Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Pro	oject Information								
Building	number, street nan	ne					Unit no.	Lot/con.	
Municip	ality		Postal code	Plan numbe	er/ other desc	cription	L		
RICHMO	ND HILL								
B. Ind	ividual who revie	ws and takes	responsibility	for design a	ctivities				
Name				Firm					
MICHAI	EL O'ROURKE			HVAC DES	IGNS LTD.				
Street a						Unit no.		Lot/con.	
	ILEY AVE		In	lo ·		202		N/A	
Municip AJAX	ality		Postal code L1S 2E2	Province ONTARIO		E-mail info@hvacd	asians ca		
	one number		Fax number	ONTARIO		Cell number	esigiis.ca		
	19-2300		(905) 619-2375	;		()			
C. Des	sign activities un	dertaken by i	ndividual identi	fied in Secti	on B. [Build	ding Code T	able 3.5.2.1 OF	Division C]	
□ но	nuse		─────────────────────────────────────	C – House			Building Stru	ctural	
	nall Buildings			ng Services	;		Plumbing – F		
	rge Buildings			ction, Lightin	ng and Pov		Plumbing – A		
	omplex Buildings		☐ Fire F	Protection			On-site Sewa	age Systems	
•	tion of designer's wo .OSS / GAIN CALC				Model:	2007			
DUCT S		ULATIONS				FIN BSMT			
	ENTIAL MECHANIC	AL VENTILATI	ON DESIGN SUM	IMARY	Droject:	CENTREELEIF	(WEST GORMLE	v)	
RESIDE	ENTIAL SYSTEM D	ESIGN per CS/	A-F280-12		i roject.	CLIVINLITELL	(WEST GORIVIEE	1)	
D. Dec	claration of Desig	ner							
I	MICHAEL		print name)			declare	that (choose one	as appropriate):	
		,,	,						
		e Building Code	for the design worle. I am qualified, ar				section 3.2.4.of appropria	ite	
	Indiv	idual BCIN:							
		BCIN:							
X		e responsibility er subsection 3	for the design and 3.2.5.of Di vis	am qualified in sion C, of the E			as an "other		
	Indiv	idual BCIN:	19669						
			from registration a	and qualificatio	n:	O.B.C SE	NTENCE 3.2.4	.1 (4)	
	The design work	, is exempt	from the registr	ation and quali	fication requi	iromonto of the	Building Code.		
J	The design work Basis for exemp		ration and qualifica		ilcation requi	ilements of the	e Building Code.		
		· ·	·						
I certify	tnat:								
		ation contained nitted this applic	in this sche cation with the kno	edule is true to wledge and co					
						Make	100	//	
	April 20, 202	1	_			Much	and Sound	ce.	
	Date						Signature of	f Designer	

NOTE

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

SITE NAME: C BUILDER: R					MLEY)			TYPE:	FIN BSMT 2007				GFA:	1662			DATE: Apr-21 LO# 87525						IANGE RATE 0.236 IANGE RATE 0.072	HEAT LOSS	SB-1	CSA-F.	
ROOM USE				MBR			ENS					BED-2			BED-3					BATH							
EXP. WALL				14			6					10			16					0							
CLG. HT.				9			9					9			10					9							
i F	FACTOR	S																									
GRS.WALL AREA	LOSS (GAIN		126			54					90			160					0							
GLAZING				LOSS	GAIN		LOSS	GAIN				LOSS	GAIN		LOSS	GAIN			ı	LOSS G	AIN						
NORTH	21.8	16.0	0	0	0	0	0	0			0	0	0	0	0	0			0	0	0						
		41.6	0	0	0	0	0	0			29	632	1205	36	784	1496			0	0	0						
SOUTH	21.8	24.9	0	0	0	0	0	0			0	0	0	0	0	0			0	0	0						
		41.6	28	610	1163	8	174	332			0	0	0	0	0	0			0	0	0						
	35.8	101.2	0	0	0	0	0	0			0	0	0	0	0	0			0	0	0						
		4.3	0	0	0	o	0	0			0	0	0	0	0	0			0		0						
		0.7	98	412	68	46	193	32			61	257	42	124	521	86			0	0	0						
		0.6	0	0	0	0	0	0			0	0	0	0	0	0			0	0	0						
		0.6	295	388	173	138	181	81			245	322	144	166	218	98			63		37						
	2.8	1.3	0	0	0	0	0	0			0	0	0			33			0	0	0						
					0						203	530		26	73												
	2.6	0.4	0	0	U	0	0	0			203		87	25	65	11			36	94	15						
BASEMENT/CRAWL HEAT LOSS				0			0					0			0					0							
SLAB ON GRADE HEAT LOSS				0			0					0			0					0							
SUBTOTAL HT LOSS				1410			549					1740			1662					177							
SUB TOTAL HT GAIN					1405			445					1478			1723					52						
LEVEL FACTOR / MULTIPLIER			0.20	0.27		0.20					0.20			0.20					0.20	0.27							
AIR CHANGE HEAT LOSS				386			150					477			456					48							
AIR CHANGE HEAT GAIN					77			24					81			94					3						
DUCT LOSS				0			0					222			212					23							
DUCT GAIN					0			0					288			313					6						
HEAT GAIN PEOPLE	240		2		480	0		0			1		240	1		240			0		0						
HEAT GAIN APPLIANCES/LIGHTS					1077			0					1077			1077					0						
TOTAL HT LOSS BTU/H				1796			700					2439			2329					248							
TOTAL HT GAIN x 1.3 BTU/H					3950			611					4113			4481					79						
																						•		•			
ROOM USE									K/C	i/B							B-BATH			FOY		MUD				BAS	
EXP. WALL									2	3							0			32		12				68	
CLG. HT.									1)							10			11		11				10	
	FACTOR	s																									
GRS.WALL AREA L	LOSS G	AIN							23	2							0			355		133				476	
GLAZING										SS GAIN							LOSS	GAIN		LOSS C	GAIN	LOSS GAIN				LOSS	GAIN
	21.8	16.0							0 0								0 0	0	0	0	0	0 0 0				0 0	0
		41.6							0 0								0 0	0	30		1247	0 0 0				0 0	0
		24.9							8 17								0 0	ō	0	0	0	0 0 0				0 0	0
		41.6							78 16								0 0	ō	0	0	0	0 0 0				7 152	291
		101.2							0 0	0							0 0	o	0	0	o	0 0 0				0 0	0
		4.3							0 0								0 0	0	35		149	20 517 85				20 517	85
. Driving	25.8					•				U	1			1			0 0	U				20 317 03				0 0	0
									146 04	5 404							0 0	Λ.		1220	204	113 /76 70					
NET EXPOSED WALL	4.2	0.7							146 61								0 0	0			201	113 476 78				204 754	124
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR	4.2 3.7	0.7 0.6							0 0	0							0 0	0	0	0	0	0 0 0				204 751	124
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG	4.2 3.7 1.3	0.7 0.6 0.6							0 0	0							0 0 0	0	0	0 0	0	0 0 0 0				0 0	0
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 30 8	0 0 4 38							0 0 0 0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0 0 0 0 0				0 0	0 0
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR	4.2 3.7 1.3 2.8	0.7 0.6 0.6							0 0 0 0 30 8 0 0	0							0 0 0 0 0 0 0 0	0	0	0 0 0	0	0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0	0
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 30 8 0 0	0 0 4 38							0 0 0 0 0 0 0 0 163	0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0				0 0	0 0
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 30 8 0 0	0 0 4 38 0							0 0 0 0 0 0 0 0 163	0 0	0 0 0 0	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0 2045	0 0
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 30 8 0 0	0 0 4 38 0							0 0 0 0 0 0 0 0 163	0 0 0 0	0 0 0 0	0 0 0 0 0 0 2779	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 993				0 0 0 0 0 0	0 0 0
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 30 8 0 0 0	0 0 4 38 0 73 3579							0 0 0 0 0 0 0 0 163 0	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0 2779	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 993				0 0 0 0 0 0 2045	0 0
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 38 0 73 3579							0 0 0 0 0 0 0 0 0 0 163 0 163 0 1.05	0 0 0 0 0	0 0 0 0	0 0 0 0 0 0 2779	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 993 163				0 0 0 0 0 0 2045 3466	0 0 0
NET EXPOSED WALL NET EXPOSED ESMIT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 30 8 0 0 0	0 0 4 38 0 73 3579							0 0 0 0 0 0 0 0 163 0	0 0 0 0 0	0 0 0	0 0 0 0 0 0 0 2779	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 993				0 0 0 0 0 0 2045	0 0 0
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 38 0 73 3579							0 0 0 0 0 0 0 0 0 0 163 0 163 0 1.05	0 0 0 0 0	0 0 0	0 0 0 0 0 0 2779	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 993 163				0 0 0 0 0 0 2045 3466	0 0 0
NET EXPOSED WALL NET EXPOSED ESMIT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 38 0 73 3579 86							0 0 0 0 0 0 0 0 0 0 163 0 163 0 1.05	0 0 0 0	0 0 0	0 0 0 0 0 0 2779	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 993 163 0.30 0.36				0 0 0 0 0 0 2045 3466	0 0 0
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 38 0 73 3579 86							0 0 0 0 0 0 0 0 163 0 163	0 0 0 0	0 0 0	0 0 0 0 0 0 2779	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 993 163 0.30 0.36 356				0 0 0 0 0 0 2045 3466 0.50 1.05 3624	0 0 0
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN	4.2 3.7 1.3 2.8	0.7 0.6 0.6 1.3							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 38 0 0 73 3579 66 3 196							0 0 0 0 0 0 0 0 163 0 163	0 0 0 0	0 0 0	0 0 0 0 0 0 2779	0 0 0 0 1596	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0 0 0 0 0 0 2045 3466 0.50 1.05 3624	0 0 0 500
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN	4.2 3.7 1.3 2.8 2.6	0.7 0.6 0.6 1.3							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 38 0 0 73 3579 66 3 196 0							0 0 0 0 0 0 0 0 163 0 163 0.50 1.05	0 0 0 0	0 0 0 0	0 0 0 0 0 0 2779	0 0 0 0 1596	0 0 0 0 0 0 0 0 0 0 0 0 0 0 993 163 0.30 0.36 356 9				0 0 0 0 0 0 2045 3466 0.50 1.05 3624	0 0 0 500
NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	4.2 3.7 1.3 2.8 2.6	0.7 0.6 0.6 1.3							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4 38 0 73 3579 16 3 196 0 0 1077							0 0 0 0 0 0 0 0 163 0 163 0.50 1.05	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 2779	0 0 0 0 1596 87 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 993 163 0.30 0.36 356 9 0				0 0 0 0 0 0 2045 3466 0.50 1.05 3624	0 0 0 500 27 0

STRUCTURAL HEAT LOSS: 23556 TOTAL HEAT GAIN BTU/H: 22858 TONS: 1.90 LOSS DUE TO VENTILATION LOAD BTU/H: 1336 TOTAL COMBINED HEAT LOSS BTU/H: 24892

Michael Oxounde.

		PINE HC	MES .				TYPE: 2		0.6			DATE:	Apr-21			GFA:	1662	LO#	87525				
	56 11	TOTAL I AIR FLOW		22,638 36.22		a	furna a/c coil p vailable pr	ressure ressure	0.05 0.2 0.35								060-14V SPEED LOW	820	R	OUTPUT	,	60,000 58,000	
0 0 unless n	0 0 oted other	8 4 vise on lay	5 1	Bas 4 1		max	s/a dif pre	ss. loss	0.18 0.03 0.15		grille pre	ss. Loss	0.02			MEDLOW 0 MEDIUM 0 MEDIUM HIGH 0 HIGH 1520		0	TI		CFM @ .6		- _ °F
			4	5	6	7			10				14	15			18	19	20	21	22	23	24
ME MB H. 0.9 AT 31	R ENS 0 0.70 24	-	•	BED-3 1.16 41 2.24	BED-3 1.16 41 2.24	9 0.08			MBR 0.90 31 1.97				K/G/B 1.75 61 3.15	K/G/B 1.75 61 3.15			FOY 1.89 66 1.09	FOY 1.89 66 1.09	MUD 1.35 47 0.22	BAS 2.36 82 0.23	B-BATH 0.33 12 0.00	BAS 2.36 82 0.23	BAS 2.36 82 0.23
RE 0.1 H. 40 TH 120	7 0.17 56 0 150	0.17 43 160	0.17 45 170	0.16 33 120	0.16 30 140	3 0.17 15 150			0.17 36 150				114 0.15 35 120	114 0.15 39 150			40 0.17 18 100	40 0.17 24 80	8 0.17 26 110	8 0.16 55 170	0 0.17 25 90	8 0.16 36 140	8 0.16 10 110
RE 0.1 ZE 5 in) 228 in) 529	1 0.08 4 3 275 9 252	0.08 5 308 543	0.08 5 308 543	0.11 5 301 595	0.1 5 301 595	0.1 4 103 34			0.09 5 228 529				0.1 6 311 581	0.08 6 311 581			0.15 5 485 294	0.17 5 485 294	0.13 4 539 92	0.07 6 418 41	0.15 4 138 0	0.09 6 418 41	120 0.14 6 418 41 4X10
	B	B	В	C	C	C			A				A A	A A			C	C	В	A A	В	A A	C C
ME H. AT H. G RE H. H. FH FRE ZE in)																							
																RETURN A							
CFM A 348 B 518 C 308 D 0	PRESS 0.07 0.07		12 16 8 0 0	x x x x x	8 8 8 8	(ft/min) 522 579 686 0 0		TRUNK H TRUNK I TRUNK J TRUNK K	CFM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PRESS. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0	0 0 0 0 0 0	x x x x x	8 8 8 8 8	(ft/min) 0 0 0 0 0	TRUNK O TRUNK P TRUNK Q TRUNK R TRUNK S TRUNK T TRUNK U TRUNK U	O O O O O O O	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0 0 0 0 0 0 0	0 0 0 0 0 0 0	x x x x x x	8 8 8 8 8	VELOCITY (fl/min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	2	3	4	5			0							^	BR	TRUNK W	0	0.05	0	Ö	x	8	0
95 0.1 48 179 223 0.0 6 8 X	0 115 5 0.15 34 5 205 3 239 7 0.06 6.7 8 X	0 75 0.15 36 245 281 0.05 6 8 X	0 95 0.15 40 165 205 0.07 6 8	0 320 0.15 22 220 242 0.06 9.8 6 X	0 0 0.15 1 0 1 14.80 0 0	0 0 0.15 1 0 1 14.80 0 0	0 0 0.15 1 0 1 14.80 0 0	0 0 0.15 1 0 1 14.80 0 0	0 0 0.15 1 0 1 14.80 0 0	0 0 0.15 1 0 1 14.80 0 0	0 0 0.15 1 0 1 14.80 0 0	0 0 0.15 1 0 1 14.80 0 0	0 0 0.15 1 0 1 14.80 0 0	0 0 0.15 1 0 1 14.80 0 0	120 0.15 40 160 200 0.07 6.6 8	TRUNK X TRUNK Y TRUNK Z DROP	820 215 0 820	0.05 0.05 0.05 0.05	14.6 8.9 0 14.6	24 10 0 24	x x x	8 8 8 10	615 387 0 492
- LINGS AND STITE ZILIZA STATE ZILIZA	Att	4th	### Ath	Ath	Ath	Ath	Ath	Ath	Ath 3rd 2nd 1st Bas	Ath 3rd 2rd 1st Bas	Min	Ath	Ath	Ath 3rd 2rd 1st Bas	Adh	Min	Second Column	Second Column	The color of the	Main Stand Stand	4th 3rd 2rd 1st 5st 5st 4st 2st 2st	Mary Mary	Mail

TYPE: 2007 SITE NAME: CENT

CENTREFIELD (WEST GORMLEY)

LO # 87525 FIN BSMT

RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL \	VENTILATION CAPACIT	Υ	9.32.3.5.
a)		Total Ventilation Ca	pacity	148.4	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Venti	il. Capacity	63.6	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Suppleme	ental Capacity	84.8	cfm
d) Solid Fuel (including fireplaces)					
e) No Combustion Appliances		PRINCIPAL EXHAL	JST FAN CAPACITY		
		Model:	VANEE 65H	Location:	BSMT
HEATING SYSTEM		63.6	cfm		✓ HVI Approved
Forced Air Non Forced Air			JST HEAT LOSS CALCU		
		CFM 63.6 CFM	ΔT °F X 78 F	FACTOR X 1.08	% LOSS X 0.25
Electric Space Heat		SUPPLEMENTAL F	EANS	BY INSTALLING CON	TRACTOR
		Location	Model	cfm	HVI Sones
HOUSE TYPE	9.32.1(2)	ENS	BY INSTALLING CONTR		✓ 3.5
		BATH	BY INSTALLING CONTE		√ 3.5
Type a) or b) appliance only, no solid fuel		PWD B-BATH	BY INSTALLING CONTE		✓ 3.5 ✓ 3.5
II Type I except with solid fuel (including fireplace	s)			30	
III Any Type c) appliance		HEAT RECOVERY Model:	VENTILATOR VANEE 65H		9.32.3.11.
IV Type I, or II with electric space heat		155	cfm high	64	cfm low
		75	% Sensible Efficie		✓ HVI Approved
Other: Type I, II or IV no forced air			@ 32 deg F (0 de	eg C)	
OVOTEM DEGICAL OPTIONS	0.1111111111111111111111111111111111111	LOCATION OF INS	TALLATION		
SYSTEM DESIGN OPTIONS	O.N.H.W.P.	Lot:		Concession	
1 Exhaust only/Forced Air System					
2 HRV with Ducting/Forced Air System		Township		Plan:	
✓ 3 HRV Simplified/connected to forced air system		Address			
4 HRV with Ducting/non forced air system		Roll #		Building Pern	nit#
		BUILDER:	ROYAL PINE HO	OMES	
Part 6 Design		Name:			
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:			
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	cfm	City:			
Other Bedrooms <u>2</u> @ 10.6 cfm <u>21.2</u>	cfm	Telephone #:		Fax#:	
Kitchen & Bathrooms6 @ 10.6 cfm63.6	cfm	INSTALLING CONT	TRACTOR		
Other Rooms <u>2</u> @ 10.6 cfm <u>21.2</u>	cfm	Name:			
Table 9.32.3.A. TOTAL 148.4	cfm	Address:			
		City:			
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)				
1 Bedroom 31.8	cfm	Telephone #:		Fax#:	
2 Bedroom 47.7	cfm	DESIGNER CERTIF	FICATION this ventilation system ha	as been designed	
3 Bedroom 63.6	cfm		the Ontario Building Cod HVAC Designs I	e.	
4 Bedroom 79.5	cfm	Signature:	. TV/ to Designs I	Mehal OfourLe	i.
					٠.
5 Bedroom 95.4	cfm	HRAI#		001820	
TOTAL 63.6 cfm I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUA	ALIFIED IN THE AP	Date: PPROPRIATE CATEGORY AS AN	"OTHER DESIGNER" UNDER	April-21 DIVISION C, 3.2.5 OF THE BU	ILDING CODE.

			Form	nula Sheet (For Air Lea	kage / Ventiliation C	alculation)				
LO#: 875	25	Model: 2007		Builde	r: ROYAL PINE HOMES				Date:	4/20/2021
		Volume Calculati	on				Air Change & Delt	a T Data		
				1					ı	1
ise Volume	El		1 1/1 (6:3)				TURAL AIR CHANG		0.236	
Level	Floor Area (ft²)	Floor Height (ft)	Volume (ft³)			SUMMER NA	ATURAL AIR CHANG	SE RATE	0.072	
Bsmt	731 731	10	7310							
First Second	931	10 9	7383.1 8379				Design Te	mperature Diffe	aranca	
Third	0	9	0	1			Tin °C	Tout °C	ΔT °C	ΔT °F
Fourth	0	9	0			Winter DTDh	22	-21	43	78
Tourth		Total:	23,072.1 ft ³			Summer DTDc	24	31	7	13
		Total:	653.3 m ³	†		Summer Bibe			,	13
		•		-						
	5.2.3	3.1 Heat Loss due to A	Air Leakage			6.2.6	Sensible Gain due	to Air Leakage		
		V_{ν}					V ₁ .			
	$HL_{airb} =$	$LR_{airh} \times \frac{V_b}{3.6} \times$	$DTD_h \times 1.2$		Н	$IG_{salb} = LR_{airc} >$	$\langle \frac{r_b}{2.6} \times DTD_c \rangle$	× 1.2		
0.236		_ x <u>43 °C</u>		= 2224 W	= 0.072	x 181.48	5.0		=	111 W
0.230	x 101.40	_ ^ 45 C	_ ^	- ZZZ4 VV	- 0.072	A 101.40	_ ^	^	-	111 00
				= 7588 Btu/h	1				=	378 Btu/h
				7500 510/11	•					370 200,11
	5.2.3.2 He	at Loss due to Mecha	nical Ventilation			6.2.7 Ser	nsible heat Gain d	ue to Ventilatio	n	
	$HL_{vairb} =$	$PVC \times DTD_h \times$	$1.08 \times (1 - E)$		HL_1	$_{vairb} = PVC \times D$	$TD_h \times 1.08 \times$	(1-E)		
64 CFM	x 78 °F	x 1.08	x 0.25	= 1336 Btu/h	64 CFM	x <u>13 °F</u>	x 1.08	x 0.25	=	220 Btu/h
			5.2.3.3 Calcula	tion of Air Change Heat	oss for Each Room (Floo	or Multiplier Section)				
		ш	- Land Fast	or \times HL_{airbv} \times {(H	и ни).	(111 111	b			
			airr – Level Fuct	$OI \wedge IIL_{airbv} \wedge \{(II)\}$	$L_{agcr} + IIL_{bgcr} +$	(IIL agclevel + IIL	bgclevel J3			
				HLairve Air Leakage +	Level Conductive Heat	Air Leakage Heat Lo	ss Multiplier (LF x			
		Level	Level Factor (LF)	Ventilation Heat Loss	Loss: (HL _{clevel})	HLairby / H				
				(Btu/h)			,			
		1	0.5	1	3,629	1.04				
		2	0.3		6,345	0.35				
		3	0.2	7,588	5,538	0.27				
		4	0		0	0.00				
		5	0		0	0.00	0			
		****		+ ventilation heat loss						

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL:	2007		FIN BSMT	BUILDER: ROYAL PINE HOMES)
SFQT:	1662	LO#	87525	SITE: CENTREFIELD (WEST	Γ GORMLEY)
DESIGN ASS	SUMPTIONS				
HEATING			°F	COOLING	°F
	DESIGN TEMP.		-6	OUTDOOR DESIGN TEMP.	88
INDOOR DE	SIGN TEMP.		72	INDOOR DESIGN TEMP. (MAX 75°F)	75
BUILDING D	DATA				
ATTACHME	NT:		ATTACHED	# OF STORIES (+BASEMENT):	3
FRONT FACE	ES:		EAST	ASSUMED (Y/N):	Υ
AIR CHANGI	ES PER HOUR:		2.50	ASSUMED (Y/N):	Υ
AIR TIGHTN	ESS CATEGORY:		TIGHT	ASSUMED (Y/N):	Υ
WIND EXPO	SURE:		SHELTERED	ASSUMED (Y/N):	Υ
HOUSE VOL	UME (ft³):		23072.1	ASSUMED (Y/N):	Υ
INTERNAL S	HADING:	BLINDS	S/CURTAINS	ASSUMED OCCUPANTS:	4
INTERIOR LI	GHTING LOAD (Btu/	n/ft²):	1.80	DC BRUSHLESS MOTOR (Y/N):	Υ
FOUNDATIO	ON CONFIGURATION		BCIN_1	DEPTH BELOW GRADE:	7.0 f
LENGTH:	52.0 ft	WIDTH:	20.0 ft	EXPOSED PERIMETER:	68.0 f

2012 OBC - COMPLIANCE PACKAGE		
	Compliance	Package
Component	SB-12 PERI	ORMANCE
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.20
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.70
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22+1.5	18.50
Basement Walls Minimum RSI (R)-Value	20	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	1.6	-
Skylights Maximum U-Value	2.6	-
Space Heating Equipment Minimum AFUE	0.96	-
HRV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	TE=94%	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

We	eather Sta	tion Description
Province:	Ontario	·
Region:	Richmon	d Hill
	Site D	escription
Soil Conductivity:	Normal o	conductivity: dry sand, loam, clay
Water Table:	Normal (7-10 m, 23-33 ft)
I	oundatio	n Dimensions
Floor Length (m):	15.8	
Floor Width (m):	6.1	
Exposed Perimeter (m):	20.7	
Wall Height (m):	3.0	
Depth Below Grade (m):	2.13	Insulation Configuration
Window Area (m²):	0.7	
Door Area (m²):	1.9	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ntion Loads
Heating Load (Watts):		647

TYPE: 2007 **LO#** 87525

FIN BSMT

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather	Station Description	
Province:	Ontario	
Region:	Richmond Hill	
Weather Station Location:	Open flat terrain, grass	
Anemometer height (m):	10	
	ocal Shielding	
Building Site:	Suburban, forest	
Walls:	Heavy	
Flue:	Heavy	
Highest Ceiling Height (m):	6.74	
Buildi	ng Configuration	
Type:	Semi	
Number of Stories:	Two	
Foundation:	Full	
House Volume (m³):	653.3	
Air Lea	akage/Ventilation	
Air Tightness Type:	Energy Star Detached (2	2.5 ACH)
Custom BDT Data:	ELA @ 10 Pa.	609.9 cm ²
	2.50	ACH @ 50 Pa
Mechanical Ventilation (L/s):	Total Supply	Total Exhaust
	30.0	30.0
	Flue Size	
Flue #:	#1 #2 #3 #4	
Diameter (mm):	0 0 0 0	
Natura	l Infiltration Rates	
Heating Air Leakage Rate (AC	H/H): 0.236	
Cooling Air Leakage Rate (AC	H/H): 0.072	

TYPE: 2007 **LO#** 87525

FIN BSMT

SB-12 PERFORMANCE

HVAC DESIGNS LTD.										
				HVAC LE	EGEND			3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.	REVISED AS PER ARCHITECTURALS	APR/2021
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE	N	RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE	SEPT/2020
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD. AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY) RICHMOND HILL, ONTARIO

FIN BSMT 2007

1662 sqft

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

		SS 24892	BTU/H	# OF RUNS	S/A	R/A	FANS	She
		JN I T DATA		3RD FLOOR				
	MAKE C	CARRIER		2ND FLOOR	8	4	2	
	MODEL 59TN	N6A-060-14\	/	1ST FLOOR	5	1	2	
	INPUT	60	MBTU/H	BASEMENT	4	1	1	Dat
	OUTPUT	58	MBTU/H	ALL S/A DIFFU				Sca
ьe	COOLING	2.0	TONS	ON LAYOUT. A	LL S/A	RUN	S 5"Ø	
	FAN SPEED	820	cfm @ 0.6" w.c.	ON LAYOUT. U DOORS 1" min.	NDER	CUT		L

IS	Sheet Title									
	B/	ASEMENT								
	HEATING									
	_	AYOUT								
		-A1001								
	Date	SEPT/2020								
	Scale	3/16" = 1'-0"								
Ø	В	CIN# 19669								
	LO#	87525								

MICHAEL O'ROURKE HAVE REVIEW
AND TAKE RESPONSIBILITY FOR THE
ESSIGN WORK AND AM QUALIFIED
UNDER DIVISION C, 3.2.5 OF THE
BUILDING CODE.

Michael Officer

CSA-F280-12

SB-12 PERFORMANCE

II THE DESIGNATED.										
HVAC LEGEND								3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.	REVISED AS PER ARCHITECTURALS	APR/2021
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE	N	RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE	SEPT/2020
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.® AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

Cllent

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY) RICHMOND HILL, ONTARIO

FIN BSMT 2007

1662 sqft

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST I

FIRST FLOOR HEATING LAYOUT

Date SEPT/2020 Scale 3/16" = 1'-0"

BCIN# 19669

LO# 87525

PART. SECOND FLOOR PLAN, EL. 'B2'

SECOND FLOOR PLAN, EL. 'B1'

PART. SECOND FLOOR PLAN,

EL. 'A2'

CSA-F280-12 SB-12 PERFORMANCE

HVAC DESIGNS LTD.												
HVAC LEGEND												
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.	REVISED AS PER ARCHITECTURALS	APR/2021		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE	SEPT/2020		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	ш	30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date		
	SUPPLY AIR BOOT ABOVE	ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS			

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

Cllent

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY) RICHMOND HILL, ONTARIO

FIN BSMT 2007

1662 sqft

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR
HEATING
LAYOUT

Date SEPT/2020 Scale 3/16" = 1'-0" BCIN# 19669

LO# 87525