

Products						
PlotID	Length	Product	Plies	Net Qty		
J1	14-00-00	9 1/2" NI-40x	1	11		
J2	14-00-00	9 1/2" NI-40x	2	8		
J3	12-00-00	9 1/2" NI-40x	1	19		
J4	12-00-00	9 1/2" NI-40x	2	4		
J5	10-00-00	9 1/2" NI-40x	1	18		
J6	6-00-00	9 1/2" NI-40x	1	4		
J7	4-00-00	9 1/2" NI-40x	1	3		
B1	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2		
B7	12-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2		
B3	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	2		
B2	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1		
B5	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1		
B6	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1		

(Connector Summary							
Qty Manuf Product								
4	H1	IUS2.56/9.5						
6	H1	IUS2.56/9.5						
4	H1	IUS2.56/9.5						
3	H1	HUS1.81/9.5						
1	H1	HUS1.81/9.5						

BUILDER: GREENPARK

SITE: STARTIME

MODEL: BRIDGEFORD 1

ELEVATION: 1

LOT:

CITY: VAUGHAN

SALESMAN: MARIO DESIGNER: AJ REVISION:

NOTES:

CERAMIC TILE APPLICATION

AS PER O.B.C. 9.30.6. SQUASH BLOCKS

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING

WALLS.

MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

CANTILEVERED JOISTS

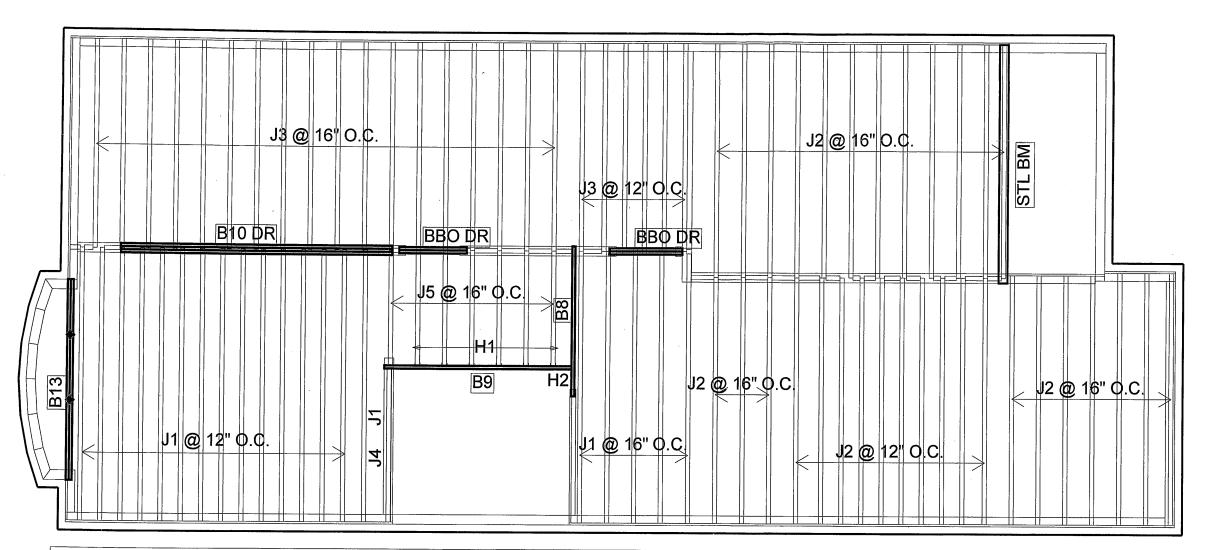
REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE

AT

ENDS.

REFER TO THE NORDIC

INSTALLATION GUIDE FOR PROPER


STORAGE AND INSTALLATION.

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 fb/ft TILED AREAS: 20 fb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 5/2/2016

1st FLOOR

Products							
PlotID	Length	Product	Plies	Net Qty			
J1	14-00-00	9 1/2" NI-40x	1	20			
J2	12-00-00	9 1/2" NI-40x	1	32			
J3	10-00-00	9 1/2" NI-40x	1	24			
J4	8-00-00	9 1/2" NI-40x	1	1			
J5	6-00-00	9 1/2" NI-40x	1	7			
B10 DR	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	3	3			
B9	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			
B13	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B8	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			

Connector Summary							
Qty	Manuf	Product					
6	H1	IUS2.56/9.5					
1	H1	HUS1.81/9.5					

BUILDER: GREENPARK

SITE: STARTIME

MODEL: BRIDGEFORD 1

ELEVATION: 1

LOT:

CITY: VAUGHAN

SALESMAN: MARIO DESIGNER: AJ REVISION:

NOTES:

CERAMIC TILE APPLICATION

AS PER O.B.C. 9.30.6. SQUASH BLOCKS

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING

WALLS.

MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

CANTILEVERED JOISTS

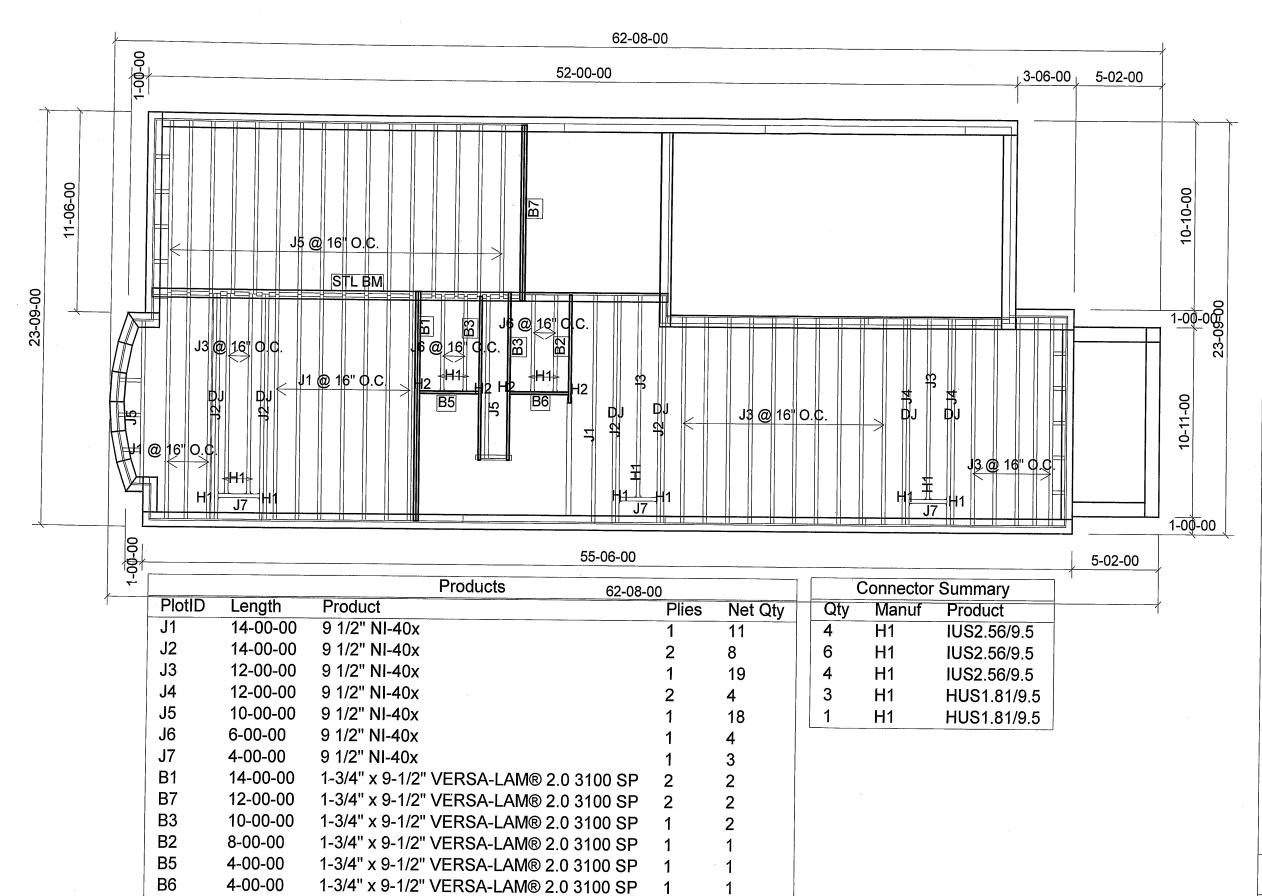
REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE

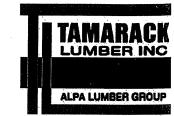
AT ENDS.

REFER TO THE NORDIC

INSTALLATION GUIDE FOR PROPER

STORAGE AND INSTALLATION.


DESIGN LOADS: L/480.000


LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 fb/ft TILED AREAS: 20 fb/ft

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 5/2/2016

2nd FLOOR

BUILDER: GREENPARK

SITE: STARTIME

MODEL: BRIDGEFORD 1

ELEVATION: 2

LOT:

CITY: VAUGHAN

SALESMAN: MARIO DESIGNER: AJ REVISION:

NOTES:

CERAMIC TILE APPLICATION

AS PER O.B.C. 9.30.6. SQUASH BLOCKS

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING

WALLS.

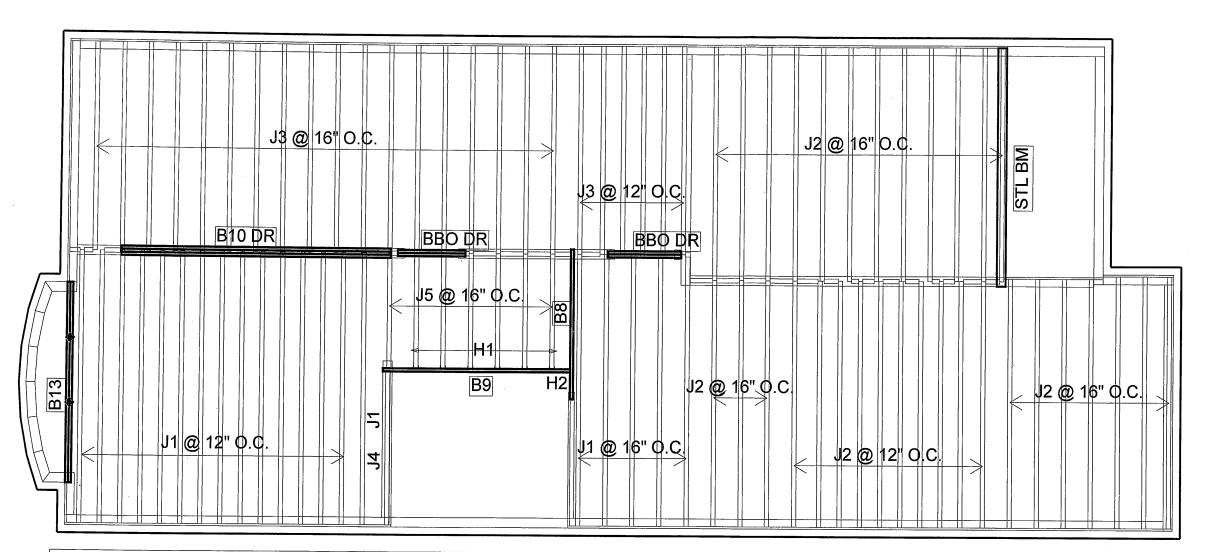
MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

CANTILEVERED JOISTS

REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT

ENDS.

REFER TO THE NORDIC


INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION.

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 Pb/ft TILED AREAS: 20 hb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 5/2/2016

1st FLOOR

	Products						
PlotID	Length	Product	Plies	Net Qty			
J1	14-00-00	9 1/2" NI-40x	1	20			
J2	12-00-00	9 1/2" NI-40x	1	32			
J3	10-00-00	9 1/2" NI-40x	1	24			
J4	8-00-00	9 1/2" NI-40x	1	1			
J5	6-00-00	9 1/2" NI-40x	1	7			
B10 DR	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	3	3			
B9	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			
B13	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B8	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			

Connector Summary								
Qty	Manuf	Product						
6	H1	IUS2.56/9.5						
1	H1	HUS1.81/9.5						

BUILDER: GREENPARK

SITE: STARTIME

MODEL: BRIDGEFORD 1

ELEVATION: 2

LOT:

CITY: VAUGHAN

SALESMAN: MARIO **DESIGNER: AJ REVISION:**

NOTES:

CERAMIC TILE APPLICATION

AS PER O.B.C. 9.30.6. **SQUASH BLOCKS**

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING

WALLS.

MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

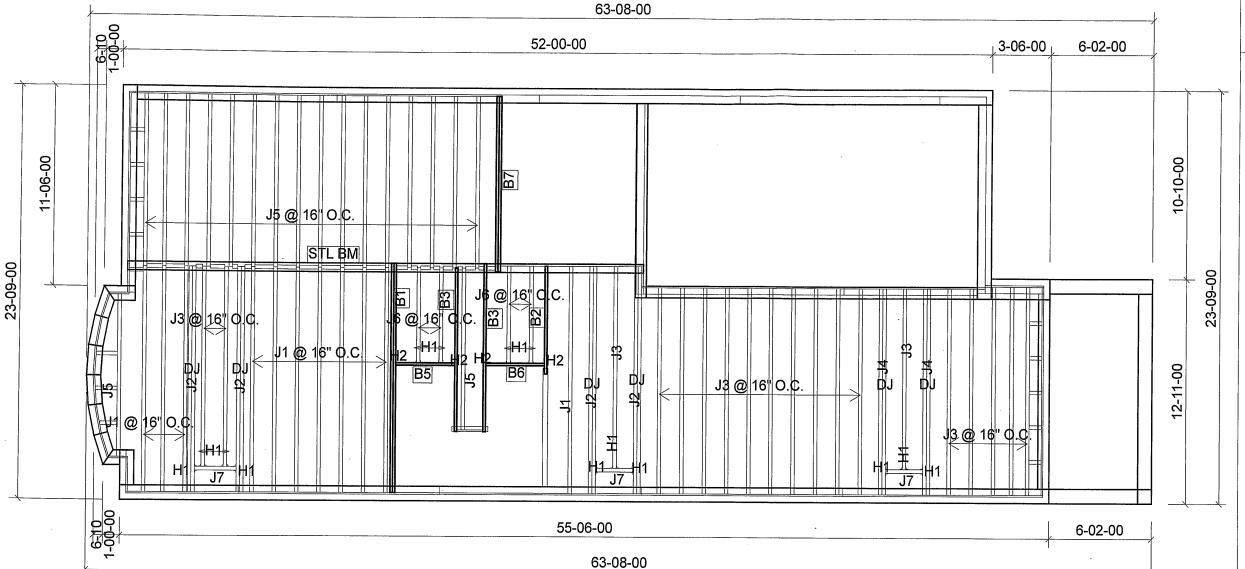
CANTILEVERED JOISTS

REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE

ΑT

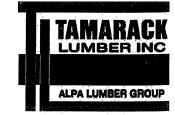
ENDS.

REFER TO THE NORDIC


INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION.

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 hb/ft TILED AREAS: 20 hb/ft

SUBFLOOR: 5/8" GLUED AND NAILED


DATE: 5/2/2016

2nd FLOOR

Products								
PlotID	Length	Product	Plies	Net Qty				
J1	14-00-00	9 1/2" NI-40x	1	11				
J2	14-00-00	9 1/2" NI-40x	2	8				
J3	12-00-00	9 1/2" NI-40x	1	19				
J4	12-00-00	9 1/2" NI-40x	2	4				
J5	10-00-00	9 1/2" NI-40x	1	18				
J6	6-00-00	9 1/2" NI-40x	1	4				
J7	4-00-00	9 1/2" NI-40x	1	3				
B1	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2				
B7	12-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2				
B3	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	2				
B2	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1				
B5	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1				
B6	4-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1				

Connector Summary								
Qty Manuf Product								
4	H1	IUS2.56/9.5 IUS2.56/9.5 IUS2.56/9.5						
6	H1							
4	H1							
3	H1 •	HUS1.81/9.5						
1	H1	HUS1.81/9.5						

BUILDER: GREENPARK

SITE: STARTIME

MODEL: BRIDGEFORD 1

ELEVATION: 3

LOT:

CITY: VAUGHAN

SALESMAN: MARIO DESIGNER: AJ REVISION:

NOTES:

CERAMIC TILE APPLICATION

AS PER O.B.C. 9.30.6. **SQUASH BLOCKS**

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING

WALLS.

MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

CANTILEVERED JOISTS

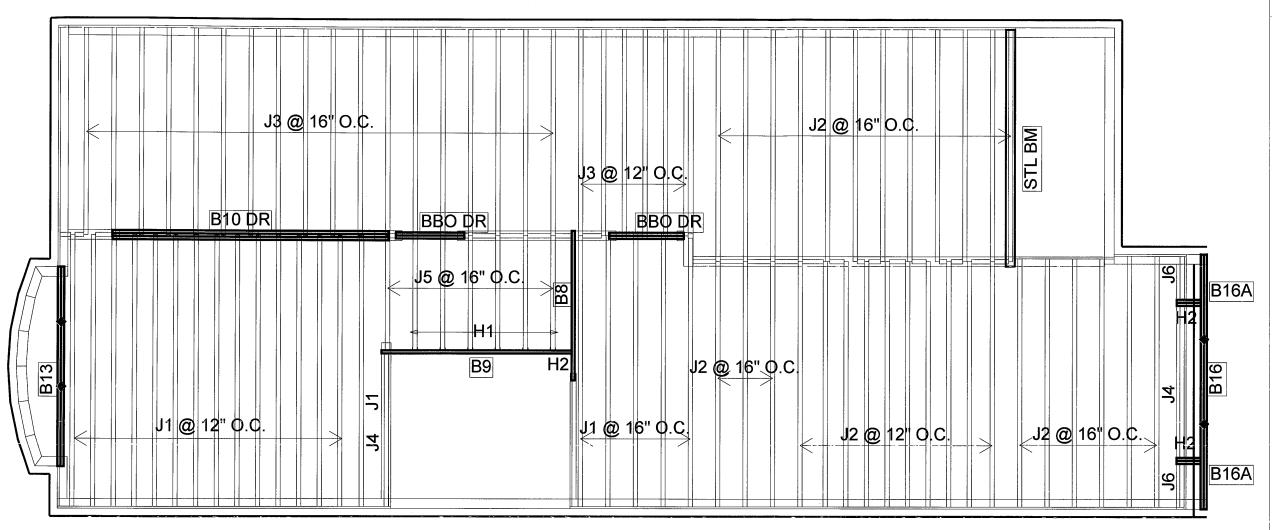
REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE

ENDS.

AT

REFER TO THE NORDIC

INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION.


DESIGN LOADS: L/480.000

LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 h/ft TILED AREAS: 20 lb/ft

SUBFLOOR: 3/4" GLUED AND NAILED

DATE: 5/2/2016

1st FLOOR

Products							
PlotID	Length	Product	Plies	Net Qty			
J1	14-00-00	9 1/2" NI-40x	1	20			
J2	12-00-00	9 1/2" NI-40x	1	31			
J3	10-00-00	9 1/2" NI-40x	1	24			
J4	8-00-00	9 1/2" NI-40x	1	2			
J5	6-00-00	9 1/2" NI-40x	1	7			
J6	4-00-00	9 1/2" NI-40x	1	2			
B10 DR	14-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	3	3			
B9	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			
B13	10-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	2	2			
B8	8-00-00	1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP	1	1			

Connector Summary								
Qty Manuf Product								
6	H1	IUS2.56/9.5						
1	H1	HUS1.81/9.5						
2	H2	HGUS410						

BUILDER: GREENPARK

SITE: Startime

MODEL: BRIDGEFORD 1

ELEVATION: 3

LOT:

CITY: VAUGHAN

SALESMAN: MARIO DESIGNER: AJ REVISION:

NOTES:

CERAMIC TILE APPLICATION AS PER O.B.C. 9.30.6.

SQUASH BLOCKS

2x4 OR 2x6 #2 S.P.F. REQ'D UNDER INTERIOR UNIFORM LOAD BEARING WALLS.

MULTIPLE SQUASH BLOCKS REQ'D UNDER CONCENTRATED LOADS.

CANTILEVERED JOISTS

REQUIRE I-JOIST BLOCKING ALONG BEARING AND RIMBOARD CLOSURE AT ENDS.

REFER TO THE NORDIC

INSTALLATION GUIDE FOR PROPER STORAGE AND INSTALLATION.

LOADING:

DESIGN LOADS: L/480.000 LIVE LOAD: 40.0 lb/ft² DEAD LOAD: 15.0 lb/ft² TILED AREAS: 20 lb/ft²

SUBFLOOR: 5/8" GLUED AND NAILED

DATE: 2016-07-28

2nd FLOOR

Boise Cascade Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B1(i1705)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:22:39

Build 4340

Job Name:

Address:

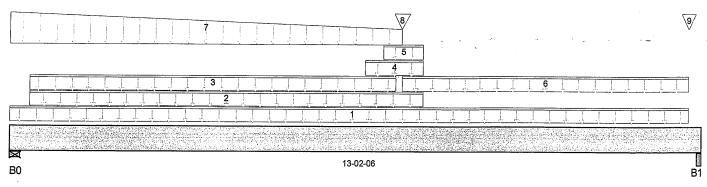
City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-1.mmdl


Description: Designs\Flush Beams\Basment\Flush Beams\B1(i1705)

Specifier:

Designer:

Company:

Misc:

Total Horizontal Product Length = 13-02-06

Reaction Summary (Down / Uplift) (lbs)										
Be aring	Live	De ad	Snow	Wind						
B0, 4-3/8"	1,514 / 0	1,224 / 0								
B1.6"	1419/0	964 / 0								

Lo	ad Summary					Live	Dead	Snow	Wind	Trib.
Tag Description		Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
1	FC1 Floor Material	Unf. Lin. (lb/ft)	L	00-00-00	12-11-06	8	4			n/a
2	9(i564)	Unf. Lin. (lb/ft)	L	00-04-06	07-09-12		81			n/a
3	9(i564)	Unf. Lin. (lb/ft)	L	00-04-06	07-03-12	33	17			n/a
4	9(i564)	Unf. Lin. (lb/ft)	L	06-08-10	07-09-12	987	464			n/a
5	9(i564)	Unf. Lin. (lb/ft)	L	07-00-12	07-09-12	203	76			n/a
6	FC1 Floor Material	Unf. Lin. (lb/ft)	L	07-04-14	12-11-06	30	15			n/a
7	FC1 Floor Material	Trapezoidal (lb/ft)	L	00-00-00		102	51			n/a
		. , ,			07-04-14	74	37	_	-	n/a
8	B5 (i1725)	Conc. Pt. (lbs)	L	07-04-14	07-04-14	544	281			n/a
9	4(i556)	Conc. Pt. (lbs)	L	12-11-04	12-11-04		30			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	16,039 ft-lbs	25,408 ft-lbs	63.1%	1	07-03-12
End Shear	3,551 lbs	11,571 lbs	30.7%	1	01-01-14
Total Load Defl.	L/261 (0.573")	0.623"	91.9%	4	06-07-12
Live Load Defl.	L/440 (0.34")	0.415"	81.9%	5	06-07-12
Max Defl.	0.573"	n/a	n/a	4	06-07-12
Span / Depth	15.7	n/a	n/a		00-00-00

Bea	ring Supports	Dim . (L x W)	Demand	De mand/ Re sistance Support	De mand/ Resistance Member	Material
B0	Wall/Plate	4-3/8" x 3-1/2"	3,801 lbs	46.5%	20.3%	Unspecified
B1	Beam	6" x 3-1/2"	3,333 lbs	29.7%	13%	Unspecified

Notes Page 1 of 2

DWG NO. TAM 2763616 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B1(i1705)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:22:39

Build 4340

Job Name:

Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B1(i170

Designer: Company:

Misc:

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume Member is Fully Braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSAO86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

CONFORMS TO OBG 2012

Deflections less than 1/8" were ignored in the results.

Connection Diagram

a minimum =♥" b minimum = 3"

Calculated Side Load = 91.6 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record. A local Nails (Language of the

Connectors are: [

316" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST® , BC RIM BOARD $^{\text{TM}}$, BCI® , BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO . TAM 2763616 STRUGTURAL COMPONENT ONLY

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B2(i1588)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:11:24

Build 4340

Job Name:

Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B2(i1588)

Specifier:

Designer:

Company:

Misc:

7	3/													
	Y					2	1	T	7-			-	1	
					1							1]		
en de la companya de La companya de la co		19 20 15 2 482 8												
⊠ B0				,	06-02-08									B [*]

Total Horizontal Product Length = 06-02-08

Reaction Summary (Down / Uplift) (lbs)				
Be aring	Live	De ad	Snow	Wind	
B0, 4"	688/0	460/0			
B1, 4-1/2"	175/0	108/0			

Lo	ad Summary				Live	Dead	Snow Wind	Trib.
	g Description *	Load Type	Ref. Start	En d	1.00	0.65	1.00 1.15	
1	FC1 Floor Material	Unf. Lin. (lb/ft)	L 00-00-00	06-02-08	30	15		n/a
2	FC1 Floor Material	Unf. Lin. (lb/ft)	L 00-06-08	06-02-08	18	9		n/a
3	-	Conc. Pt. (lbs)	L 00-06-08	00-06-08	573	397		n/a

CONFORMS TO OBC 2012

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	625 ft-lbs	12,704 ft-lbs	4.9%	1	02-05-11
End Shear	523 lbs	5,785 lbs	9%	1	01-01-08
Total Load Defl.	L/999 (0.01")	n/a	n/a	4	02-11-09
Live Load Defl.	L/999 (0.006")	n/a	n/a	5	02-11-09
Max Defl.	0.01"	n/a	n/a	4	02-11-09
Span / Depth	7.1	n/a	n/a		00-00-00

Bearin	ng Supports	Dim . (L x W)	Demand	De mand/ Re sistance Support	De mand/ Resistance Member	Material
B0	Wall/Plate	4" x 1-3/4"	1,607 lbs	53.7%	18.8%	Unspecified
B1	Beam	4-1/2" x 1-3/4"	397 lbs	11.8%	4.1%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume Member is Fully Braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA 086.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Deflections less than 1/8" were ignored in the results.

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products 115610NA

POVINCE OF ON DHENT . PAM 27637. 16 STRUCTURAL

Page 1 of 1

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B3(i1583)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:11:24

BC CALC® Design Report

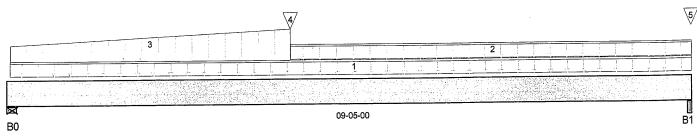
Build 4340 Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R


File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B3(i1583)

Specifier: Designer:

Company:

Misc:

Total Horizontal Product Length = 09-05-00

Reaction Summary (Do	wn / Uplift) (lbs)	_		100	
Be aring	Live	De ad	Snow	Wind	
B0, 3-1/2"	766/0	411/0			
R1 3"	483/0	274/0			

	- d C					Live	Dead	Snow	Wind	Trib.
	ad Summary Description	Load Type	Re	f. Start	En d	1.00	0.65	1.00	1.15	
1	FC 1 Floor Material	Unf. Lin. (lb/ft)	L	00-00-09	09-05-00	9	4			n/a
2	FC1 Floor Material	Unf. Lin. (lb/ft)	L	03-10-08	09-05-00	18	9			n/a
3	FC1 Floor Material	Trapezoidal (lb/ft)	L	00-00-09		91	45			n/a
J	10111001 Material	mapazaidai (iai iy			03-10-08	146	73			n/a
4	B5(i1608)	Conc. Pt. (lbs)	L	03-10-08	03-10-08	571	294			n/a
5	5(i557)	Conc. Pt. (lbs)	L	09-04-12	09-04-12	45	29			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	4,191 ft-lbs	12,704 ft-lbs	33%	1	03-10-08
End Shear	1.590 lbs	5,785 lbs	27.5%	1	01-01-00
Total Load Defl.	L/734 (0.147")	0.45"	32.7%	4	04-05-04
Live Load Defl.	L/999 (0.096")	n/a	n/a	5	04-05-04
Max Defl.	0.147"	n/a	n/a	4	04-05-04
Span / Depth	11.4	n/a	n/a		00-00-00

				De mand/ Re sistance	Demand/ Resistance	
Bearir	ng Supports	Dim . (L x W)	Demand	Support	Member	Material
B0	Wall/Plate	3-1/2" x 1-3/4"	1,663 lbs	63.6%	22.3%	Unspecified
B1	Beam	3" x 1-3/4"	1,066 lbs	47.5%	16.6%	Unspecified

Notes

DWG NO . TAM 22638 16 STRUGTURAL COMPONENT ONLY

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B3(i1583)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:11:24

Build 4340

Job Name:

Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B3(i158

Specifier:

Misc:

Designer: Company:

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume Member is Fully Braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSAO86.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Deflections less than 1/8" were ignored in the results.

CONFORMS TO OBC 2012

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM 27638 16 STRUCTURAL COMPONENT ONLY

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B5(i1608)

Renort

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:11:24

BC CALC® Design Report

*

Build 4340 Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs\Flush Beams\Basment\Flush Beams\B5(i1608)

Specifier: Designer: Company:

Misc:

							7	2/										3/	,			 	
		1				1	I	7	-		1		!	Ţ			 						Ξ
\	7,14	**************************************																		7 7 1] 4
30										(03-06	6-00)										Е

Total Horizontal Product Length = 03-06-00

			<u> </u>					
Reaction Summary (Down / Uplift) (lbs)								
Bearing	Live	De ad	Snow	Wind				
B0	543/0	280/0						
B1	572/0	295/0						

Load Summary			Live	Dead	Snow Wind	Trib.
Tag Description	Load Type	Ref. Start	End 1.00	0.65	1.00 1.15	
1 User Load	Unf. Lin. (lb/ft)	L 00-00-00	03-06-00 240	120		n/a
2 J6(i1594)	Conc. Pt. (lbs)	L 01-04-00	01-04-00 153	77		n/a
3 J6(i1590)	Conc. Pt. (lbs)	L 02-08-00	02-08-00 122	61		n/a

CONFORMS TO OBG 2012

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	998 ft-1bs	12,704 ft-lbs	7.9%	1	01-07-10
End Shear	691 lbs	5,785 lbs	11.9%	1	02-06-08
Total Load Defl.	L/999 (0.006")	n/a	n/a	4	01-09-00
Live Load Defl.	L/999 (0.004")	n/a	n/a	5	01-09-00
Max Defl.	0.006"	n/a	n/a	4	01-09-00
Span / Depth	4.2	n/a	n/a		00-00-00

Bearing Supports	Dim . (L x W)	De man d	De mand/ Resistance Support	Demand/ Resistance Member	Material
B0 Hanger	2" x 1-3/4"	1,165 lbs	n/a	27.3%	Hanger
B1 Hanger	2" x 1-3/4"	1,227 lbs	n/a	28.7%	Hanger

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume Member is Fully Braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA 086.

Design based on Dry Service Condition.

Importance Factor : Normal Part code : Part 9

Deflections less than 1/8" were ignored in the results.

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SY STEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood

DWG NO. TAN 2763916 STRUCTURAL COMMONICAT DALL

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B6(i1595)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:11:24

BC CALC® Design Report

Build 4340

Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs \Flush Beams \Basment\Flush Beams \B6(i1595)

Specifier: Designer: Company:

Misc:

	\ 2 /	3/	V
	1		
			1
B0	03-05-10		В

Total Horizontal Product Length = 03-05-10

Reaction Summary	(Down / Uplift) (lbs)				
Be aring	Live	De ad	Snow	Wind	
B0	535/0	275/0			
B1	574/0	345/0			

Lo	ad Summary					Live	Dead	Snow	Wind	Trib.
	g Description	Load Type	Ref	. Start	En d	1.00	0.65	1.00	1.15	
1	Us er Load	Unf. Lin. (lb/ft)	L	00-00-00	03-05-10	240	120			n/a
2	J6(i1601)	Conc. Pt. (lbs)	L	01-04-00	01-04-00	149	74			n/a
3	J6(i1567)	Conc. Pt. (lbs)	L	02-08-00	02-08-00	120	60			n/a
4	FC1 Floor Material	Conc. Pt. (lbs)	L	03-05-06	03-05-06		53			n/a

CONFORMS TO OBC 2012

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	973 ft-1bs	12,704 ft-lbs	7.7%	1	01-07-01
End Shear	670 lbs	5,7851bs	11.6%	1	02-06-02
Total Load Defl.	L/999 (0.005")	n/a	n/a	4	01-08-14
Live Load Defl.	L/999 (0.003")	n/a	n/a	5	01-08-14
Max Defl.	0.005"	n/a	n/a	4	01-08-14
Span / Depth	4.1	n/a	n/a		00-00-00

Beari	ing Supports	Dim . (L x W)	Demand	De mand/ Re sistance Support	De mand/ Resistance Member	Material
B0	Hanger	2" x 1-3/4"	1,146 lbs	n/a	26.8%	Hanger
B1	Hanger	2" x 1-3/4"	1,292 lbs	n/a	30.2%	Hanger

Notes

Design meets Code minimum (L/240) Total load deflection criteria. Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume Member is Fully Braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA 086.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Deflections less than 1/8" were ignored in the results.

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®. VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B8(i563)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:11:25

BC CALC® Design Report

Build 4340 Job Name:

City, Province, Postal Code:,

Customer:

Address:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B8(i563)

Specifier:

Designer:

Company:

Misc:

		3						 		 	 -
1	1		1 -				2			 <u> </u>	
⊠ B0					07-01-1	10					B1

Total Horizontal Product Length = 07-01-10

Reaction Summary (Down / Uplift) (lbs) Bearing Live Dead Snow Wind								
Bearing	Live		3110W	77/110				
B0, 4"	579/0	268/0						
B1, 5-1/2"	191/0	96 / 0						

Lood Summan			L	Live	Dead	Snow Wind	Trib.
Load Summary Tag Description	Load Type	Ref. Start	End 1	1.00	0.65	1.00 1.15	
1 FC2 Floor Material	Unf. Lin. (lb/ft)	L 00-04-00	01-03-06 9	9			n/a
2 FC2 Floor Material	Unf. Lin. (lb/ft)	L 01-03-06	06-10-14 2	27	10		n/a
3 B9(i565)	Conc. Pt. (lbs)	L 01-04-04	01-04-04	808	269		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	1,281 ft-lbs	12,704 ft-lbs	10.1%	1	01-04-04
End Shear	1.176 lbs	5,785 lbs	20.3%	1	01-01-08
Total Load Defl.	L/999 (0.023")	n/a	n/a	4	03-02-05
Live Load Defl.	L/999 (0.016")	n/a	n/a	5	03-02-05
Max Defl.	0.023"	n/a	n/a	4	03-02-05
Span / Depth	8.2	n/a	n/a		00-00-00

Reari	ng Supports	Dim . (L x W)	De man d	De mand/ Re sistance Support	De mand/ Resistance Member	Material
B0	Wall/Plate	4" x 1-3/4"	1,204 lbs	40.3%	14.1%	Unspecified
B1	Wall/Plate	5-1/2" x 1-3/4"	407 lbs	9.9%	3.5%	Unspecified

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume Member is Fully Braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA 086.

Design based on Dry Service Condition.

CONFORMS TO OBG 2012

Importance Factor: Normal Part code: Part 9 Deflections less than 1/8" were ignored in the results.

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.

DWG NO. TAM 27641-16 STRUCTURAL POMBNEHT BMIV

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B9(i565)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:11:25

Build 4340

Job Name:

Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B9(i565)

Specifier:

Designer:

Company:

Misc:

	F		 -	 		-	1	-,	 <u> </u>			 	 -		-	 	 	7	3/	
			1			-		j	 			 	 			 				
					7.152 v 200									19 19 20 19 19 19 19 19 19 19 19 19 19 19 19 19						
⊠ B0									O	9-02-	-06									В1

Total Horizontal Product Length = 09-02-06

Reaction Summary (Down / Uplift) (lbs)											
Be aring	Live	Dead	Snow	Wind							
B0, 5-1/2"	1,074 / 0	505/0									
R1	614/0	271/0									

Lo	ad Summary				Live	Dead	Snow Wind	Trib.
	g Description	Load Type	Ref. Start	En d	1.00	0.65	1.00 1.15	
1	Us er Load	Unf. Lin. (lb/ft)	L 00-05-08	03-09-08	240	120		n/a
2	Smoothed Load	Unf. Lin. (lb/ft)	L 00-11-08	07-07-08	114	42		n/a
3	J5(i679)	Conc. Pt. (lbs)	L 08-03-08	08-03-08	130	49		n/a

CONFORMS TO OBC 2012

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	3,826 ft-lbs	12,704 ft-lbs	30.1%	1	03-07-00
End Shear	1,824 lbs	5,785 lbs	31.5%	1	01-03-00
Total Load Defl.	L/730 (0.143")	0.435"	32.9%	4	04-06-08
Live Load Defl.	L/999 (0.099")	n/a	n/a	5	04-06-08
Max Defl.	0.143"	n/a	n/a	4	04-06-08
Span / Depth	11	n/a	n/a		00-00-00

				De mand/ Resistance	De mand/ Resistance	
Beari	ng Supports	Dim.(LxW)	Demand	Support	Member	Material
B0 B1	Wall/Plate Hanger	5-1/2" x 1-3/4" 2" x 1-3/4"	2,241 lbs 1,260 lbs	54.5% n/a	19.1% 29.5%	Unspecified Hanger

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume Member is Fully Braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA 086.

Design based on Dry Service Condition.

Importance Factor : Normal Part code : Part 9

Deflections less than 1/8" were ignored in the results.

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered w ood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of BOSE GASE COLOR

Products LLS S. KATSOULAKOS

DWG NO. TAW Z264216
STRUCTURAL
COMPONENT ONLY

Boiso Coscodo Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B13(i632)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:11:25

Build 4340 Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B13(i632)

Specifier:

Designer: Company:

Misc:

	\Z /		3	
		1		
≅ (30		09-06-00		B

Total Horizontal Product Length = 09-06-00

Reaction Summary (Down / Uplift) (lbs)									
Be aring	Live	De ad	Snow	Wind					
B0, 5-1/2"	211/0	202/0	342/0						
B1, 5-1/2"	256/0	243/0	448/0						

Lo	ad Summary		•		Live	Dead	Snow Wind	Trib.
	Description	Load Type	Ref. Start	En d	1.00	0.65	1.00 1.15	
1	FC2 Floor Material	Unf. Lin. (lb/ft)	L 00-00-	00 09-06-0	14	5		n/a
2	Us er Load	Conc. Pt. (lbs)	L 03-09-	08 03-09-0	3 167	152	395	n/a
3	Us er Load	Conc. Pt. (lbs)	L 06-10-	08 06 - 10-08	3 167	152	395	n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	2,777 ft-lbs	25,408 ft-lbs	10.9%	13	03-09-08
End Shear	1,072 lbs	11,571 lbs	9.3%	13	08-03-00
Total Load Defl.	L/999 (0.055")	n/a	n/a	45	04-09-01
Live Load Defl.	L/999 (0.039")	n/a	n/a	61	04-09-01
Max Defl.	0.055"	n/a	n/a	45	04-09-01
Span / Depth	11	n/a	n/a		00-00-00

				De man d/	De man d/	
				Resistance	Resistance	
Bear	ring Supports	Dim . (L x W)	Demand	Support	Member	Material
B0	Wall/Plate	5-1/2" x 3-1/2"	871 lbs	10.6%	3.7%	Unspecified
B1	Wall/Plate	5-1/2" x 3-1/2"	1,103 lbs	13. 4 %	4.7%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Resistance Factor phi has been applied to all presented results per CSA 086. BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA 086.

Unbalanced snow loads determined from building geometry were used in selected product's

verification.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Deflections less than 1/8" were ignored in the results.

POLINCE OF ONTO

Page 1 of 2

DWO NO . TAM 27643 16 STRUCTURAL COMPONENT ONLY

Boise Cascade Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B13(i632)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:11:25

BC CALC® Design Report

*

Build 4340

Job Name: Address:

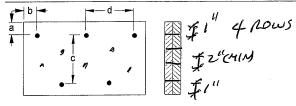
City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-1.mmdl


Description: Designs\Flush Beams\1st Floor\Flush Beams\B13(i632

Specifier:

Designer: Company:

Misc:

Connection Diagram

a minimum = 1" c = 1-1/2" b minimum = 3" d = 2 12"

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record. Member has no side loads.

Connectors are: 16d

Nails (SPIRAL SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO.TAWZ2643-16 Structural Component only

Triple 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B10 DR(i610)

April 30, 2016 10:11:25

BC CALC® Design Report

City, Province, Postal Code:,

Dry | 1 span | No cantilevers | 0/12 slope (deg)

File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs\Dropped Beams\1st Floor\Dropped Beams\B10

Specifier:

Designer: Company:

Misc:

Customer: Code reports:

Build 4340

Job Name:

Address:

CCMC 12472-R

3/ 2/ 13-05-00 В1 B0

Total Horizontal Product Length = 13-05-00

Reaction Summary (Down / Uplift) (lbs)								
Bearing	Live	De ad	Snow	Wind				
B0, 4"	3,249 / 0	1,316/0						
B1,4"	3,100/0	1,260 / 0						

Lc	ad Summary			L	ive Dead	Snow Wind	Trib.
	g Description	Load Type	Ref. Start	End 1.	.00 0.65	1.00 1.15	
1	Smoothed Load	Unf. Lin. (lb/ft)	L 00-00-00	11-04-08 4	75 178		n/a
2	-	Conc. Pt. (lbs)	L 12-00-15	12-00-15 5	51 207		n/a
3	-	Conc. Pt. (lbs)	L 13-04-08	13-04-08 3	93 148		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	18,776 ft-lbs	39,636 ft-lbs	47.4%	1	06-08-08
End Shear	5,455 lbs	17,356 lbs	31.4%	1	01-01-08
Total Load Defl.	L/296 (0.522")	0.644"	81.1%	4	06-08-08
Live Load Defl.	L/416 (0.371")	0.429"	86.4%	5	06-08-08
Max Defl.	0.522"	n/a	n/a	4	06-08-08
Span / Depth	16.3	n/a	n/a		00-00-00

				De mand/ Resistance	De mand/ Resistance	
Bear	ring Supports	Dim.(L x W)	Demand	Support	Member	Material
B0	Wall/Plate	4" x 5-1/4"	6,518 lbs	47.8%	25.4%	Unspecified
B1	Wall/Plate	4" x 5-1/4"	6,2261bs	45.6%	24.3%	Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculation assumes member is partially braced. See engineering report for the unbraced

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA 086.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Deflections less than 1/8" were ignored in the results.

CONFORMS TO OBG 2012

DWG NO . TAN 22644 18 STRUCTURAL COMPONENT ONLY

Triple 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B10 DR(i610)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

April 30, 2016 10:11:25

BC CALC® Design Report

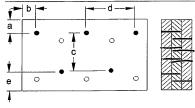
CCMC 12472-R

Build 4340 Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:


File Name: BRIDGEFORD 1 EL-1.mmdl

Description: Designs\Dropped Beams\1st Floor\Dropped Beams\B1

Specifier: Designer:

Company: Misc:

Connection Diagram

4 pous

a minimum = **½**" d=6 6" b m inim um = 3"e minimum =2"

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record. Nailing schedule applies to both sides of the member.

Member has no side loads.

Connectors are: 16d Nails (Nails)

ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALC®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO. TAM 2764416 STRUCTURAL COMPONENT ONLY

Single 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP Basment\Flush Beams\B7(i1747)

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 6, 2016 14:24:34

Build 4340

Job Name:

Address:

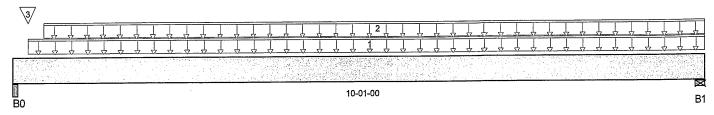
City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-3.mmdl


Description: Designs\Flush Beams\Basment\Flush Beams\B7(i1747)

Specifier:

Designer: AJ

Company:

Misc:

Total Horizontal Product Length = 10-01-00

Reaction Summary	Down / Uplift) (lbs)				
Be aring	Live	De ad	Snow	Wind	
B0, 5-5/8"	198/0	135/0			
B1 4-3/8"	159/0	104/0	•		·

١.	ad Summary				Live	Dead	Snow Wind	Trib.
	au Summary Description	Load Type	Ref. Start	En d	1.00	0.65	1.00 1.15	
1	FC1 Floor Material	Unf. Lin. (lb/ft)	L 00-02-10	10-01-00	23	12		n/a
2	FC1 Floor Material	Unf. Lin. (lb/ft)	L 00-05-04	10-01-00	9	4		n/a
3	5(i557)	Conc. Pt. (lbs)	L 00-02-08	00-02-08	45	34		n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	810 ft-lbs	12,704 ft-lbs	6.4%	1	05-01-02
End Shear	283 lbs	5,785 lbs	4.9%	. 1	01-03-02
Total Load Defl.	L/999 (0.037")	n/a	n/a	4	05-01-02
Live Load Defl.	L/999 (0.022")	n/a	n/a	5	05-01-02
Max Defl.	0.037"`	n/a	n/a	4	05-01-02
Span / Depth	11.8	n/a	n/a		00-00-00

Doorie	a Sunnaria	Dim. (L x W)	De mand	De mand/ Resistance Support	De man d/ Re sistance Me mbe r	Material
B0 B1	n g Supports Beam Wall/Plate	5-5/8" x 1-3/4" 4-3/8" x 1-3/4"	467 lbs 368 lbs	8.9% 9%	3.9% 3.9%	Unspecified Unspecified

Notes

Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculations assume Member is Fully Braced.

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA 086.

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9

Deflections less than 1/8" were ignored in the results.

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DVG.NO . TAM 27645-16 STRUCTURAL COMPONENT ONLY

CONFORMS TO OBC 2012

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B16()

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 6, 2016 14:18:46

BC CALC® Design Report

Build 4340 Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-3.mmdl

Description: Designs \Flush Beams \1st Floor\Flush Beams \B16()

Specifier:
Designer: AJ
Company:

Misc:

4/ 5	
B0 12-02-00	B1

Total Horizontal Product Length = 12-02-00

Reaction Summary (Down / Uplift) (lbs)								
Be aring .	Live	De ad	Snow	Wind				
B0, 5-1/2"	193/0	422/0	216/0					
B1. 5-1/2"	193/0	422/0	216/0					

10	ad Summary					Live	Dead	Snow	vvina	min.
	g Description	Load Type Ref. Start I		En d	1.00	1.00 0.65		1.00 1.15		
1	FC2 Floor Material	Unf. Lin. (lb/ft)	L	02-03-12	09-10-04	24	12			n/a
2	Us er Load	Unf. Lin. (lb/ft)	L	02-03-12	04-00-12		100			n/a
3	Us er Load	Unf. Lin. (lb/ft)	L	08-01-04	09-10-04		100			n/a
4	-	Conc. Pt. (lbs)	L	02-03-12	02-03-12	4	54			n/a
5	Us er Load	Conc. Pt. (lbs)	L	04-00-12	04-00-12	99	90	216		n/a
6	Us er Load	Conc. Pt. (lbs)	L	08-01-04	08-01-04	99	90	216		n/a
7	-	Conc. Pt. (lbs)	L	09-10-04	09-10-04	4	54			n/a

Controls Summary	Factored Demand	Factored Resistance	Demand / Resistance	Load Case	Location
Pos. Moment	3,106 ft-lbs	25,408 ft-lbs	12.2%	13	06-01-00
End Shear	934 lbs	11,571 lbs	8.1%	13	01-03-00
Total Load Defl.	L/999 (0.116")	n/a	n/a	45	06-01-00
Live Load Defl.	L/999 (0.055")	n/a	n/a	61	06-01-00
Max Defl.	0.116"	n/a	n/a	45	06-01-00
Span / Depth	14.4	n/a	n/a		00-00-00

Bear	ing Supports	Dim . (L x W)	De man d	Resistance Support	Resistance Member	Material
B0	Wall/Plate	5-1/2" x 3-1/2"	949 lbs	9.2%	4%	Unspecified
B1	Wall/Plate	5-1/2" x 3-1/2"	949 lbs	9.2%	4%	Unspecified

Notes

Cnow Wind

Trib

DWG NO.TAN 276466 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\Flush Beams\B16()

BC CALC® Design Report

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 6, 2016 14:18:46

Build 4340

Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R

File Name: BRIDGEFORD 1 EL-3.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B16()

Specifier:

Designer: Company.

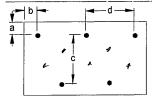
Misc:

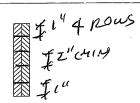
Design meets Code minimum (L/240) Total load deflection criteria.

Design meets Code minimum (L/360) Live load deflection criteria.

Calculation assumes member is partially braced. See engineering report for the unbraced lenath.

Resistance Factor phi has been applied to all presented results per CSA 086.


BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA 086. Unbalanced snow loads determined from building geometry were used in selected product's verification.


CONFORMS TO OBC 2012 Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9 Deflections less than 1/8" were ignored in the results.

1

Connection Diagram

a minimum = 🗗 $b \min = 3$

Calculated Side Load = 10.0 lb/ft

Connection design assumes point load is top-loaded. For connection design of side-loaded point loads, please consult a technical representative or professional of Record.

Connectors are: (AMALTECAN Nails (AMAL) CALL

312" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone who would rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered wood products must be in accordance with current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BCRIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO . TANZ264616 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B16A(i2030)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 6, 2016 14:18:46

BC CALC® Design Report

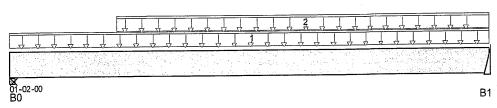
Build 4340 Job Name: Address:

City, Province, Postal Code:,

Customer:

Code reports:

CCMC 12472-R


File Name: BRIDGEFORD 1 EL-3.mmdl

Description: Designs\Flush Beams\1st Floor\Flush Beams\B16A(i203)

Specifier:

Designer: AJ Company:

Misc:

Total Horizontal Product Length = 01-02-00

Reaction Summary (D	own / Uplift) (lbs)				
Be aring	Live	De ad	Snow	Wind	
B0, 5-1/2"	3/0	81 / 0			
B1	3/0	49 / 0			

Load Summary Tag Description			Live	Dead	Snow Wind	Trib.
•	Load Type	Ref. Start	En d 1.00	0.65	1.00 1.15	
1 User Load	Unf. Lin. (lb/ft)	L 00-00-00	01-02-00	100		n/a
2 FC2 Floor Material	Unf. Lin. (lb/ft)	L 00-03-02	01-02-00 6	3		n/a

	Factored	Factored	Demand /	Ļoad	Location
Controls Summary	Demand	Resistance	Resistance	Case	
Pos. Moment	9 ft-lbs	n/a	n/a	0	00-08-12
End Shear	43 lbs	7,521 lbs	0.6%	0	00-05-08
Span / Depth	0.8	n/a	n/a		00-00-00

				De mand/ Re sistance		
Beari	ng Supports	Dim . (L x W)	Demand	Support	Member	Material
B0	Wall/Plate	5-1/2" x 3-1/2"	114 lbs	1.7%	0.7%	Unspecified
B1	Hanger	2" x 3-1/2"	69 lbs	n/a	1.2%	HGUS410

Notes

Calculations assume Member is Fully Braced.

Hanger Manufacturer: Unassigned

Resistance Factor phi has been applied to all presented results per CSA 086.

BC CALC® analysis is based on Canadian Limit States Design, as per NBCC and CSA 086. CONFORMS TO OBG 2012

Design based on Dry Service Condition.

Importance Factor: Normal Part code: Part 9 Deflections less than 1/8" were ignored in the results.

DVG NO. TAN 2264218 STRUCTURAL COMPONENT ONLY

Double 1-3/4" x 9-1/2" VERSA-LAM® 2.0 3100 SP 1st Floor\...\B16A(i2030)

Dry | 1 span | No cantilevers | 0/12 slope (deg)

June 6, 2016 14:18:46

BC CALC® Design Report

*

CCMC 12472-R

Build 4340

Job Name: Address:

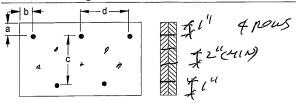
City, Province, Postal Code:,

Customer:

Code reports:

--- ... DDID 0550DE

File Name: BRIDGEFORD 1 EL-3.mmdl


Description: Designs \Flush Beams \1st Floor\Flush Beams \B16A(i2(

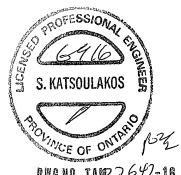
Specifier:

Designer: AJ Company:

Misc:

Connection Diagram

Member has no side loads.


Connectors are: 16d Nails Nails

√ 3½" ARDOX SPIRAL

Disclosure

Completeness and accuracy of input must be verified by anyone w ho w ould rely on output as evidence of suitability for particular application. Output here based on building code-accepted design properties and analysis methods. Installation of BOISE engineered w ood products must be in accordance w ith current Installation Guide and applicable building codes. To obtain Installation Guide or ask questions, please call 1-800-964-6999 before installation.

BC CALO®, BC FRAMER®, AJS™, ALLJOIST®, BC RIM BOARD™, BCI®, BOISE GLULAM™, SIMPLE FRAMING SYSTEM®, VERSA-LAM®, VERSA-RIM PLUS®, VERSA-RIM®, VERSA-STRAND®, VERSA-STUD® are trademarks of Boise Cascade Wood Products L.L.C.

DWG NO.TAMZ2647-16 STRUGTURAL COMPONENT ONLY

Live Load = 40 psf, Dead Load = 15 psf Simple Spans, L/480 Deflection Limit 5/8" OSB G&N Sheathing

			Ва	are		1/2" Gypsum Ceiling				
Depth	Series		On Centr	e Spacing			On Centr	e Spacing		
		12"	16"	19.2"	24"	12"	16"	19.2"	24"	
	NI-20	15'-1"	14'-2"	13'-9"	N/A	15'-7"	14'-8"	14'-2"	N/A	
	NI-40x	16'-1"	15'-2"	14'-8"	N/A	16'-7"	15'-7"	15'-1"	N/A	
9-1/2"	NI-60	16'-3"	15'-4"	14'-10"	N/A	16'-8"	15'-9"	15'-3"	N/A	
	NI-70	17'-1"	16'-1"	15'-6"	N/A	17'-5"	16'-5"	15'-10"	N/A	
	N!-80	17'-3"	16'-3"	15'-8"	N/A	17'-8"	16'-7"	16'-0"	N/A	
	NI-20	16'-11"	16'-0"	15'-5"	N/A	17'-6"	16'-6"	16'-0"	N/A	
	NI-40x	18'-1"	17'-0"	16'-5"	N/A	18'-9"	17'-6"	16'-11"	N/A	
11-7/8"	Ni-60	18'-4"	17'-3"	16'-7"	N/A	19'-0"	17'-8"	17'-1"	N/A	
	NI-70	19'-6"	18'-0"	17'-4"	N/A	20'-1"	18'-7"	17'-9"	N/A	
	NI-80	19'-9"	18'-3"	17'-6"	N/A	20'-4"	18'-10"	17'-11"	N/A	
	NI-90x	20'-4"	18'-9"	17'-11"	N/A	20'-10"	19'-3"	18'-5"	N/A	
	NI-40x	20'-1"	18'-7"	17'-10"	N/A	20'-10"	19'-4"	18'-6"	N/A	
	NI-60	20'-5"	18'-11"	18'-1"	N/A	21'-2"	19'-7"	18'-9"	N/A	
14"	NI-70	21'-7"	20'-0"	19'-1"	N/A	22'-3"	20'-7"	19'-8"	N/A	
	NI-80	21'-11"	20' - 3"	19'-4"	N/A	22'-7"	20'-11"	20'-0"	N/A	
	NI-90x	22'-7"	20'-11"	19'-11"	N/A	23'-3"	21'-6"	20'-6"	N/A	
	NI-60	22'-3"	20'-8"	19'-9"	N/A	23'-1"	21'-5"	20'-6"	N/A	
4.511	NI-70	23'-6"	21'-9"	20'-9"	N/A	24'-3"	22'-5"	21'-5"	N/A	
16"	NI-80	23'-11"	22'-1"	21'-1"	N/A	24'-8"	22'-10"	21'-9"	N/A	
	NI-90x	24'-8"	22'-9"	21'-9"	N/A	25'-4"	23'-5"	22'-4"	N/A	

			Mid-Span	Blocking		Mid-S	Mid-Span Blocking and 1/2" Gypsum Ceiling				
Depth	Series			e Spacing			On Centr	e Spacing			
- op		12"	16"	19.2"	24"	12"	16"	19.2"	24"		
	NI-20	16'-8"	15'-3"	14'-5"	N/A	16'-8"	15'-3"	14'-5"	N/A		
	NI-40x	17'-11"	16'-11"	16'-1"	N/A	18'-5"	17'-1"	16'-1"	N/A		
9-1/2"	NI-60	18'-2"	17'-1"	16'-4"	N/A	18'-7"	17'-4"	16'-4"	N/A		
,-	NI-70	19'-2"	17'-10"	17'-2"	N/A	19'-7"	18'-3"	17'-7"	N/A		
	NI-80	19'-5"	18'-0"	17'-4"	N/A	19'-10"	18'-5"	17'-8"	N/A		
	NI-20	19'-6"	18'-1"	17'-3"	N/A	19'-11"	18'-3"	17'-3"	N/A		
	NI-40x	21'-0"	19'-6"	18' - 8"	N/A	21'-7"	20'-2"	19'-2"	N/A		
11-7/8"	NI-60	21'-4"	19' - 9"	18'-11"	N/A	21'-11"	20'-4"	19'-6"	N/A		
	NI-70	22'-6"	20'-10"	19'-11"	N/A	23'-0"	21'-5"	20' - 5"	N/A		
	NI-80	22'-9"	21'-1"	20' - 1"	N/A	23'-3"	21'-7"	20'-8"	N/A		
	NI-90x	23'-4"	21'-8"	20'-8"	N/A	23'-10"	22'-2"	21'-2"	N/A		
	NI-40x	23'-7"	21'-11"	20'-11"	N/A	24'-3"	22'-7"	21'-7"	N/A		
	NI-60	24'-0"	22'-3"	21'-3"	N/A	24'-8"	22'-11"	21'-11"	N/A		
14"	NI-70	25'-3"	23'-4"	22'-3"	N/A	25'-10"	24'-0"	22'-11"	N/A		
	NI-80	25'-7"	23'-8"	22'-7"	N/A	26'-2"	24'-4"	23'-2"	N/A		
	NI-90x	26'-4"	24'-4"	23'-3"	N/A	26'-10"	24'-11"	23'-9"	N/A		
	Ni-60	26'-5"	24'-6"	23'-4"	N/A	27'-2"	25'-3"	24'-2"	N/A		
	NI-70	27'-9"	25'-8"	24'-6"	N/A	28'-5"	26'-5"	25'-2"	N/A		
16"	NI-80	28'-2"	26'-1"	24'-10"	N/A	28'-10"	26'-9"	25' - 6"	N/A		
	NI-90x	29'-0"	26'-10"	25'-7"	N/A	29'-7"	27'-5"	26'-2"	N/A		

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Live Load = 40 psf, Dead Load = 15 psf Simple Spans, L/480 Deflection Limit 3/4" OSB G&N Sheathing

			Ba	ire	1/2" Gypsum Ceiling				
Depth	Series			e Spacing			On Centr	e Spacing	
		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-10"	15'-0"	14'-5"	13'-5"	16'-4"	15'-5"	14'-6"	13'-5"
	NI-40x	17'-0"	16'-0"	15'-5"	14'-9"	17'-5"	16'-5"	15'-10"	15'-2"
9-1/2"	NI-60	17'-2"	16'-2"	15'-7"	14'-11"	17'-6"	16'-7"	15'-11"	15'-3"
,	NI-70	18'-0"	16'-11"	16'-3"	15'-7"	18'-5"	17'-3"	16'-7"	15'-11'
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'-5"	16'-9"	16'-1"
	NI-20	17'-10"	16'-10"	16'-2"	15'-6"	18'-6"	17'-4"	16'-9"	16'-1"
	NI-40x	19'-4"	17'-11"	17'-3"	16'-6"	19'-11"	18'-6"	17'-9"	17'-0"
11-7/8"	NI-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18'-9"	17'-11"	17'-2"
	NI-70	20'-9"	19'-2"	18'-3"	17'-5"	21'-4"	1 9'- 9"	18'-10"	17'-10'
	NI-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"
	Ni-90x	21'-8"	20'-0"	19'-1"	18'-0"	22'-2"	20'-6"	19'-6"	18'-6"
	NI-40x	21'-5"	19'-10"	18'-11"	17'-11"	22'-1"	20'-6"	19'-7"	18'-7"
	NI-60	21'-10"	20'-2"	19'-3"	18'-2"	22'-5"	20'-10"	19'-11"	18'-10'
14"	NI-70	23'-0"	21'-3"	20'-3"	19'-2"	23'-8"	21'-11"	20'-10"	19'-9"
	NI-80	23'-5"	21'-7"	20'-7"	19'-5"	24'-0"	22 '- 3"	21'-2"	20'-0"
	NI-90x	24'-1"	22'-3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"
	NI-60	23'-9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"
	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25'-9"	23'-10"	22'-9"	21'-6"
16"	NI-80	25'-6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23'-1"	21'-10
	NI-90x	26'-4"	24'-3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22'-5"

			Mid-Spar	Blocking	Mid-Span Blocking and 1/2" Gypsum Ceiling					
Depth	Series		On Centr			On Centre Spacing				
осри.	5000	12"	16"	19.2"	24"	12"	16"	19.2"	24"	
	NI-20	16'-10"	15'-5"	14'-6"	13'-5"	16'-10"	15'-5"	14'-6"	13'-5"	
	NI-40x	18'-8"	17'-2"	16'-3"	15'-2"	18'-10"	17'-2"	16'-3"	15'-2"	
9-1/2"	NI-60	18'-11"	17'-6"	16'-6"	15'-5"	19'-2"	17'-6"	16'-6"	15'-5"	
J-1/2	NI-70	20'-0"	18'-7"	17'-9"	16'-7"	20'-5"	18'-11"	17'-10"	16'-7"	
	NI-80	20'-3"	18'-10"	17'-11"	16'-10"	20'-8"	19'-3"	18'-2"	16'-10	
	NI-20	20'-1"	18'-5"	17'-5"	16'-2"	20'-1"	18'-5"	17'-5"	16'-2"	
	NI-40x	21'-10"	20'-4"	19'-4"	17!-8"	22'-5"	20'-6"	19'-4"	17'-8"	
11-7/8"	NI-60	22'-1"	20'-7"	19'-7"	18'-4"	22'-8"	20'-10"	19' - 8"	18'-4"	
	NI-70	23'-4"	21'-8"	20'-8"	19'-7"	23'-10"	22'-3"	21'-2"	19' - 9"	
	NI-80	23'-7"	21'-11"	20'-11"	19'-9"	24'-1"	22'-6"	21' - 5"	20'-0"	
	NI-90x	24'-3"	22'-6"	21'-6"	20'-4"	24'-8"	23'-0"	22'-0"	20'-9"	
	NI-40x	24'-5"	22'-9"	21'-8"	19'-5"	25'-1"	23'-2"	21'-9"	19'-5"	
	NI-60	24'-10"	23'-1"	22'-0"	20'-10"	25'-6"	23'-8"	22'-4"	20'-10	
14"	NI-70	26'-1"	24'-3"	23'-2"	21'-10"	26'-8"	24'-11"	23'-9"	22'-4"	
17	NI-80	26'-6"	24'-7"	23'-5"	22'-2"	27'-1"	25'-3"	24'-1"	22'-9"	
	NI-90x	27' - 3"	25'-4"	24'-1"	22'-9"	27'-9"	25'-11"	24'-8"	23'-4"	
	NI-60	27'-3"	25'-5"	24'-2"	22'-10"	28'-0"	26'-2"	24'-9"	23'-1"	
	NI-70	28'-8"	26'-8"	25'-4"	23'-11"	29'-3"	27'-4"	26'-1"	24' - 8"	
16"	NI-80	29'-1"	27'-0"	25' - 9"	24'-4"	29'-8"	27'-9"	26'-5"	25'-0"	
	NI-90x	29'-11"	27'-10"	26'-6"	25'-0"	30'-6"	28'-5"	27'-2"	25'-8"	

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

Live Load = 40 psf, Dead Load = 30 psf Simple Spans, L/480 Deflection Limit 5/8" OSB G&N Sheathing

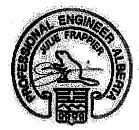
			Ва		1/2" Gypsum Ceiling				
Depth	Series		On Centr	e Spacing			On Centr	e Spacing	
•		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-1"	14'-1"	13'-3"	N/A	15'-7"	14'-1"	13'-3"	N/A
	NI-40x	16'-1".	15'-2"	14'-8"	N/A	16 ⁻⁷ "	15'-7"	15'-1"	N/A
9-1/2"	NI-60	16'-3"	15'-4"	14'-10"	N/A	16'-8"	15'-9"	15'-3"	N/A
	NI-70	17'-1"	16'-1"	15'-6"	N/A	17'-5"	16'-5"	15'-10"	N/A
	NI-80	17'-3"	16'-3"	15'-8"	N/A	17'-8"	16'-7"	16'-0"	N/A
	NI-20	16'-11"	16'-0"	15'-5"	N/A	17'-6"	16'-6"	16'-0"	N/A
	NI-40x	18'-1"	17'-0"	16'-5"	N/A	18'-9"	17'-6"	16'-11"	N/A
11 7/0"	NI-60	18'-4"	17'-3"	16'-7"	N/A	19'-0"	17'-8"	17'-1"	N/A
11-7/8"	NI-70	19'-6"	18'-0"	17'-4"	N/A	20'-1"	18'-7"	17'-9"	N/A
	NI-80	19'-9"	18'-3"	17'-6"	N/A	20'-4"	18'-10"	17'-11"	N/A
	NI-90x	20'-4"	18'-9"	17'-11"	N/A	20'-10"	19'-3"	18'-5"	N/A
	NI-40x	20'-1"	18'-7"	17'-10"	N/A	20'-10"	19'-4"	18'-6"	N/A
	NI-60	20'-5"	18'-11"	18'-1"	N/A	21'-2"	19'-7"	18' - 9"	N/A
14"	NI-70	21'-7"	20'-0"	19'-1"	N/A	22'-3"	20'-7"	19'-8"	N/A
	NI-80	21'-11"	20'-3"	19'-4"	N/A	22'-7"	20'-11"	20'-0"	N/A
	NI-90x	22'-7"	20'-11"	19'-11"	N/A	23'-3"	21'-6"	20'-6"	N/A
	NI-60	22'-3"	20'-8"	19'-9"	N/A	23'-1"	21'-5"	20'-6"	N/A
4.014	NI-70	23'-6"	21'-9"	20'-9"	N/A	24'-3"	22'-5"	21'-5"	N/A
16"	NI-80	23'-11"	22'-1"	21'-1"	N/A	24'-8"	22'-10"	21'-9"	N/A
	NI-90x	24'-8"	22' - 9"	21'-9"	N/A	25'-4"	23'-5"	22'-4"	N/A

			Mid-Spar	Blocking		Mid-S ₁	Mid-Span Blocking and 1/2" Gypsum Ceiling				
Depth	Series		On Centr	e Spacing			On Centr	e Spacing			
o cptiii		12"	16"	19.2"	24"	12"	16"	19.2"	24"		
	NI-20	15'-7"	14'-1"	13'-3"	N/A	15'-7"	14'-1"	13'-3"	N/A		
	NI-40x	17'-9"	16'-1"	15'-1"	N/A	17'-9"	16'-1"	15'-1"	N/A		
9-1/2"	NI-60	18'-1"	16'-4"	15'-4"	N/A	18'-1"	16'-4"	15'-4"	N/A		
J =/-	NI-70	19'-2"	17'-10"	16'-9"	N/A	19'-7"	17'-10"	16'-9"	N/A		
	NI-80	19'-5"	18'-0"	17'-1"	N/A	19'-10"	18'-3"	17'-1"	N/A		
	NI-20	18'-9"	17'-0"	16'-0"	N/A	18'-9"	17'-0"	16'-0"	N/A		
	NI-40x	21'-0"	19'-3"	17'-9"	N/A	21'-3"	19'-3"	17'-9"	N/A		
11-7/8"	NI-60	21'-4"	19'-8"	18' - 5"	N/A	21'-8"	19'-8"	18'-5"	N/A		
	NI-70	22'-6"	20'-10"	19'-11"	N/A	23'-0"	21'-4"	20'-0"	N/A		
	NI-80	22'-9"	21'-1"	20'-1"	N/A	23'-3"	21'-7"	20'-5"	N/A		
	NI-90x	23'-4"	21'-8"	20'-8"	N/A	23'-10"	22'-2"	21'-2"	N/A		
	NI-40x	23'-7"	21'-5"	19'-6"	N/A	24'-1"	21'-5"	19'-6"	N/A		
	N1-60	24'-0"	22'-3"	21' 0"	N/A	24'-8"	22'-5"	21'-0"	N/A		
14"	NI-70	25'-3"	23'-4"	22'-3"	N/A	25'-10"	24'-0"	22'-9"	N/A		
	NI-80	25'-7"	23'-8"	22'-7"	N/A	26'-2"	24'-4"	23'-2"	N/A		
	NI-90x	26'-4"	24'-4"	23'-3"	N/A	26'-10"	24'-11"	23'-9"	N/A		
	NI-60	26'-5"	24'-6"	23'-4"	N/A	27'-2"	24'-10"	23'-4"	N/A		
	Ni-70	27'-9"	25' - 8"	24'-6"	N/A	28'-5"	26'-5"	25' - 2"	N/A		
16"	NI-80	28'-2"	26'-1"	24'-10"	N/A	28'-10"	26'-9"	25 '- 6"	N/A		
	NI-90x	29'-0"	26'-10"	25' - 7"	N/A	29'-7"	27'-5"	26'-2"	N/A		

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 30 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.

^{3.} Minimum bearing length shall be 1-3/4 inches for the end bearings.


^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

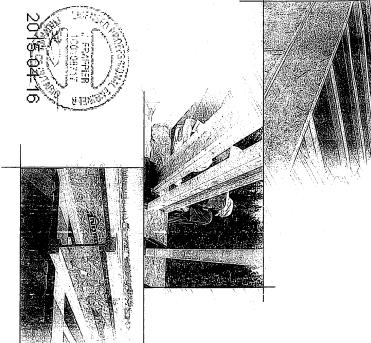
Live Load = 40 psf, Dead Load = 30 psf Simple Spans, L/480 Deflection Limit 3/4" OSB G&N Sheathing

			Ba	Bare			1/2" Gypsum Ceiling				
Depth	Series		On Centr	e Spacing			On Cent	re Spacing			
		12"	16"	19.2"	24"	12"	16"	19.2"	24"		
	NI-20	15'-7"	14'-2"	13'-4"	12'-4"	15'-7"	14'-2"	13'-4"	12'-4"		
	NI-40x	17'-0"	16'-0"	15'-1"	13'-11"	17'-5"	16'-1"	15'-1"	13'-11"		
9-1/2"	NI-60	17'-2"	16'-2"	15'-5"	14'-3"	17'-6"	16'-5"	15'-5"	14'-3"		
	NI-70	18'-0"	16'-11"	16'-3"	15'-6"	18'-5"	17'-3"	16'-7"	15'-6"		
	NI-80	18'-3"	17'-1"	16'-5"	15'-9"	18'-8"	17'-5"	16'-9"	15'-10"		
	NI-20	17'-10"	16'-10"	16'-0"	14'-10"	18'-6"	17'-1"	16'-0"	14'-10"		
	NI-40x	19'-4"	17'-11"	17'-3"	15'-10"	19'-11"	18'-6"	17'-9"	15'-10"		
11-7/8"	NI-60	19'-7"	18'-2"	17'-5"	16'-9"	20'-2"	18' - 9"	17'-11"	17'-1"		
	NI-70	20'-9"	19'-2"	18'-3"	17'-5"	21'-4"	19 [:] -9"	18'-10"	17'-10"		
	NI-80	21'-1"	19'-5"	18'-6"	17'-7"	21'-7"	20'-0"	19'-0"	18'-0"		
	NI-90x	21'-8"	20'-0"	19'-1"	18'-0"	22'-2"	20'-6"	19'-6"	18' - 6"		
	NI-40x	21'-5"	19'-10"	18'-11"	17'-5"	22'-1"	20'-6"	19'-6"	17'-5"		
	NI-60	21'-10"	20' - 2"	19'-3"	18'-2"	22'-5"	20'-10"	19'-11"	18'-10"		
14"	NI-70	23'-0"	21'-3"	20'-3"	19'-2"	23'-8"	21'-11"	20'-10"	19'-9"		
	NI-80	23'-5"	21'-7"	20'-7"	19'-5"	24'-0"	22' - 3"	21'-2"	20'-0"		
	NI-90x	24'-1"	22'-3"	21'-2"	20'-0"	24'-8"	22'-10"	21'-9"	20'-7"		
	NI-60	23'-9"	22'-0"	20'-11"	19'-10"	24'-6"	22'-9"	21'-8"	20'-6"		
16"	NI-70	25'-1"	23'-2"	22'-0"	20'-10"	25'-9"	23'-10"	22'-9"	21'-6"		
16"	NI-80	25'-6"	23'-6"	22'-4"	21'-2"	26'-1"	24'-2"	23'-1"	21'-10"		
	NI-90x	26'-4"	24'-3"	23'-1"	21'-10"	26'-11"	24'-11"	23'-8"	22'-5"		

			Mid-Spar	n Blocking		Mid-S	pan Blocking an	d 1/2" Gypsum	Ceiling
Depth	Series		On Centr	e Spacing			On Centr	e Spacing	
·		12"	16"	19.2"	24"	12"	16"	19.2"	24"
	NI-20	15'-7"	14'-2"	13'-4"	12'-4"	15'-7"	14'-2"	13'-4"	12'-4"
	NI-40x	17'-9"	16'-1"	15'-1"	13'-11"	17'-9"	16'-1"	15'-1"	13'-11"
9-1/2"	NI-60	18'-1"	16'-5"	15'-5"	14'-3"	18'-1"	16'-5"	15'-5"	14'-3"
	NI-70	19'-10"	17'-11"	16'-9"	15'-6"	19'-10"	17'-11"	16'-9"	15'-6"
	NI-80	20'-2"	18'-3"	17'-1"	15'-10"	20'-2"	18'-3"	17'-1"	15'-10"
	NI-20	18'-10"	17'-1"	16'-0"	14'-10"	18'-10"	17'-1"	16'-0"	14'-10"
11-7/8"	NI-40x	21'-3"	19'-3"	17'-9"	15'-10"	21'-3"	19 '- 3"	17'-9"	15'-10"
	NI-60	21'-9"	19'-8"	18'-5"	17'-1"	21'-9"	19'-8"	18'-5"	17'-1"
	NI-70	23'-4"	21'-5"	20'-1"	18'-6"	23'-8"	2 1'- 5"	20'-1"	18'-6"
	NI-80	23'-7"	21'-10"	20'-5"	18'-11"	24'-1"	21'-10"	20'-5"	18'-11"
	NI-90x	24'-3"	22'-6"	21'-3"	19'-7"	24'-8"	22'-7"	21'-3"	19'-7"
	NI-40x	24'-2"	21' - 5"	19'-6"	17'-5"	24'-2"	21'-5"	19'-6"	17'-5"
	NI-60	24'-9"	22'-5"	21'-0"	19'-6"	24'-9"	22'-5"	21'-0"	19'-6"
14"	NI-70	26'-1"	24'-3"	22'-9"	21'-0"	26'-8"	24'-3"	22' - 9"	21'-0"
	NI-80	26'-6"	24'-7"	23'-3"	21'-6"	27'-1"	24'-10"	23'-3"	21'-6"
	NI-90x	27'-3"	25'-4"	24'-1"	22'-4"	27'-9"	25'-10"	24'-3"	22'-4"
	NI-60	27'-3"	24'-11"	23'-5"	21'-7"	27'-6"	24'-11"	23'-5"	21'-7"
	NI-70	28'-8"	26'-8"	25' - 3"	23'-4"	29'-3"	26'-11"	25'-3"	23'-4"
16"	NI-80	29'-1"	27'-0"	25'-9"	23'-10"	29'-8"	27'-6"	25'-10"	23'-10"
	NI-90x	29'-11"	27'-10"	26'-6"	24'-10"	30'-6"	28'-5"	26'-11"	24'-10"

^{1.} Maximum clear span applicable to simple-span residential floor construction with a design live load of 40 psf and dead load of 30 psf. The ultimate limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration, a live load deflection limit of L/480 and a total load deflection limit of L/240.

^{2.} Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 3/4 inch for a joist spacing of 24 inches or less. The composite floor may include 1/2 inch gypsum ceiling and/or one row of blocking at mid-span with strapping. Strapping shall be minimum 1x4 inch strap applied to underside of joists at blocking line or 1/2 inch gypsum ceiling attached to joists.


3. Minimum bearing length shall be 1-3/4 inches for the end bearings.

^{4.} Bearing stiffeners are not required when I-joists are used with the spans and spacings given in this table, except as required for hangers.

^{5.} This span chart is based on uniform loads. For applications with other than uniformly distributed loads, an engineering analysis may be required based on the use of the design properties. Tables are based on Limit States Design per CSA O86-09, NBC 2010, and OBC 2012.

^{6.} Joists shall be laterally supported at supports and continuously along the compression edge. Refer to technical documentation for installation guidelines and construction details. Nordic I-joists are listed in CCMC evaluation report 13032-R and APA Product Report PR-L274C.

ZON OZOCO OCOCO OC FOR RESIDENTIAL FLOORS

Distributed by:

SAFETY AND CONSTRUCTION PRECAUTIONS WARNING

N-C301 / November 2014

braced, or serious injuuntil fully fastened and Do not walk on I-joists ries can result.

over-stress l-joist with concentrated loads from building materials. Once sheathed, do not materials over unsheathed I-joists. Never stack building

I-joists are not stable until completely installed, and will not carry any load until fully braced and sheathed.

Avoid Accidents by Following these Important Guidelines:

- Brace and nail each I-joist as it is installed, using hangers, blocking panels, rim over interior supports and a load-bearing wall is planned at that location, blocking will be required at the interior support. board, and/or cross-bridging at joist ends. When I-joists are applied continuous
- When the building is completed, the floor sheathing will provide lateral support for the top flanges of the I-joists. Until this sheathing is applied, temporary bracing, after called struts, or temporary sheathing must be applied to prevent I-joist rollover or buckling.
- a Temporary bracing or struts must be 1x4 inch minimum, at least 8 feet long and spaced no more than 8 feet on centre, and must be secured with a minimum of two 2-1/2" nails fastened to the top surface of each Lioist. Nail the bracing to a lateral restraint at the end of each bay. Lap ends of adjoining bracing over at least two I-joists.
- Or, sheathing (temporary or permanent) can be nailed to the top flange of the first 4 feet of 1-joists at the end of the bay.
- 3. For cantilevered I-joists, brace top and bottom flanges, and brace ends with closure panels, rim board, or cross-bridging.
- Install and fully nail permanent sheathing to each I-joist before placing loads on the floor system. Then, stack building materials over beams or walls only.
- Never install a damaged I-joist.

Improper storage or installation, failure to follow applicable building codes, failure to follow span ratings for Nordic L-joists, failure to follow allowable hole sizes and locations, or failure to use web stiffeners when required can result in serious accidents. Follow these installation guidelines carefully.

STORAGE AND HANDLING GUIDELINES

- Bundle wrap can be slippery when wet. Avoid walking on wrapped
- Store, stack, and handle I-joists vertically and level only.
- Always stack and handle I-joists in the upright position only.
- Protect I-joists from weather, and use spacers to separate bundles

4. Do not store I-joists in direct contact with the ground and/or flatwise

- Bundled units should be kept intact until time of installation
- 7. When handling I-joists with a crane on the job site, take a few simple precautions to prevent damage to the 1-joists and injury
- Pick I-joists in bundles as shipped by the supplier
- E Orient the bundles so that the webs of the I-joists are vertical.
- E Pick the bundles at the 5th points, using a spreader bar if necessary
- 9. NEVER USE OR TRY TO REPAIR A DAMAGED I-JOIST Do not handle I-joists in a horizontal orientation.

MAXIMUM FLOOR SPANS


- limit states are based on the factored loads of 1.50L + 1.25D. The serviceability limit states include the consideration for floor vibration and a live load deflection limit of L/480. For multiple-span applications, the end spans shall be 40% Maximum clear spans applicable to simple-span or multiple-span residential floor construction with a design live load of 40 psf and dead load of 15 psf. The ultimate or more of the adjacent span.
- Spans are based on a composite floor with glued-nailed oriented strand board (OSB) sheathing with a minimum thickness of 5/8 inch for a joist spacing of 19.2 inches or less, or 3/4 inch for joist spacing of 24 inches. Adhesive of gypsum and/or a row of blocking at mid-span. Standard. No concrete topping or bridging element was assumed. Increased spans may be achieved with the used shall meet the requirements given in CGBS-71.26
- Minimum bearing length shall be 1-3/4 inches for the end bearings, and 3-1/2 inches for the intermediate bearings.
- . Bearing stiffeners are not required when Lipists are used with the spans and spacings given in this table, except as required for hangers.
- This span chart is based on uniform loads. For applications with other than uniform loads, an engineering analysis may be required based on the use of the design properties.
- Tables are based on Limit States Design per CAN/CSA O86-09 Standard, and NBC 2010.
- SI units conversion: 1 inch = 25.4 mm1 foot = 0.305 m

MAXIMUM FLOOR SPANS FOR NORDIC 1-JOISTS SIMPLE AND MULTIPLE SPANS

			18 18	Joist Depth
				Joist Series
18.75 11.85 12.85 12.85 12.85 13.85	2017 2051 2457 2157 2257 2257	1841 1944 1956 1959	1641 1641 1643 1741	7.12
20-85 21-95 22-11 22-65 22-95	1877 20-0 20-0 20-0	127.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18	14/2 15/2 15/4 16/1	'Simple On centre '16" ।
19.9° 20.9° 21.5° 21.5°	17-10* 18-1: 19-1: 19-2: 19-31:	16:35 16:35 17:44 17:46 17:10	13591 144.0° 15.6° 15.6°	spans spacing 19:2
20410° 2040° 2140° 2140°	17-11 18-2 19-2 19-5 19-10	16.6 17.5 17.5 17.5 17.5 18.0	1459 1459 1557	24"
		2010 2010 2010 2110 2110 2110 2210 2210		
2259 24:08 24:58 24:10 25:21	20-6** 20-11** 22-1** 22-5 22-10** 23-11*	17.33 18.67 19.11 20.77 20.77	1645 1645 1744	Multiple On centre 16"
21.9 22-11. 28-3 28-9	19-8" 20-0" 21-1" 21-5" 21-6" 29-0"	16:8 17:9 18:0 19:0 19:3 19:3	14-10 15-10 16-0 16-9 16-11	spans spacing 19.2"
23-0 23-0 23-4 23-9	19:4* 20:1* 21:2: 21:6* 21:10* 22:2*	1647 17-7 18-1 19-1 19-4 19-4 19-9	15:5° 16:1° 16:10° 17:0°	24"

I-JOIST HANGERS

- Hangers shown illustrate the three most commonly used metal hangers to support 1-joists.
- All nailing must meet the hanger manufacturer's recommendations
- Hangers should be selected based maximum spans. on the joist depth, flange width and load capacity based on the
- Web stiffeners are required when the sides of the hangers do not laterally brace the top flange of the I-joist.

Face Mount

CCMC EVALUATION REPORT 13032-R

NORDIC I-JOIST SERIES

WEB STIFFENERS

RECOMMENDATIONS:

- I-joist properties table found of the I-joist Construction Guide (C101). The gap between the stiffener and the flange is at the top. engineered applications with factored reactions greater than shown in the A bearing stiffener is required in all
- the I-joist is supported in a hanger and the sides of the hanger do not extend up to, and support, the top flange. The gap between the A bearing stiffener is required when stiffener and flange is at the top.
- by the code. The gap between the stiffener A load stiffener is required at locations and the flange is at the bottom. adjusted for other load durations as permitted standard term load duration, and may be tip and the support. These values are for cantilever, anywhere between the cantilever between supports, or in the case of a than 2,370 lbs is applied to the top flange where a tactored concentrated load greater
- SI units conversion: 1 inch = 25.4 mm

FIGURE 2

WEB STIFFENER INSTALLATION DETAILS

See table below for web stiffener size requirements

STIFFENER SIZE REQUIREMENTS

3-1/2"	2-1/2"	Flange Width
1-1/2" x 2-5/16" minimum width	1" x 2-5/16" minimum width	Web Stiffener Size Each Side of Web

Tight Join

33 pieces per unit products to adhere to strict quality control procedures throughout the Chantiers Chibougamau Ltd. harvests its own trees, which enables. Nortice 33 pieces per unit 33 pieces per unit 23 pieces per unit 23 pieces per unit 23 pieces per unit

S-P-F No.2

1950f MSR

2100f MSR

1950f MSR

2100f MSR

2400f MSR

NPG Lumber 23 pieces per unit

longer span carrying capacity. lumber in their flanges, ensuring consistent quality, superior strength rand Nordic Engineered Wood I-joists use only finger-jointed back spruce. finished product, reflects our commitment to quality. manufacturing process. Every phase of the operation, from Sorest to the

2015-04-16

INSTALLING NORDIC I-JOISTS

1. Before laying out floor system components, verify that I-joist flange widths match hanger widths. If not, காள்ஸ்தல்ர

FIGURE 1

- Except for cutting to length, l-joist flanges should never be cut, drilled, or notched.
- 3. Install I-joists so that top and bottom flanges are within 1/2 inch of true vertical alignment
- 4. I-joists must be anchored securely to supports before floor sheathing is attached, and supports for multiples
- 5. Minimum bearing lengths: 1-3/4 inches for end bearings and 3-1/2 inches for intermediate bearings. 为有事心本有6
- 6. When using hangers, seat I-joists firmly in hanger bottoms to minimize settlement.
- 7. Leave a 1/16-inch gap between the 1-joist end and a header.
- œ Concentrated loads greater than those that can normally be expected in residential construction should only be applied to the top surface of the top flange. Normal concentrated loads include track lighting fixtures, audio equipment and security cameras. Never suspend unusual or heavy loads from the I-joist's bottom flange. Whenever possible, suspend all concentrated loads from the top of the I-joist. Or, attach the load to blocking that has been securely fastened to the l-joist webs.
- 9. Never install Lioists where they will be permanently exposed to weather, or where they will remain in direct contact with
- 10. Restrain ends of floor joists to prevent rollover. Use rim board, rim joists or l-joist blocking panels
- 11. For I-joists installed over and beneath bearing walls, use full depth blocking panels, rim board, or squash blocks (cripple members) to transfer gravity loads through the floor system to the wall or foundation below.
- 12. Due to shrinkage, common framing lumber set on edge may never be used as blocking or rim boards. I-joist blocking panels or oiher engineered wood products such as rim board must be cut to fit between the I-joists, and an I-joist-compatible depth selected.

(1b) (1c)

(a)

3

in current code evaluation

Use hangers recognized

Figures 3, 4 or 5

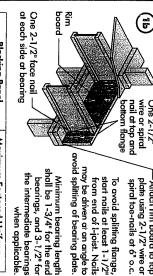
reports

- 13. Provide permanent lateral support of the bottom flange of all I-joists at interior supports of multiple-span joists. Similarly, support the bottom flange of all cantilevered I-joists at the end support next to the cantilever extension. In the completed bracing or struts must be used. structure, the gypsum wallboard ceiling provides this lateral support. Until the final finished ceiling is applied, temporary
- 14. If square-edge panels are used, edges must be supported between I-joists with 2x4 blocking. Glue panels to blocking to minimize squeaks. Blocking is not required under structural finish flooring, such as wood strip flooring, or if a separate underlayment layer is installed.
- 15. Nail spacing: Space nails installed to the flange's top face in accordance with the applicable building code requirements or approved building plans

One 2-1/2"

Lumber (SCL) Composite or Structural Nordic Lam (1d) (1e) Some framing requirements such as erection bracing and blocking panels have been omitted for clarity. ittical nordic i-joist floor framing and construction details (Fig.) for plumbing, wiring and duct work. See Tables 1, 2 and Figure 7. Holes may be cut in web Figures 3, 4 or 5 notch flanges NOTE: Never cut or

or SCL Nordic Larr


All nails shown in the above details are assumed to be common wire nails unless otherwise noted. 3" (0.122" dia.) common spiral nails may be substituted for 2-1/2" (0.128" dia.) common wire nails. Framing lumber assumed to be Spruce-Pine-Fir No. 2 or better. Individual components not shown to scale for clarity

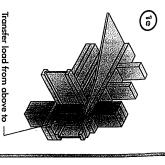
1a (1n)

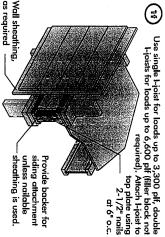
top plate per detail Attach I-joist to panel NI blocking with same nailing olate (when used for lateral shear as required to transfer, nail to bearing plate 2-1/2" nails at 6" o.c. to top decking)

NI Joists
2 200

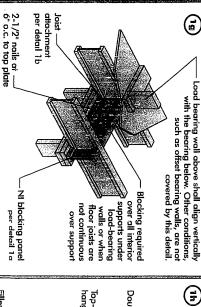
such as joist, header, or rafter. For concentrated vertical load transfer, see detail 1d. It shall not be used in the design of a bending member,

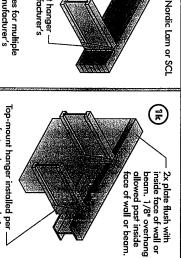
1-1/8" Rim Board Plus	Blocking Panel or Rim Joist	
8,090	Maximum Factored Uniform Vertical Load* (pH)	


used in the design of a bending member, such as joist, header, or less and is based on standard term load duration. It shall not be *The uniform vertical load is limited to a rim board depth of 16 inches ratter. For concentrated vertical load transfer, see detail 1d


		and the same than
7	Squash block –	(a)
		Ni or rim board blocking panel per detail 1a
F		1/16" for squash blocks

Pair of Squash Blocks	Maximum Factored Vertical per Pair of Squash Blocks (lbs)	red Vertical per h Blocks (lbs)
	3-1/2" wide	5-1/2" wide
2x Lumber	5,500	8,500
1-1/8" Rim Board Plus	4,300	6,600


Provide lateral bracing per detail 1a, 1b, or 1c



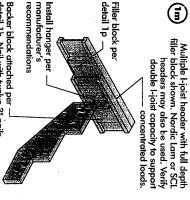
to post above. bearing area of blocks below bearing below. Install squash blocks per detail 1d. Match

carried to the foundation. Rim board may be used in lieu of I-joists. Backer is not required when rim board is used. Bracing per code shall be

manutacturer's recommendations

support the top flange, bearing Note: Unless hanger sides laterally stiffeners shall be used

support the top flange, bearing


Note: Unless hanger sides laterally

recommendations. beams, see the manufacturer's

For nailing schedules for multiple

Top- or face-mount hanger installed per manufacturer's

stiffeners shall be used

clinch when possible. detail 1h. Nail with twelve 3" nails,

Maximum support capacity = 1,620 lbs

FILLER BLOCK REQUIREMENTS FOR DOUBLE I-JOIST CONSTRUCTION

(7)

Do not bevel-cut face of wall oist beyond inside

l-joist per detail 1b Attach

for clarity. support, not shown at bearing for lateral Note: Blocking required

Backer block (use if hanger load exceeds 360 lbs)
Before installing a backer block to a double I-joist, drive three
additional 3" nails through the webs and filler block where the
backer block will fit. Clinich. Install backer tight to top flange.
Use twelve 3" nails, cliniched when possible. Maximum factored
resistance for hanger for this detail = 1,620 lbs.

For hanger capacity see hanger manufacturer's recommendations. Verify double I-joist capacity to support concentrated loads.

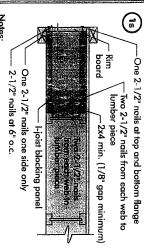
hangers)

BACKER BLOCKS (Blocks must be long enough to permit required nailing without splitting)

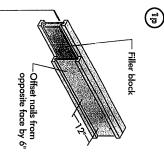
ange Width	Material Thickness Required*	Minimum Depth**
2-1/2"	l"	5-1/2"
3-1/2"	1-1/2"	7-1/4"

- better for solid sawn lumber and wood structural panels conforming to CAN/CSA-0325 or CAN/CSA-0437 Standard.

 For face-mount hangers use net joist depth minus 3-1/4" for joists with 1-1/2" thick flanges. For 2" thick flanges use net depth Minimum grade for backer block material shall be S-P-F No. 2 or
- minus 4-1/4"


Optional: Minimum 1x4 inch

panel NI blocking


opposite side. to lumber piece, nails from each web

alternate on

strap applied to underside of joist at blocking line or 1/2 inch minimum gypsum ceiling attached to underside ot joists

- In some local codes, blocking is prescriptively required in the first joist space (or first and second joist space) next to for spacing of the blocking. All nails are common spiral in this detail the starter joist. Where required, see local code requirements

-1/8" to 1/4" gap between top flange and filler block

Notes:

- Support back of I-joist web during nailing to prevent damage to web/flange connection.
- 2 Leave a 1/8 to 1/4-inch gap between top of filler block and bottom of top I-joist

Flange Size

Joist Depth

Filler Block Size

of adjacent web. Two 2-1/2" spiral

extend block to face Lumber 2x4 min.,

ώ full length of span. Filler block is required between joists for

2-1/2" × 1-1/2"

11-7/8"

2-1/8° x 6° 2-1/8° x 8° 2-1/8° x 10° 2-1/8° x 12° 2-1/8° x 12°

딡

ᅙ

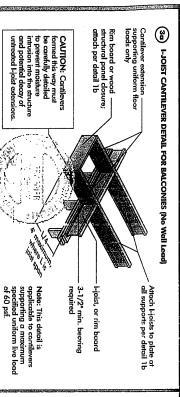
Nail joists together with two rows of 3" nails at 12 inches o.c. (clinched when possible) on each side of the double I-joist. Total of four nails per foot required. If nails are required. can be clinched, only two nails per foot

3-1/2" × 1-1/2"

9 × × 6 × × 10

ģ

The maximum factored load that may be using this detail is 860 lbf/ft. Verify double applied to one side of the double joist


3-1/2" ×

<u>ڇ</u> ڇ

3" × 7" 3" × 9" 3" × 11"

11-7/8

CANTILEVER DETAILS FOR BALCONIES (NO WALL LOAD)

¥ LUMBER CANTILEVER DETAIL FOR BALCONIES (No Wall Load)

2x8 min. Nail to backer block and joist with 2 rows of 3" nails at 6" o.c. and clinch. (Cantilever nails may be used to attach backer block if length of nail is sufficient Full depth backer block with 1/8* gap between block and top flange of I-joist See detail 1h. Nail with 2 rows of 3* nails at 6* o.c. and clinch. to allow clinching.) Attach I-joists to plate at all supports per detail 1b

Cantilever extension supporting uniform floor loads only

Lumber or wood structural panel closure

specified uniform live load of 60 psf Note: This detail is applicable to l-joist, or rim board bearing required 3-1/2" min.

a CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD) Method 1 — SHEATHING REINFORCEMENT ONE SIDE See table FIGURE 4 (continued)

requirements at cantilever.

reinforcement below for NI

Roof truss span

> Girder-Roof trusses

trusses running parallel to the cantilevered floor joists, the I-joist reinforcement requirements for a span of 26 ft. shall be permitted to

For hip roots with the jack

span

2-0 Jack trusses 13'-0" maximum

-maximum cantilever <u>ي</u> 2

2-1/2" Method 2 — SHEATHING REINFORCEMENT TWO SIDES bearing required 3-1/2" min. thickness); attach per detail 1b Rim board or wood structural one dosure (3/4" minimum Use nailing pattern shown for Method 1 with opposite face nailing offset by 3". Use same installation as Method 1 but reinforce both sides of Lioist with sheathing. l}}∘ NI blocking panel or rim board blocking, attach per detail 1g Attach I-joist to plate per detail 1b

2

top and bottom tlange. Install with tace grain per detail 1b. Verify reinforced I-joist capacity. Note: Canadian softwaad plywood sheathing or equivalent (minimum thickness 3/4) required on sides of joist. Depth shall match the full height of the joist. Nali with 2-1/2" noils of 6" o.c., top and bottom flange, Install with face grain horizontal. Attach i-joist to plate at all supports

Attach Ljoists to top plate at all supports per detail 1b, 3-1/2" panel closure (3/4" minimum thickness); attach per detail 1b Rim board, or -wood structural **a** nin. bearing Alternate Method 2 --- DOUBLE I-JOIST 'Q' Face nail two rows of 3" nails at 12" o.c. each side through one L-joist web and the filler black to other L-joist web. Offset nails NI blocking panel or rim board blocking, attach per detail 1g from opposite face by 6". Clinch if possible (four nails per foct required, except two nails per foot required if

Block I-joists together with filler blocks for the full length of the reinforcement. > For I-joist flange widths greater than 3 inches place an additional row of 3" nails along the centreline of the reinforcing panel from each side. Clinch when possible.

5	4	111-7/8	3	(in.) DEMH
054444888	688.7 888	24 30 30 30 30 30 30	949 p 108	ER REINFORCEMENT METHODS ALLOWER IROOF IT ILL = 30, psf, pl. = 15 psf SPÁN JOIST SPÁCING (in.) (fi) 17 12 16 19.2 24
ZZZZZZZZ	ZZZZZZZ	ZZZZZZZ	ZZZZZŻ	(C=M=N) LL = JO
ZZZZZZZZ	ZZZZZZZ	ZZZZZZZ	22	METHOD 30,psf; DL IST SPACIN 16 1
ZZZZZZZZZ		1112X 122 221		35 ALLOWE = 15 psf NG (in.)
ZZZZZZZZ			100	
ZZZZZZZZZ	ZZZZZZZZ	zzzz	a 1 - 2 2 2 2	LOADING = 40 psf, JOIST SPA
222222	ZZZZ	88	ลื่องxxx สื	; (UNFACT DL = 15 p CING (in)
202Z		gaaaxxx	××××*	ORED] 1 1sf 24
ZZZZZZZZ			zz	
-zzzzzzzz 		×>>>>		osf, DI SPÁCII
×0000			, i	15 psf

N = No reinforcement required.
 N = NI reinforced with 3/4" wood structural

- panel on one side only.

 2 = NI reinforced with 5/4" wood structural panel on both sides, or doubtle I-joist.

 X = Try a deeper joist or closer spacing.

 Ausimum design load shall be: 15 psf roof dead load, 55 psf floor total load, and 80 psf wall load. Wall load is based on 3-0"
 - For larger openings, or multiple 3'-0" width openings spaced less than 6'-0" o.c., additional joists beneath the opening's cripple
- studs may be required.

 3. Table applies to joists 12" to 24" o.c. that meet the floor span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of L/480. Use 12" o.c. requirements for lesser spacing.
 - For conventional roof construction using a ridge beam, the Roof Truss Span column above is equivalent to the distance between the supporting wall and the ridge beam.

 When the roof is framed using a ridge board, the Roof Truss Span is equivalent to the distance between the supporting walls as if a
- truss is used.
 . Canhilevered joists supporting girder trusses or roof beams may require additional

WEB HOLES

RULES FOR CUTTING HOLES AND DUCT CHASE OPENINGS:

- The distance between the inside edge of the support and the centreline of any hole or duct chase opening shall be in compliance with the requirements or Table 1 or 2, respectively.
- 'n 1-joist top and bottom flanges must NEVER be cut, notched, or otherwise modified
- ω Whenever possible, field-cut holes should be centred on the middle of the web.
- 4. The maximum size hole or the maximum depth of a duct chase opening that can be cut into an I-joist web shall equal the clear distance between the flanges of the I-joist minus 1/4 inch. A minimum of 1/8 inch should always be maintained between the top or bottom of the hole or opening and the adjacent I-joist flange.
- Ģ 3/4 of the diameter of the maximum round hole permitted at that location. The sides of square holes or longest sides of rectangular holes should not exceed
- ٥ Where more than one hole is necessary, the distance between adjacent hole edges shall exceed twice the diameter of the largest round hole or twice the size of the largest square hole (or wice the length of the longest side of the longest rectangular hole or duct chase opening) and each hole and duct chase opening shall be sized and located in compliance with the requirements of Tables 1 and 2, respectively.
- A knackout is **not** considered a hole, may be utilized anywhere it occurs, and may be ignored for purposes of calculating minimum distances between holes and/or duct chase openings.
- œ Holes measuring 1-1/2 inches or smaller shall be permitted anywhere in a cantilevered section of a joist. Holes of greater size may be permitted subject to
- A 1-1/2 inch hole or smaller can be placed anywhere in the web provided that it meets the requirements of rule number 6 above.
- 70. All holes and duct chase openings shall be cut in a workman-like manner in accordance with the restrictions listed above and as illustrated in Figure 7.
- 11. Limit three maximum size holes per span, of which one may be a duct chase
- 12. A group of round holes at approximately the same location shall be permitted if they meet the requirements for a single round hole circumscribed around them.

TABLE 1 LOCATION OF CIRCULAR HOLES IN JOIST WEBS Simple or Multiple Span for Dead Loads up to 15 psf and Live Loads up to 40 psf

l Joist h Series Minimum distance from inside face of any support to centre of hote (ff-in.) 2 ω 12

- Above table may be used for t-joist spacing of 24 inches on centre or less.
 Hole location distance is measured from inside face of supports to centre of hole
 Distances in this chart are based on uniformly loaded joists.

OPTIONAL:

Dreduced = Lactual x D The above table is based on the I-joists used at their maximum span. If the I-joists are placed at less than their full maximum span (see Maximum Pico), Spairs, the minimum distance from the centreline of the hole to the face of any support (D) as given above may be reduced as follows:

ρĶ Lactual Distance from the inside face of any support to centre of hole, reduced for less-than-maximum span applic distance shall not be less than 6 inches from the face of the support to edge of the hole. The actual measured span distance between the inside faces of supports (ft). Span Adjustment Factor given in this table.

The minimum distance from the inside face of any support to centre of hole from this table Lactual is greater than 1, use 1 in the above calculation for Lactual

2015-04-1

nons (fit. The reduced

Where:

Dreduced

Never drill, cut or notch the flange, or over-cut the web.

sharp saw. should be cut with a Holes in webs bearing distance from See Table 1

for minimum

2x diameter of larger hole

length or hole 2x duct chase

whichever is

minimum distance from bearing) Duct chase opening (see Table 2 for

are 1-1/2 inches in diameter, and are spaced 15 inches on centre along the length of the I-joist. Where possible, it is preferable to use knockouts instead of

Knockouts are prescored holes provided for the contractor's convenience to instal electrical or small plumbing lines. They

FIGURE 7
FIELD-CUT HOLE LOCATOR

stress concentrations. Slightly rounding the corners is recommended. Starting the rectangular hole by drilling a 1-inch For rectangular holes, avoid over-cutting the corners, as this can cause unnecessary and then making the cuts between diameter hole in each of the four corners he holes is another good method to ninimize damage to the I-joist

A knockout is **NOT** considered a hole, may be utilized wherever it occurs and may be ignored for purposes of calculating minimum distances

between holes

Knockouts

See rule 12

Maintain minimum 1/8" space between top and bottom flange — all duct chase openings and holes

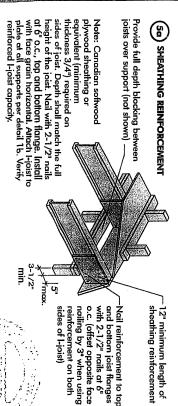
X

TABLE 2

DUCT CHASE OPENING SIZES AND LOCATIONS — Simple Span Only

				r we state
	2	1178		Joist Depth
				Joist Series
9999			union:	Minir 8
			9	-
0.466 0.466	100 200 100 20		655 655 655	inside fac Duct c 14
7 7 7 7 7		7757666 77888787	5-86 6-10 7-1 6-7 6-10	e of any hase leng
55555 5446 5446	75-6-6 75-8-7	6465654 6666654	861 778 778 773	support to gth (in.)
55 55 55 55 55 55 55 55 55 55 55 55 55		1000008 10000000 10000000	7-8- 7-8- 7-6	centre o
143 143 243 243	7677786 7677786		711. 8:2: 8:3: 8:1:	f opening
	1222222 122222 14464		755* 8:6* 8:4* 8:4*	(ff-in.) 24 ,

25 U.S. 1802


- Above table may be used for I-joist spacing of 24 inches on centre or less.

 Duct chase opening location distance is measured from inside dace of supports to centre of opening.

 The above table is based on simple-span joists only. For other applications, contact your local distributor.

 Distances are based on uniformly loaded floor joists that meet the span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of I/480. For other applications, contact your local distributor.

BRICK CANTILEVER DETAILS FOR VERTICAL BUILDING OFFSET (CONCENTRATED WALL LOAD)

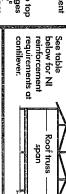
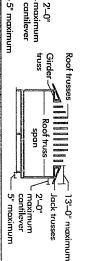



FIGURE 5 (continued)

2'-0"

requirements for a span of 26 ft. shall be permitted to the I-joist reinforcement trusses running parallel to the cantilevered floor joists, For hip roofs with the jack

an a Tigan A Tigan A Tigan	74	100 A	9.1724	BRICK CAN JOIST DEMH (m)
288823888 288888	24 32 65 6	96 196 196 197	28 30 23 34	ROOF TRUSS SPAN (f)
-zzzzzzz		ZZ		TILEVER REINFORCEMENT ROOF: TRUSS: LL = 30 psf. SPAN ' JOIST SPA (fi) ' 12 i 6
××××××××××	×2222=1 ×2222=1 ×××××2			
×××××××	****	×××××	****	METHODS ALLOWED ROC DL = 15 bsf DING (in.) 19.2 24 117
z <u>zz</u> ***	N L L E L L L C			VED ROOF LOAD LL = 40 JOIST
*********			S.	ING (UNFA) psf, DL = 1: SPACING (ii
×××××××	****	*****	****	©[@RE□]: 5 psf \
NNNZ ×××××NN		aaaa×× 		3.0ľ 3.≒ 11
~~^^^ ××××××××				osf, DL IPAGIN
×××××××	*****	*****	****	7 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Notes:

Provide full depth blocking

between joists over support (not shown for clarity)

ж. Э.

Attach joists to girder joist per detail 5c.

Attach I-joist to plate at all supports per detail 1b. 3-1/2" minimum I-joist

bearing required.

structural panel closure (3/4" minimum thickness),

Rim board or wood

attach per detail 1b.

(SE)

SET-BACK DETAIL

Bearing walls

Hanger may be used in lieu of solid sawn blocks

through joist web and web of girder using 2-1/2" nails.

(2x6 S-P-F No. 2 or better) nailed Vertical solid sawn blocks (F)

SET-BACK CONNECTION

Nail joist end using 3" nails, toe-nail at top and bottom flanges.

Alternate for opposite side.

Verify girder joist capacity if the back span exceeds the joist spacing. Attach double I-joist per detail 1p, if required

- N = No reinforcement required.
 1 = NI reinforced with 3/4" wood structural
- panel on one side only.

 2 = NI reinforced with 3/4" wood structural panel on both sides, or double I-joist.
- X = Try a deeper joist or closer spacing.

 Maximum design load shall be: 15 psf roof dead load, 55 psf floor rotal load, and 80 plf wall load. Wall load is based on 3'-0" maximum width window or door openings
- For larger openings, or multiple 3'-0" width openings spaced less than 6'-0" o.c., additional joists beneath the opening's cripple studs may be required
- Table applies to joists 12" to 24" o.c. that meet the floor span requirements for a design live load of 40 psf and dead load of 15 psf, and a live load deflection limit of L/480. Use 12" o.c. requirements for lesser spacing.
 - For conventional roof construction using a ridge beam, the Roof Truss Span column above is equivalent to the distance between the supporting wall and the ridge beam. When the roof is framed using a ridge board, distance between the supporting walls as if a the Roof Truss Span is equivalent to the
- Cantilevered joists supporting girder trusses or roof beams may require additional reintoraing.

truss is used.

INSTALLING THE GLUED FLOOR SYSTEM

- 1. Wipe any mud, dirt, water, or ice from I-joist flanges before gluing
- Snap a chalk line across the l-joists four feet in from the wall for panel edge alignment and as a boundary for spreading glue.
- 3. Spread only enough glue to lay one or two panels at a time, or follow specific recommendations from the glue manutacturer.
- 4. Lay the first panel with tongue side to the wall, and nail in place. This protects the tongue of the next
- Apply a continuous line of glue (about 1/4-inch diameter) to the top flange of a single I-joist. Apply panel from damage when tapped into place with a block and sledgehammer.
- 6. Apply two lines of glue on I-joists where panel ends butt to assure proper gluing of each end.

glue in a winding pattern on wide areas, such as with double l-joists.

After the first row of panels is in place, spread glue in the groove of one or two panels at a time before laying the next row. Glue line may be continuous or spaced, but avoid squeeze-out by applying a thinner line (1/8 inch) than used on I-joist flanges.

2-1/2" toe-nails at 6" o.c. (typical) —

Rim board joint

- 8. Tap the second row of panels into place, using a block to protect groove edges.
- Stagger end joints in each succeeding row of panels, A 1/8-inch space between all end joints and 1/8-inch at all edges, including T&G edges, is recommended. (Use a spacer tool or an 2-1/2" common nail to assure accurate and consistent spacing.)
- 10. Complote all nailing of each panel before glue sets. Check the manufacturer's recommendations for cure time. (Warm weather accelerates glue setting.) Use 2" ring- or screw-shank nails for panels 3/4-inch thick or less, and 2-1/2" ring- or screw-shank nails for thicker panels. Space nails per the finished deck can be walked on right away and will carry construction loads without damage to the table below. Closer nail spacing may be required by some codes, or for diaphragm construction. The

FASTENERS FOR SHEATHING AND SUBFLOORING(1)

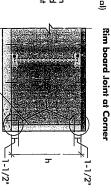
24	20	16	Maximum Joist Spacing (in.)
3/4	5/8	5/8	Minimum Panel Thickness (in.)
2	2"	22	No Common Wire or Spiral Nails
1-3/4"	1-3/4°	1-3/4"	ail Size and Ty Ring Thread Nails or Screws
2"	1g	22	pe 1 Staples
6"	6"	Ó,	Maximum of Fas Edges
12"	12"	12"	n Spacing : teners Interm. Supports

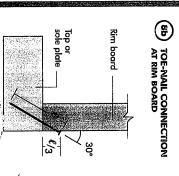
- 1. Fasteners of sheathing and subflooring shall conform to the above table.
- 5 Staples shall not be less than 1/16-inch in diameter or thickness, with not less than a 3/8-inch crown driven with the crown parallel to framing.
- Flooring screws shall not be less than 1/8-inch in diameter.
- 4. Special conditions may impose heavy traffic and concentrated loads that require construction in excess of the minimums shown
- 5. Use only adhesives conforming to CAN/CGSB-71.26 Standard, Adhesives for Field-Gluing Plywood to Lumber Framing for Floor System, applied in accordance with the manufacturer's recommendations. If OSB panels with sealed surfaces and edges are to be used, use only solvent-based glues; check with panel manufacturer.
- Ref.: NRC-CNRC, National Building Code of Canada 2010, Table 9.23.3.5

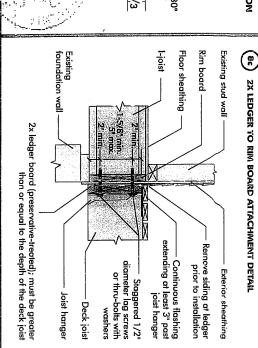
IMPORTANT NOTE:

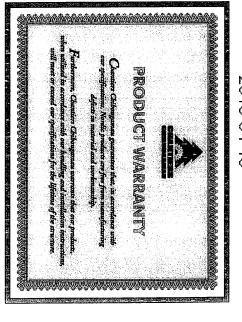
Floor sheathing must be field glued to the L-joist flanges in order to achieve the maximum spans shown in this document. If sheathing is nailed only, L-joist spans must be verified with

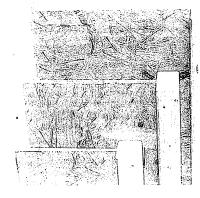
RIM, BOARD INSTALLATION DETAILS


(8g) ATTACHMENT DETAILS WHERE RIM BOARDS ABUT


Rim board Joint Between Floor Joists




(typical)


(1) 2-1/2" nail

· MICRO CITY

engneerng services inc.

TEL: (519) 287 - 2242

R.R. #1, P.O. BOX 61, GLENCOE, ONTARIO, NOL 1MO

LVL HEADER AND CONVENTIONAL				
	LUMBER NAILING DETAILS			
- 11	ETAIL JMBER	NUMBER OF ROWS	SPACING (INCHES o/c)	
1.	A	2.	12	
	В	2	8	
	С	2	6	
	D	2	4	
-	1A	3	12	
<u> </u>	1B	3	8	
	1C	3	6	
	1D	3	4 .	
-	2A	4	12	
1	2B	4	8	
	2C	4	6	
-	2D	4	4	
	3A	5	12	
1	3B	5	8	
I Transmission	3C	5	6	
1	3D	5	4	
The second second	A	6	12	
I construction of the last of	B	6	8	
4C 4D		6	6	
<u>. 4</u>	יט	6	4	

·	
	<u> </u>
u	٦°
v]8
]o
	5

NOTES:

- (1) MINIMUM LUMBER EDGE DISTANCE "a" = 1"
 - (2) MINIMUM LUMBER END DISTANCE "b" = 2"
 - (3) MINIMUM NAIL ROW SPACING "c" = 2"
 - (4) STAGGER NAILS "d/2" BETWEEN PLIES FOR MULTI-PLY MEMBERS (3 PLY OR MORE)
 - (5) ALL NAILS ARE 3-1/2" ARDOX SPIRAL NAILS
 - (6) DO NOT USE AIR-DRIVEN NAILS

DWG NO TÄNNIOO1, 14 STRUCTURAL COMPONENT ONLY TO BE USED ONLY WITH BEAM CALCS BEARING THE STAMP BELOWS

PROVICE NAILING DETAIL IP X SEE. QW0 #TAMN1001-14