX MAX. MEMB. (PLF) CSI (LC) UNBRAC FROM TO LENGTH FR-TO -1194. -1194. -1194. 0.10 (1) 10.00 B-D -1194. -1194. 0.0 0.0 0.02 (1) 7.81 0.0 0.0 0.03 (1) 7.81 MEMB. FORCE FORCE MAX CSI (LC) (LBS) FR-TO A-B B-C D-C E-B -297 / 0 E-D 0/0 -18.2 -18.2 0.03 (4) 10.00

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

PATTERN-LOADING CHECK APPLIED TO THIS TRUSS.

DESIGN CRITERIA

34.8 PSF 6.0 PSF 0.0 PSF 7.3 PSF 48.1 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, NBC-2019AE
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 48.1 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 34.8 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/999 (0.00")

CSI: TC=0.16/1.00 (A-B:1) , BC=0.03/1.00 (D-E:4) , WB=0.00/1.00 (B-D:1) , SSI=0.10/1.00 (A-B:1)

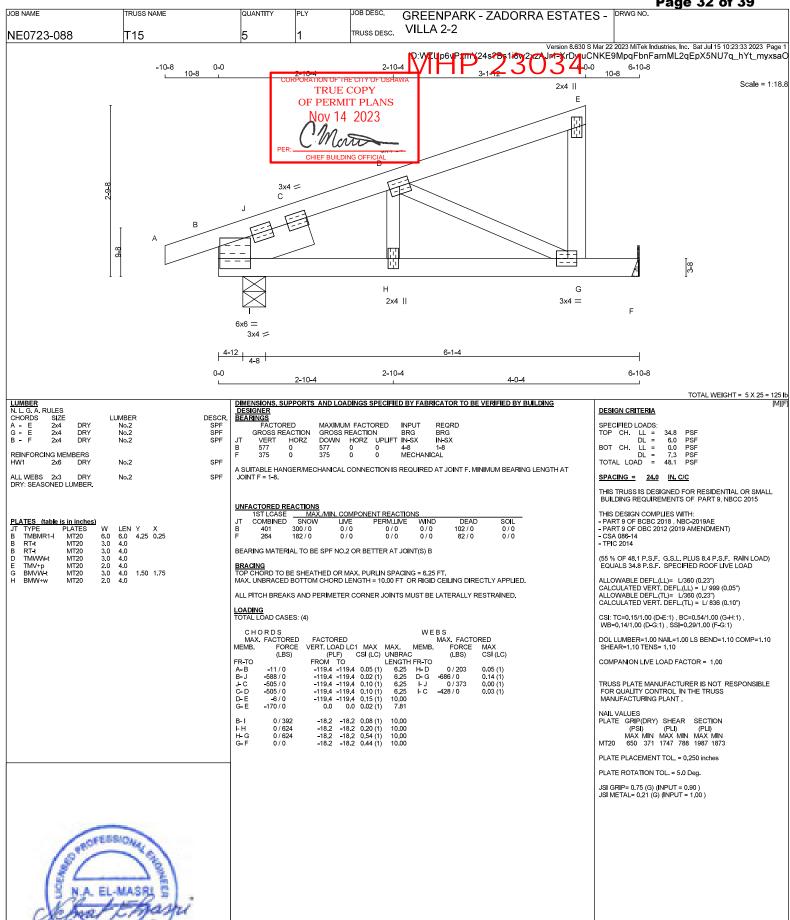
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

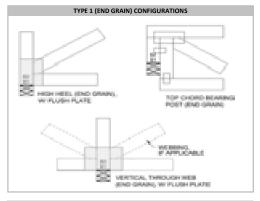

PLATE ROTATION TOL. = 5.0 Deg.

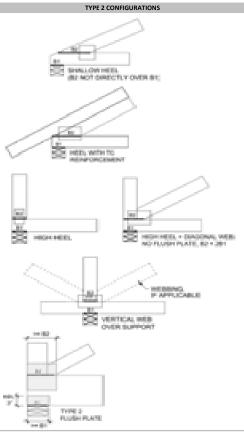
JSI GRIP= 0.25 (B) (INPUT = 0.90) JSI METAL= 0.07 (C) (INPUT = 1.00)

Page 32 of 39

KOTT TRUSS BEARING CAPACITY TABLE (INTERNAL USE ONLY)

TRUSS BEARING CA	PACITIES [L	BS.], BY TRU	SS LUMBER	TYPE (SUPP	ORTED ON	SPF #2 TOP	PLATE)		7·Jun-71	
				TYPE 1, NO	FL <mark>ISH PLA</mark>	ALE BZ>=ZB1				
	BEARING	1-P	LY	2-PLY		Tally CO		DV 4-	DV 4-PLY	
NO BEARING	PLATE (B1)	MSR2100	SPF No.2 MSR1950	MASR 2100	SFF No.2 MSR1950	M2k51b0E	SPF No.2	MSPANOS	SPF No.: MSR1950	
ENHANCER	1 1/2"	13	83	27	67	Na	<i>δ</i> 11 // 2	N22 5!	34	
	2x4	3712	3228	7425	6457	700	14 2	023	12)14	
	2x6	5834	5073	11668	10146	[/] <i>///</i>	1 -	_	20293	
	2x8	7690	6687	15381	13375		low	—	<u>26</u> 750	
				TYPE		LATE	NIN DING	SEELOUL		
	BEARING	1-P	LY	2-1	PLY	CHILL	SOLDING (FFICIAL	DIV	
FLUSH PLATE	PLATE	MSR2100	SPF No.2	MSR2100	SPF No.2	MSR2100	SPF No.2	MSR2100	SPF No.2	
	(B1)	IVISKZ100	MSR1950	WISKZIOU	MSR1950	WI3K2100	MSR1950	WISKZIOU	MSR1950	
12031112112	1 1/2"	13	83	27		41	.51	5!	34	
	2x4	3712		7425			138		851	
	2x6	5834		11668		17503			337	
	2x8	76			15381 23072		30763			
				1, FLUSH P	LATE + BEA	ATE + BEARING ENHANCER				
BEARING	BEARING	1-P			PLY	3-PLY		4-PLY		
ENHANCER	PLATE	MSR2100	SPF No.2	MSR2100	SPF No.2	MSR2100	SPF No.2	MSR2100	SPF No.2	
	(B1)		MSR1950		MSR1950		MSR1950		MSR1950	
CPn-4 (Simpson)	2x4	45			30		545		065	
CPn-6 (Simpson)	2x6	70: 6007	4898	12014	190 9796		285 14694	19801	390 19592	
CP4-9 (KOTT) CP6-9 (KOTT)	2x4 2x6	8677	4898 7075	17354	14150	26031	21225	19801 31117	28300	
SBP4 (MiTek)	2x6 2x4	72								
SBP6 (MiTek)	2x4 2x6	110			11001 16865		14714 22699		18427 28534	
SBP6 (MiTek)	2x8	128			578	28269			960	
JDI O (MITTER)	2.40	120			,,,				300	


HP 23034	
TYPE I CONFIG	GURATIONS
SEE STANDARD HEES.	HOPPINESS DIRACOVA, MESS. NO FLASH PLATE, SQ == (St
SE HER. WITH MEDIA	MESSAGE STATE OF THE STATE OF T
N HEB HITCHS	SE SERVICE OVER SHAPE


					TYPE 1 (EN	ND GRAIN)					
	BEARING	POST (B2)	1-6	PLY	2-PLY		3-PLY		4-PLY		
	PLATE	ABOVE	MSR2100	SPF No.2	MSR2100	SPF No.2	MSR2100	SPF No.2	MSR2100	SPF No.2	
	(B1)	BEARING	(EG)	(EG)	(EG)	(EG)	(EG)	(EG)	(EG)	(EG)	
END GRAIN	2x4	2x4	37	12	74	25	11138		14851		
	2x6	2x6	58	34	116	11668		503	233	37	
			MSR1950 (EG)	SPF No.2	MSR1950 (EG)	SPF No.2	MSR1950 (EG)	SPF No.2	MSR1950 (EG)	SPF No.2	
	2x8	2x8	76	90	153	381	230	072	307	63	
END GRAIN,	TYPE 1 (END GRAIN), FLUSH PLATE + BEARING ENHANCER										
BFARING	BEARING	POST (B2)	1-6	PLY	2-F	PLY	3-F	PLY	4-P	LY	
ENHANCER	PLATE	ABOVE	MSR2100	SPF No.2	MSR2100	SPF No.2	MSR2100	SPF No.2	MSR2100	SPF No.2	
ENTIANCER	(B1)	BEARING	(EG)	(EG)	(EG)	(EG)	(EG)	(EG)	(EG)	(EG)	
CPn-4 (Simpson)	2x4	2x4	45	15	90	30	13!	13545		18065	
CPn-6 (Simpson)	2x6	2x6	70	95	14:	190	212	285	283	90	
CP4-9 (KOTT)	2x4	2x6	15585	9006	19801	18013	198	301	198	01	
			MSR1950	SPF No.2	MSR1950	SPF No.2	MSR1950	SPF No.2	MSR1950	SPF No.2	
			(EG)	(EG)	(EG)	(EG)	(EG)	(EG)	(EG)	(EG)	
CP6-9 (KOTT)	2x6	2x8	21834	13009	31117	26019	31:	117	311	17	

				TVDE	2 NO ELLIS	H PLATE, B2	×2D1				
	BEARING	POST (B2)	1-	PIY		PLY		PLY	4-P	IY	
	PLATE (B1)	ABOVE BEARING	MSR2100	SPF No.2 MSR1950	MSR2100	SPF No.2 MSR1950	MSR2100	SPF No.2 MSR1950	MSR2100	SPF No.2 MSR1950	
		2x4	2639	2152	5279	4304	7919	6457	10588	8609	
NO BEARING	2x4	2x6	3393	2767	6787	5534	10181	8302	13575	11069	
FNHANCER		2x4	3393	2767	6787	5534	10181	8302	13575	11069	
ENHANCER	26	2x6	4147	3382	8296	6764	12444	10146	16592	13529	
	2x6	2x8	4808	3920	9616	7840	14424	11761	19232	15681	
		2x10	5562	4535	11124	9070	16686	13606	22248	18141	
	2x8	2x4	3959	3228	7919	6457	11878	9685	15838	12914	
		2x6	4808	3920	9616	7840	14424	11761	19232	15681	
		2x8	5467	4458	10935	8916	16403	13375	21871	17833	
	TYPE 2, FLUSH PLATE										
	BEARING	POST (B2)	1-PLY		2-PLY		3-PLY		4-PLY		
	PLATE (B1)	ABOVE BEARING	MSR2100	SPF No.2 MSR1950	MSR2100	SPF No.2 MSR1950	MSR2100	SPF No.2 MSR1950	MSR2100	SPF No.2 MSR1950	
	2x4	2x4 2x6	TYPE 1 APPLIES								
FLUSH PLATE		2x4	4672	3809	9344	7619	14016	11429	18689	15238	
	2x6	2x6									
	2x6	2x8				TYPE 1	APPLIES				
		2x10									
		2x4	4672	3809	9344	7619	14016	11429	18689	15238	
	2x8	2x6	7342	5986	14684	11973	22026	17959	29368	23946	
		2x8				TYPE 1	APPLIES				

NOTES:

- $\textbf{1.} \ \mathsf{Factored} \ \mathsf{truss} \ \mathsf{reaction} \ \mathsf{shall} \ \mathsf{not} \ \mathsf{exceed} \ \mathsf{bearing} \ \mathsf{capacity} \ \mathsf{corresponding} \ \mathsf{to} : \mathsf{configuration} \ \mathsf{type}, \ \mathsf{size} \ \mathsf{of} \ \mathsf{bearing} \ \mathsf{surfaces}, \ \mathsf{truss}$ lumber, # of plies, and applicable enhancers.
- 2a. Values in table are in conformance with CSA 086-14 Cl. 6.5.7 and TPIC 2014-Update 2, and may be used for residential or $commercial\ designs.$
- 2b. Values in table are in conformance with MiTek Canada Detail B37821Q "SPF Bearing Capacities".
- 2c. Values in table are in conformance with Simpson Catalogue C-C-CAN2020.
- 3a. Conditions for use of table values include: standard duration (Ko=1), dry lumber (Kscp=1), untreated lumber (KT=1), length of bearing factor not applied (KB=1).
- 3b. Size factor (Kzcp) applied to support material calculation when acceptable. Flush plate factor (KP) applied to truss material calculation when acceptable (ie. excludes end grain).
- 3c. Flat roof factor (KF) must applied for trusses making up a flat roof system; to do so, multiply bearing capacity values by 0.75 for this application.
- 4. Bearing plate is to be specified by the project engineer; values in table assume a bearing material of SPF #2 (or better).
- 5. When required, flush plate must not be located further than 1/4" away from bearing surface, and must cover the entire bearing plate length (B1).
- 6. When required, bearing enhancer must be installed as per manufacturer's guidelines.
- Type 2 bearing configurations can be converted to use Type 1 table values as outlined in TPIC 2014-Update 1 Cl. 7.5.9.
 This table is not valid after April 30, 2022.

LATERAL AND WITHDRAWAL RESISTANCE OF BEARING ANCHORAGE BY TOE-NAILS

NAIL TYPE	Length	Diameter		istance per nail .bs.)	WITHDRAWAL Resistance per nai (Lbs.)		
	(in)	(in)	SPF	D. FIR	SPF	D. FIR	
COMMON	3.00	0.144	122	139	30	42	
COMMON	3.25	0.144	127	144	32	45	
AAIKE	3.50	0.160	152	173	38	52	
CONANAONI	3.00	0.122	96	108	26	36	
COMMON SPIRAL	3.25	0.122	97	108	28	40	
SPIRAL	3.50	0.152	142	161	36	50	
3.25" Gun nail	3.25	0.120	94	105	28	39	

Note: If using truss with D. Fir lumber and SPF bearing plate, use tabulated SPF values in table,

Nail type:	Common wire	Common spiral	Common wire	Common spiral	Gun Nail
Diameter (in.)	0.160	0.152	0.144	0.122	0.120
Length (in.)	3.50	3.50	3.00	3.00	3.25
LUMBER		MAXIMU	M NUMBER OF TO	DE-NAILS	
2x4 SPF	2	2	3	3	3
2x6 SPF	4	4	4	5	5
2x4 D. FIR	2	2	2	2	2
2x6 D. FIR	3	3	3	4	4

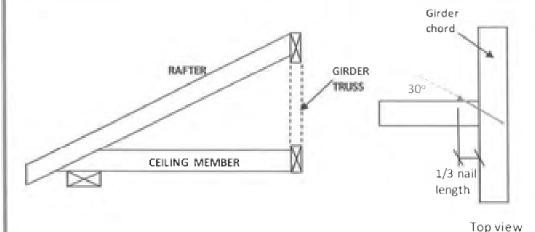
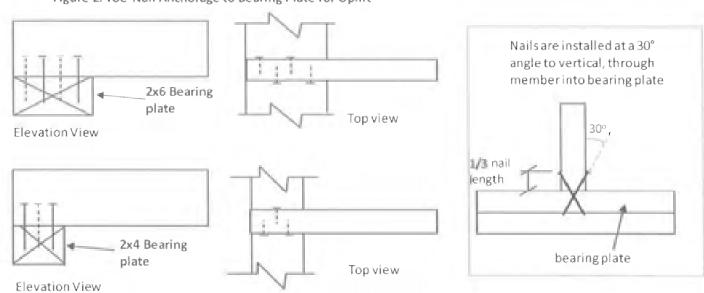


Figure 1: Toe-Nailing Rafter / Ceiling Member to Girder Truss

©2020 MiTek Canada Inc., 240 Stirling Crescent, Bradford, Ontario, L3Z 4L5 | (800) 268-3434,


Page 1 of 2

PEO Certificate No. 10889485

Figure 2: Toe-Nail Anchorage to Bearing Plate for Uplift

NOTES:

- Rafter and ceiling members may be connected to top and bottom chords of girder truss by toe-nailing the members into
 the girder chords (see fig. 1), provided the factored vertical reactions of the supported members do not exceed the
 lateral resistance of the toe-nails. Mechanical connectors (hangers) are required if factored vertical reactions exceed
 the toe-nail capacity, or if the connection must resist horizontal loads (loads perpendicular to the face of girder or rafter).
- 2. Trusses, rafters or ceiling members may be anchored to the bearing plate with toe-nails (see fig. 2), provided that the factored uplift reactions due to wind or earthquake loads do not exceed the withdrawal resistance of the toe-nails. Mechanical anchors (tie-downs) are required for reactions that exceed the toe-nail withdrawal capacity. Toe-nail anchorage to bearing plates is NOT permitted if uplift reactions are generated from gravity loads (snow, floor live, dead).
- 3. Tabulated toe-nail resistances on page 1 are for one toe-nail. Multiply unit values by the number of nails used in the connection. Maximum number of nails in a connection shall not exceed the tabulated limits shown on page 1 for a given lumber size /species.
- Nail values are based on specific gravity of G = 0.42 (SPF) and G = 0.49 (D. Fir).
- 5. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member.
- **6.** For wind / earthquake loads, tabulated lateral resistances may be multiplied by 1.15 (K_D factor). No increases are permitted for tabulated withdrawal resistances.
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA 086-19, Clause 12.9.

Certificate No. 10889485

ROFESSIONA

2022-04-05

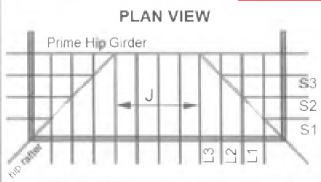
C. Cordogiennis

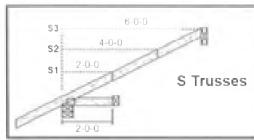
90553736

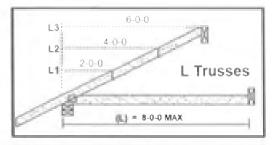
Page 2 of 2

MiTek

HP 23034 MSD2015-J

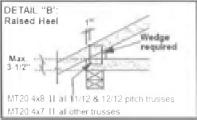

Issued: MARCH 17, 2021


Expiry: APRIL 30, 2023

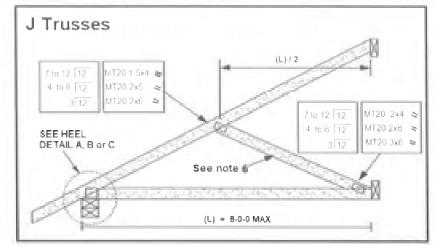


ORATION OF THE CITY OF OSHAWA TRUE COPY

OF PERMIT PLANS



Specified Load Rating:

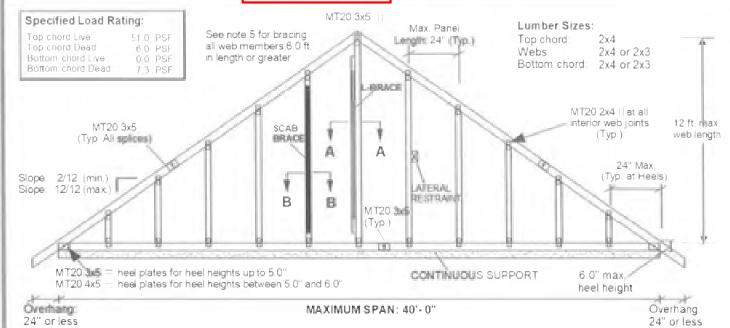

51.0 PSF or less Top chord Live: Top chord Dead: 6.0 PSF or less Bottom chord Live: 0.0 PSF Bottom chord Dead: 7.3 PSF or less

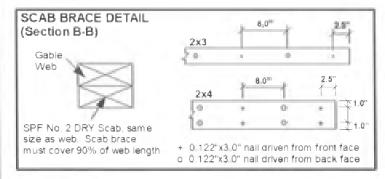
CANTILEVER DETAIL "C"								
SLOPE	MAX CANT	WEDGE PLATE	WEDGE SIZE					
3/12	17"	3.8.5	2 X 3					
4/12	14"	3 x 5	2 X 3					
5/12	12"	3 X 5	2 X 4					
6/12	10"	3 X 5	2 X 4					
7/12	9"	3 X 5	2 X 6					
8/12	8.5"	3 X 5	2 X 6					
9/12	8"	3 X 5	2 X 6					
10/12	7.5"	3 X 5	2 X 5					

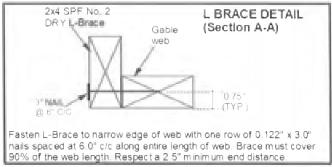
NOTES:

- 1. This detail is valid only for projects conforming to PART 9 NBCC 2015 that do not require a wind analysis to be incorporated into the design of the trusses.
- 2. Overhang length shall not exceed 24 inches.
- All lumber shall be 2x4 SPF (or D-Fir) DRY No. 2 grade or better.
- 4. All plates specified are MITEK MT20, pressed into both faces of each truss. Heel plates of all trusses shall conform to heel details 'A', 'B' or 'C'.
- 5. Diagonal hip rafter design shall conform to section 9.23.14.6 of NBCC 2015.
- 6. For 6.0 ft. or less span, diagonal web on truss 'J" is optional. Girder design must reflect choice of partial jack ('J' with diagonal web) or open jack ('J' without diagonal web)
- 7. All truss-to-rafter and truss-to-truss connections shall be specified as per MITEK standard detail 'MSD2015-H: Toe-Nail Capacity Details'

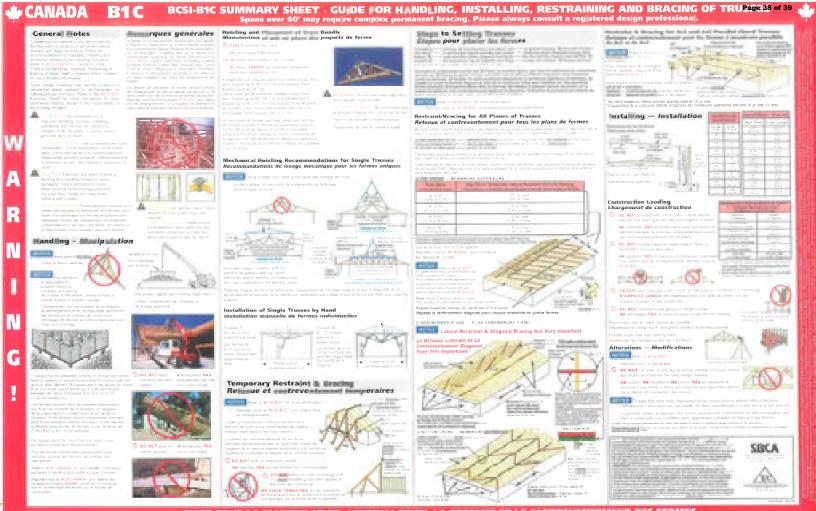
Certificate No. 10889485




МНБарзватан МSD2015-К

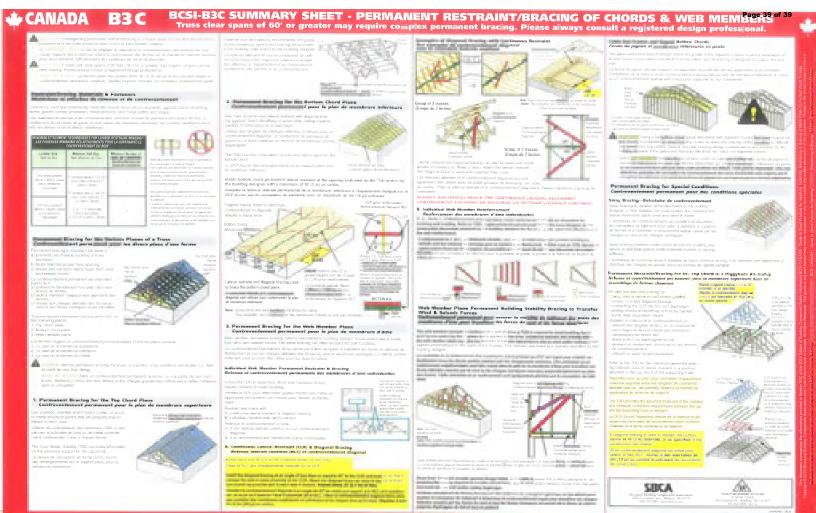

Issued: MARCH 1, 2022

Expiry: APRIL 30, 2024



Notes:

- This detail is only valid for projects conforming to Part 9, NBCC 2015 that do not require a wind analysis to be incorporated into the design of the truss.
- This detail is for vertical (gravity) load rating of the truss only. Truss must be continuously supported over the entire length of bottom chord.
- 3. Maximum web length not to exceed 12.0 ft. Spacing of gable stud webs in the truss not to exceed 24
- 4. Splice joints shall not be located in the first panel adjacent to the heel joint or peak joint.
- 5. Lateral restraint required at half-length of all webs over 6.0 ft. long. Alternatively install an L-Brace or scab brace as shown above. Scab braces shall be limited to 10 ft. long webs or less.
- 6. All plates are MITEK MT20 pressed into both faces of truss.
- All lumber to be SPF (or D-Fir) DRY and of No.2 grade or better. 7.
- Additional building bracing is typically installed to brace the face of the end wall assembly. See BCSI Canada 'Building Designer Responsibilities for Gable End Frame Bracing' for additional information on building bracing for gable-end assemblies.



AVERTISSEMENT! Contre pour La Manipolation, L'installation, la Retirno et Contre venteur. Venteur les parties supérieures à 12 in 100 pur montre de contre d

RETENDE ET CONTREVENTEINENT PERMANENTS DES MEMBRURES D'AME is portées de 18,3m (60 pi) et plus peuvent exiger un contreventement permanent complexe. Veuillez toujours consulter un ingénieur professionne