

ASPHALT SHINGLES FINISHED OVERHANG: 12" 2x6 EXTERIOR WALLS 2x6 FASCIA BOARD HEEL: R.T.M.C.

DESIGN CONFORMS WITH OBC 2012 OCCUPANCY: RESIDENTIAL | PART: 9 Ss = 31.4 psf | Sr = 8.4 psf

DESIGN LOADS:

TCSL = 25.6 psfTCDL = 6.0 psfBCLL = 0.0 psf

BCDL = 7.4 psf

DENOTES: CONVENTIONAL

HARDWARE:

LUS24 - (**O**) LJS26DS - (V) HGUS26-2 - (XX) HGUS26-3 - (XXX) H2.5T - (/) LGT3 - (@)

9 of O.B.C. 2 = #2 @ 24" c longer than confor to be point. uming to c trusses t cross pc distance

CITY OF RICHMOND HILL BUILDING DIVISION

09/14/2021

RECEIVED danielle.devitt

M14105

TAMARACK ROOF TRUSSES INC.

Job Track: 51012 Plan Log: **203502**

Layout ID: 412865

ROYAL PINE HOMES / RICHMOND HILL

Model / Elevation:

BLOCK 56 / UNITS 9 - 12

Mitek ver 8.4.2.286

THESE DRAWINGS CONSTITUTE THE PROPERTY OF TAMARACK ROOF TRUSSES INC., SHALL NOT BE REPRODUCED, PUBLISHED, OR REDISTRIBUTED IN ANY MANNER OR UTILIZED FOR ANY PURPOSE OTHER THAN THE MANUFACTURE OF TRUSSES BY TAMARACK ROOF TRUSSES INC AND WILL BE RETRACTED BY TAMARACK ROOF TRUSSES INC IF UTILIZED FOR ANY OTHER PURPOSE. Project: CENTREFIELD Date: 2021-07-01 Sales: Mario DiCano

TAMARACK ROOF TRUSSES INC.

DELIVERY SHIPLIST

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

B / UNIT12BLK282

Project: Location:

CENTREFIELD

Model:

RICHMOND HILL

Lot #:

Elevation:

BLOCK 56

Page

51012

Job Track: 51 PlanLog: 20

203502 413113

Ref#

Page:

1 of 2

Date:

07-08-2021

Designer:

Layout ID:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

PROFILE BFT. STACK A STAC	LOAD BY REMARKS
2 T10G GABLE 6 /12 22-08-08 8-01-04 2 x 4 1-05-00 1-02-00 243.75 153.67 1 T101 Half Hip Girder 6 /12 19-05-08 4-01-04 2 x 4 1-03-08 1-02-00 182.72 116.00 2 T102 Half Hip Girder 6 /12 19-05-08 5-01-04 2 x 4 1-03-08 1-02-00 159.13 101.33 2 T103 Half Hip 6 /12 19-05-08 6-01-04 2 x 4 1-03-08 1-02-00 1772.24 Half Hip 6 /12 19-05-08 7-01-04 2 x 4 1-03-08 1-02-00 177.04 109.67	INC.WIARRS
Half Hip Girder	
1	
Half Hip 6 /12 19-05-08 5-01-04 2 x 4 1-03-08 5-01-04 101.33 2 T103 Half Hip 6 /12 19-05-08 6-01-04 2 x 4 1-03-08 1-02-00 6-01-04 109.67 2 T104 Half Hip 6 /12 19-05-08 7-01-04 2 x 4 1-03-08 1-02-00 7-01-04 108.00	
Half Hip 6 /12 19-05-08 6-01-04 2 x 4 1-03-08 6-01-04 109.67 2 T104 Half Hip 6 /12 19-05-08 7-01-04 2 x 4 1-03-08 1-02-00 7-01-04 108.00	
Half Hip 6 /12 19-05-08 7-01-04 2 x 4 1-03-08 7-01-04 108.00	
8 T105	
8 T105 Half Hip 6 /12 19-05-08 8-01-04 2 x 4 1-03-08 1-02-00 689.37 434.67	
2 T106 Half Hip 6 /12 19-05-08 9-01-04 2 x 4 1-03-08 1-02-00 181.02 114.00	
1 T107 Hip Girder 6 /12 9-06-00 2-04-12 2 x 4 1-03-08 1-02-00 37.9 25.50	
2 T108 Hip 6 /12 9-06-00 4-10-12 2 x 4 1-03-08 2-08-00 99.25 67.00	
1 T109 Hip 6 /12 9-06-00 3-10-12 2 x 4 1-03-08 2-08-00 45.71 1-03-08 2-08-00 45.71 2 x 4 1-03-08 2-08-00 45.71 2 x 4 BUILDING DIVISION	
1 2-ply Monopitch Girder 6 /12 5-10-08 4-01-04 2 x 6 1-02-00 4-01-04) 1 58.39 4-01-04 2 x 6	
2 PB101 Piggyback 6 /12 5-07-00 2-00-00 2 x 4 PEC32-19/ED Per:danielle.devitt	
4 PB102 Piggyback 6 /12 5-07-00 2-09-08 2 x 4 2-09-08 58.98 40.00	

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL

Lot #:

Elevation:

BLOCK 56

B / UNIT12BLK282

Job Track:

51012 203502

PlanLog: Layout ID:

413113

Ref#

Page:

2 of 2

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	PB103G GABLE	6 /12	8-10-00	2-09-08	2 x 4		2-09-08	51.18 35.33		
	11	J01 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	184.74 117.33		
	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-04	50.28 33.33		
	2	J11 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 6-09	1-02-00 2-01-08	15.69 10.67		
	2	J12 Jack-Open	6 /12	2-05-08	2-04-12	2 x 4	1-03-08	1-02-00 2-04-12	17.09 12.00		
	3	J13 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-01	1-02-00 2-01-08	21.97 14.00		
	1	J14 Jack-Open	6 /12	2-00-00	3-01-08	2 x 4	1-03-08 1-10-15	1-02-00 2-02-00	9.87 6.00		
	1	J15 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 3-11-09	1-02-00 2-01-08	11.74 7.33		
	1.	J16 Jack-Open	6 /12	3-10-15	3-01-08	2 x 4	1-03-08 1-11-09	1-02-00 3-01-08	14.29 8.67		
TOTAL # TRI	ISS=	62	TOT4:	DET OF AL				·			

TOTAL #TRUSS= 62

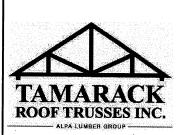
TOTAL BFT OF ALL TRUSSES= 1722.51

BFT.

TOTAL WEIGHT OF ALL TRSSES 2693.28 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	LUS24	
1	Hardware	HGUS26-2	


TOTAL NUMBER OF ITEMS= 4

CITY OF RICHMOND HILL **BUILDING DIVISION**

09/14/2021

RECEIVED

Per: danielle.devitt

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

B1 / UNIT11BLK282

Project: Location: **CENTREFIELD** RICHMOND HILL

Model:

BLOCK 56

Lot #:

Elevation:

Ref#

203502

51012

413114

Page:

1 of 2

Date:

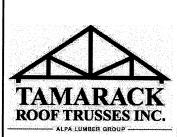
07-08-2021

Designer:

Job Track:

PlanLog:

Layout ID:


Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	5	T11 Piggyback Base	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1279.34 775.00		
	4	T11A Piggyback Base	6 /12	38-03-00	8-01-04	2 x 6	1-03-08	1-02-00 1-02-00	886.16 540.00		
	1	T11G GABLE	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	272.06 169.67		
	1	T11GB GABLE	6 /12	37-03-00	8-01-04	2 x 6	1-03-08	1-02-00 5-03-00	236.81 147.83		
	1 3-ply	T111 Piggyback Base Girder	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	843.15 519.00		
	1	T117 Half Hip Girder	6 /12	8-04-08	2-04-12	2 x 4	1-03-08	1-02-00 2-04-12	34.08 22.83		
	1	T118 Half Hip	6 /12	8-04-08	4-10-12	2 x 4		2-08-00 4-10-12	39.12 26.00		
	1	T119 Half Hip	6 /12	8-04-08	5-10-12	2 x 4		2-08-00 5-10-12	45.3 29.67		
	1	T120 Monopitch	6 /12	8-04-08	6-10-04	2 x 4		2-08-00 6-10-04	41.6 27.33		
	1 3-ply	T121 Jack-Closed Girder	6 /12	8-06-08	6-11-04	2 x 4 2 x 6		2-08-00 6-11-04	141.44 94.00		
	8	PB06 Piggyback	6 /12	17-08-00	4-05-00	2 x 4		CITY OF	410.9 RI256109OI		1
	1	PB06G GABLE	6 /12	17-08-00	4-05-00	2 x 4		09/	50.76 1 431/0 <u>0</u> 2)21	
	1 3-ply	PB06Z Piggyback	6 /12	17-08-00	4-05-00	2 x 4		RE Per:d	054.09/E 96.00 anielle.de	D evitt	
	1	PB104 Piggyback	6 /12	17-08-00	3-11-04	2 x 4			57.06 37.00		

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL

Lot #: Elevation: BLOCK 56

B1 / UNIT11BLK282

Job Track:

51012

PlanLog: Layout ID: 203502 413114

Ref#

Page:

2 of 2

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	PB105G Piggyback	6 /12	8-10-00	2-08-00	2 x 4		2-09-08	25.27 17.67		
	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-04	50.28 33.33		
	1	J11 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 6-09	1-02-00 2-01-08	7.85 5.33		
	3	J12 Jack-Open	6 /12	2-05-08	2-04-12	2 x 4	1-03-08	1-02-00 2-04-12	25.63 18.00		
	1	J13 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-01	1-02-00 2-01-08	7.32 4.67		

TOTAL #TRUSS= 45

TOTAL BFT OF ALL TRUSSES= 2850.33

BFT.

TOTAL WEIGHT OF ALL TRSSES 4608.21 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	LUS24	
4	Hardware	LJS26DS	
1	Hardware	HGUS26-3	
14	Hardware	H2.5T	

TOTAL NUMBER OF ITEMS= 22

CITY OF RICHMOND HILL **BUILDING DIVISION**

09/14/2021

RECEIVED

danielle.devitt

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project: Location: **CENTREFIELD**

Model:

RICHMOND HILL BLOCK 56

Lot #:

Elevation: B/UNIT10BLK282 Job Track:

PlanLog:

51012 203502

Layout ID:

413115

Ref#

Page:

1 of 2

Date:

07-08-2021

Designer:


Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	5	T11 Piggyback Base	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1279.34 775.00		
	4	T11B Piggyback Base	6 /12	45-00-08	8-01-04	2 x 6	1-03-08	1-02-00 1-02-00	1007.58 617.33	·	
	1	T11G GABLE	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	272.06 169.67		
	1	T11GB GABLE	6 /12	37-03-00	8-01-04	2 x 6	1-03-08	1-02-00 5-03-00	236.81 147.83		
	1	T122 Hip Girder	6 /12	8-07-00	2-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	35.14 23.67		
	1	T123 Common	6 /12	8-03-08	3-03-12	2 x 4	1-03-08	1-02-00 1-03-12	32.19 20.83		
	1 3-ply	T127 Monopitch Girder	6 /12	8-05-08	4-09-12	2 x 4 2 x 6		2-08-00 2-08-12	124.02 84.50		
	8	PB06 Piggyback	6 /12	17-08-00	4-05-00	2 x 4			410.9 256.00		
	1	PB06G GABLE	6 /12	17-08-00	4-05-00	2 x 4		·	50.76 31.00		
	1	PB104 Piggyback	6 /12	17-08-00	3-11-04	2 x 4			57.06 37.00	·	
	1	PB105G Piggyback	6 /12	8-10-00	2-08-00	2 x 4		(2F09F08) F	25.27 RIOH97ION		1
	2	J11 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 6-09	1-02-00 2-01-08	4 ^{5,69} 0.6 <mark>7</mark>	21	
	2	J12 Jack-Open	6 /12	2-05-08	2-04-12	2 x 4	1-03-08	1-02-000 E 2-04-12 d	C17.09/E 12.00 anielle.de	D vitt	
	2	J13 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-01	1-02-00 2-01-08	14.65 9.33		

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

Model:

Lot #:

Elevation:

BLOCK 56

B/UNIT10BLK282

Job Track:

PlanLog:

51012 203502

Layout ID:

413115

Ref#

Page:

2 of 2

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS

TOTAL #TRUSS=

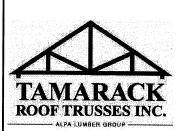
TOTAL BFT OF ALL TRUSSES= 2212.5

BFT.

TOTAL WEIGHT OF ALL TRSSES 3578.55 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	LJS26DS	
14	Hardware	H2.5T	
2	Hardware	LGT3	


TOTAL NUMBER OF ITEMS= 20

CITY OF RICHMOND HILL **BUILDING DIVISION**

09/14/2021

RECEIVED

danielle.devitt

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

B / UNIT9BLK282

Model:

BLOCK 56

Lot #:

Elevation:

Job Track:

PlanLog:

51012 203502

413116

Layout ID:

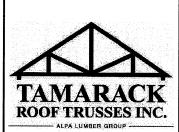
Ref# Page:

1 of 3

Date:

07-08-2021

Designer:


Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	T10G GABLE	6 /12	22-08-08	8-01-04	2 x 4	1-05-00	1-02-00 8-01-04	243.75 153.67		
	1 2-ply	T101 Half Hip Girder	6 /12	19-05-08	4-01-04	2 x 4 2 x 6	1-03-08	1-02-00 4-01-04	182.72 116.00		
	1	T102 Half Hip	6 /12	19-05-08	5-01-04	2 x 4	1-03-08	1-02-00 5-01-04	79.56 50.67		
	1	T103 Half Hip	6 /12	19-05-08	6-01-04	2 x 4	1-03-08	1-02-00 6-01-04	86.12 54.83		
	1	T104 Half Hip	6 /12	19-05-08	7-01-04	2 x 4	1-03-08	1-02-00 7-01-04	86.52 54.00		
	1	T104X Half Hip	6 /12	19-05-08	7-01-04	2 x 4	1-03-08	1-02-00 7-01-04	88.21 54.67		
	3	T105 Half Hip	6 /12	19-05-08	8-01-04	2 x 4	1-03-08	1-02-00 8-01-04	258.51 163.00		
	5	T105X Piggyback Base	6 /12	19-05-08	8-01-04	2 x 4	1-03-08	1-02-00 8-01-04	439.32 275.00		
	1	T106 Half Hip	6 /12	19-05-08	9-01-04	2 x 4	1-03-08	1-02-00 9-01-04	90.51 57.00		
	1	T106X Half Hip	6 /12	19-05-08	9-01-04	2 x 4	1-03-08	1-02-00 9-01-04	92.67 58.17		
	1 2-ply	T112 Half Hip Girder	6 /12	20-10-08	6-01-04	2 x 4 2 x 6	Γ		215.22 RI©76701 ING DIVI		
	1 2-ply	T113 Flat	0 /12	9-01-08	1-06-00	2 x 4		1-06-00 1-06-00	1 40/332	21	
	1	T114 Monopitch	6 /12	9-01-08	5-06-00	2 x 4		1-02-00RE P5-06-00 d	C41.45/E 26.50 anielle.de	D evitt	
	5	T115 M onopitch	6 /12	9-10-08	6-01-04	2 x 4	1-03-08	1-02-00 6-01-04	217.09 137.50		

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL

BLOCK 56

Lot #:

Elevation:

B / UNIT9BLK282

Job Track: PlanLog:

51012

203502 413116

Layout ID:

Ref#

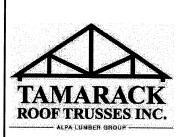
Page:

2 of 3

Date:

07-08-2021

Designer:


Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

PROFILE	QTY PLY	MARK TYPE	PITCH	SPAN	HEIGHT	LUMBER	OVERHANG LEFT	HEEL HEIGHT	LB\$. BFT.	BUNDLE #	LOAD BY
	1 2-ply	T116 Flat Girder	0 /12	9-10-08	1-06-00	2 x 4 2 x 6	RIGHT	1-06-00 1-06-00	78.66 50.00		TEMPARIO
	2	T128 Hip Girder	6 /12	9-06-00	3-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	80.58 51.67		
	2	PB101 Piggyback	6 /12	5-07-00	2-00-00	2 x 4		2-00-00	32.19 22.67	-	
	4	PB102 Piggyback	6 /12	5-07-00	2-09-08	2 x 4		2-09-08	58.98 40.00		
	2	PB103G GABLE	6 /12	8-10-00	2-09-08	2 x 4		2-09-08	51.18 35.33		
	7	J01 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	117.56 74.67	·	
	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-04	50.28 33.33		
	4	J13 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-01	1-02-00 2-01-08	29.29 18.67		
	1	J14 Jack-Open	6 /12	2-00-00	3-01-08	2 x 4	1-03-08 1-10-15	1-02-00 2-02-00	9.87 6.00		
	1	J15 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 3-11-09	1-02-00 2-01-08	11.74 7.33		
	1	J16 Jack-Open	6 /12	3-10-15	3-01-08	2 x 4	1-03-08 1-11-09	1-02-00 (3+01-08)F	14.29 RIC4-6MON		
	3	J17 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-11-09	1-02-00 / 2-01-08 /	28,38 48/02 C	21	
	5	J18 Jack-Open	6 /12	3-10-08	3-01-04	2 x 4	1-03-08	1-02-000 E 3-01-04 da	C59.82/E 36.67 anielle.de	D vitt	
TOTAL # TRL	JSS=	Jack-Open 67		BFT OF ALL			BFT.	Per: d			2805 6

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

B / UNIT9BLK282

Model:

BLOCK 56

Lot #:

Elevation:

Page:

3 of 3

51012

203502

413116

Date:

Ref#

07-08-2021

Designer:

Job Track:

PlanLog:

Layout ID:

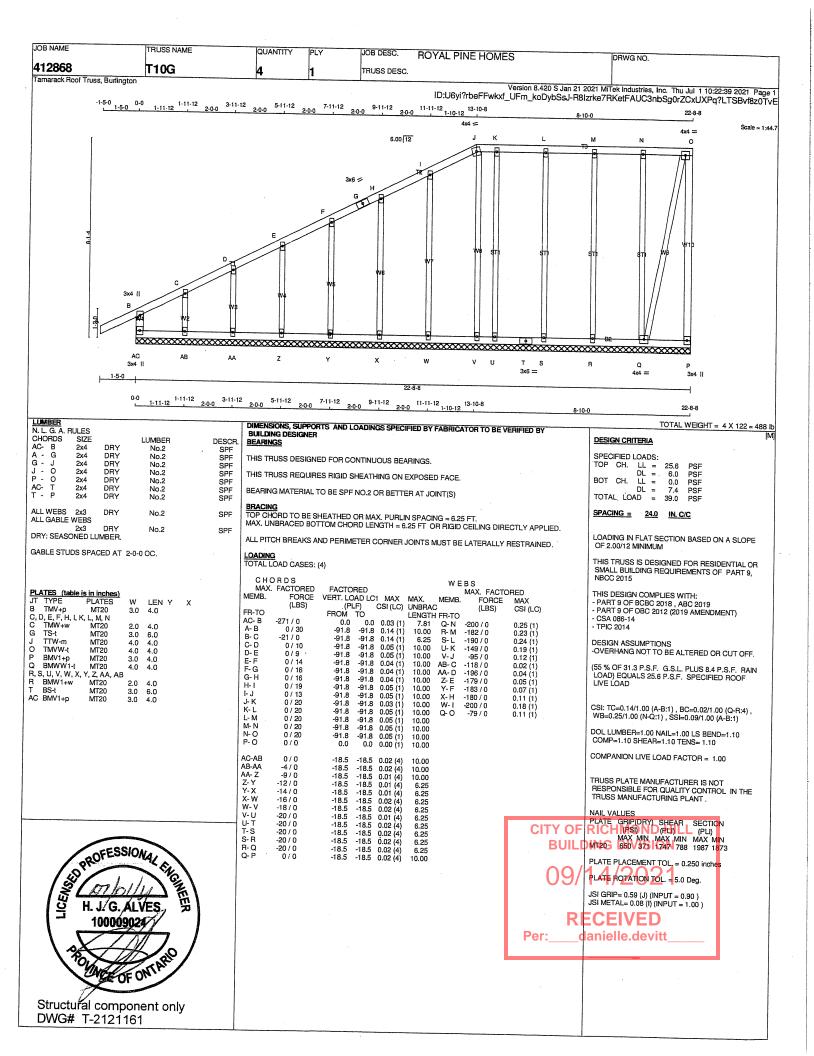
Andrew Conway

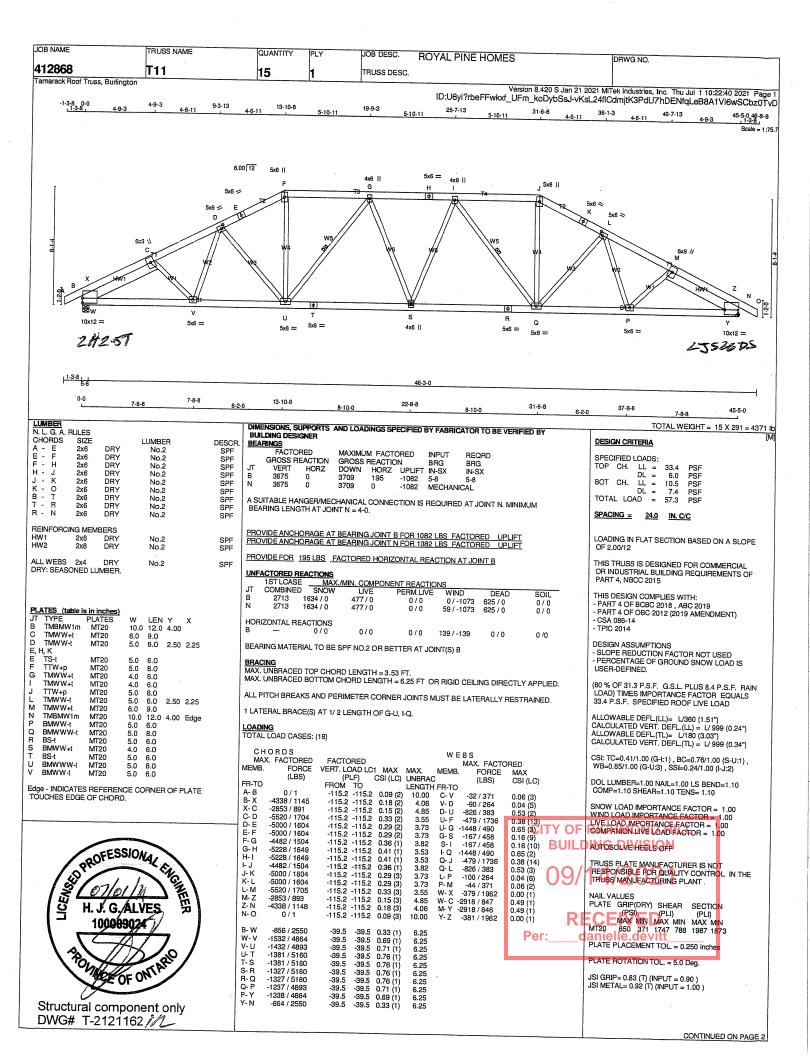
Sales Rep:

Mario DiCano

HARDWARE

QTY	TYPE	MODEL	LENGTH
6	Hardware	LUS24	
2	Hardware	HGUS26-2	


TOTAL NUMBER OF ITEMS= 8


CITY OF RICHMOND HILL BUILDING DIVISION

09/14/2021

RECEIVED

danielle.devitt

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	DOVAL DIVISION	
		407.1111	1 - 1	DOB DESC.	ROYAL PINE HOMES	DRWG NO.
412868	T11	15	1	TRUSS DESC.		
Tamarack Roof Truss, Burlington			.L		Version 8.420 S Jan 21 2021 M	iTek Industries, Inc. Thu Jul 1 10:22:40 2021 Page 2
					ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-vKsL24fl	CdmjtK3PdU7hDENfqLeB8A1Vi6wSCbz0TvD

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF { 9.2} PSF AT {31-0-0} FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM), INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

Structural component only DWG# T-2121162 7/1

CITY OF RICHMOND HILL BUILDING DIVISION

09/14/2021

RECEIVED

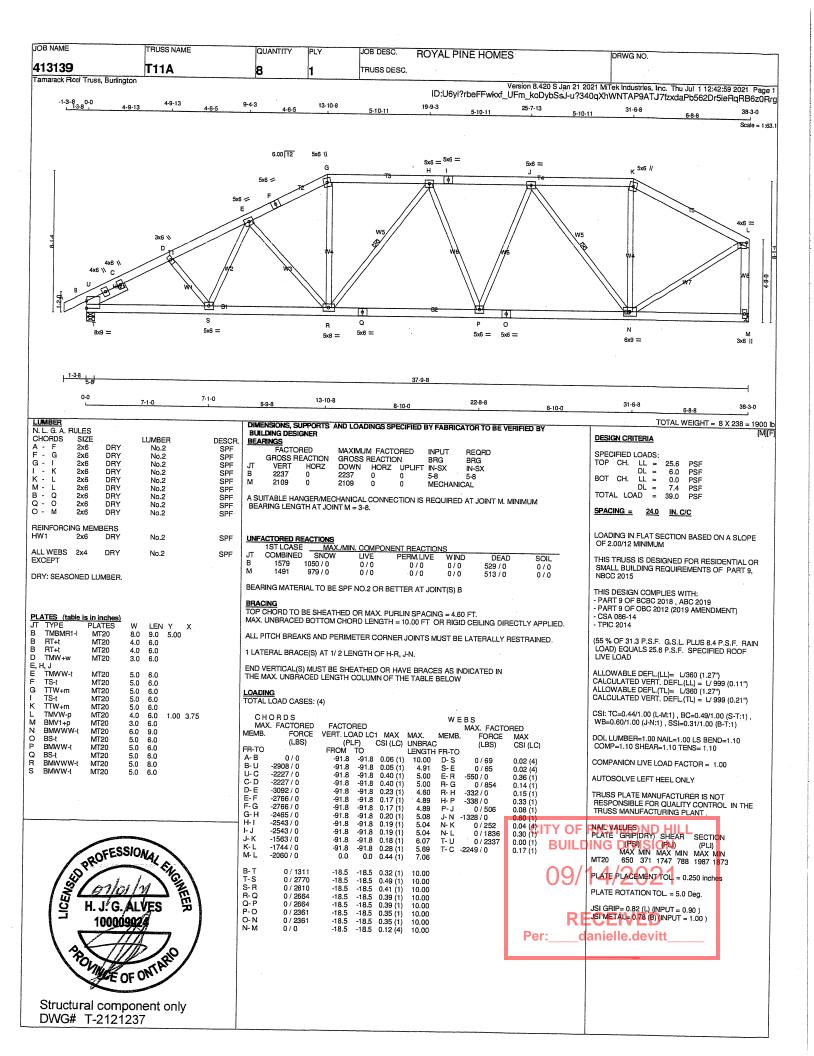
Per:____danielle.devitt

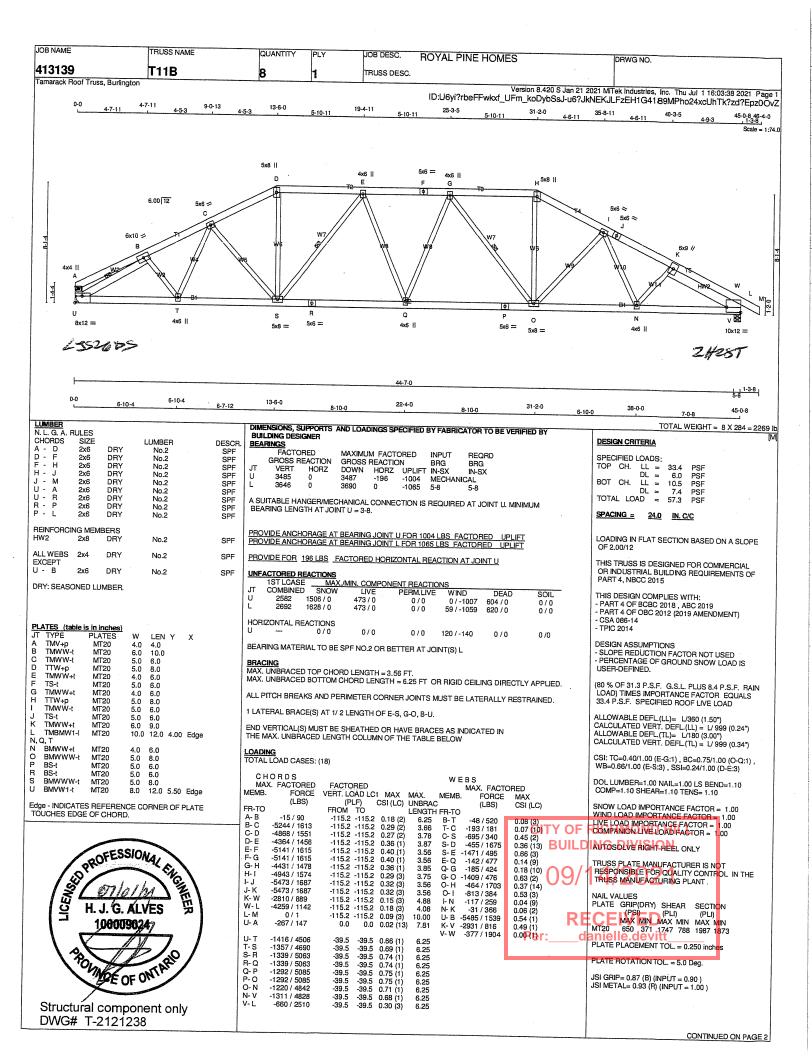
JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412868 T11G TRUSS DESC amarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 10:22:42 2021 Page 1 ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-rjz6Tmg?kF0R6eCnkv99lfT5g8V3cBMo9QPZGTz0TvB -1-3-8 0-0 1-11-12 3-11-12 5-11-12 7-11-12 9-11-12 11-11-12 13-10-8 11-3-8 1 1-11-12 2-0-0 2-0-0 2-0-0 2-0-0 2-0-0 1-10-12 17-8-0 45-5-0 46-8-8 1-3-8 Scale = 1:75. 6.00 12 o P 0 3x4 II U 5x6 🛩 ΑZ AY AT AS AX AW AΩ AJ Al ΑH AG 3x8 II 1-3-8 45.5.0 1-3-8 $\begin{smallmatrix} 0.0 & 1-11\cdot12 & 3\cdot11\cdot12 & 5\cdot11\cdot12 & 7\cdot11\cdot12 & 9\cdot11\cdot12 & 11\cdot11\cdot12 & 13\cdot10\cdot8 \\ 1-11\cdot12 & 2\cdot0\cdot0 & 2\cdot0\cdot0 & 2\cdot0\cdot0 & 2\cdot0\cdot0 & 2\cdot0\cdot0 & 2\cdot0\cdot0 & 1\cdot10\cdot12 & 11\cdot10\cdot12 & 11\cdot10$ DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEARINGS TOTAL WEIGHT = 2 X 272 = 544 lb N. L. G. A. RULES CHORDS SIZE SIZE LUMBER DESCR **DESIGN CRITERIA** BC-B - J - O T X - AC - AB - AT DRY No.2 SPF No.2 SPE SPECIFIED LOADS: THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS. LL = DL = LL = DL = AD = 2x6 DRY No.2 TOP CH. 2x6 DRY DRY DRY THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. 6.0 0.0 7.4 SPF PSF O -T -BOT CH. PSF PSF No.2 SPE 2x6 No.2 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) 2x6 DRY No.2 No.2 TOTAL LOAD 39.0 **PSF** DRY DRY AD-BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. SPF SPF No.2 SPACING = 24.0 IN. C/C AK AD 2x6 DRY No.2 SPF LOADING IN FLAT SECTION BASED ON A SLOPE ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. ALL WEBS 2x3 DRY No.2 SPF ALL GABLE WEBS LOADING TOTAL LOAD CASES: (4) THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 No.2 SPE 2x3 DRY DRY: SEASONED LUMBER. CHORDS GABLE STUDS SPACED AT 2-0-0 OC. WEBS MAX. FACTORED MB. FORCE FACTORED MAX. FACTORED THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MEMB. VERT, LOAD LC1 MAX 1 MAX MAX. CSI (LC) UNBRAC FORCE MAX (PLF) FROM TO 0.0 (LBS) (LBS) CSI (LC) FR-TO BC- B A- B B- C C- D LENGTH FR-TO CSA 086-14 PLATES (table is in inches)
JT TYPE PLATES -260 / 0 0 / 29 0.0 0.02 (1 AL- T AM- S 0.21 (1) -91.8 -91.8 -91.8 -91.8 0.06 (1) 10.00 w -190 / 0 0.21 (1 LEN Y -50 / 0 -24 / 0 B, AB, AD, BC 6.25 AN- R -183 / 0 DESIGN ASSUMPTIONS -91.8 -91.8 0.02 (1 6.25 AO- Q AP- P 0.21 (1) OVERHANG NOT TO BE ALTERED OR CUT OFF. -19/0 -91.8 -91.8 -91.8 0.02 (1) C, D, E, G, H, I, U, V, W, Y C TMW+w MT20 F TS-t MT20 -183 / 00.21 (1) -91.8 -91.8 -91.8 E-F -13/0 MT20 MT20 AQ- N 0.21 (1) 0.21 (1) 6.25 -183 / 0 3.0 2.00 1.25 (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD 4.0 F- G G- H -91.8 AR-M AS-L AU-K -184 / 0 -184 / 0 0.02 (1 6 25 5.0 6.0 2.50 2.75 -9/0 0.02 (1) -91.8 TTW-m MT20 5.0 0.21 (1) H-I -5/0 -91.8 -91.8 -91.8 -91.8 , M, N, P, Q, R, TMW+w 10.00 0.18 (1) 0.14 (1) -163 / 0AJ- U AI- V AH- W 0.02 (1 10.00 -183 / 0 J- K K- L L- M 3.0 6.0 -91.8 -91.8 0.02 5.0 5.0 5.0 6.0 8.0 6.0 -182/0 0.09 (1 CSI: TC=0.06/1.00 (AB-AC:1) , BC=0.03/1.00 (AD-AE:1) , WB=0.21/1.00 (S-AM:1) , SSI=0.07/1.00 TS-t MT20 -91.8 -91.8 -91.8 0/0 -91.8 2.75 4.00 2.50 2.75 2.50 3.75 10.00 TTW-m MT20 -182 / 0 0.06 (1) -91.8 -91.8 0.02 (1 10.00 AG- Y -180 / 0 0.04 (1) 0.03 (1) M- N N- O O- P TS-t TMBMV1+p MT20 AF, AG, AH, AI, AJ, A J, AV, AW, AX, AY, AZ (AB-AC:1) 0.02 (1 10.00 AF- Z AE-AA 3.0 8.0 -91.8 -91.8 -91.8 0/0 -91.8 -91.8 0.02 ., AM, AN BA, BB DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 , AO, AP, AQ, AR, AS, -137 / 00.02 (1) 0/0 10.00 AV-J BB-C -159 / 0 P- Q Q- R -91.8 0.02 (1) 10.00 -137 / 0 BMW1+w MT20 3.0 6.0 0.02(1)0/0 -91.8 -91.8 0.02 5.0 5.0 6.0 AK BS-t MT20 -188 / 00.03 (1) COMPANION LIVE LOAD FACTOR = 1.00 R- S S- T T- U -91.8 -91.8 -91.8 0/0 0.02 AΤ BS-10.00 AZ- E -180 / 00.04 (1) 0.06 (1) 0/0 AY- G AX- H TMBMV1+p 0.02 (1) 10.00 MT20 2.50 0.50 AUTOSOLVE HEELS OFF -91.8 10.00 0.02 0.10 (1) -5/0 -91.8 -91.8 -91.8 -91.8 U- V V- W AW- I -184 / 0 TRUSS PLATE MANUFACTURER IS NOT -9/0 -14/0 0.02 (1) 10.00 W- X X- Y Y- Z RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT 6.25 6.25 6.25 -91.8 -91.8 0.02 -14/0 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 0.02 -20 / 0 -24 / 0 -51 / 0 0.02 CITY OF RAICVALUES ND HILL Z-AA AA-AB 6 25 PLATE GRIP(DRY) SHEAR SECTION 0.02 (1) 0.05 (1) 0.06 (1) 0.02 (1) -91.8 -91.8 BUILD PROFESSIONAL CHARMEN (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 AB-AC -91.8 -0.0 0/29 10.00 AD-AB -260 / 0 0.0 7.81 MT20 BC-BB -18.5 -18.5 -18.5 0/33-18.5 10.00 PLATE PLACEMENT TOL. = 0.250 inch 0/24 BB-RA -18.5 0.01 (1) 10.00 BA-AZ AZ-AY AY-AX 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (4) -18.510.00 PLATE ROTATION TOL. = 5.0 Deg. -18.5 -18.5 0/12 -18.5 0/8 10.00 JSI GRIP= 0.25 (J) (INPUT = 0.90) JSI METAL= 0.09 (AD) (INPUT = 1.00) AX-AW AW-AV AV-AU -18.5 -18.50.01 (4) 10.00 100009024 -18.5 -18.5 0.01 (4) 0/2 -18.5 0/0 -18.5 10.00 Per: anielle.devitt AU-AT AT-AS AS-AR 0.01 (4) 0.01 (4) 0.01 (4) -18.5 -18.510.00 E OF ONT ARIO 0/0 -18.5-18.5 0/0 -18.5 10.00 AR-AQ -18.5 0.01 (4) 10.00 AQ-AP AP-AO AO-AN 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (4) 0/0 -18.5 -18.5 10.00 -18.5 -18.5 0/0 -185 0/0 0/0 0/0 0/2 0/2 10.00 AN-AM AM-AL AL-AK 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (4) -18.5-18.5 10.00 Structural component only -18.5 -18.5 -18.5 10.00 DWG# T-2121163 AK-A.I -18.5 10.00

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES		DRWG NO.
412868	T11G	2	1	TRUSS DESC.			
Tamarack Roof Truss, i	Surlington .	FR-TO Al-AH 0 / AH-AG 0 / AG-AF 0 /	ORED F. ORCE VEF BS) FF 8 12	(PLF) CSI (LC) ROM TO -18.5 -18.5 0.01 (4) -18.5 -18.5 0.01 (4) -18.5 -18.5 0.01 (4)	WEBS MAX. FACTO MAX. MEMB. FORCE UNBRAC (LBS) LENGTH FR-TO 10.00 10.00	KODYDOSSJ-1 201111	MiTek Industries, Inc. Thu Jul 1 10:22:42 2021 Page 2 q?kF0R6eCnkv99ifT5g8V3cBMo9QPZGTz0TvB
				-18.5 -18.5 0.01 (1) -18.5 -18.5 0.03 (1)	10.00		


Structural component only DWG# T-2121163 7/2


CITY OF RICHMOND HILL BUILDING DIVISION

09/14/2021

RECEIVED

anielle.devitt

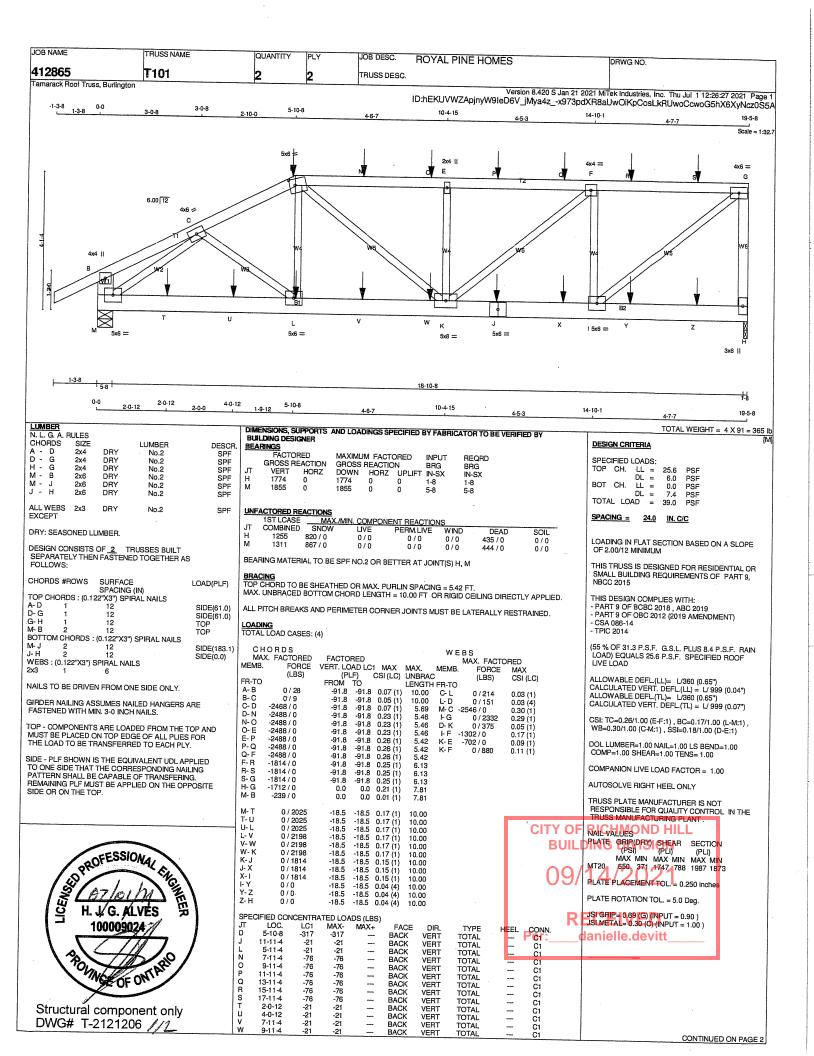
JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	DRWG NO.
413139	T11B	8	1	TRUSS DESC.		Etwa No.
Tamarack Roof Truss, Burlington				<u> </u>	Version 8.420 S Jan 21 2021 Mi	Tek Industries, Inc. Thu Jul 1 16:03:38 2021 Page 2
				***************************************	ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-u6?JkNEKJ	LFzEH1G4189MPho24xcUhTk?zd?Epz0OvZ

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

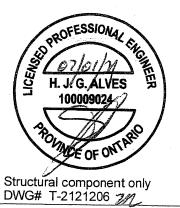
WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF { 9.2} PSF AT (30-0-0). FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM).INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0). FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

Structural component only DWG# T-2121238 2/2

CITY OF RICHMOND HILL BUILDING DIVISION

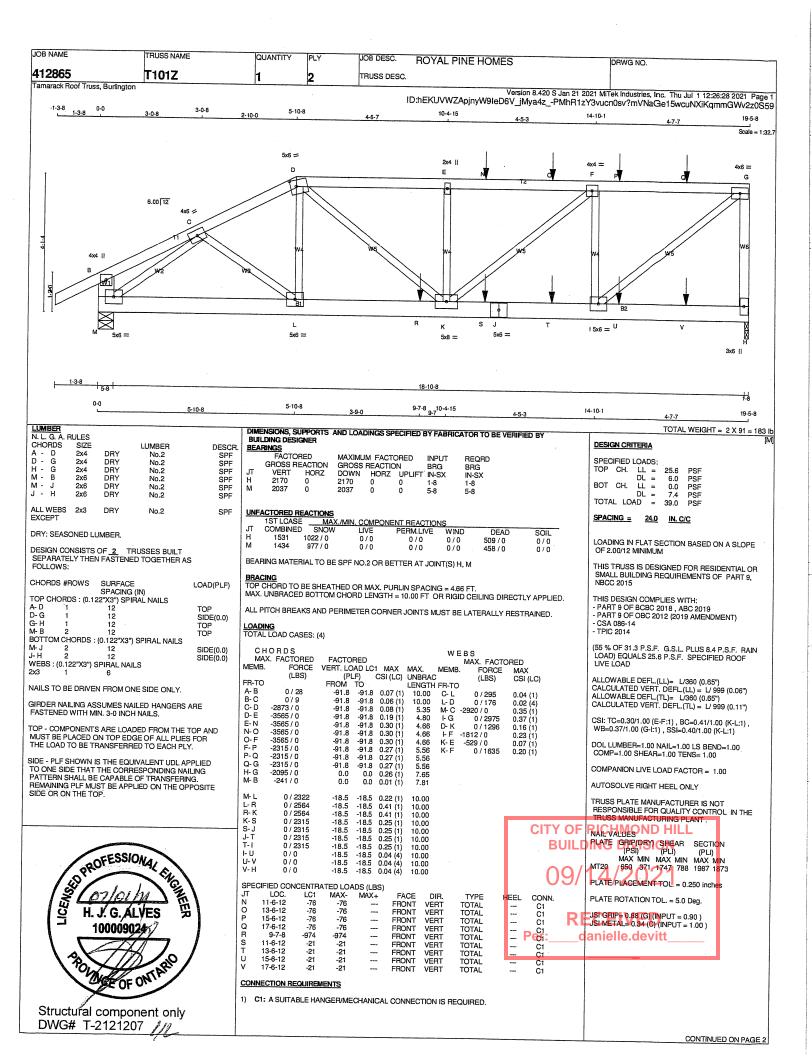

09/14/2021

RECEIVED

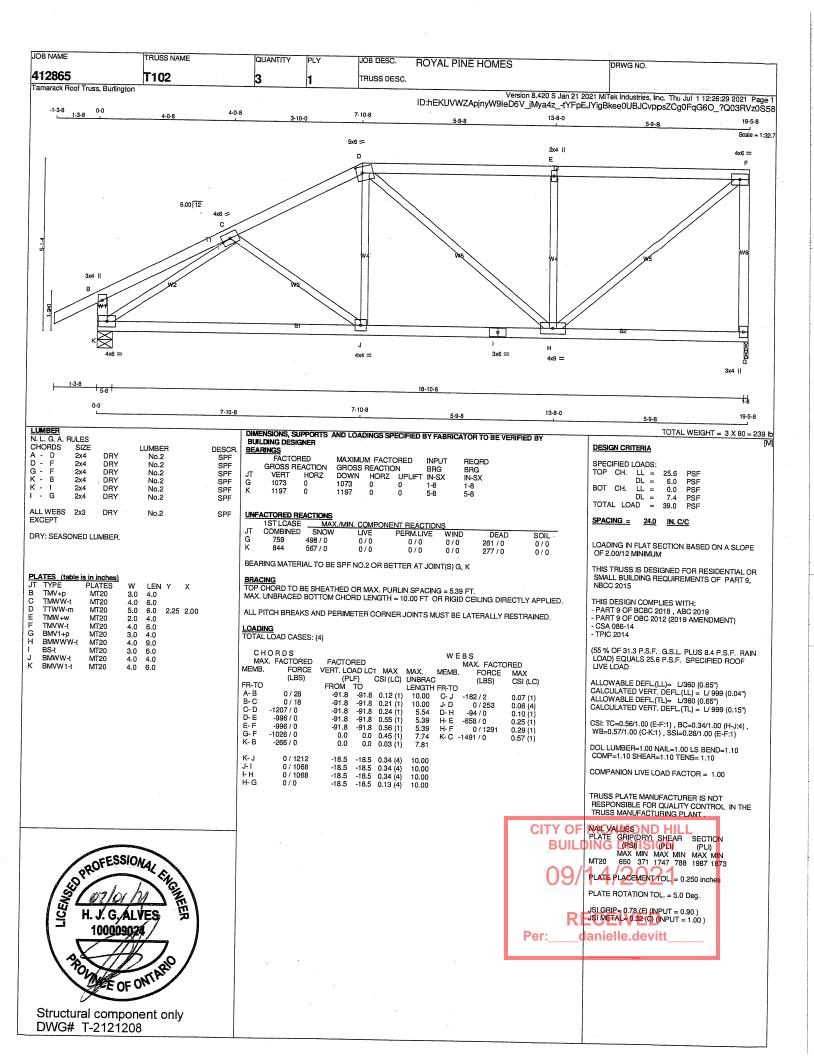

Per:____danielle.devitt

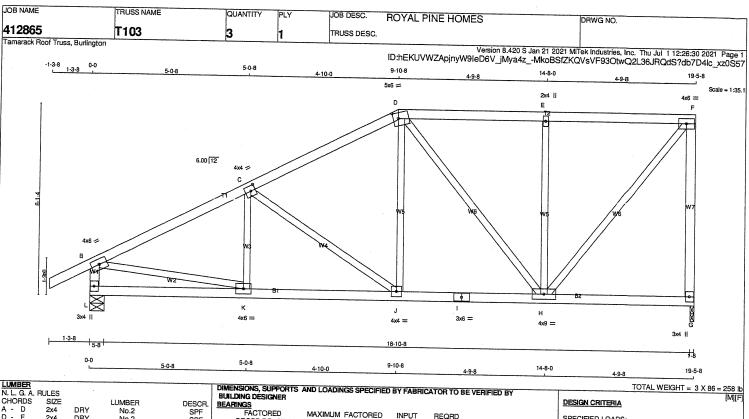
JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 **T11GB** TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S.Jan 21 2021 MTPk Industries, Inc. Thu Jul 1 12:26:26 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-TzZhcHWpNGM3nYmce4L6BDxp6piE3qzXISnPrAz0S5B 31-6-8 37-3-0 Scale = 1:61. 5x6 = 6.00 12 4 4x4 [] 11 4x4 II 4x4 II н 4x4 II AO AM AL AK AG AD AC AB 5x8 II 5x8 WR II 5x6 == 1-3-8 37-3-0 LUMBER N. L. G. A. RULES TOTAL WEIGHT = 2 X 238 = 475 lt DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER CHORDS AR- B A - F F - J LUMBER DESIGN CRITERIA DESCR BEARINGS DRY SPF 2x6 No.2 SPECIFIED LOADS: 2x6 DRY THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS. LL DL LL PSF PSF PSF 2×6 DRY DRY TOP CH. 25.6 SPF O T THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. No.2 SPF BOT CH. SPF 2x6 DRY No 2 0.0 2x6 2x4 DRY DRY W DL. BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) TOTAL LOAD 39.0 No.2 SPF BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. AK 2x6 DRY No.2 SPF AK-AF X 2x6 DRY SPACING = 24.0 IN. C/C SPF ALL WERS LOADING IN FLAT SECTION BASED ON A SLOPE 2x3 DRY No.2 SPF ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED ALL GABLE WEBS OF 2.00/12 MINIMUM DRY 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF LOADING TOTAL LOAD CASES: (7) THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, GABLE STUDS SPACED AT 2-0-0 OC. CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED FORCE MA THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MEMB. VERT. LOAD LC1 MAX MAX.

(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FORCE (LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO PLATES (table is in inches)
JT TYPE PLATES - CSA 086-14 AR- B A- B 0.0 -91.8 -91.8 -255 / 0 0.0 -91.8 0.02 (1) 0.06 (1) 7.81 10.00 AA-T AB-S 0.19 (1) - TPIC 2014 LEN Y 0 / 29 -206 / 0 0.23 (1) B-C C-D D-E 0.21 (1) 0.21 (1) 0.21 (1) 0.21 (1) -91.8 0.06 (1) 6.25 AC-R -183 / 0 DESIGN ASSUMPTIONS 0 / 14 -91.8 -91.8 0.02 (1 10.00 AD- Q AE- P D, E, G, H, I, U, V -OVERHANG NOT TO BE ALTERED OR CUT OFF. -91.8 -91.8 -91.8 0 / 16 -91.8 -184 / 0 TMW+w 0 / 23 0 / 23 0 / 27 4.0 E-F AG- N AH- M AI- L AJ- K (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF 0.21 (1) 0.21 (1) 0.02 (1) 10.00 -183/06.0 Edge 2.75 6.0 F-G G-H H-1 TS-t MT20 5.0 -91.8 -184 / 0 -186 / 0 0.02 (1) 10.00 TTW+m MT20 -91.8 -91.8 -91.8 -91.8 -91.8 0.02 (1 0.21 (1) LIVELOAD M, N, P, Q, R, 0/31 0.02 (1 3.0 5.0 5.0 4.0 10.00 -178/00.20 (1) TMW+w MT20 I- J J- K K- L K O T 6.0 -206 / 0 -173 / 0 -91.8 0.02 (1 10.00 TS-t MT20 -91.8 -91.8 -91.8 -91.8 0/330.02 0.09 (1) CSI: TC=0.06/1.00 (A-B:1) , BC=0.01/1.00 (AK-AL:4) , WB=0.23/1.00 (S-AB:1) , SSI=0.07/1.00 (A-B:1) TTW+m 0 / 33 -91.8 -91.8 10.00 AK-J -146 / 0 0 16 (1) TMVW+p L- M M- N MT20 6.0 0.02 (1 10.00 AQ- C -122 / 0 0.02 (1) 0.03 (1) BMV1+p MT20 3.0 6.0 AP-D AO-E AN-G AM-H 0 / 33 -91.8 -91.8 0.02 (1 10.00 10.00 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 BMWW1-MT20 6.0 N- O O- P 0 / 33 -91.8 -91.8 -91.8 -91.8 A, AB, AC, AD, AG, AH, AI, AJ, AL, AM, AN, AO, AP, AQ BMW1+w MT20 3.0 6.0 -179/00.04 (1) 0.02 (1 10.00 -181 / 0 0.06 (1) 0.09 (1) 6.0 8.0 -91.8 -91.8 0.02 (1 10.00 ΑE MT20 MT20 5.0 5.0 3.0 COMPANION LIVE LOAD FACTOR = 1.00 BBW1+I Q-R -91.8 -91.8 0.03 (1) 0/33-91 R AK BSW1+I AR TMBMV1+p -198 / 0 0.15(1)4.50 2.50 2.75 0.25 R-S S-T T-U U-V 0/33 -91.8 -91.8 -91.8 -91.8 8.0 8.0 10.00 Y-W -68 / 0 0.03(1) AUTOSOLVE RIGHT HEEL ONLY MT20 -91.8 0.03 (1) 10.00 -91.8 -91.8 0.03 (1) 0/26TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. -91.8 -91.8 0 / 34 10.00 0/32 V- W -91.8 0.02 (1) 10.00 X-W TRUSS MANUFACTURING PLANT 0.0 AR-AQ AQ-AP AP-AO 0 / 0 -8 / 0 -15 / 0 -18.5 -18.5 -18.5 -18.5 0.01 (4) 0.01 (4) **CITY OF** 10.00 10.00 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 0.01 (4) **BUILI** PROFESSIONAL CHARLES THE PROFESSIONAL CHARLES AO-AN AN-AM AM-AL -20 / 0 -24 / 0 6.25 0.01 (4) 6.25 -28 / 0 -18.5 -18.5 -18.5 0.01 (4) PLATE PLACEMENT TOL. = 0.250 inche -31 / 0 -33 / 0 -18.5 -18.5 AL-AK 6.25 AK-AJ AJ-AI AJ-AH -18.5 0.01 (4) 6.25 PLATE ROTATION TOL. = 5.0 Deg. -33 / 0 -185 -18.5 0.01 (4) -33 / 0 -33 / 0 -33 / 0 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 JSI GRIP= 0.38 (Y) (INPUT = 0.90) JSI METAL= 0.07 (AR) (INPUT = 1.00) 6.25 6.25 AH-AG 0.01 (4) -18.50.01 (4) 100009024 AF-AE -18.5 -18.5 -18.5 -18.5 -33 / 0 AF-AE AE-AD AC-AB AB-AA AA- Z Z- Y Y- X -33 / 0 -33 / 0 0.01 (4) 6.25 Per: anielle.devitt -18.5 -18.5 0.01 (4) 6.25 POUNT OF ONTARIO -18.5 -18.5 0.01 (4) 0.01 (4) 6.25 6.25 -33 / 0 -18.5 -33 / 0 -30 / 0 -27 / 0 -18.5 0.01 (4) -18.5 6 25 -185 0.01 0/0 Structural component only DWG# T-2121205


JOB NAME TRUSS NAME	QUANTITY	PLY	JOB DESC	. RO	YAL P	INE HOM	IES			DRWG NO.	
412865 T101	2	2	. TRUSS DE	SC.							
PLATES (table is in inches) JT TYPE	SPECIFIED COI JT LOC. X 13-11-4 Y 15-11-4 Z 17-11-4 CONNECTION R 1) C1: A SUIT.	LC1 N -21 -21 -21 -21 EQUIREMEN	D LOADS (LBS) MAX- MAX+ -212121	FACE BACK BACK BACK BACK	DIR. VERT VERT VERT	TYPE TOTAL TOTAL TOTAL	Version leD6V jN HEEL 	8.420 S Jan 21 2 1/ya4z -x973pg CONN. C1 C1 C1 C1	2021 MiT dXR8al	ek Industries, Inc. Thu Jul 1 12:26:27 2021 Pa JwOiKpCosLkRUwoCcwoG5hX6XyNczC	ge S5
B TMV+p MT20 4.0 4.0 C TMW-t MT20 5.0 6.0 2.25 2.00 E TMW+w MT20 4.0 6.0 TMW-t MT20 4.0 6.0 E TMW+w MT20 4.0 4.0 G TMVW-t MT20 4.0 6.0 B MV1+p MT20 4.0 6.0 B MV1+p MT20 4.0 6.0 B MV1+p MT20 5.0 6.0 B MV0+t MT20 5.0 6.0	JT LOC. X 13-11-4 Y 15-11-4 Z 17-11-4 CONNECTION FI	LC1 N -21 -21 -21 -21 EQUIREMEN	1AX- MAX+ -21212121	BACK BACK BACK	VERT VERT VERT	TOTAL TOTAL TOTAL	_	C1 C1			

RECEIVED
Per:____danielle.devitt_


CITY OF RICHMOND HILL BUILDING DIVISION


09/14/2021

JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC. ROYAL PINE HOMI	ES	DRWG NO.	
412865	T101Z	1 2	TRUSS DESC.		Dimano.	
Tamarack Roof Truss, Burlingto	n		ID-hEKI IVW/ZAnin-M/01-0	Version 8.420 S Jan 21 2021	 MiTek Industries, Inc. Thu Jul 1 12:26:28 20 ucn0sv?mVNaGe15wcuNXiKqmmGV	021 Page
PLATES (table is in inches)			ID.IIEROV WZADINYWSIEL	D6V INIVA4Z -PMNH1ZY3V	ucn0sv?mVNaGe15wcuNXiKqmmGV	Vv2z0Š5
PLATES (table is in inches) JT TYPE PLATES B TMV+p MT20 C TMWW-t MT20 D TTWW-m MT20 F TMWV-t MT20	W LEN Y X 4.0 4.0					
C TMWW-t MT20 D TTWW-m MT20	4.0 6.0 5.0 6.0 2.25 2.00					
F TMWW-t MT20	2.0 4.0 4.0 4.0					
G TMVW-t MT20 H BMV1+p MT20 I BMWW-t MT20	4.0 6.0 3.0 6.0 5.0 6.0					
J BS-t MT20 K BMWWW-t MT20	5.0 6.0 5.0 8.0					
L BMWW-t MT20 M BMVW1-t MT20	5.0 6.0 5.0 6.0					
				·		
		•				
					•	
				•		
		•				
			·			
			•			
		•				
		•				
				-		
				CITY OF PI	CHMOND HILL	
					IG DIVISION	
ROFESSI	ONAL					
PROFESSI BU 07/0/ 9 H. J. G./A 1000099	THE!			09/14	4/2021	
[<i>[27/01,</i>	(4) [1]					
일 H. J. G. A	LVES 岁				EIVED	İ
100009	7/7			Per:dan	ielle.devitt	
13/7						
POV MOSE OF	ONTAK					
- OF						

Structural component only DWG# T-2121207 7M

A - G - L -SPF SPF SPF 2x4 2x4 2x4 DRY DRY DRY No.2 No.2 В No.2 SPF SPF 2x4 DRY No.2 1 - G SPF ALL WEBS EXCEPT 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER.

PL	PLATES (table is in inches)											
JT	TYPE	PLATES	w	LEN	Υ	X						
В	TMVW-t	MT20	4.0	6.0								
С	TMWW-t	MT20	4.0	4.0	2.00	1.75						
D	TTWW-m	MT20	5.0	6.0	2.25	2.00						
E	TMW+w	MT20	2.0	4.0								
F	TMVW-t	MT20	4.0	6.0								
G	BMV1+p	MT20	3.0	4.0								
Н	BMWWW-t	MT20	4.0	9.0								
ı	BS-t	MT20	3.0	6.0								
J	BMWW-t	MT20	4.0	4.0								
K	BMWW-t	MT20	4.0	6.0								
L	BMV1+p	MT20	3.0	4.0								

JT G	VERT 1073	ORED REACTION HORZ 0	MAXIMU GROSS DOWN 1073			INPUT BRG IN-SX 1-8	REORD BRG IN-SX 1-8
L	1197	0	1197	Õ	ŏ	5-8	5-8

UNFACTORED REACTIONS

	1ST LCASE	MAX./	MIN. COMPO	NENT REACTION	NS		
G L	COMBINED 759 844	SNOW 498 / 0 567 / 0	UVE 0/0 0/0	PERM.LIVE 0 / 0 0 / 0	WIND 0/0 0/0	DEAD 261 / 0 277 / 0	SOIL 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.17 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX	ORDS X. FACTORED	FACTO			W E B S MAX. FACTORED				
MEMB.	FORCE	VERT. LO			MAX.	MEMB.	FORCE	MAX	
FR-TO	(LBS)	(PL		CSI (LC)			(LBS)	CSI (LC)	
		FROM			LENGTH	FR-TO		,	
A-B	0 / 28	-91.8	-91.8	0.12(1)	10.00	K-C	-118 / 43	0.03 (1)	
B-C	-1400 / 0	- 9 1.8	-91.8	0.31 (1)	5.17	C-J			
		-9 1.8	-91.8						
		-91.8	-91.8						
		-91.8	-91.8						
	-1035 / 0	0.0	0.0						
L-B	-1157 / 0	0.0	0.0						
						٠.,	071231	0.29(1)	
L-K	0/0	-18.5	-18.5	0.10 (4)	10.00				
K- J	0 / 1273	-18.5							
J-I	0 / 905	-18.5							
I- H	0 / 905	-18.5							
H-G	0/0	-18.5							
C-D E-F G-F L-K-J J-H	-1030 / 0 -720 / 0 -720 / 0 -1035 / 0 -1157 / 0 0 / 0 0 / 1273 0 / 905 0 / 905	-91.8 -91.8 -91.8 -0.0 0.0 -18.5 -18.5 -18.5	-91.8 -91.8 -91.8 0.0	0.29 (1) 0.27 (1) 0.27 (1) 0.75 (1) 0.12 (1) 0.10 (4) 0.25 (1) 0.19 (1) 0.19 (1)	5.83 6.25 6.25 7.72	C-D-H-E-K	-454 / 0 0 / 343 -292 / 0 -543 / 0 0 / 1126 0 / 1291	0.28 (1) 0.08 (1) 0.32 (1) 0.32 (1) 0.25 (1) 0.29 (1)	

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	25.6	PSF
		DL	==	6.0	PSF
BOT	CH.		=	0.0	PSF
			==	7.4	PSF
TOTA	1 10	AΠ	-	30 0	DOE

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

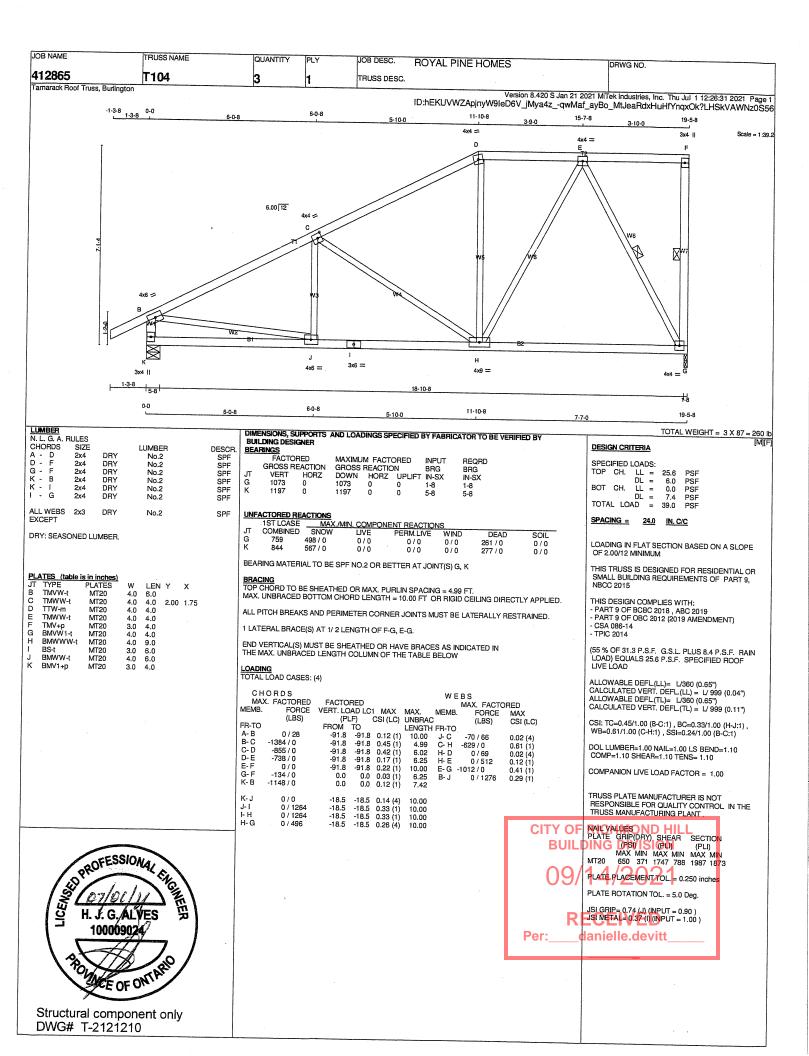
THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL)= L/999 (0.07")

CSI: TC=0.75/1.00 (F-G:1) , BC=0.25/1.00 (J-K:1) , WB=0.32/1.00 (E-H:1) , SSI=0.21/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10


COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

Structural component only DWG# T-2121209

NAIL VALUES ND HILL
PLATE GRIP(DRY) SHEAR SECTION
(PS) (PL) (PL)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873 **BUIL** PLATE PLACEMENT TOL = 0.250 inche PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.87 (F) (INPUT = 0.90) JSI METAL= 0.35 (B) (INPUT = 1.00) Per: lanielle.devitt

JOB NAME TRUSS NAME QUANTIT JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T104X TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:32 2021 Page 1 ID:hEKUVWZApjnyW9IeD6V_jMya4z_-I7wytKbay66DVTDm?LSWQUBkjDEHTPJQhOEj2pz0S55 -1-3-8 1-3-8 0-0 6-0-8 15-7-8 19-5-8 5-10-0 3-10-0 4x4 = 3x4 II Scale = 1:39. 6.00 12 3x6 = 4x4 == 4x4 = 4x9 == 5-8 20-3-8 #4 0-0 6-0-8 6-0-8 5-10-0 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY TOTAL WEIGHT = 88 Ib BUILDING BEARINGS FACTORED BUILDING DESIGNER LUMBER DESIGN CRITERIA DESCR SPF SPF SPF DRY No 2 MAXIMUM FACTORED No.2 No.2 REQRD SPECIFIED LOADS: 2x4 DRY GROSS REACTION GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX 2x4 2x4 DRY DRY BRG JT A G PSF PSF PSF PSF HORZ 0 CH. VERT 25.6 В IN-SX No.2 SPE 1151 2x4 DRY No 2 BOT CH. 1151 0 1-8 G 244

N. L. G. A. RULES CHORDS G -SPF ALL WEBS EXCEPT 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER.

PL	ATES (table i	s in inches)				
JT	TYPE	PLATES	w	LEN	Υ	Х
Α	TBM1-m	MT20	4.0	4.0		Edge
В	TMVW-t	MT20	4.0	4.0	2.00	1.25
С	TMWW-t	MT20	4.0	4.0	2.00	1.75
D	TTW-m	MT20	4.0	4.0		
Ε	TMWW-t	MT20	4.0	4.0		
F	TMV+p	MT20	3.0	4.0		
G	BMVW1-t	MT20	4.0	4.0		
Н	BMWWW-t	MT20	4.0	9.0		
i	BS-t	MT20	3.0	6.0		
J	BMWW-t	MT20	4.0	4.0		
K.	BMV+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

	UNF	ACTORED RE	actions					
		1ST LCASE	MAX./MIN	I. COMP	ONENT REACTION	4S		
	JT	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
	G	814 814	534 / 0	0/0	0/0	0/0	280 / 0	0/0
į	G	814	534 / 0	0/0	0/0	0/0	200 / 0	010

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, G

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.24 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-G.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

MAX	ORDS C. FACTORED	FACTO	RED		W E B S MAX. FACTORED				
MEMB.	FORCE	VERT. LC		1 MAX	MAX.	MEMB		MAX	
TO	(LBS)		.F)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM			LENGTH	FR-TO	, ,		
A-M	-2504 / 0	-91.8	-91.8	0.16 (1)	4.24	J- C	0 / 169	0.05 (4)	
M-B	-2072 / 0	-91.8	-91.8	0.17(1)	4.57	C- H	-846 / 0	0.82 (1)	
B-C	-1693 / 0	-9 1.8	-91.8	0.44 (1)	4.64	H- D	0 / 84	0.03 (4)	
C-D	-947 / 0	-91.8	-91.8	0.40(1)	5.84	H-E	0 / 601	0.14 (1)	
D-E	-823 / 0	-91.8	-91.8	0.17(1)	6.25	E-G	-1101/0	0.44 (1)	
E-F	0/0	-91.8	-91.8	0.22 (1)	10.00	B-J	-335 / 0	0.21 (1)	
G-F	-134 / 0	0.0	0.0	0.03 (1)	6.25	L- M	0 / 721	0.00 (1)	
K-B	-100 / 62	0.0	0.0	0.02 (4)	7.81			0.00 (1)	
A- L	0 / 1862	-18.5	-18.5	0.48 (1)	10.00				
L-K	0 / 1862	-18.5	-18.5		10.00				
K-J	0 / 1862	-18.5			10.00				
J- I	0 / 1531	-18.5	-18.5					l CI	
I- H	0 / 1531	-18.5		0.37 (1)	10.00			1 0	
H- G	0 / 540	-18.5		0.27 (4)					

LL = DL = LL = DL = AD = 6.0 0.0 7.4 TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.70")
CALCULATED VERT. DEFL.(LL)= L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.70")
CALCULATED VERT. DEFL.(TL)= L/999 (0.14")

CSI: TC=0.44/1.00 (B-C:1) , BC=0.48/1.00 (A-L:1) , WB=0.82/1.00 (C-H:1) , SSI=0.44/1.00 (A-L:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.82 (A) (INPUT = 0.90) JSI METAL= 0.70 (A) (INPUT = 1.00)

danielle.devitt

Per:

100009024 E OF ONTARIO

Structural component only DWG# T-2121211

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO 412865 T105 11 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MTek Industries, Inc. Thu Jul 1 12:26:33 2021 Page 1 ID:hEKUVWZApjnyW9IeD6V_jMya4z_-mJUK4gcCjQE36dozY2zlziksOdd1CzSZv2_HaGz0S54 -1-3-8 0-0 1-3-8 7-0-8 13-10-8 7-0-8 6-10-0 4x4 = 4x6 = Scale = 1:44.5 6.00 12 3x6 == 4x9 = 1-3-8 18-10-8 7-0-8 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY TOTAL WEIGHT = 11 X 86 = 948 lb BUILDING DESIGNER DESIGN CRITERIA

SIZE 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF SPF SPF
2x3	DRY	No.2	SPF
	SIZE 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4	SIZE 2x4 DRY	SIZE LUMBER 2x4 DRY No.2

DRY: SEASONED LUMBER

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMVW-t	MT20	4.0	6.0							
С	TMWW-t	MT20	4.0	4.0	2.00	1.75					
D	TS-t	MT20	3.0	6.0							
E	TTW-m	MT20	4.0	4.0							
F	TMVW-t	MT20	4.0	6.0							
G	BMV1+p	MT20	3.0	4.0							
Н	BMWWW-t	MT20	4.0	9.0							
1	BS-t	MT20	3.0	6.0							
J	BMWW-t	MT20	4.0	6.0							
K	BMV1+p	MT20	3.0	4.0							

BEA	RINGS				
JT G K	FACTO GROSS R VERT 1073 1197	MAXIMU GROSS DOWN 1073 1197		INPUT BRG IN-SX 1-8 5-8	REQRD BRG IN-SX 1-8 5-8

UNFACTORED REACTIONS

_	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	VS.		
J١	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
G K	759	498 / 0	0/0	0/0	0/0	261 / 0	0/0
Λ.	844	567 / 0	0/0	0/0	0/0	277 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.69 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, C-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

MAX	ORDS K. FACTORED	FACTO			WEBS MAX. FACTORED				
мемв.	FORCE	VERT. LO	AD LC	I MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PL	_F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH		(450)	001 (20)	
A-B	0 / 28	-91.8	-9 1.8	0.12(1)	10.00	J- C	-8 / 113	0.04 (4)	
B-C	-1355 / 0	-91.8	-91.8	0.64 (1)	4.69	C- H	-821 / 0	0.38 (1)	
C-D	-649 / 0	-91.8	-91.8	0.58 (1)		H-E	-216/6	0.27 (1)	
D-E	-649 / 0	-91.8	-91.8	0.58 (1)	6.25	H-F	0 / 951	0.27 (1)	
E-F	-546 / 0	-9 1.8	-91.8	0.37 (1)		B- J	0 / 1252	0.28 (1)	
G-F	-1034 / 0	0.0	0.0	0.31 (1)	6.18		0.1202	0.20 (1)	
K-B	-1144 / 0	0.0	0.0	0.12 (1)	7.43				
K-J	0/0	-18.5	-18.5	0.22 (4)	10.00				
J- I	0 / 1243	-18.5	-18.5	0.32 (4)	10.00				
I- H	0 / 1243	-18.5	-18.5	0.32 (4)	10.00		_		
H- G	0/0	-18.5	-18.5	0.15 (4)	10.00				
				u.15 (1)	10.00				

SPECIFIED LOADS: TOP CH. LL = LL = DL = LL = 25.6 PSF 6.0 PSF 0.0 PSF BOT CH. LL = DL = TOTAL LOAD = 39.0

24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL)= L/999 (0.10")

CSI: TC=0.64/1.00 (B-C:1) , BC=0.32/1.00 (H-J:4) , WB=0.38/1.00 (C-H:1) , SSI=0.28/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

Structural component only DWG# T-2121212

CITY OF BUIL PLATE PLACEMENT TOL. = 0.250 inche PLATE ROTATION TOL. = 5.0 Deg.

JSLGRIP= 0.84 (F) (INPUT = 0.90) JSI METAL= 0.41 (I) (INPUT = 1.00)

Per: anielle.devitt JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO 412865 T105X TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:34 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-EV2iH0cqUjNwknN96mU_WvH1l1v_xOLj8ijq7iz0S53 ·1-3-8 0-0 7-0-8 13-10-8 6-10-0 19-5-8 5-7-0 4x6 || Scale = 1:44.5 6.00 12 4x4 🗲 С 4x4 II 3x6 = 4x4 = 3x4 [[5-8 20-3-8 0-0 7-0-8 13-10-8 TOTAL WEIGHT = 5 X 88 = 439 II

	LUMBER					•
	N. L. G. A. F	RULES				
	CHORDS	SIZE		LUMBER	DESCR.	
	A - D	2x4	DRY	No.2	SPF	
	D - E	2x4	DRY	No.2	SPF	
I	E-F	2x4	DRY	No.2	SPF	
	G-F	2x4	DRY	No.2	SPF	
	K - B	2x4	DRY	No.2	SPF	
	A - I	2x4	DRY	No.2	SPF	
	I - G	2x4	DRY	No.2	SPF	
	ALL WEBS EXCEPT	2x3	DRY	No.2	SPF	

DRY: SEASONED LUMBER.

PLATES (table is in inches)										
JT	TYPE	PLATES	·W	LEN	Υ	Х				
Α	TBM1-m	MT20	4.0	4.0		Edge				
В	TMVW+p	MT20 .	4.0	4.0	1.50	2.00				
C	TMWW-t	MT20	4.0	4.0	2.00	1.75				
D.	TS-t	MT20	3.0	6.0						
Ε	TTW-m	MT20	4.0	4.0						
F	TMVW+p	MT20	4.0	6.0						
G	BMV1+p	MT20	3.0	4.0						
Н	BMWWW-t	MT20	5.0	8.0						
i	BS-t	MT20	3.0	6.0						
J	BMWW-t	MT20	4.0	4.0						
K	BMV+p	MT20	3.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BEARINGS	

### FACTORED GROSS REACTION JT VERT HORZ G 1151 0 A 1151 0		M FACTO REACTION HORZ 0 0		INPUT BRG IN-SX 1-8 5-8	REQRD BRG IN-SX 1-8 5-8
---	--	---------------------------------------	--	-------------------------------------	-------------------------------------

UNFACTORED REACTIONS

	1ST LCASE	1711 171111	IIN. COMPO	NENT REACTION	NS		
JΤ	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
Ģ	814	534 / 0	0/0	0/0	0/0	280 / 0	0/0
Α	814	534 / 0	0/0	0/0	0/0	280 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, A

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.13 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, C-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS	WEBS							
	C. FACTORED	FACTO			MAX. FACTORED				
MEMB.	FORCE	VERT. LC			MAX.	MEMB.	FORCE	MAX	
FR-TO	(LBS)	FROM	-F) TO	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
A-M	-2641 / 0			0.47 (4)	LENGTH				
M- B	-2142 / 0					J- C	0/214	0.06 (4)	
B- C		-91.8	-91.8	0.25 (1)			-1010 / 0	0.46(1)	
	-1610 / 0	-91.8	-91.8	0.60(1)		H- E	-196 / 15	0.25(1)	
C-D	-706 / 0	-91.8	-91.8	0.55 (1)	6.18	H-F	0 / 1045	0.24(1)	
D-E	-706 / 0	-91.8	-91.8	0.55 (1)	6.18	B-J	-496 / 0	0.46 (1)	
E-F	-600 / 0	- 9 1.8	-91.8	0.37 (1)	6.25	L-M	0 / 845	0.00 (1)	
G-F	-1111 / 0	0.0	0.0	0.33 (1)			0.043	0.00 (1)	
K-B	-112 / 75	0.0	0.0	0.02 (4)	7.81				
A-L	0 / 1950	40.5							
L- K		-18.5		0.53 (1)	10.00				
	0 / 1950	-18.5	-18.5	0.53 (1)	10.00				
K-J	0 / 1950	-18.5	-18.5	0.45 (1)	10.00			CI.	۰
J-	0 / 1457	-18.5	-18.5	0.37 (1)	10.00			l Ci	
I- H	0 / 1457	-18.5	-18.5	0.37 (1)	10.00				
H- G	0/0	-18.5		0.16 (4)	10.00				

DESIGN CRITERIA

	SPEC	IFIED	LOA	os:		
Į	TOP	CH.	LL	=	25.6	PSF
			DL		6.0	PSF
	BOT	CH.		=	0.0	PSF
į			DL	=	7.4	PSF
Ì	IOTA	L LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.70")
CALCULATED VERT. DEFL.(LL)= L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (0.70")
CALCULATED VERT. DEFL.(TL)= L/999 (0.17")

CSI: TC=0.60/1.00 (B-C:1) , BC=0.53/1.00 (A-L:1) , WB=0.46/1.00 (C-H:1) , SSI=0.52/1.00 (A-L:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAL VALUES ND HILL
PLATE GRIP/DRY) SHEAR (PL)
(PS) (PL)
(MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 TY OF **BUILI** PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.86 (A) (INPUT = 0.90) JSI METAL= 0.74 (A) (INPUT = 1.00)

anielle.devitt

PROFESSIONAL ENGINE 100009024 PONNUE OF ONT ARIO

Structural component only DWG# T-2121213

JOB NAME TRUSS NAME QUANTITY **ROYAL PINE HOMES** PLY JOB DESC. DRWG NO. 412865 T106 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:35 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-iic4VMdSF1VnMxyLgT?D27p8SRHEgoGsNMTNf8z0S52 1-3-8 8-0-8 19-5-8 7-10-0 4x6 II 6.00 12 W2 BI 4x6 == 5x8 == 1-3-8 18-10-8 15-10-8 7-10-0 19-5-8 LUMBER
N. L. G. A. RULES
CHORDS SIZE
A - D 2x4
D - E 2x4
E - F 2x4
K - B 2x4
K - I 2x4
I - G 2x4 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER TOTAL WEIGHT = 3 X 91 = 272 BEARINGS FACTORED DESIGN CRITERIA LUMBER DESCR DRY DRY DRY SPF MAXIMUM FACTORED INPUT REORD No.2 SPE GROSS REACTION SPECIFIED LOADS GROSS REACTION DALC.
LL =
DL =
DL =
AD = No.2 SPF CH. PSF PSF PSF HORZ 0 VERT HORZ DOWN UPLIFT IN-SX DRY IN-SX 6.0 0.0 7.4 1073 1-8 1-8 5-8 CH. No.2 SPE 1197 0 DRY SPF DRY No.2 | UNFACTORED REACTIONS | 1ST LCASE | MAX./MIN. COMPONENT REACTIONS | JT | COMBINED | SNOW | LIVE | PERM.LIVE | V | C | 759 | 498 / 0 | 0 / 0 | TOTAL LOAD 39.0 ALL WEBS EXCEPT 2x3 DRY SPACING = No.2 SPF IN. C/C WIND DEAD SOIL 0/0 0/0 DRY: SEASONED LUMBER. LOADING IN FLAT SECTION BASED ON A SLOPE 0/0 OF 2.00/12 MINIMUM BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.15 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. PLATES (table JT TYPE B TMVW-t C TMWW-t THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF DCC 2012 (2019 AMENDMENT) MT20 6.0 4.0 8.0 MT20 2.00 1.75 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. TS-t TTW-m TMVW+p MT20 4.0 1 LATERAL BRACE(S) AT 1/ 2 LENGTH OF F-G, C-H, E-H. MT20 BMV1+p BMWWW-t

4.0 6.0 4.0 8.0 6.0 4.0 3.0 5.0 3.0 4.0 3.0 MT20 MT20 MT20 MT20 4.0

BS-t BMWW-t

BMV1+p

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

		ORDS C. FACTORED FORCE (LBS)	FACTO VERT. LO (PL	AD LC		MAX.	MEMB.		MAX .
I	FR-TO	(250)		TO	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
	A- B B- C C- D D- E E- F G- F K- B	0 / 28 -1311 / 0 -439 / 0 -439 / 0 -353 / 0 -1057 / 0 -1138 / 0	-91.8 -91.8 -91.8 -91.8 -91.8 0.0	-91.8	0.12 (1) 0.86 (1) 0.77 (1) 0.77 (1) 0.15 (1) 0.41 (1) 0.11 (1)	10.00 4.15 6.25 6.25 6.25	J- C	0 / 149 -1000 / 0 -255 / 0 0 / 961 0 / 1214	0.05 (4) 0.61 (1) 0.14 (1) 0.22 (1) 0.27 (1)
	K- J J- I I- H	0 / 0 0 / 1208 0 / 1208	-18.5 -18.5 -18.5	-18.5	0.30 (4) 0.40 (4)	10.00 10.00			
	H- G	0/0	-18.5		0.40 (4) 0.15 (4)	10.00 10.00			Cľ

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL) = L/999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL) = L/999 (0.14")

CSI: TC=0.86/1.00 (B-C:1) , BC=0.40/1.00 (H-J:4) , WB=0.61/1.00 (C-H:1) , SSI=0.32/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

CITY OF RACKAMES ND HILL PLATE GRIP(DRY) SHEAR SECTION (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 BUIL

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.83 (H) (INPUT = 0.90)
JSI METAL= 0.49 (I) (INPUT = 1.00)

anielle.devitt

Per:

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T106X TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:35 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-iic4VMdSF1VnMxyLgT?D27p9lRFvgjKsNMTNf8z0S52 1-3-8 8-0-8 8-0-8 19-5-8 7-10-0 4x4 = 4x6 || 6.00 12 D 9 W2 pr 3x6 = 20-3-8 5.8 15-10-8 19-5-8

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR
A - C	2x4	DRY	No.2	SPF
C-E	2x4	DRY	No.2	SPF
E-F	2x4	DRY	No.2	SPF
G-F	2x4	DRY	No.2	SPF
A - I	2x4	DRY	No.2	SPF
1 - G	2x4	DRY	No.2	SPF
				OF I
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED L	UMBER.		011
PLATES (ta	ble is in	inches)		
IT TYPE	731	A-T		

ı							
	<u>PL/</u>	ATES (table i	s in inches)				
	Л	TYPE	PLATES	W	LEN	Υ	Х
	Α	TBMH1-m	MT20	3.0	8.0	1.75	Edge
	В	TMWW-t	MT20	4.0	4.0	2.00	1.75
	С	TS-t	MT20	3.0	8.0		
	D	TMWW-t	MT20	4.0	4.0	2.00	1.75
	Е	TTW-m	MT20	4.0	4.0		
	F	TMVW+p	MT20	4.0	6.0		
	G	BMV1+p	MT20	3.0	4.0		
	Н	BMWWW-t	MT20	5.0	8.0	2.25	4.00
	ı	BS-t	MT20	3.0	6.0		
	J	BMWW-t	MT20	4.0	4.0		
	K	BMW+w	MT20	2.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

DEA	HINGS					
JT G A	FACTO GROSS R VERT 1151 1151	MAXIMU GROSS DOWN 1151 1151		INPUT BRG IN-SX 1-8 5-8	REQRD BRG IN-SX 1-8 5-8	HEEL WEDGE 2x4 L

UNF	ACTORED RE	ACTIONS				
	1ST LCASE	MAX	/MIN. COMPON	ENT REACTION	NS	
JT	COMBINED	SNOW	LIVE	PERMLIVE	WIND	_
G	814	534 / 0	0/0	0/0	0/0	
Α	814	534 / 0	0/0	0/0	0/0	

0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, A

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.24 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, D-H, E-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS C. FACTORED	EAGTO				W E	BS	
MEMB.	FORCE (LBS)		AD LC ⁻ .F)		MAX. UNBRAC	MEMB.	MAX. FACTO FORCE (LBS)	RED MAX CSI (LC)
	-2452 / 0 -2188 / 0 -1519 / 0 -1519 / 0 -468 / 0 -383 / 0 -1134 / 0	FROM -91.8 -91.8 -91.8 -91.8 -91.8 -91.8	TO -91.8 -91.8 -91.8 -91.8 -91.8 -91.8	0.34 (1) 0.77 (1) 0.77 (1) 0.72 (1) 0.15 (1)	4.24 4.24 6.25	J- D H- E H- F	0 / 254 -1163 / 0 -250 / 0 0 / 1044 -171 / 94 -674 / 0 0 / 486	0.07 (4) 0.71 (1) 0.13 (1) 0.23 (1) 0.03 (4) 0.93 (1)
A- L L- K K- J J- I I- H H- G	0 / 2047 0 / 2047 0 / 2047 0 / 1377 0 / 1377 0 / 0	-18.5 -18.5 -18.5 -18.5 -18.5 -18.5	-18.5 -18.5 -18.5 -18.5	0.55 (1)	10.00 10.00 10.00 10.00 10.00		07440	0.00 (1)

TOTAL WEIGHT = 93 DESIGN CRITERIA

SPECIFIED LOADS: TOP CH.

LOADS: LL = DL = LL = DL = AD = PSF PSF 6.0 0.0 7.4 BOT CH. PSF PSF TOTAL LOAD 39.0

SPACING = 24.0

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9.

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF CDC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

SOIL 0/0 0/0

DEAD 280 / 0 280 / 0

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.70")
CALCULATED VERT. DEFL.(LL)= L/999 (0.09")
ALLOWABLE DEFL.(TL)= L/360 (0.70")
CALCULATED VERT. DEFL.(TL)= L/999 (0.21")

CSI: TC=0.77/1.00 (B-D:1) , BC=0.55/1.00 (A-L:1) , WB=0.93/1.00 (B-J:1) , SSI=0.31/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

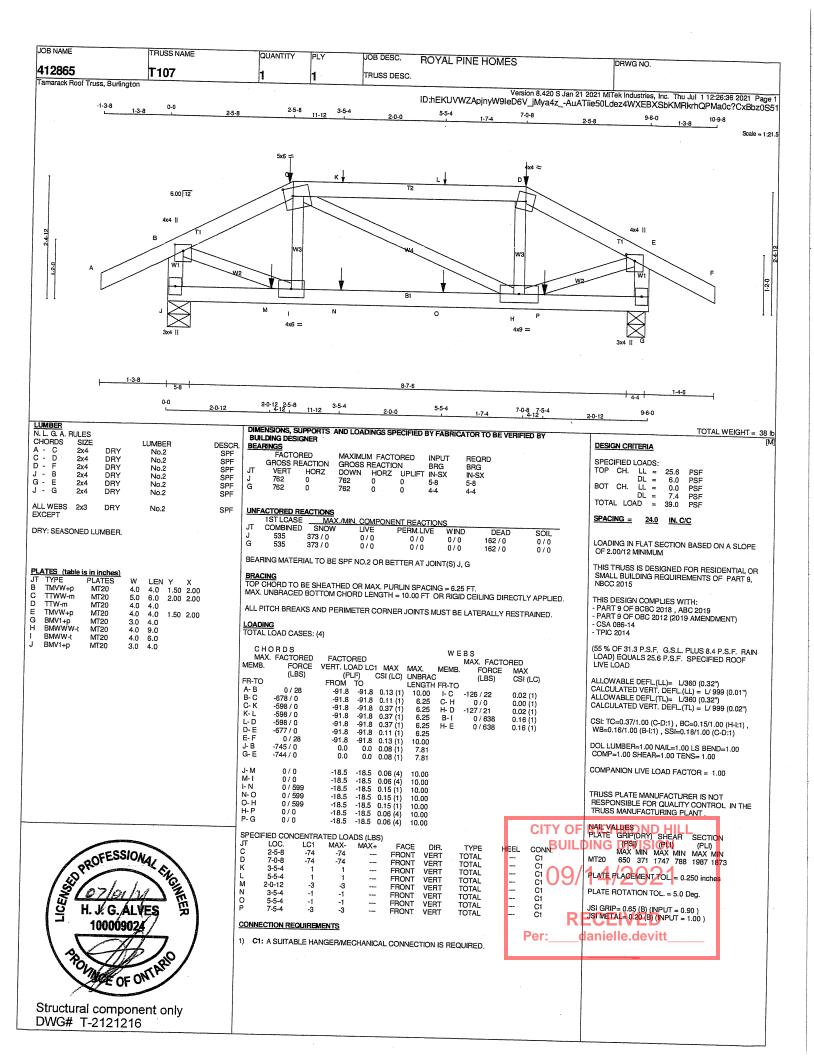

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP/DRY/ SHEAR SECTION (PLI)
MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 **BUILI** PLATE PLACEMENT TOL. = 0.250 inche PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.89 (C) (INPUT = 0.90) JSI METAL= 0.44 (I) (INPUT = 1.00) Per:

anielle.devitt

Structural component only DWG# T-2121215

A -SPF SPF SPF DRY No.2 DRY DRY DRY 2x6 2x4 2x4 No.2 SPE 2x4 DRY G SPF ALL WEBS EXCEPT 2x3 DRY No.2 DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20 LEN Y BCDEGHIJ 4.0 4.0 4.0 4.0 4.0 2.00 1.25 2.25 1.75 TTWW+m MT20 TTW-h 6.0 MT20 4.0 4.0 6.0 4.0 2.00 1.25 BMV1+p BMWWW-t 3.0 4.0 4.0 MT20 MT20 MT20 2.00 1.50 BMWW-t BMV1+p MT20 3.0

BEARINGS FACTORED

MAXIMUM FACTORED GROSS REACTION DOWN HORZ UPLI REQRD GROSS REACTION VERT HORZ BRG HORZ UPLIFT IN-SX J 648 648 0 648 Õ MECHANICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 1-8.

ERM.LIVE 0/0 DEAD SOIL 456 312/0 312/0 J 0/0 456 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

Сн	ORDS							
	FACTORED					WE	BS	
MEMB.		FACTO					MAX. FACTO	RED
IVICIVID.	FORCE	VERT. LC		1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)		-F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH		(LDO)	031 (LU)
A-B	0 / 28	-91.8	-91.8	0.12(1)		I- C	-88 / 7	0.00 (4)
B-C	-309 / 0	-91.8	-91.8	0.23 (1)		H- D		0.03 (1)
C-D	-278 / 0	-91.8	-91.8	0.00 (1)		B-I	-96 / 7	0.03(1)
D-E	-307 / 0	-91.8	-91.8	0.23 (1)			0/315	0.07 (1)
E-F	0 / 28	-91.8				H- E	0/314	0.07 (1)
J- B	-615/0		-91.8	0.12(1)		C- H	-7 / 0	0.00(1)
G-E		0.0	0.0	0.09 (1)	7.81			• •
G-E	-614/0	0.0	0.0	0.09 (1)	7.81			
J- I	0/0	-18.5	-18.5	0.08 (4)	10.00			
I- H	0 / 279	-18.5		0.10 (4)	10.00			
H- G	0/0	-18.5			10.00			
		.0.0	-10.5	0.00 (4)	10.00			

SPECIFIED LOADS: LL = DL = LL = TOP CH. 25.6 PSF PSF PSF 6.0 BOT CH. DL TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

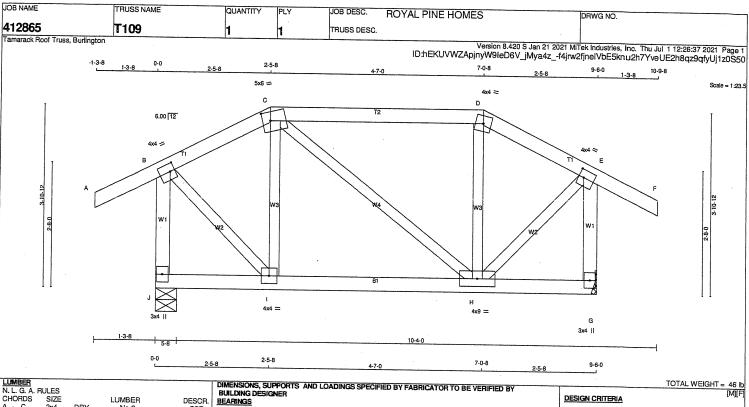
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD


ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.23/1.00 (B-C:1) , BC=0.10/1.00 (H-I:4) , WB=0.07/1.00 (B-I:1) , SSI=0.14/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

Structural component only DWG# T-2121217

BUILI PLATE PLACEMENT TOL. = 0.250 inche PLATE ROTATION TOL. ≈ 5.0 Deg. JSI GRIP= 0.45 (B) (INPUT = 0.90) JSI METAL= 0.16 (B) (INPUT = 1.00)

Per: lanielle.devitt

A -C -D -J -G -2x4 2x4 DRY SPF No.2 CDFB DRY DRY DRY No.2 No.2 SPF No.2 SPF Ε 2x4 DRY - G SPF ALL WEBS DRY No.2 SPF EXCEPT

DRY: SEASONED LUMBER.

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	w	LEN	Υ	Х
В	TMVW-t	MT20	4.0	4.0	2.00	1.25
C	TTWW-m	MT20	5.0	6.0	2.25	2.00
D	TTW-m	MT20	4.0	4.0		
E	TMVW-t	MT20	4.0	4.0	2.00	1.25
G	BMV1+p	MT20	3.0	4.0		
Н	BMWWW-t	MT20	4.0	9.0		
1	BMWW-t	MT20	4.0	4.0		
J	BMV1+p	MT20	3.0	4.0		

BEA	RINGS						
	FACTO GROSS R		MAXIMUI GROSS			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
J	648	0	648	0	0	5-8	5-8
G	648	0	648	0	0	MECHANIC	CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 1-8.

UNFACTORED REACTIONS

	1ST LCASE	MAX./N	AIN. COMPON	NENT REACTION	NS		
JT	COMBINED 456	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
J G	456 456	312/0 312/0	0/0 0/0	0/0	0/0	144 / 0	0/0
_	-100	01270	0/0	0/0	0/0	144 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	Сно	ORDS					M/ F	n.o.				
		FACTORED	E40T0	FACTORED			WEBS					
						MAX. FACTORED						
	MEMB.	FORCE	VERT. LC	AD LC	I MAX	MAX.	MEMB.	FORCE	MAX			
		(LBS)	(PL	JF)	CSL(LC)	UNBRAC		(LBS)	CSI (LC)			
	FR-TO		FROM		()	LENGTH		(LDG)	COI (LC)			
	A-B	0 / 28	-91.8		0 40 (4)							
				-91.8	0.12 (1)		I- C	-183 / 0	0.04(1)			
į	B-C	-311 / 0	-91.8	-91.8	0.07(1)	6.25	C- H	0/0	0.00(1)			
	C-D	-272 / 0	-91.8	-91.8	0.25 (1)	6.25	H- D	-183 / 0	0.04 (1)			
	D-E	-311 / 0	-91.8	-91.8	0.07(1)		B-1	0/378				
	E-F	0 / 28	-91.8	-91.8	0.12 (1)		H- E		0.09(1)			
	J- B	-633 / 0					m- E	0/377	0.08 (1)			
			0.0	0.0	0.09 (1)	7.81						
	G-E	-632 / 0	0.0	0.0	0.09(1)	7.81						
	J- I	0/0	-18.5	-185	0.06 (4)	10.00						
	I- H	0 / 273	-18.5		0.08 (4)							
						10.00						
	H-G	0/0	-18.5	-185	0.06 (4)	10.00						

| SPECIFIED LOADS: | TOP | CH. | LL = | DL = | | BOT | CH. | LL = | DL = | | TOTAL | LOAD = | 25.6 PSF 6.0 PSF 0.0 PSF 7.4 PSF 39.0 PSF

SPACING = 24.0

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.25/1.00 (C-D:1) , BC=0.08/1.00 (H-I:4) , WB=0.09/1.00 (B-I:1) , SSI=0.16/1.00 (C-D:1)

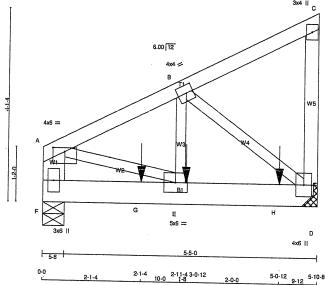
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

Structural component only DWG# T-2121218

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION
ING PSI S (PL) (PL)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873 **CITY OF BUILI** PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.52 (B) (INPUT = 0.90) JSI METAL= 0.14 (B) (INPUT = 1.00)

Per: anielle.devitt JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T110 TRUSS DESC Tamarack Roof Truss, Burlington

Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:38 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-7HHD7OfLYytMDOgwLbZwglRs9eM2tGvJ3Jh1GTz0S5

0-0 2-11-4 2-11-4

Scale = 1:23.4

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE DESCR. SPF SPF LUMBER A - C D - C F - A F - D No.2 No.2 2×4 DRY 2x4 2x6 DRY - A - D SPF No.2 2x6 DRY No.2 ALL WEBS EXCEPT 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

SURFACE SPACING (IN) CHORDS #ROWS LOAD(PLF) TOP CHORDS: (0.122"X3") SPIRAL NAILS A-C TOP C-D F-A TOP TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(183.1) WEBS : (0.122"X3") SPIRAL NAILS 2x3

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inches)

JT	TYPE	PLATES	w	LEN	Υ	X
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00
В	TMW W-t	MT20	4.0		2.00	
С	TMV+p	MT20	3.0	4.0		

Structural component only DWG# T-2121219 1/2

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

DEA	HINGS						
	FACTO GROSS R	EACTION	MAXIMU GROSS			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIET	IN-SX	IN-SX
D F	1408	0	1408	0	0	MECHAN	
г	1130	0 .	1130	0	0	5-8	5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

	151 LCASE	MAX./MIN. COMPONENT REACTIONS						
JT D F	COMBINED 989	SNOW 688 / 0	UVE 0/0	PERM.LIVE 0/0	WIND 0/0	DEAD 301 / 0	SOIL	
۲	794	550 / 0	0/0	0/0	0/0	244 / 0	0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

СН	WEBS						
MEMB.	. FACTORED	FACTORED				MAX. FACTO	RED
IVIEIVIB.	FORCE (LBS)	VERT. LOAD LO (PLF)			MEMB		MAX
FR-TO	. ,	FROM TO	CSI (LC)	UNBRAC LENGTH I		(LBS)	CSI (LC)
A-B B-C	-1250 / 0· -11 / 0	-91.8 -91.8 -91.8 -91.8		6.25	E-B	0 / 1106	0.14 (1)
D-C	-110/0	0.0 0.0			A- E	-1419 / 0 0 / 1166	0.17 (1) 0.14 (1)
F-A	-971 / 0	0.0 0.0	0.03 (1)	7.81			0(1)
F-G	0/0		0.11 (1)	10.00			
G-E E-H	0 / 0 0 / 1128		0.11 (1)				
H-D	0 / 1128	-18.5 -18.5 -18.5 -18.5	0.20 (1)				

BACK

VERT

SPECIFIED CONCENTRATED LOADS (LBS) JT LOC. LC1 MAX- MAX+ LOC. 3-0-12 LC1 -441 TYPE TOTAL TOTAL FACE DIR BACK -441 VERT G -441 VERT

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS DL = DL = DL = DL = 25.6 PSF 6.0 PSF 0.0 PSF 7.4 PSF TOP CH. BOT CH. TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

TOTAL WEIGHT = 2 X 29 = 58 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.20/1.00 (D-E:1) , WB=0.17/1.00 (B-D:1) , SSI=0.17/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

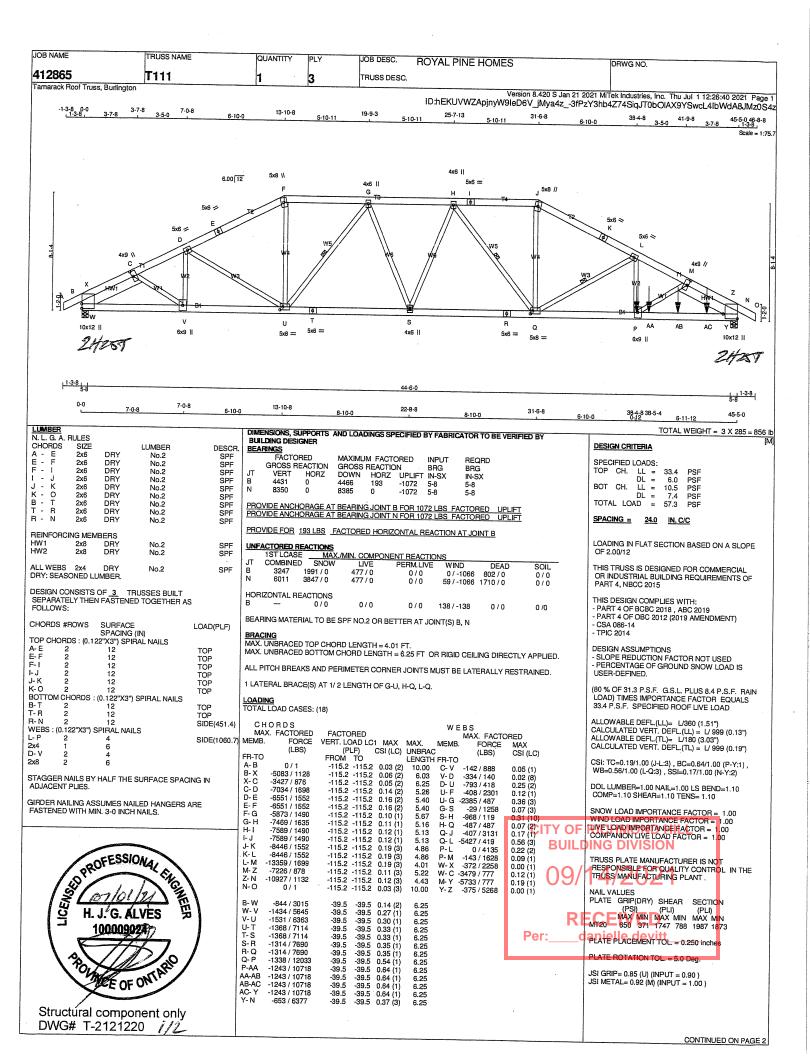
COMPANION LIVE LOAD FACTOR = 1.00 AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION

(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 187; CTY OF PLATE PLACEMENT TOL. = 0.250 inche

> PLATE ROTATION TOL. 4 5.0 Deg. JSI GRIP = 0.72 (B) (INPUT = 0.90)


JSI METAL= 0.25 (D) (INPUT = 1.00)

RECEIVED

anielle.devitt

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOME	S	DRWG NO.
412865 Tamarack Roof Truss, Burlington	T110	1	2	TRUSS DESC.			
The state of the s	·				ID:hEKUVWZApjnyW9Ie	Version 8.420 S Jan 21 202 eD6V jMya4z -7HHD7	21 MiTek Industries, Inc. Thu Jul 1 12:26:38 2021 Page 2 OfLYytMDOgwLbZwgIRs9eM2tGvJ3Jh1GTz0S5?
PLATES (table is in inches) JT TYPE PLATES	W LENY X						
E BMWW-t MT20	4.0 6.0 5.0 6.0						
F BMV1+p M120 :	3.0 6.0						
		•					
					•		
							,
	·						
							·
						CITY OF F	RICHMOND HILL
						BUILDI	NG DIVISION
PROFESSION OF THE PROPESSION O	MALE					09/1	4/2021
4 27/21						09/ 1	4/2021
H VG AI	VEC E					5-	OFIVED
1000090	24						CEIVED nielle.devitt
	7-1					1 010	michelac vitt
POUNCE OF	TARIN						
OF OF	OWI						
Structural compor	nent only						
Structural compor DWG# T-212121	9 311						

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	DRWG NO.
412865	T111	1	3	TRUSS DESC.		J.IWa No.
Tamarack Roof Truss, Burlington					Version 8.420 S Jan 21 2021 N ID:hEKUVWZApjnyW9leD6V jMya4z -3fPzY3h	iTek Industries, Inc. Thu Jul 1 12:26:40 2021 Page 2 04Z74SigJT0bOlAX9YSwcl 4lbWdA8 IMz0S4z

LEN Y X 12.0 3.75 9.0 4.50 1.00 6.0 B C D E E F G H J L M Z P Q R S T U V 5.0 6.0 5.0 8.0 4.0 6.0 5.0 8.0 5.0 8.0 5.0 8.0 6.0 9.0 4.50 1.00 10.0 12.0 3.75 Edge 6.0 9.0 5.0 8.0 2.50 2.00 5.0 8.0 5.0 8.0 5.0 8.0 6.0 8.0 6.0 8.0 6.0 8.0 6.0 8.0 6.0 8.0 6.0 8.0 TS-t TTW+m TMWW+t TMWW+t TTW+m TMWW-t MT20 MT20 MT20 TMWW+t TMBMW1+l BMWW+t BMWWW-t BS-t BMWW+t

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

BS-t BMWWW-t

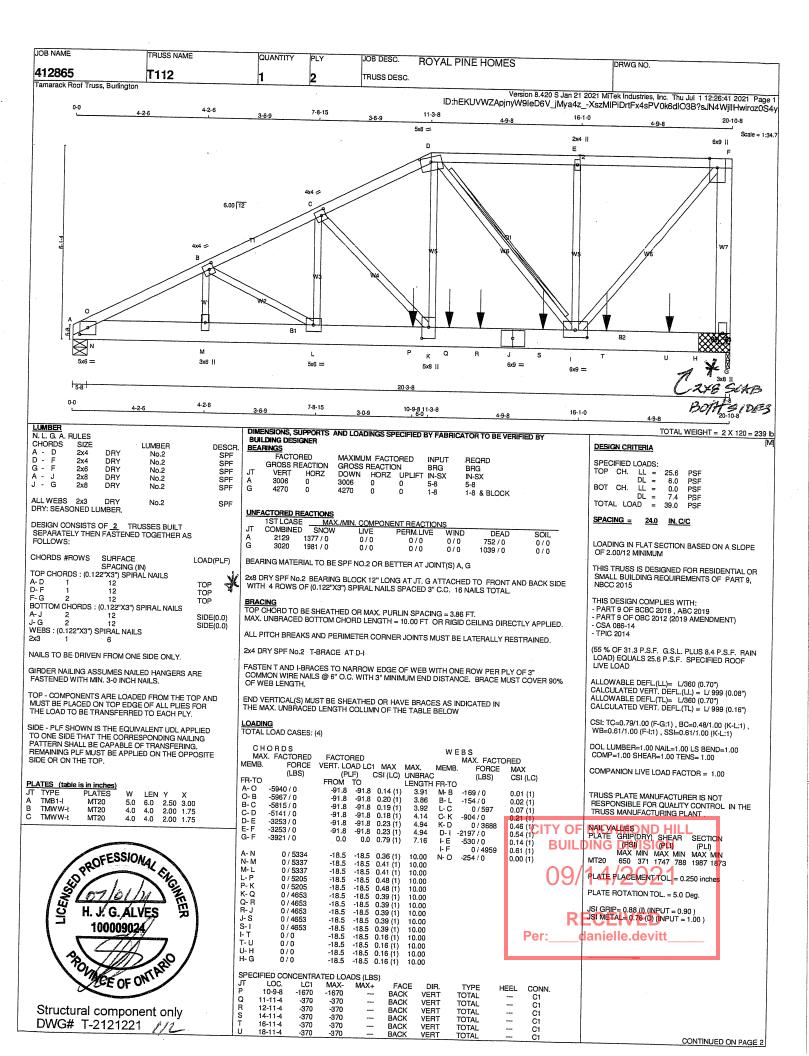
SPE	CIFIED COI	NCENTRA	TED LOA	ADS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN
P	38-5-4	-2896	-2896		BACK	VERT	TOTAL		C1
AA	39-3-12	-312	-312	_	BACK	VERT	TOTAL		C1
AB	41-3-12	-312	-312		BACK	VERT	TOTAL		C1
AC	43-3-12	-312	-312		BACK	VERT	TOTAL		Ci

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF { 9.2} PSF AT (30-0-0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM), INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.


PROFESSIONAL ENGINE BY F7/01/W H. J. G/ALVES 10000902 ROWNEE OF ONT ARIO

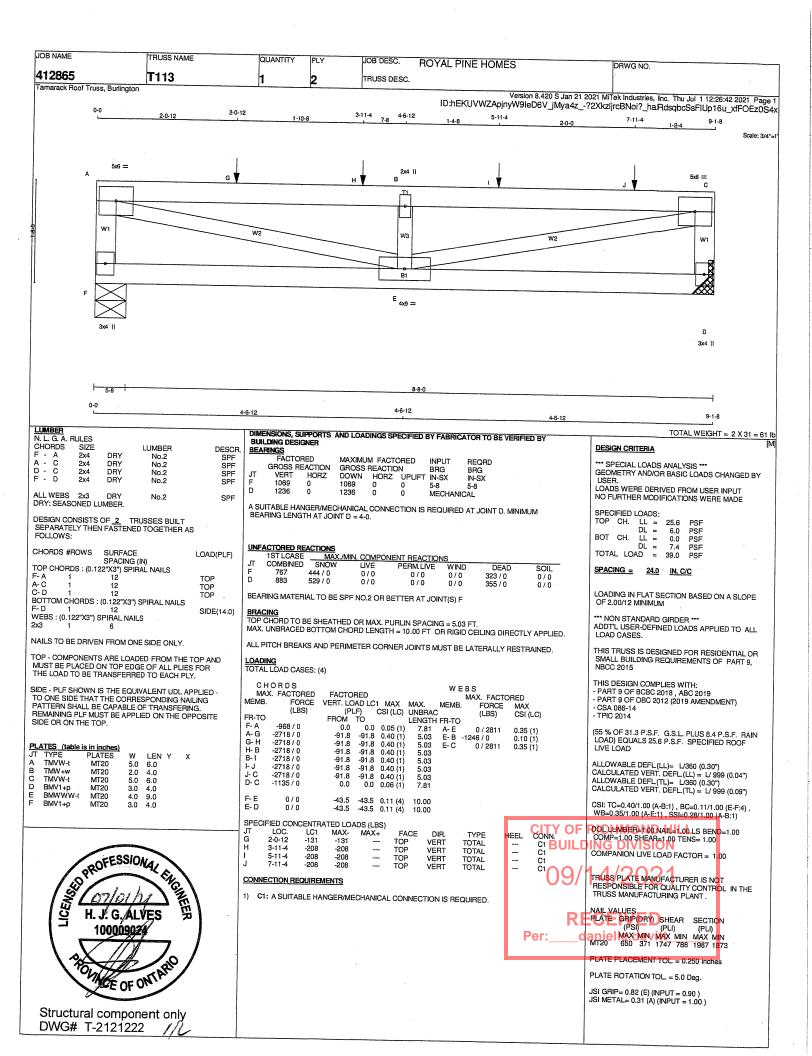
Structural component only DWG# T-2121220 7/L

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED

danielle.devitt

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	DRWG NO.
412865 amarack Roof Truss, Burlin	T112	1	2	TRUSS DESC.		T.M.S.
PLATES (table is in inches JT TYPE PLATES D TTWW-m MT20 F TMW+w MT20 F TMW+p MT20 G BMV1+p MT20 J BS+ MT20 J BS+ MT20 K BMWW+t MT20 K BMWW+t MT20 M BMW+w MT20 M BMW+w MT20 Edge - INDICATES REFER TOUCHES EDGE OF CHO	W LEN Y X 5.0 8.0 1.75 4.00 2.0 4.0 6.0 9.0 Edge 3.0 8.0 6.0 9.0 2.75 4.50 6.0 9.0 5.0 8.0 4.25 2.50 5.0 6.0 3.0 6.0	CONNECTION (Version 8.420 S. ID:hEKUVWZApinyW9IeD6V iM	Jan 21 2021 MTek Industries, Inc. Thu Jul 1 12:26:41 2021 Pa fya4z -XszMIPiDrtFx4sPV0k6dIO3B?sJN4WjllHwiroz0


Structural component only DWG# T-2121221 7M

CITY OF RICHMOND HILL BUILDING DIVISION

09/14/2021

RECEIVED

Per:____danielle.devitt

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **ROYAL PINE HOMES** DRWG NO. 412865 T114 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:43 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-TE56A5jUNUVfJ9Zu8995Np8g_f47YVI2DbPowhz0S4w 3x6 == 6.00 12 В W5 D 5-8 4-5-4 9-1-8 LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY TOTAL WEIGHT ≈ 41 I N. L. G. A. RULES CHORDS SIZE BUILDING DESIGNER BEARINGS FACTORED SIZE LUMBER DESCR. SPF SPF MAXIMUM FACTORED INPUT REGROSS REACTION BRG BR
DOWN HORZ UPLIFT IN-SX IN:
50 0 0 MECHANICAL
5 5-8 DESIGN CRITERIA No.2 No.2 A - C D - C 2x4 DRY 2x6 2x4 DRY REORD SPECIFIED LOADS: GROSS REACTION VERT HORZ - A BRG IN-SX LL = DL = LL = DL = AD = No.2 SPF TOP CH. 25.6 PSF PSF PSF 2x4 DRY Np.2 SPF 6.0 0.0 7.4 503 0 503 503 0 ALL WEBS 5-8 5-8 No.2 SPE TOTAL LOAD 39.0 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8. DRY: SEASONED LUMBER. SPACING = 24.0 IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR UNFACTORED REACTIONS
1ST LCASE MA SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND
233 / 0 0 / 0 0 / 0 0 / 0 PLATES (table is in inches)
JT TYPE PLATES
A TMVW-t MT20 COMBINED LEN Y DEAD SOIL 0/0 0/0 W 4.0 4.0 3.0 5.0 4.0 Y X 2.00 1.25 2.00 1.75 Edge 3.00 THIS DESIGN COMPLIES WITH: 233 / 0 233 / 0 TMVW-t TMWW-t 4.0 4.0 - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) 0/0 0/0 MT20 6.0 6.0 4.0 TVM-p BMVW1-t MT20 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F MT20 MT20 - TPIC 2014 BMV1+p MT20 3.0

Edge - INDICATES REFERENC TOUCHES EDGE OF CHORD. INDICATES REFERENCE CORNER OF PLATE TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	DRDS FACTORED	FACTO	RED			W E		
MEMB.	FORCE	VERT. LO	AD LC		MAX.	мемв.	MAX. FACTO FORCE	RED MAX
FR-TO	(LBS)	(PL FROM	.F) TO	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
A- B B- C	-491 / 0	-91.8	-91.8	0.25 (1)	6.25	E-B	0 / 86	0.03 (4)
D- C	-22 / 0 -166 / 0	-91.8 0.0		0.24 (1)		B- D A- E	-551 / 0 0 / 469	0.26 (1)
F- A	-471 / 0	0.0		0.05 (1)	7.81	A- L	0 / 409	0.11 (1)
F-E	0/0	-18.5	-18.5	0.11 (4)	10.00			
E-D	0 / 460	-18.5		0.14 (4)	10.00			

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.30")
CALCULATED VERT. DEFL.(LL) = L/999 (0.01")
ALLOWABLE DEFL.(TL) = L/360 (0.30")
CALCULATED VERT. DEFL.(TL) = L/999 (0.02")

CSI: TC=0.25/1.00 (A-B:1) , BC=0.14/1.00 (D-E:4) , WB=0.26/1.00 (B-D:1) , SSI=0.18/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION

(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 H 650 371 1747 788 1987 1873

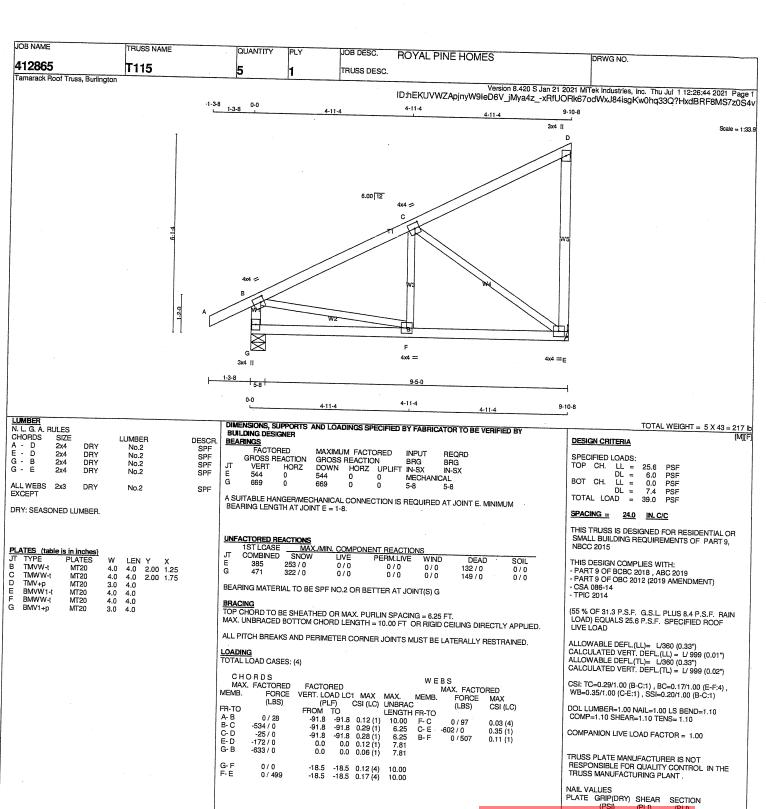
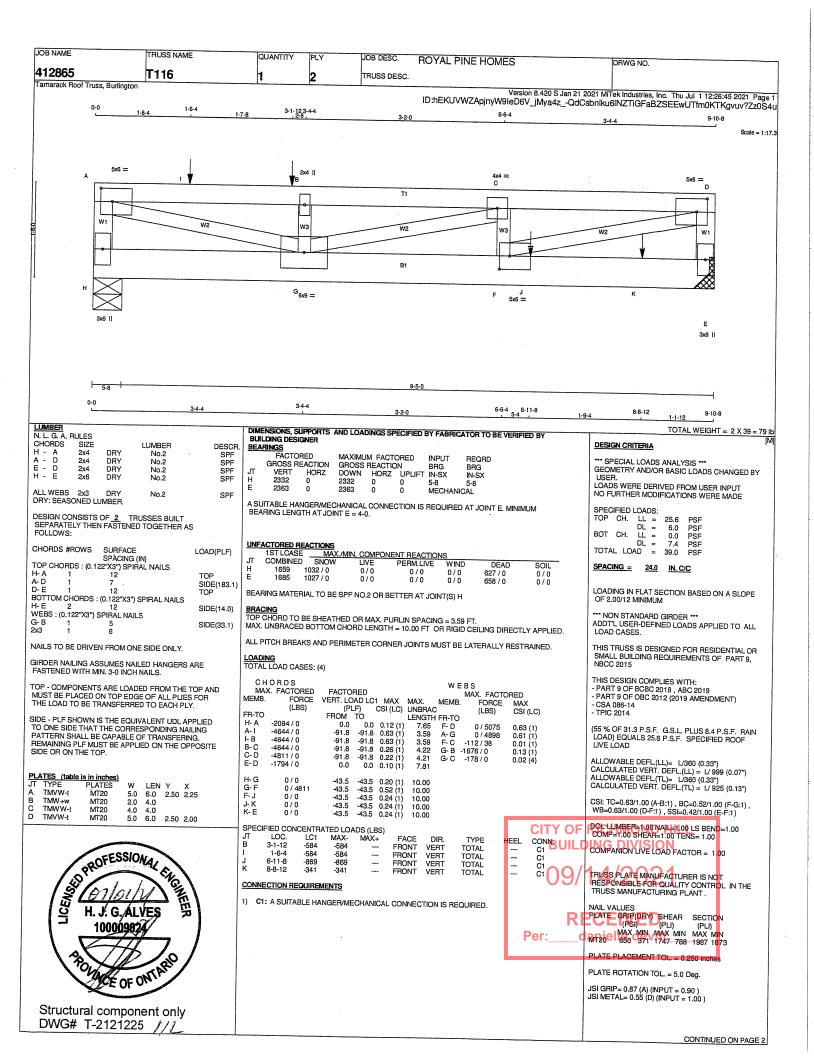

PLATE PLACEMENT TOL. = 0.250 inches

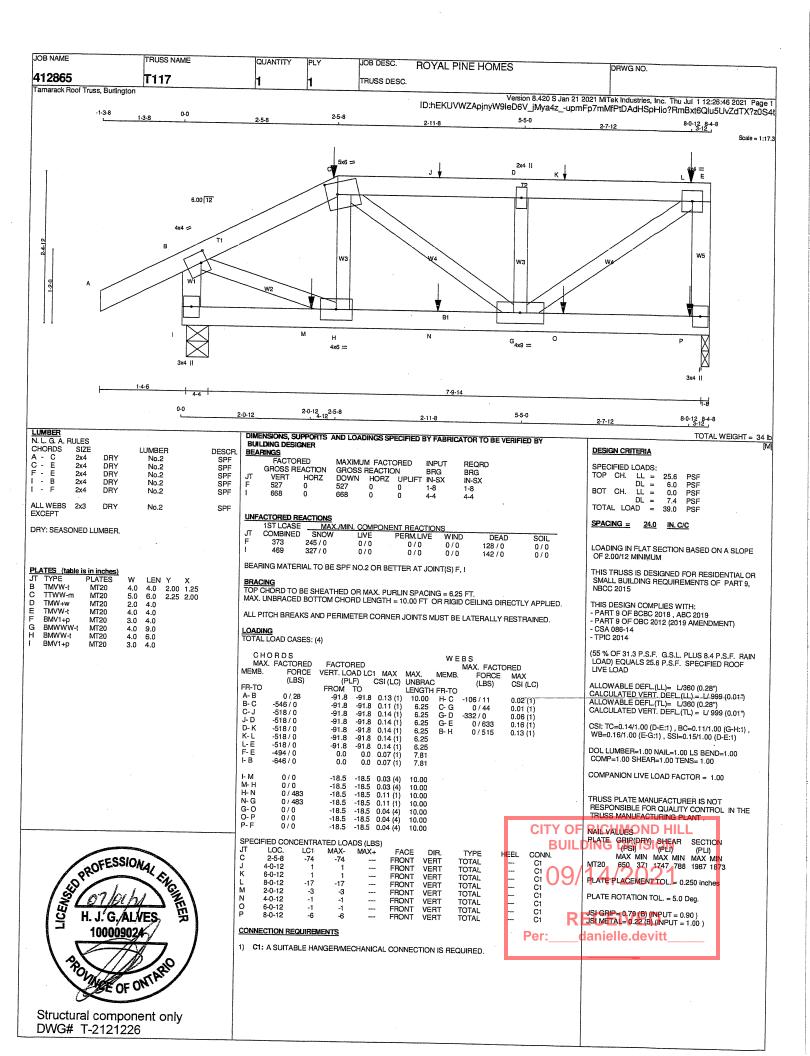
PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP=0.79 (A) (INPUT = 0.90) JSI METAL= 0.20 (A) (INPUT = 1.00)

RECEIVED anielle.devitt

Structural component only DWG# T-2121223



Structural component only DWG# T-2121224


| PLATE PLATE PLATE PLATE (B) (INPUT = 0.90) | JSI METAL = 0.24 (B) (INPUT = 1.00) | JSI METAL = 0.24 (B) (INPUT = 1.00) |

RECEIVED

Per:____danielle.devitt

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOM	ES	DRWG NO.
412865 Tamarack Roof Truss, Burlington	T116	1	2	TRUSS DESC.			
					ID:hEKUVWZApjnyW	Version 8.420 S Jan 21 : BleD6V jMya4z -QdC	
PLATES (table is in inches) JT TYPE	LEN Y X 0 6.0 0 6.0 2.50 2.00 0 9.0 0 6.0						
					4 4.		
OFFSSION						BUILD	RICHMOND HILL DING DIVISION
PROFESSION H. J. G. ALV 100009022	-					RI	14/2021 ECEIVED anielle.devitt
Structural compone DWG# T-2121225	ent only			3			

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T118 TRUSS DESC. amarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:47 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-M?Kd0Tm_Qj?4onsfN_D1XfJL9GSsUMHd7DN03Sz0S4s 8-4-8 Scale = 1:28.5 4x4 = С 6.00 12 3x4 II 4x9 = 4-5-8 8-4-8 3-11-0 LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY TOTAL WEIGHT = 39 IL N. L. G. A. RULES CHORDS SIZE BUILDINGS BEARINGS FACTORED BUILDING DESIGNER DESCR DESIGN CRITERIA SIZE LUMBER No.2 No.2 No.2 No.2 A - B 2x4 DRY SPF MAXIMUM FACTORED SPECIFIED LOADS: DRY REQRD GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ L BRG LL = DL = LL = DL = 2x4 SPF CH. UPLIFT IN-SX 25.6 PSF 6.0 PSF PSF 2x4 DRY 462 462 D 1-8 BOT CH. No.2 SPF MECHANICAL PSF ALL WEBS TOTAL LOAD 2x3 DRY No.2 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING 39.0 SPF EXCEPT LENGTH AT JOINT F = 1-8. SPACING = 24.0 IN. C/C DRY: SEASONED LUMBER. LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM DEAD PLATES (table is in inches)
JT TYPE PLATES SOIL THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR 0/0 SMALL BUILDING REQUIREMENTS OF PART 9, TYPE TMVW-t LEN Y 214/0 0/0 0/0 4.0 MT20 4.0 4.0 3.0 4.0 3.0 2.00 1.25 NBCC 2015 MT20 MT20 TTW-m BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D TMVW-t BMV1+p BMWWW-t 4.0 4.0 9.0 4.0 THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 MT20 $\frac{\textbf{BRACING}}{\textbf{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 6.25 \text{ FT.} \\ \textbf{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT} \text{ OR RIGID CEILING DIRECTLY APPLIED.} \\ \end{cases}$ MT20 MT20 BMV1+p - TPIC 2014 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LOADING TOTAL LOAD CASES: (4) LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01") CHORDS MAX. FACTORED WEBS FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBRAC MEMB. FORCE MEMB FORCE (PLF) FROM TO (LBS) CSI (LC) FR-TO LENGTH FR-TO 6.25 E- B 6.25 E- C CSI: TC=0.23/1.00 (A-B:1) , BC=0.09/1.00 (E-F:4) , WB=0.10/1.00 (B-E:1) , SSI=0.14/1.00 (A-B:1) A- B B- C D- C F- A -91.8 0.23 (1) -91.8 0.18 (1) 0.0 0.17 (1) -245 / 0 -91.8 -91.8 -275 / 0 0.10(1) -212 / 0 -436 / 0 0.07 (1) 0 / 333 7.81 7.81 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 -427 / 0F-E E-D -18.5 -18.5 -18.5 0.09 (4) -18.5 0.09 (4) 10.00 COMPANION LIVE LOAD FACTOR = 1.00 0/0 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT **CITY OF** RACYALVES ND HILL PLATE GRIP(DRY) SHEAR (PLI) (PLI) (PLI) (PLI) MAX MIN MIN MAX BUILD PROFESSIONAL ANGUER H. J. G. ALVES PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP = 0.36 (A) (INPUT = 0.90)
JSI METAL = 0.11 (A) (INPUT = 1.00) 100009024 Per: anielle.devitt PON OF ONT ARIO

Structural component only DWG# T-2121227

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T119 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:47 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-M?Kd0Tm_Qj?4onsfN_D1XfJKtGQGULld7DN03Sz0S4s 0-0 3-4-0 6-5-8 3-4-0 С D 6.00 12 G 4x9 = 3x4 || 8-3-0 6-5-8 6-5-8 LUMBER TOTAL WEIGHT = 45 lb [M][F DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS N. L. G. A. RULES CHORDS SIZE LUMBER DESIGN CRITERIA DESCR - C - D 2x4 2x4 DRY No.2 No.2 SPF FACTORED MAXIMUM FACTORED INPUT REORD SPF SPF SPF SPECIFIED LOADS: DRY DRY GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ L BRG IN-SX BRG IN-SX 2x4 No 2 CH. HORZ 0 UPLIFT 2x4 2x4 DRY 462 1-8 No.2 SPF G 462 0 0 MECHANICAL

ALL WEBS 2x3 DRY No.2 SPF DRY: SEASONED LUMBER. PLATES (table is in inches)
JT TYPE PLATES LEN Y TMV+p TMWW-t MT20 MT20 3.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 9.0 4.0 TTW-m MT20 MT20 MT20 TMVW-t BMV1+p BMWWW-t

MT20

BMVW1-t

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 1-8.

UNFACTORED REACTIONS
1ST LCASE MAX MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND COMBINED UVE 0/0 DEAD SOIL E 214/0 0/0 0/0 112/0 0/0 326 214/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E	BS	
MAX	. FACTORED	FACTO	RED				MAX. FACTO	DED
MEMB.	FORCE (LBS)	VERT. LC		1 MAX CSI (LC)	MAX. UNBRAC	MEMB.	FORCE	MAX
FR-TO		FROM	TO	()	LENGTH		(LBS)	CSI (LC)
A-B B-C C-D	0 / 16 -162 / 0	-91.8 -91.8	-91.8 -91.8	0.12 (1)	10.00 6.25	B-F F-C	-175 / 0 -135 / 0	0.08 (1) 0.07 (1)
E-D G-A	-128 / 0 -483 / 0 -113 / 0	-91.8 0.0 0.0	-91.8 0.0 0.0	0.04 (1) 0.32 (1) 0.02 (1)	7.81	F- D G- B	0 / 416 -385 / 0	0.09 (1) 0.16 (1)
G- F F- E	0 / 243 0 / 0	-18.5 -18.5	-18.5	0.19 (4) 0.18 (4)	10.00			

PSF PSF PSF PSF LL = DL = LL = 6.0 0.0 7.4 39.0 DL TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL)= L/999 (0.05")

CSI: TC=0.32/1.00 (D-E:1) , BC=0.19/1.00 (F-G:4) , WB=0.16/1.00 (B-G:1) , SSI=0.13/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PROFESSIONAL ENGINEER TO THE PROPERTY OF THE P 100009024 PONTARIO OF ONTARIO

Structural component only DWG# T-2121228

NACYALVEOND HILL CITY OF BUILD

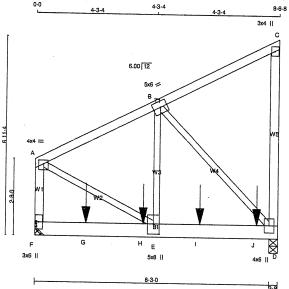
PLATE GRIP(DRY) SHEAR (PLI) (PLI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inche

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.55 (D) (INPUT = 0.90) JSI METAL= 0.12 (D) (INPUT = 1.00)

Per: anielle.devitt


JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T120 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:48 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-qCu?DoncB17xQwRrxikG4ssWKgonDnEnMt6Zbuz0S4r 4-2-4 Scale = 1:37.9 6.00 12 3x4 || 4x4 = 8-3-0 4-2-4 LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER TOTAL WEIGHT = 42 lb N. L. G. A. RULES CHORDS SIZE BUILLINGS BEARINGS FACTORED SIZE LUMBER DESCR DESIGN CRITERIA - C - C - A 2x4 2x4 DRY No.2 No.2 SPF MAXIMUM FACTORED SPECIFIED LOADS: SPF SPF SPF DRY GROSS REACTION GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX F - A F - D 2x4 DRY No.2 No.2 BRG CH. LL = DL = LL = DOWN 462 25.6 VERT HORZ PSF 2x4 IN-SX 6.0 PSF PSF 1-8 BOT CH. MECHANICAL ALL WEBS EXCEPT 462 Ó 2x3 DRY No.2 SPF PSF A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8. TOTAL LOAD 39.0 DRY: SEASONED LUMBER. 24.0 IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, UNFACTORED REACTIONS NBCC 2015 ____MAX ./MIN. COMPONENT REACTIONS
LIVE PERM, LIVE \(\) PLATES (table is in inches)
JT TYPE PLATES
A TMVW-t MT20 COMBINED WIND SOIL THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) Y X 2.00 1.25 2.00 1.75 LEN Y 4.0 4.0 4.0 4.0 4.0 4.0 214/0 0/0 0/0 4.0 4.0 3.0 0/0 112/0 112/0 326 214/0 MT20 MT20 TMWW-t CDE TMV+p BMVW1-t BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D - CSA 086-14 4.0 MT20 BMWW-t MT20 BMV1+p TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD 3.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01") LOADING TOTAL LOAD CASES: (4) CHORDS WEBS CSI: TC=0.21/1.00 (A-B:1) , BC=0.11/1.00 (D-E:4) , WB=0.24/1.00 (B-D:1) , SSI=0.17/1.00 (A-B:1) FACI C.
ERT. LOAD L.
(PLF) CSI (L.
FROM TO
91.8 91.8 0.21 (1)
91.8 91.8 0.21 (1)
0.0 0.0 0.14 (1)
0.0 0.0 0.06 (1) MAX. FACTORED MAX. FACTORED VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO MEMB. FORCE MAX (LBS) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 (LBS) CSI (LC) FR-TO A-B B-C D-C F-A -280 / 0 6.25 6.25 E-B B-D -58 / 56 0.02 (4) -21 / 0 -393 / 0 0.24 (1) COMPANION LIVE LOAD FACTOR = 1.00 -145 / 0 7.81 A-E 0 / 309 -431 / 0 F-E E-D TRUSS PLATE MANUFACTURER IS NOT -18.5 0.09 (4) -18.5 0.11 (4) 0/0 10.00 RESPONSIBLE FOR QUALITY CONTROL IN THE 0 / 269 TRUSS MANUFACTURING PLANT. NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PSI) (PLI) (PLI) MAX-MIN MAX MIN MAX MIN 788-1987 187' CITY OF BUILD PLATE PLACEMENT TOL. = 0.250 inche PROFESSIONAL ENGINEERS H. J. G. ALVES PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.44 (A) (INPUT = 0.90) JSI METAL= 0.12 (A) (INPUT = 1.00) RECEIVED 100009024 Per: anielle.devitt POUN OF ONTARIO

Structural component only DWG# T-2121229

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T121 TRUSS DESC amarack Roof Truss, Burlington

Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:49 2021 Page 1 ID:5hmlqDWy3rdQ?RwMW_6szaya40M-IOSNR8oEyKFo1401UPGVd4Oi940dy42wbXs78Kz084c

LUMBER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER - A - C - C 2x4 2x4 DRY SPF DRY No.2 SPE SPF No.2 2x6 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

DESIGN CONSISTS OF 3 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE LOAD(PLF) SPACING (IN)
TOP CHORDS: (0.122"X3") SPIRAL NAILS F- A A- C C- D 12 TOF 12 TOP TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(545.9) WEBS: (0.122"X3") SPIRAL NAILS

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR OF THE OPPOSITE SIDE OR ON THE TOP

PLATES (table is in inches)

JT	TYPE	PLATES	W	LEN	Y	Х
Α	TMVW-p	MT20	4.0	4.0	1.50	2.00
В	TMWW-t	MT20	5.0	6.0		
С	TMV+p	MT20	3.0	4.0		
D	BMVW1+p	MT20	4.0	6.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	MINGS						
	FACTOR GROSS RE		MAXIMU GROSS			INPUT BBG	REQRD BRG
JT	VERT	HORZ	DOWN	HOR7	UPLIET	IN-SX	IN-SX
F	4121	0	4121	0	0	MECHANIC	
D	5184	0	5184	0	Ō	3-8	3-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 4-0.

UNFACTORED REACTIONS

	1ST LCASE	140 07407147	IN. COMPO	NENT REACTION	NS		
JT F D		SNOW 1927 / 0 2424 / 0	UVE 0/0 0/0	PERM.LIVE 0/0 0/0	WIND 0/0 0/0	DEAD 984 / 0 1238 / 0	SOIL 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 5.99 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

		ORDS C. FACTO	RED	FACTO	RED				W E	BS	C4070		
-	MEMB.		RCE \	/ERT. LO	AD LC				MEMB	. F0	FACTO DRCE	MAX	
İ	FR-TO	(40	٥,	FROM		CSI (L		INBRAC ENGTH		(L	BS)	CSI (LC)
Ì	F-A	-3150 / 0		0.0	0.0	0.14	(1)	7.68	A-E		3284	0.25	(1)
İ	A-B B-C	-3223 / 0 -18 / 0		-91.8		0.10			E-B		3972	0.30	(1)
I	D-C	-156 / 0		-91.8 0.0	-91.8 0.0	0.08		6.25 7.81	B- D	-4167 /	0	0.85	(1)
l	F-G	0/0		-18.5	-18.5	0.47	(1)	10.00					
ı	G-H	0/0				0.47		10.00					
l	H-E	0/0		-18.5	-18.5	0.47	(1)	10.00					
	E-1 - J	0 / 28				0.59		10.00					
	J- D	0 / 28 0 / 28			-18.5 -18.5			10.00					
l	• •	0 / 20	133	-10.5	-10.5	0.59	(1)	10.00					
l	SPECIF	IED CONC	ENTRA	TED LOA	ADS (LE	3S)							0.11
l	Ή	LOC.	LC1	MAX-	MÀX-		FAC		R.	TYPE	1	EEL	CON
			-1476 -1476	-1476			BACK			TOTAL			C1
			-1476 -1476	-1476 -1476			BACK			TOTAL			C1
			-1478	-1478	-		BACK			TOTAL			C1

-1476-1476 -1478 -1476 CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED

DESIGN CRITERIA

7-9-12 8-6-8

SPECIFIED LOADS: LL = DL = LL = 6.0 PSF PSF BOT CH. DI TOTAL LOAD

SPACING = 24.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

TOTAL WEIGHT = 3 X 47 = 141 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL) = L/999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL) = L/999 (0.06")

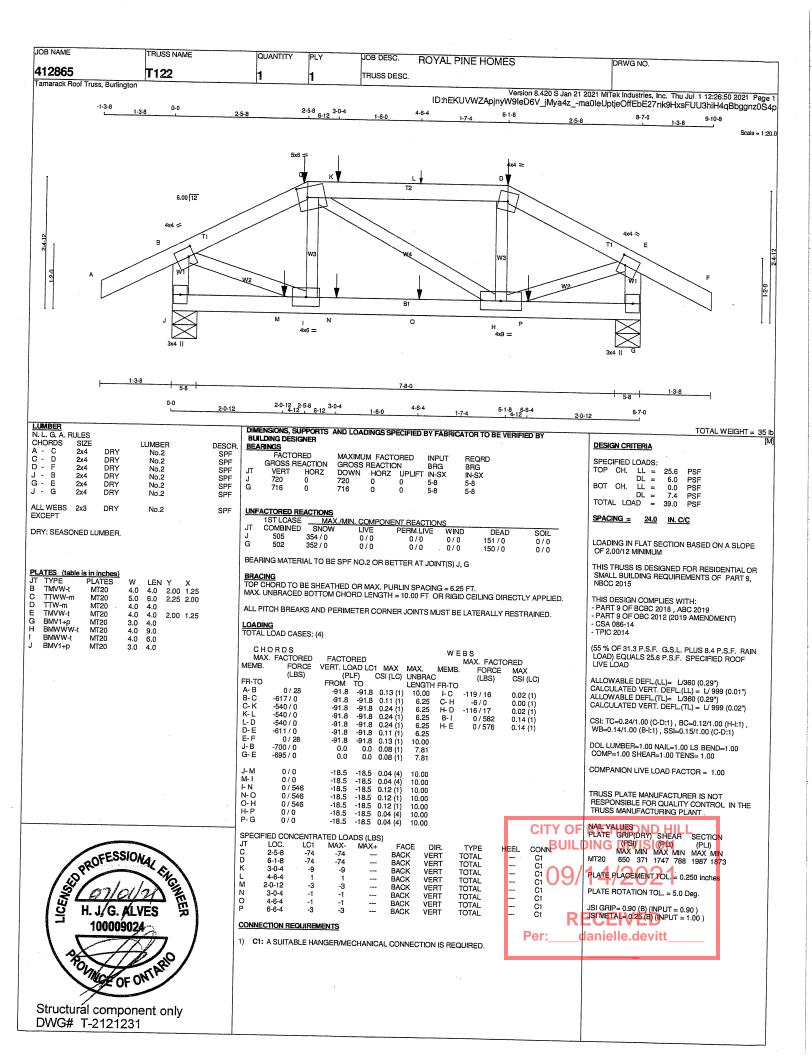
CSI: TC=0.14/1.00 (A-F:1) , BC=0.59/1.00 (D-E:1) , WB=0.85/1.00 (B-D:1) , SSI=0.66/1.00 (E-F:1)

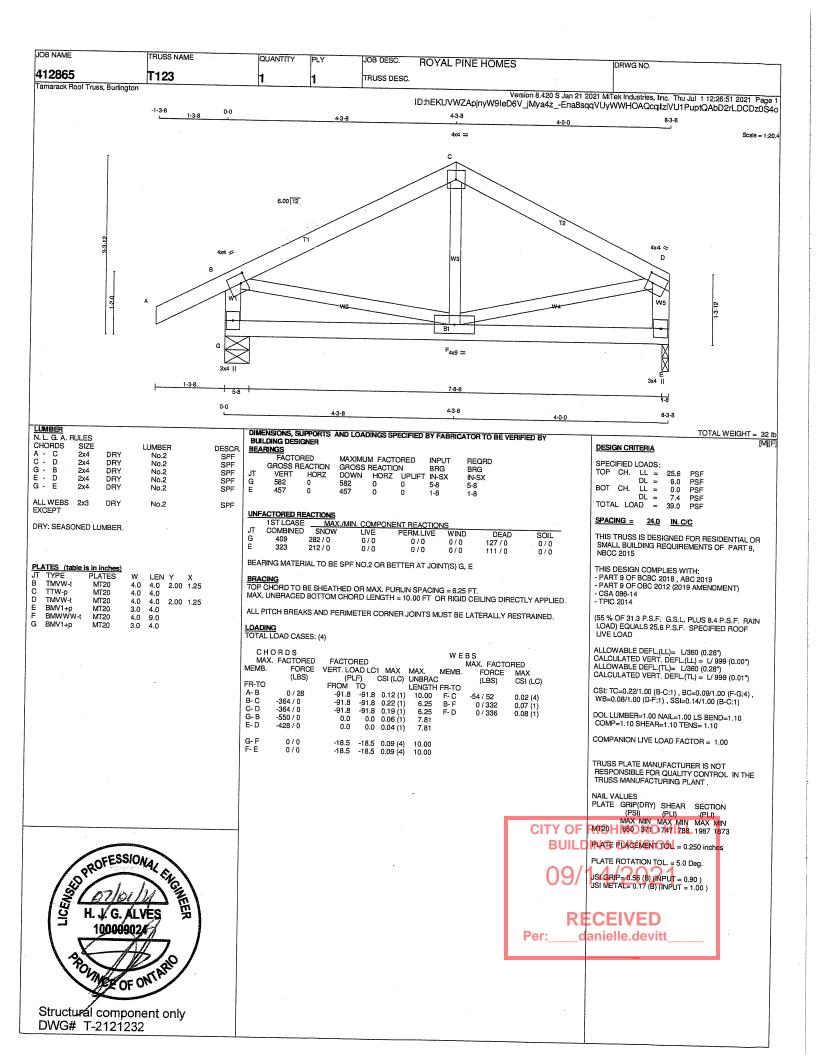
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI)
C1 BUILI PLATE PLACEMENT TOL = 0.250 inche


PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.86 (A) (INPUT = 0.90) JSI METAL= 0.44 (D) (INPUT = 1.00)


RECEIVED

anielle.devitt

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOME	S .	DRWG NO.	
412865 Tamarack Roof Truss, Burlington	T121	1	3	TRUSS DESC.				
Turning of Tradity During Con					ID:5hmlqDWy3rdQ?RwM	Version 8.420 S Jan 21 2 W 6szaya40M-IOSN	2021 MiTek Industries, Inc. Thu Jul R8oEyKFo1401UPGVd4Oi94	1 12:26:49 2021 Page 2
PLATES (table is in inches)								00942WDAS/8R20540
PLATES (table is in inches) JT TYPE	N LEN Y X 5.0 8.0 4.25 2.50 3.0 6.0							
	3.0							
							·	
								•
							,	
	.*							
				•				
						,		
							RICHMOND HILL	
						BUILI	DING DIVISION	
PROFESSIO	MALE					na/	14/2021	
PROFESSION OF TOUR PROPERTY OF TOUR PROP						03/	17/2021	
A H I GAI							ECEIVED	
10000982	4 ~						ECEIVED lanielle.devitt	
	7		•	•		1 610		_
POWCE OF	ONTARIO				'			
CE OF	ONIT							

Structural component only DWG# T-2121230 W

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T127 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 15:50:48 2021 Page 1 ID:4yza9PaaQpqU0dqb94LAvFyZ5Xk-RzUD84vLfmFEsy9HzJKb91oF_h9r3VrOyA6FCRz0P5b 4-3-8 4x6 || 6.00 12 B1 Ε 8x9 == 247516 7-10-5 0-0 4-4 TOTAL WEIGHT = 3 X 41 = 124 lb

LUMBER				
N. L. G. A. F	RULES			
CHORDS	SIZE		LUMBER	DESCR.
A - B	2x4	DRY	No.2	SPF
B - C	2x4	DRY	No.2	SPF
F - A	2x4	DRY	No.2	SPF
D - C	2x4	DRY	No.2	SPF
F - D	2x6	DRY	No.2	SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #		SURFACE SPACING (IN)	LOAD(PLF)
TOP CHOR	DS: (0.122	"X3") SPIRAL NAILS	
A-B	1	12	TOP
B-C	Í	12	TOP
	2	4	SIDE(419.6)
D-C	١.	12	TOP
BOTTOM C	HORDS : (0	.122"X3") SPIRAL NAILS	
F-D 2	2	4	SIDE(1383.3)
WEBS: (0.1	122"X3") SP	IRAL NAILS	
2x3 1		6	Í

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

Structural component only DWG# T-2121233

DIMENSIONS SUPPORTS	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
2111 2010 2011 00110	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BUILDING DESIGNER	
DEADINGS	

BEAL	<u>FIINGS</u>				
JT F D	FACTO GROSS RI VERT 9505 6418	MAXIMUI GROSS DOWN 9505 6418		INPUT BRG IN-SX 3-11 3-8	REQRD BRG IN-SX 3-11 3-8

PROVIDE ANCHORAGE AT BEARING JOINT F FOR 2751 LBS FACTORED PROVIDE ANCHORAGE AT BEARING JOINT D FOR 1848 LBS FACTORED

PROVIDE FOR 179 LBS FACTORED HORIZONTAL REACTION AT JOINT F

UN	FACTORED F						
l _	1ST LCAS		MIN. COMPO	NENT REACTIO	NS		
JT	COMBINE	- 0.1011	LIVE	PERM.LIVE	WIND	DEAD	SOIL
15	6997	4224 / 0	1190/0	0/0	167 / -2729	1584 / 0	0/0
١٠	4724	2852 / 0	803 / 0	0/0	117 / -1836	1069 / 0	0/0
но	RIZONTAL R	EACTIONS					
F	_	0/0	0/0	0/0	128 / -126	0/0	0 /0
BEA	ARING MATE	RIAL TO BE S	PF NO.2 OR I	BETTER AT JOI	NT(S) F, D		

MAX. UNBRACED TOP CHORD LENGTH = 4.89 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (18)

	ORDS				WEB	S		
	K. FACTORED	FACTORED				IAX. FACTO	DRED	
MEMB.	FORCE	VERT. LOAD L	C1 MAX	MAX.	MEMB.	FORCE	MAX	
	(LBS)	(PLF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)	
FR-TO		FROM TO		LENGTH		()	001 (20)	
A- B	-5261 / 1585	-115.2 -115.	2 0.19 (2)	4.89	E- B -12	236 / 4312	0.32 (3)	
B- C	-5261 / 1587	-115.2 -115.	2 0.18 (3)	4.90		23 / 5326	0.40 (1)	
F- A	-5094 / 1494	0.0 0.	0.22(1)	6.38	E- C -15		0.40 (1)	
D- C	-5232 / 1532	0.0 0.0	0.23 (1)	6.31			00 (.)	
F-G	-133 / 154	-39.5 -39.5	5 0.66 (1)	0.05				
G- H	-133 / 154		5 0.66 (1)					
H-E	-133 / 154	-39.5 -39.						
E-I	-23 / 47	-39.5 -39.		6.25 6.25				
I- D	-23 / 47		5 0.65 (3)	6.25				
		00.0	0.00 (0)	0.25			CIT	ď١

SPECIFIED CONCENTRATED LOADS (LBS) LOC. 4-4-4 TYPE TOTAL TOTAL TOTAL TOTAL LC1 MAX-MAX+ FACE DIR 605 601 FRONT E G H -2685 -2685 VERT -2697 -2685 4-4 VERT -2685 605 FRONT VERT -2685 -2685 605

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (9.2) PSF AT (30-0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CPO3, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM).INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE. TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	33.4	PSF
		DL	=	6.0	PSF
BOT	CH.	LL	=	10.5	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	==	57.3	PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4. NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018, ABC 2019
- PART 4 OF OBC 2012 (2019 AMENDMENT) TPIC 2014

DESIGN ASSUMPTIONS
- SLOPE REDUCTION FACTOR NOT USED. PERCENTAGE OF GROUND SNOW LOAD IS

(80 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 33.4 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.05")
ALLOWABLE DEFL.(TL)= L/180 (0.56")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.07")

CSI: TC=0.23/1.00 (C-D:1) , BC=0.66/1.00 (E-F:1) , WB=0.40/1.00 (C-E:1) , SSI=0.89/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE **CITY OF** TRUSS MANUFACTURING PLANT CONN. UILE

HEEL

Per:

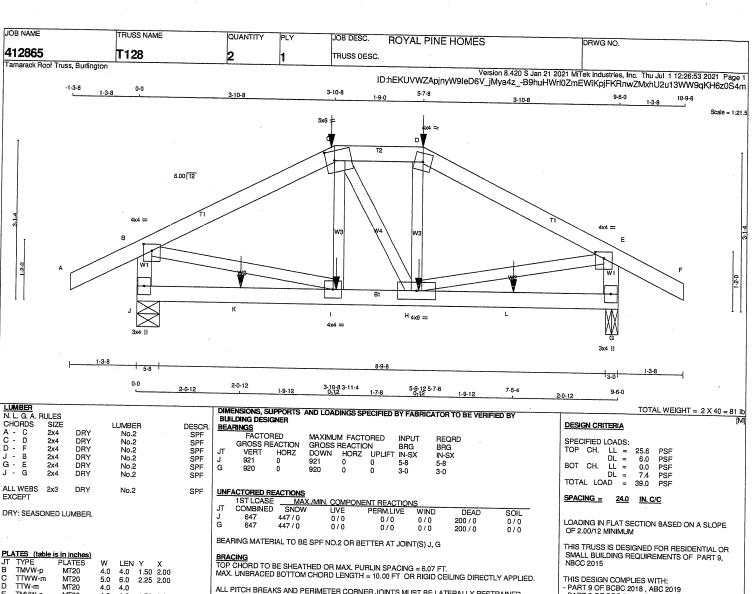
NAIL VALUES
| PLATE | QRIP(DRY) | SHEAR | SECTION (PLI) | (PLI

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg. USI GRIP=0.87 (A) (INPUT = 0.90)

JSI METAL= 0.41 (A) (INPUT = 1.00)

CONTINUED ON PAGE 2


3 NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE H	HOMES		DRWG NO.	
2865 narack Roof Truss, Burlington	T127	1	3	TRUSS DESC.					
		· ·			ID:4yza9PaaQp	Version qU0dqb94LA	8.420 S Jan 21 2021 /FyZ5Xk-wA2cLQ	MiTek Industries, Inc. Ti wzQ4N5U6kTX1sqiF	hu Jul 1 15:50:49 2021 LQk5U4ov5YAamk
TTW+p MT20 4. TMVW-p MT20 5. BMV1+p MT20 3.	0 6.0 Edge 0 6.0 Edge 0 6.0 Edge 0 6.0 0 9.0 4.25 4.50 0 9.0 5.50								
				•					
					•				
	.							CHMOND HII G DIVISION	
PROFESSION OF A LONG SERVICE AND	WI FIN						09/14	4/2021	

H. J. G. ALVES
1000090247

Structural component only
DWG# T-2121233

Per:_

RECEIVED danielle.devitt

PLATES (table is in inches)
JT TYPE PLATES
B TMVW-p MT20 TMVW-p TTWW-m 1.50 2.00 4.0 5.0 4.0 4.0 3.0 4.0 4.0 4.0 6.0 4.0 4.0 4.0 9.0 4.0 2.25 2.00 MT20 MT20 MT20 TTW-m TMVW-p BMV1+p BMWWW-t 1.50 2.00 MT20 MT20 BMWW-t BMV1+p MT20 3.0 4.0

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS MAX. FACTORED WEBS FACTORED
VERT. LOAD LC1 MAX MAX.
(PLF) CSI (LC) UNBF
FROM TO LENG MAX. FACTORED FORCE (LBS) МЕМВ. MEMB. FORCE CSI (LC) UNBRAC CSI (LC) FR-TO -91.8 0.13 (1) -91.8 0.28 (1) -91.8 0.06 (1) -91.8 0.28 (1) -91.8 0.13 (1) -91.8 -91.8 -91.8 A-B 0/28I- C C- H H- D B- I 0.02 (1) 0.00 (4) 0.02 (1) 10.00 -100 / 28 -905 / 0 0/2 6.08 -805 / 0 6.25 6.07 D-E E-F -907 / n 0 / 827 0.20 (1) 0 / 28 -883 / 0 10.00 H- F 0 / 829 J-B G-E 0.0 0.0 0.10 (1 -882 / 0 0.0 J- K K- I I- H -18.5 -18.5 -18.5 -18.5 -18.5 0.09 (4) 10.00 -18.5 0.09 (4) -18.5 0.17 (1) -18.5 0.09 (4) 0/0 0 / 805 10.00 10.00 0.09 (4)

SPECIFIED CONCENTRA ATED LOADS (LBS) MAX- MAX+ LC1 -172 DIR. VERT MÀX+ 3-10-8 5-7-8 -172 -172 BACK TOTAL TOTAL TOTAL -172 -10 D VERT VERT VERT -10 BACK BACK 3-11-4 -10 -10 TOTAL 2-0-12 VERT TOTAL -10

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

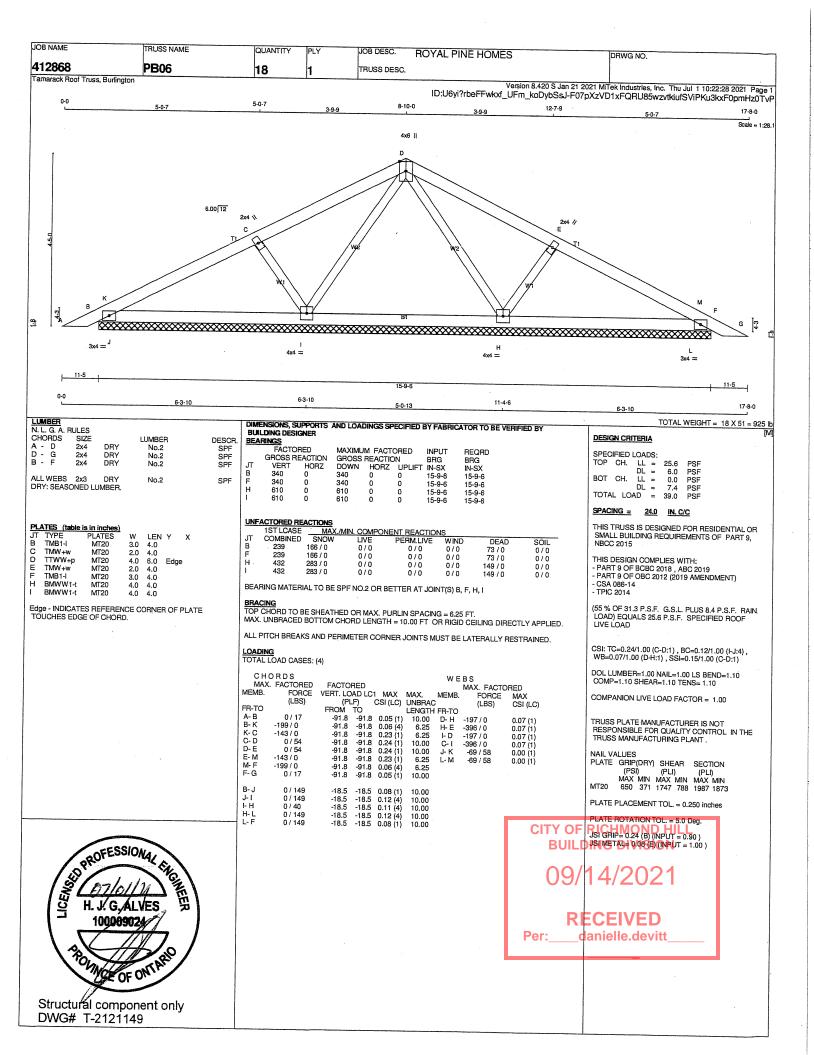
THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02")

CSI: TC=0.28/1.00 (D-E:1) , BC=0.17/1.00 (H-I:1) , WB=0.21/1.00 (E-H:1) , SSI=0.14/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00


COMPANION LIVE LOAD FACTOR = 1.00

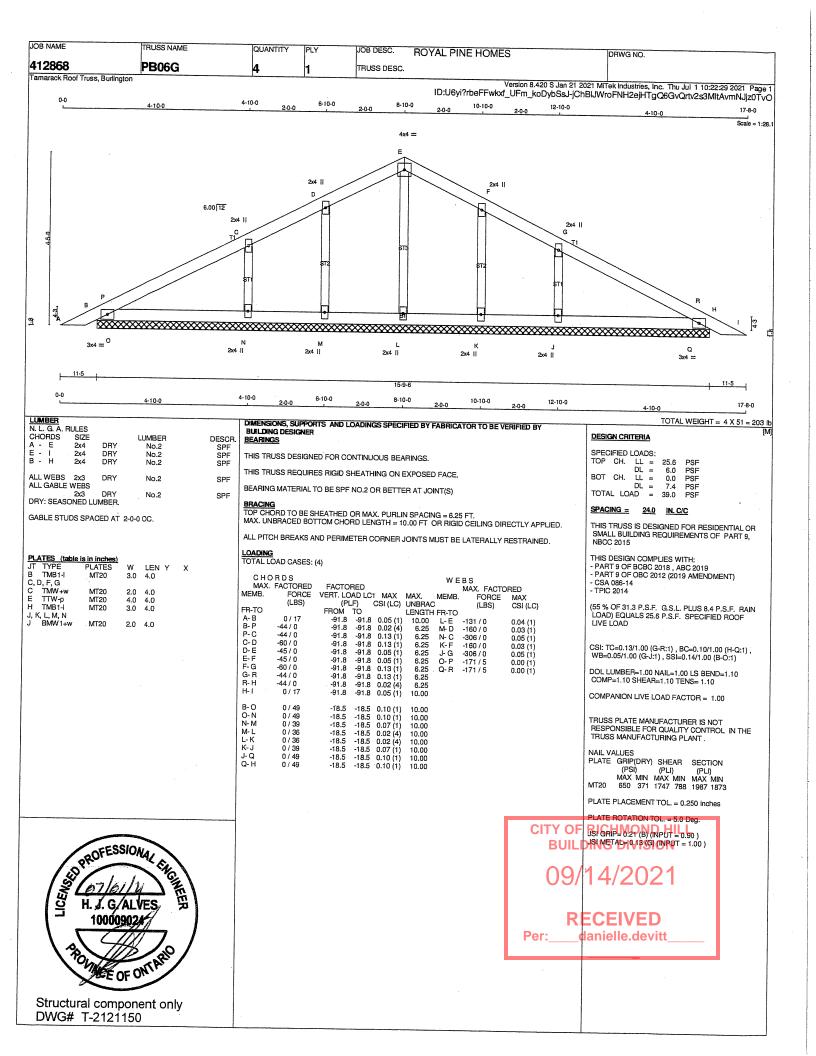

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT

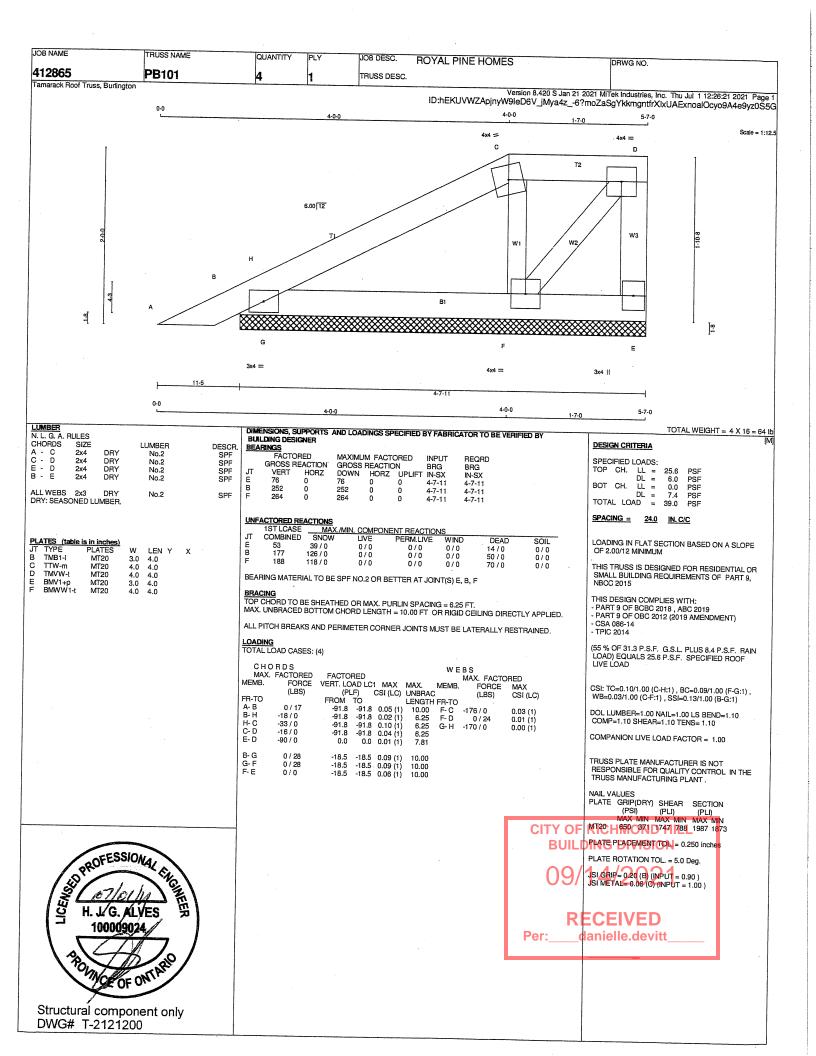
PLATE GRIP(DRY) SHEAR SECTION
ING IPSI S (PL) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873 CTY OF
C1 BUILI PLATE PLACEMENT TOL = 0.250 inches PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.88 (I) (INPUT = 0.90) JSI METAL= 0.29 (E) (INPUT = 1.00) Per: anielle.devitt

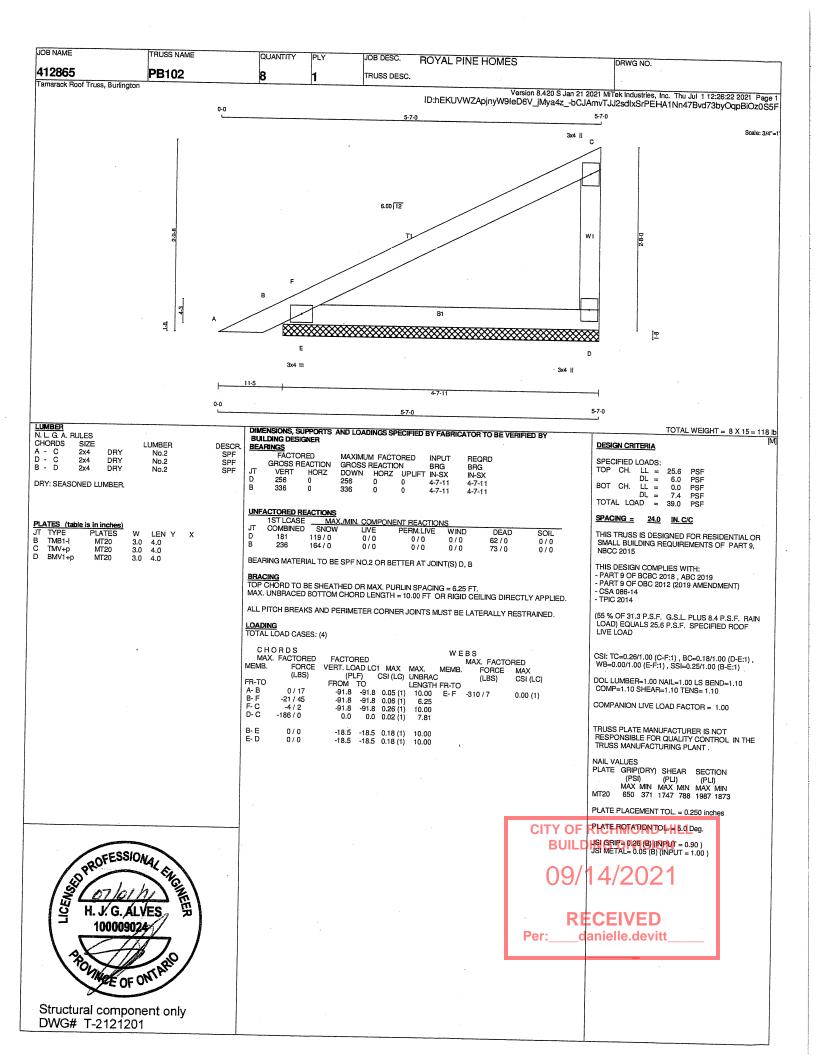
Structural component only DWG# T-2121234

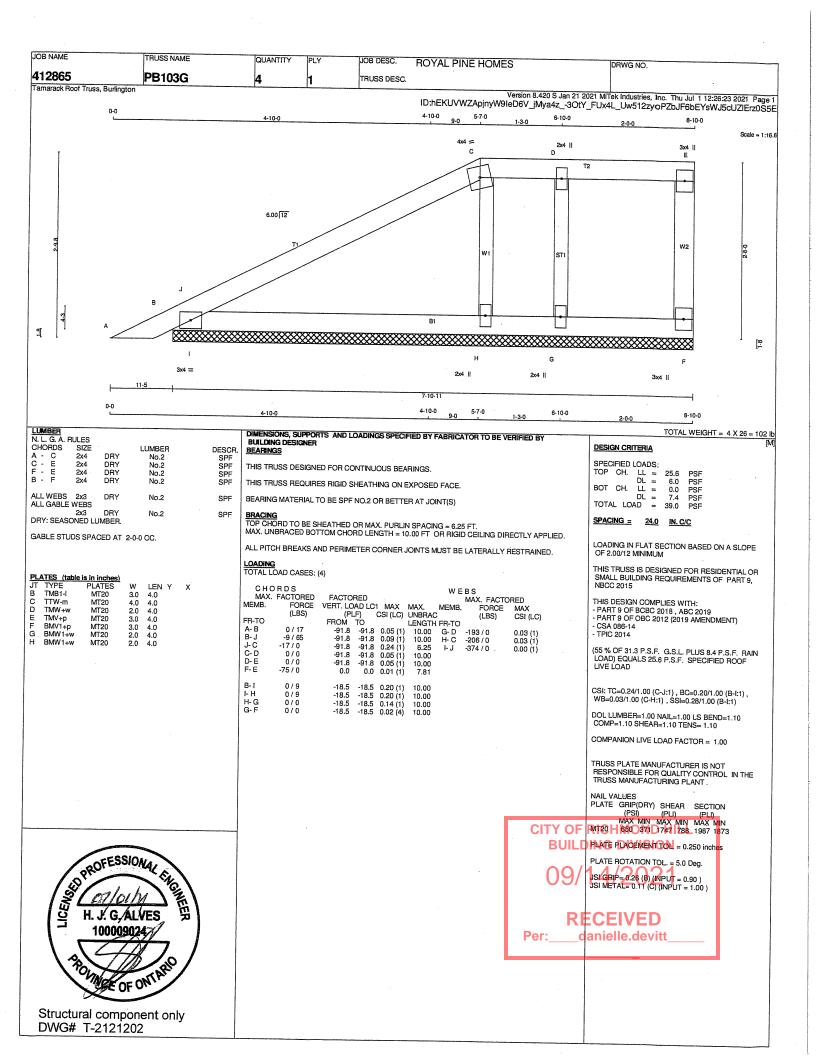
JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. ROYAL PINE HOMES DRWG NO 412865 PB06Z 3 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:20 2021 Page 1 ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-epCPLES2nQcw3dlTlpEixyimNOFMf9jfwWK4dWz0S5H 8-10-0 12-7-9 3-9-9 17-8-0 Scale = 1:28.2 4x6 || 6.00 12 2x4 \\ С 3x4 = 4x4 = 4v4 == 3x4 == 17-8-0 LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY TOTAL WEIGHT = 3 X 51 = 154 lb N. L. G. A. BULES **BUILDING DESIGNER** CHORDS A - D LUMBER BEARINGS FACTORED DESIGN CRITERIA DESCR A -D -B -DRY 2x4 No.2 MAXIMUM FACTORED G 2x4 DRY SPECIFIED LOADS: GROSS REACTION VERT HORZ GROSS REACTION DOWN HORZ BRG BRG LL = DL = LL = DL = AD = No.2 SPF PSF PSF PSF IN-SX 15-9-6 UPLIFT IN-SX 6.0 0.0 7.4 15-9-6 15-9-6 340 ALL WEBS 2x3 DRY No.2 340 0 340 15-9-6 DRY: SEASONED LUMBER Н PSF 15-9-6 15-9-6 TOTAL LOAD 39.0 DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS 610 SPACING = 24.0 IN. C/C FOLLOWS: UNFACTORED REACTIONS
1ST LCASE MA THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND
0/0 0/0 0/0 SNOW CHORDS #ROWS SURFACE SPACING (IN)
TOP CHORDS : (0.122"X3") SPIRAL NAILS LOAD(PLF) COMBINED SOIL 0/0 0/0 0/0 0/0 DEAD 239 166 / 0 166 / 0 0/0 73 / 0 73 / 0 239 0/0 0/0 THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) A- D D- G Н 432 283 / 0 0/0 149 / 0 TOP 0/0 BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS 0/0 0/0 149 / 0 TOP BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, F, H, I WEBS: (0.122"X3") SPIRAL NAILS (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.

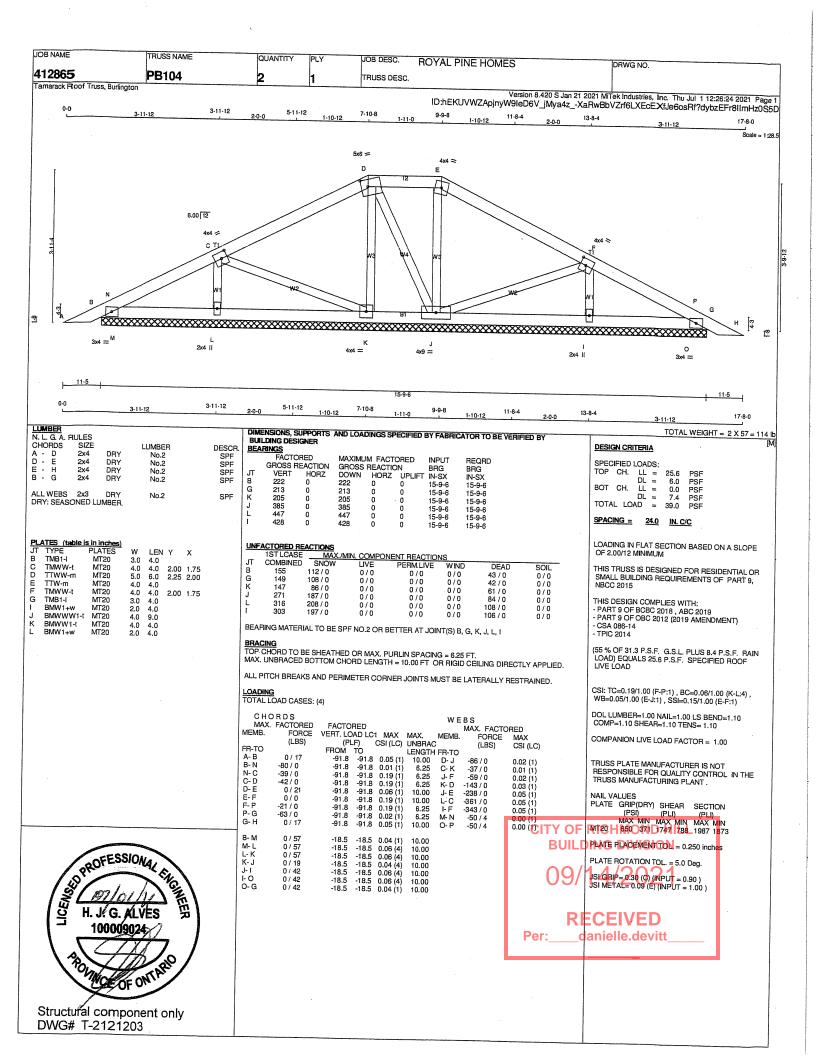
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. STAGGER NAILS BY HALF THE SURFACE SPACING IN ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY. CSI: TC=0.08/1.00 (C-D:1) , BC=0.04/1.00 (I-J:4) , WB=0.02/1.00 (D-I:1) , SSI=0.05/1.00 (C-D:1) LOADING TOTAL LOAD CASES: (4) DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 CHORDS (table is in inches) E PLATES WEBS MAX. FACTORED FACTORED COMP=1.10 SHEAR=1.10 TENS= 1.10 MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX.

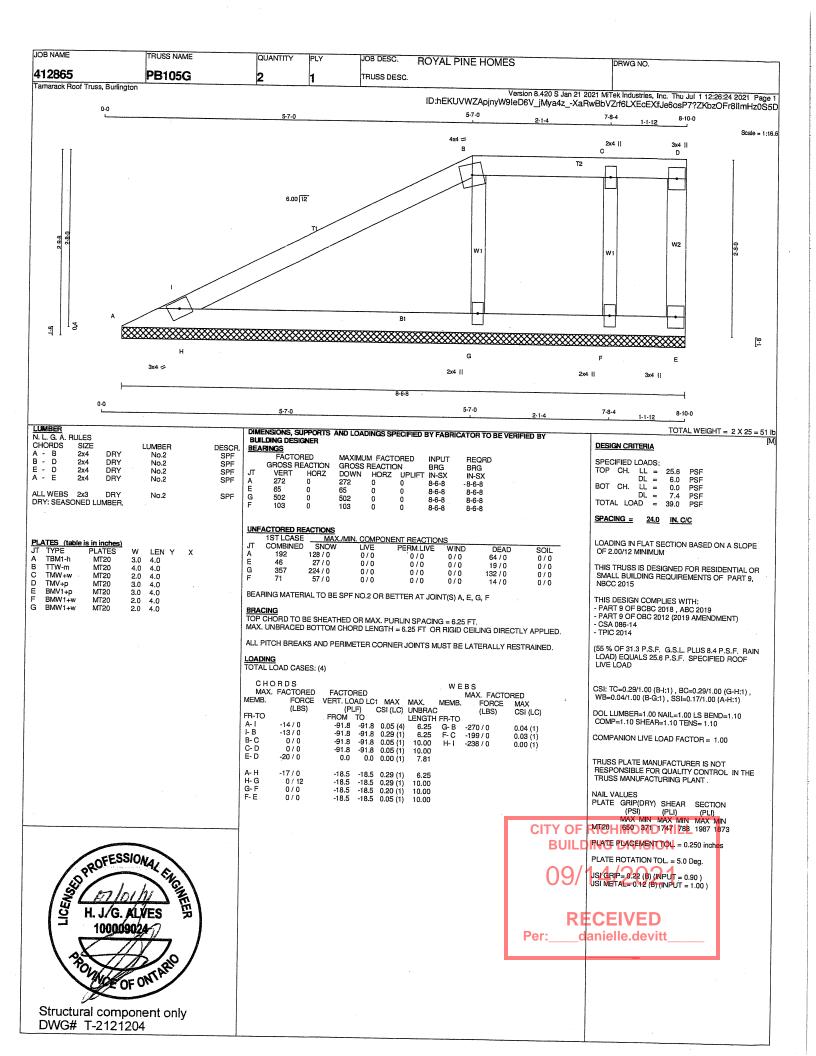
VERT. LOAD LC1 MAX MAX.

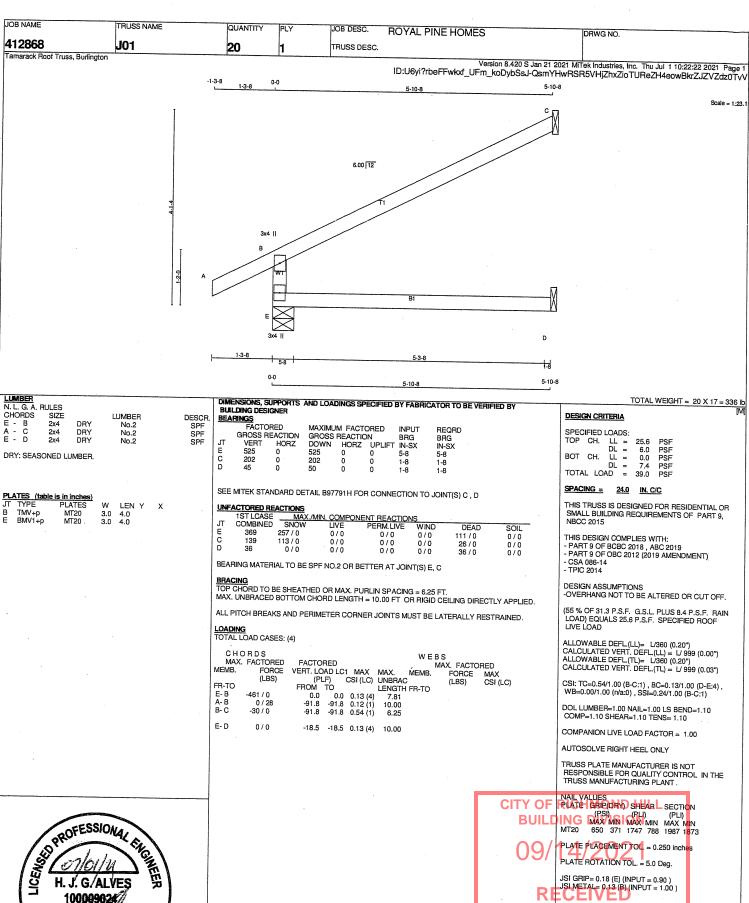

(PLF) CSI (LC) UNBRAC
FROM TO LENGTH |
91.8 -91.8 0.02 (1) 10.00
-91.8 -91.8 0.02 (4) 6.25
-91.8 -91.8 0.08 (1) 10.00 W LEN Y МЕМВ. FORCE MEMB. 3.0 FORCE TMB1-I MT20 MAX COMPANION LIVE LOAD FACTOR = 1.00. (LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO TTWW+p 6.0 4.0 4.0 MT20 4.0 Edge A-B B-K K-C D-E -91.8 0.02 (1) -91.8 0.02 (4) -91.8 0.08 (1) -91.8 0.08 (1) -91.8 0.08 (1) -91.8 0.08 (1) 0 / 17 D- H H- E 2.0 3.0 4.0 E TMW+w MT20 0.02 (1) TRUSS PLATE MANUFACTURER IS NOT -199 / O 0.02 (1) 0.02 (1) 0.02 (1) 0.02 (1) TMB1-I MT20 -396 / 0 -144 / 0 0 / 54 0 / 54 RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. BMWW1-t BMWW1-t I- D C- I -197 / 0 -396 / 0 10.00 MT20 4.0 -91.8 -91.8 -91.8 -91.8 -91.8 J-K -68 / 57 0 00 (1 NAIL VALUES E-M -144 / 0 L-M Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD. 6.25 -68 / 57 PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)

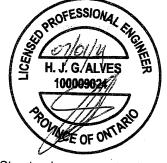

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 M-F F-G -199 / 0 -91.8 0.02 (4) 0 / 17 -91.8 0.02 (1) B-.I -18.5 -18.5 -18.5 -18.5 -18.5 0.03 (1) 10.00 J-1 I- H 0.04 (4) 0.04 (4) 0.04 (4) 0 / 149 -18.5 PLATE PLACEMENT TOL. = 0.250 inche 0/40-18.5 10.00 -18.5 10.00 **CITY OF** PLATE ROTATION TOL. = 5.0 Deg. 0.03 (1) JSI GRIP 0.08 (F) (INPUT = 0.90) JSI METAL= 0.03 (C) (INPUT = 1.00) PROFESSIONAL ENGINE J. G/ALVES RECEIVED 100009024 anielle.devitt

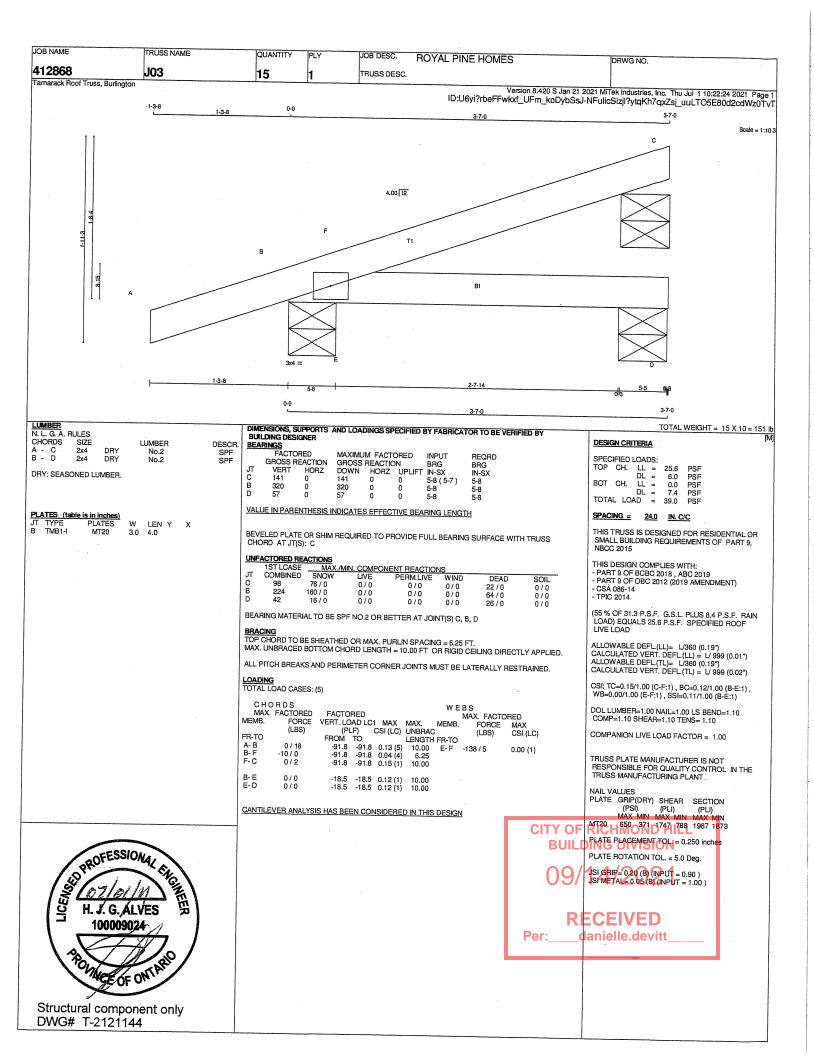

Structural component only DWG# T-2121199

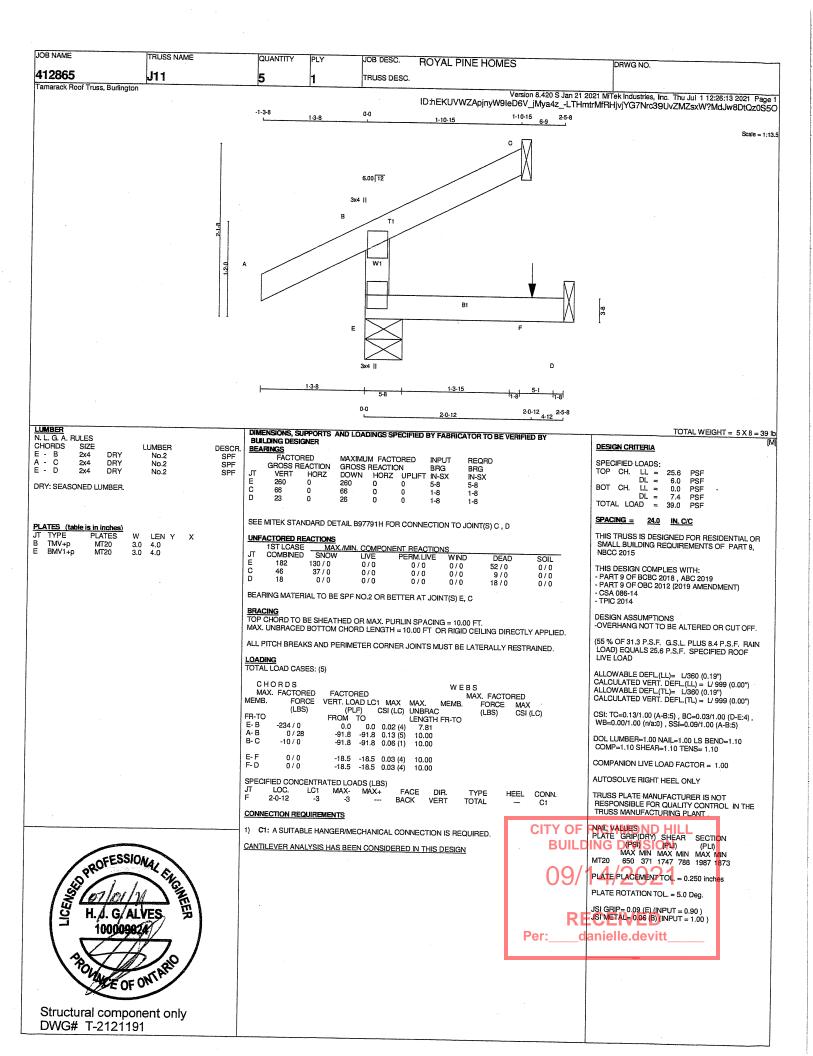

OF ONTARIO

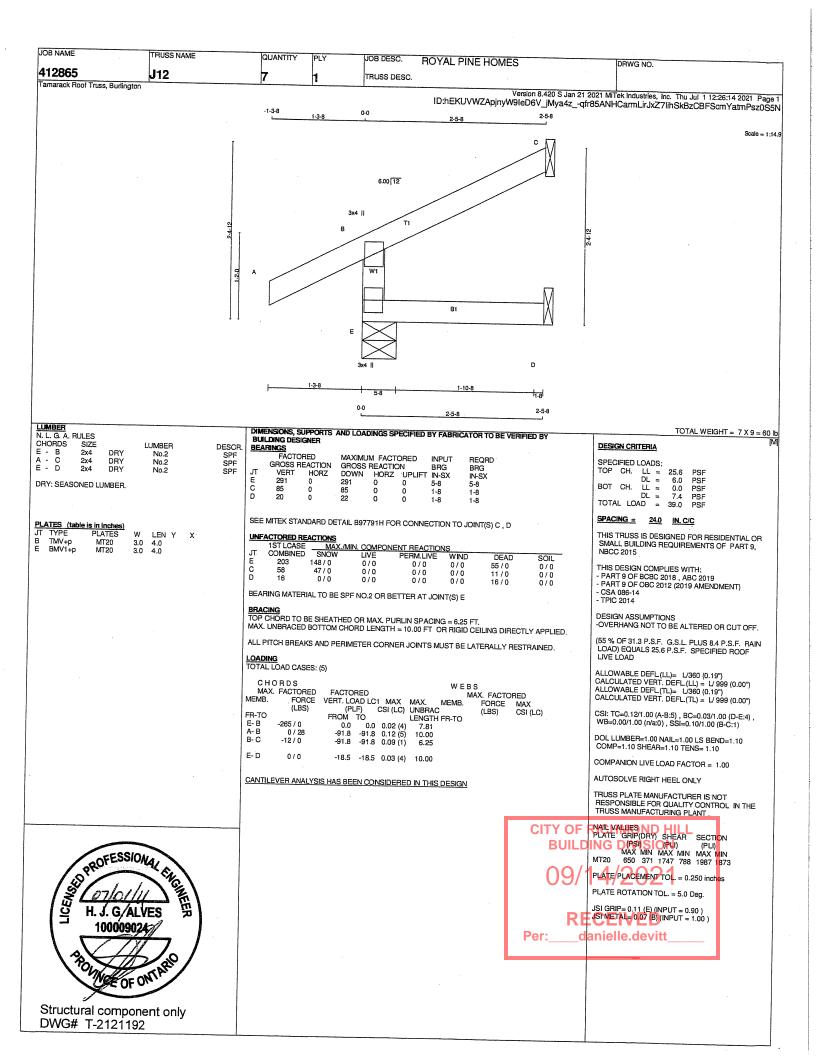

PONN

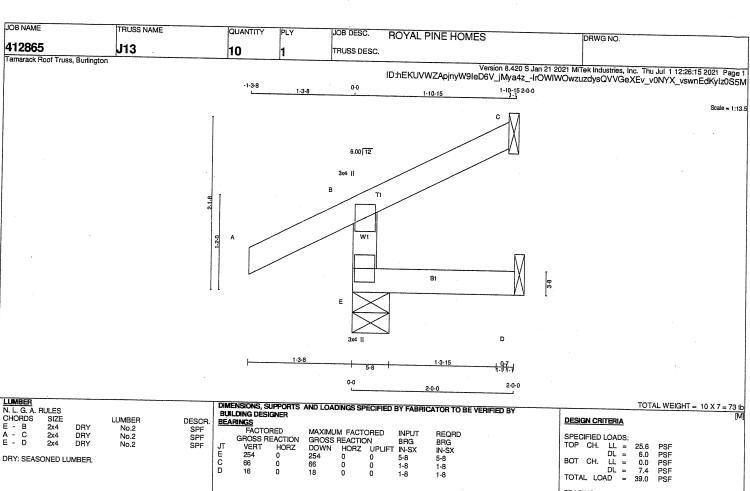









anielle.devitt



Structural component only DWG# T-2121142

 PLATES (table is in inches)

 JT TYPE PLATES

 B TMV+p MT20
 LEN Y 4.0 4.0 W MT20 MT20 3.0 BMV1+p

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS
1ST LCASE MA
JT COMBINED SNOW (./MIN. COMPONENT REACTIONS LIVE PERM.LIVE SNOW ECD 177 130 / 0 0/0 47/0 9/0 13/0 0/0 37 / 0 0 / 0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	RDS					WE	RS	
	FACTORED	FACTORE					MAX. FACTO	RED
MEMB.	FORCE	VERT. LOAI			MAX.	MEMB.	FORCE	MAX
FR-TO	(LBS)	(PLF) FROM TO			UNBRAC		(LBS)	CSI (LC)
E-B	-234 / 0	FROM TO		0.01 (4)	LENGTH	FR-TO		
A-B B-C	0 / 28	-91.8 -						
B-C	-10 / 0			0.06 (1)				
·E-D	0/0	-18.5 -	18.5	0.02 (4)				

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

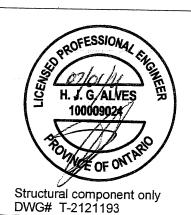
SOIL

0/0

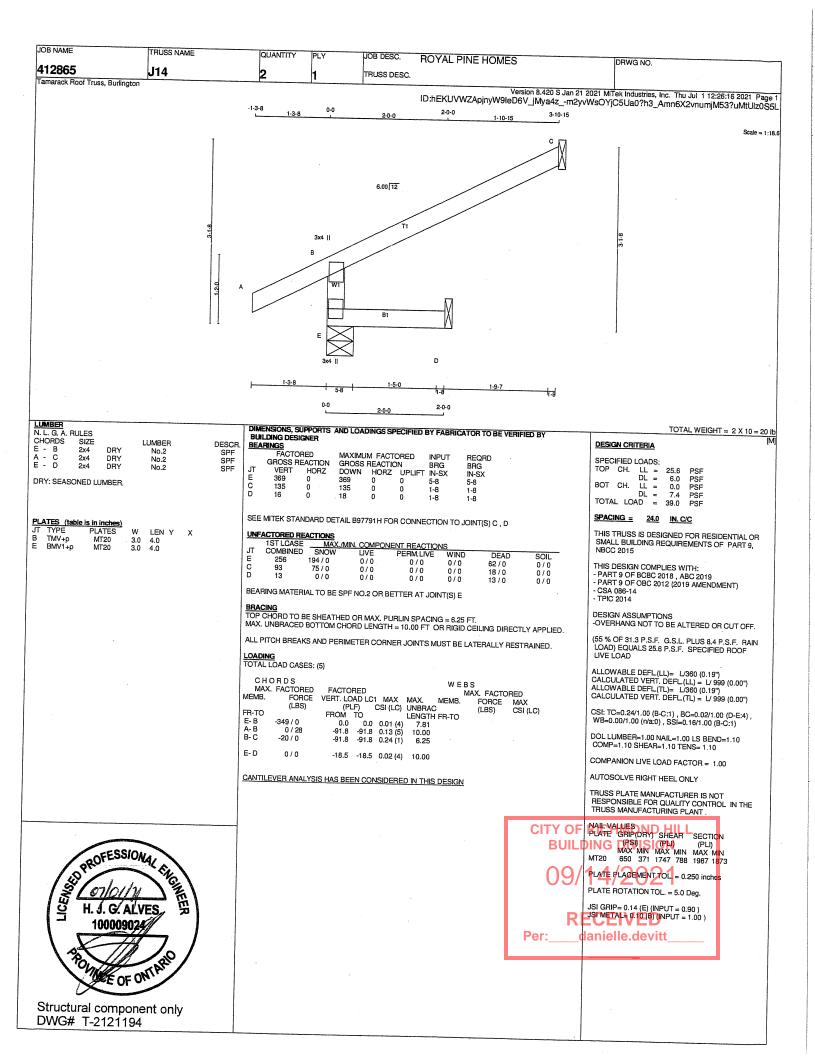
DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

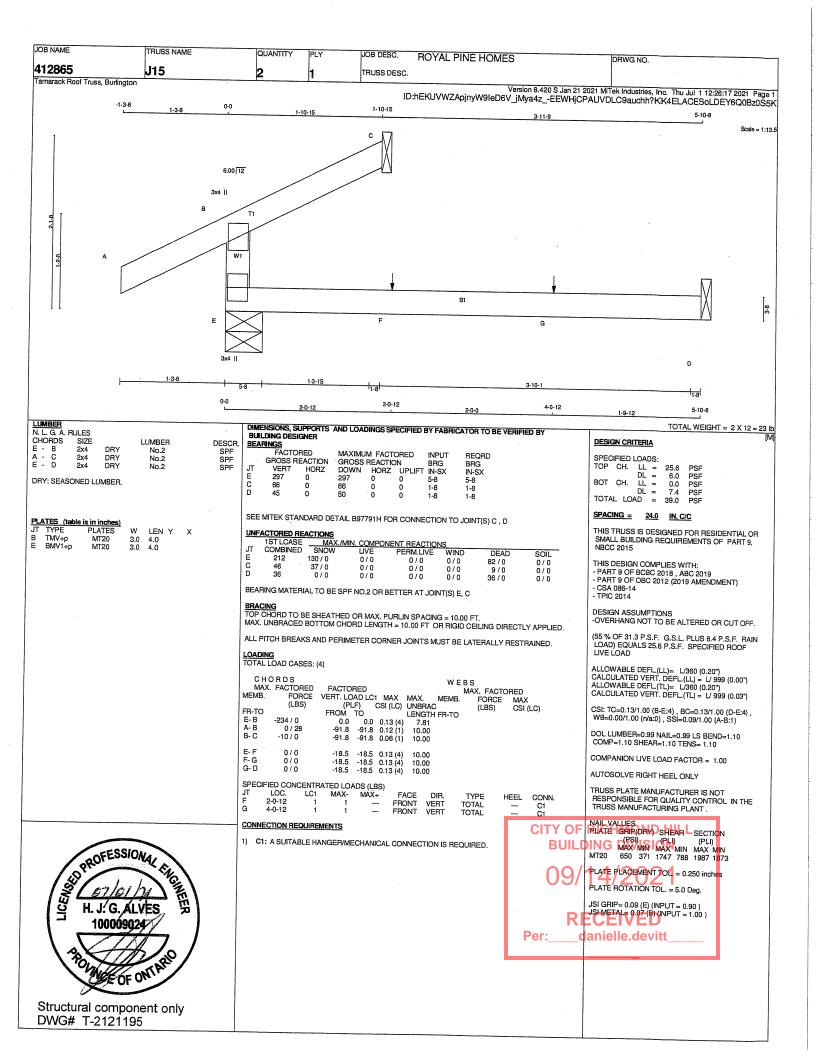
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

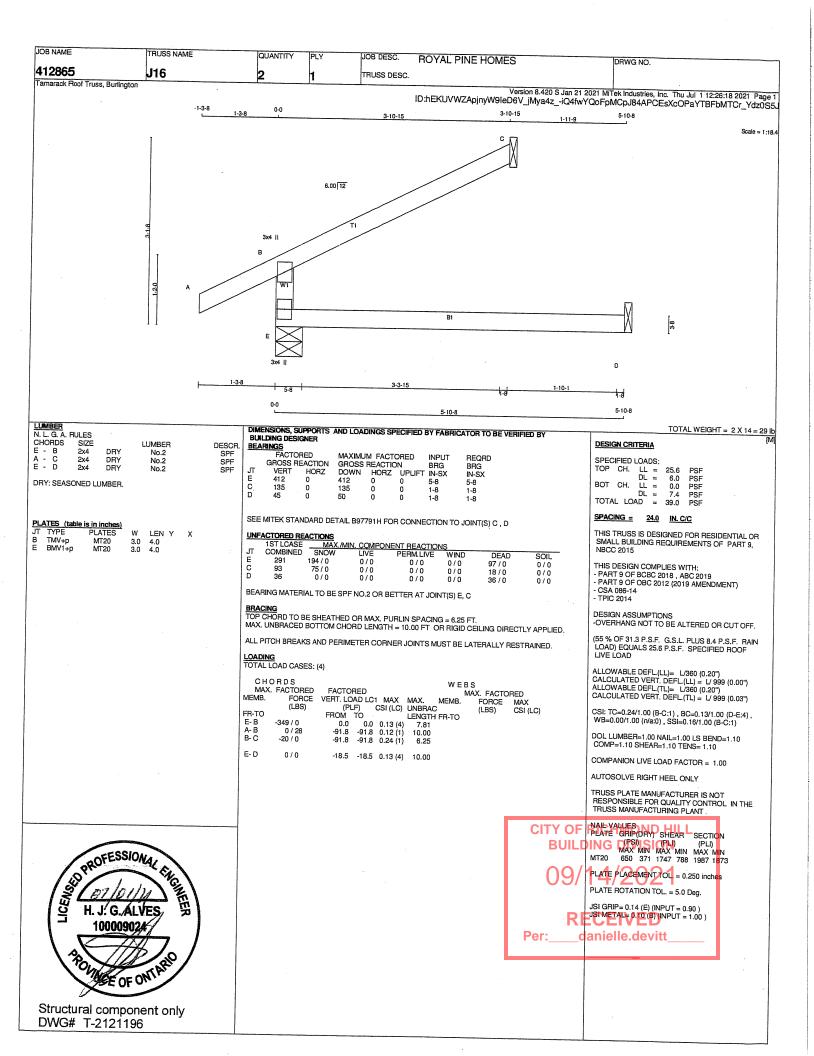
ALLOWABLE DEFL.(LL) = L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL) = L/360 (0.19")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.00")

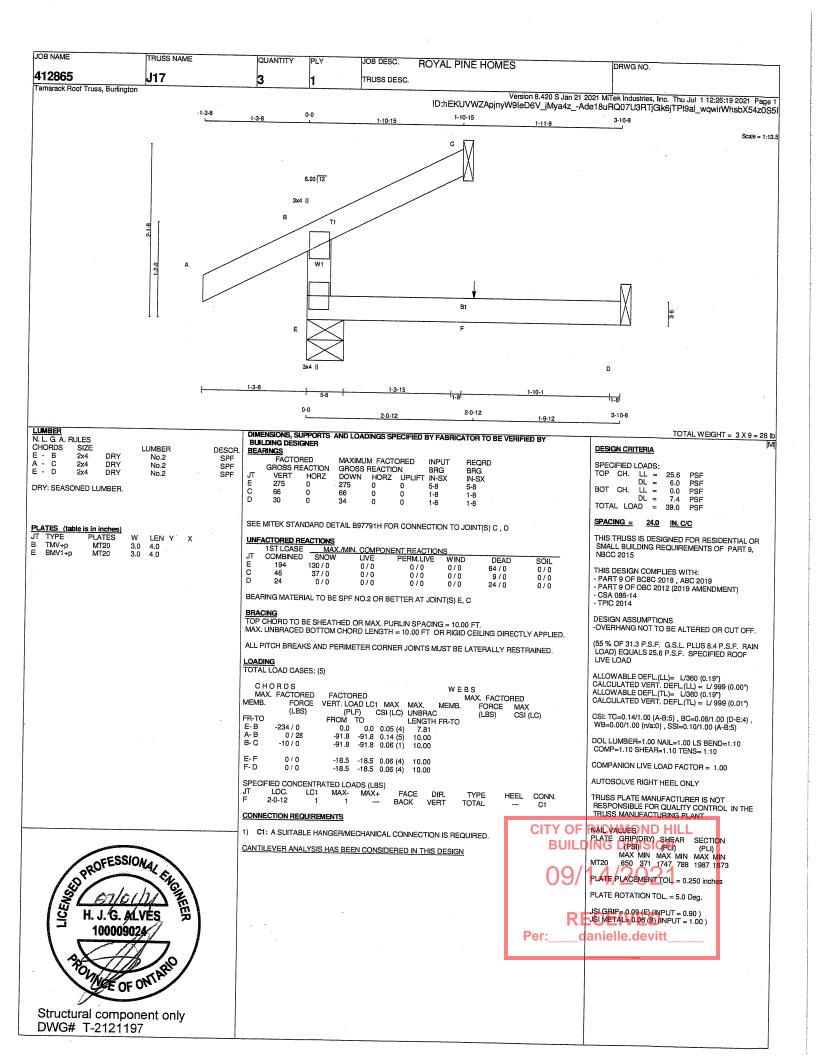

CSI: TC=0.12/1.00 (A-B:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.09/1.00 (A-B:1)

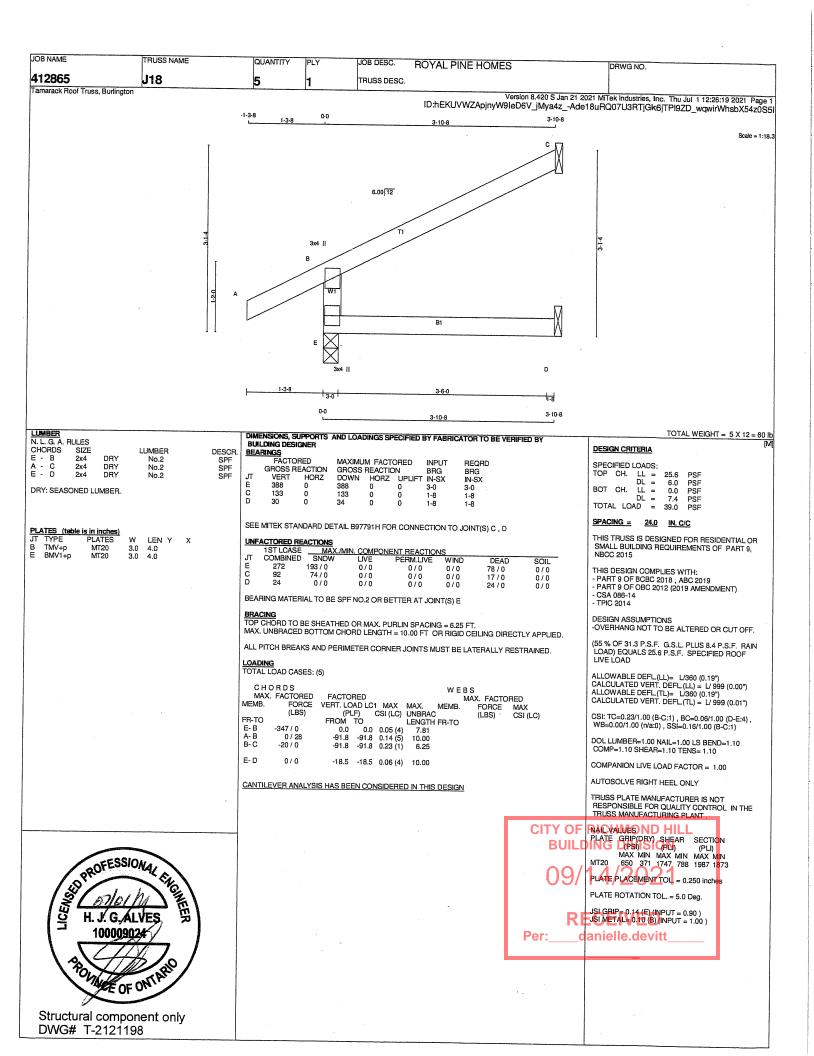
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10


COMPANION LIVE LOAD FACTOR = 1.00


AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.




CITY OF BUIL PLATE PLACEMENT TOL = 0.250 inche PLATE ROTATION TOL. = 5.0 Deg. JSI GRIP= 0.09 (E) (INPUT = 0.90) JSI METAL= 0.06 (B) (INPUT = 1.00) Per: anielle.devitt

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components

2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.

- 3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.
- 4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.
- 5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

- 1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.
 - 2- Lumber is to be the sizes and grade specified on the truss drawing.
 - 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6- The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)

7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals.

8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols/numbering system and General Safety notes.

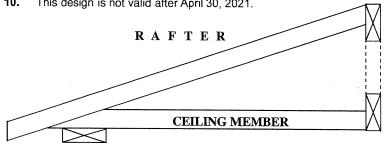
> Feb 09, 2018 danielle.devitt

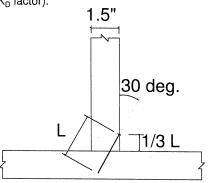
BEARING ANCHORAGE BY TOE-NAILS FOR LATERAL CAPACITY

B97791H1

NAIL TYPE	ENEWER THE			
TOTAL TITLE	((b))		S-P-F	D. FIR
COMMON	3.00	0.144	132	147
WIRE	3.25	0.144	132	147
VVII (L	3.50	0.160	159	177
COMMON	3.00	0.122	97	108
SPIRAL	3.25	0.122	97	108
OI IIIAL	3.50	0.152	145	162

NOTES:


- 1. Rafter and ceiling members may be anchored to top and bottom chords of girder truss by toe-nailing rafter and ceiling members to girder chords provided the reaction does not exceed the lateral capacities in the table. Hangers (specified by others) are required for reactions higher than the maximum toe-nail capacity. Reactions are based on factored loads.
- 2. Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA 086-14, section 12.9.4.1.


I R \mathbf{U} D

 \mathbf{E}

- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- 4. Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in tables below.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42 (SPF), G = 0.49 (D. Fir).
- 6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See next page for nailing on bearing plate).
- 7. For loads due to **wind** the nail lateral capacity in this table may be multiplied by 1.15 (K_D factor).
- 8. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 9. Nail values in this table comply with CSA O86-14, section 12.9.4

This design is not valid after April 30, 2021.

TOE-NAIL INSTALLATION

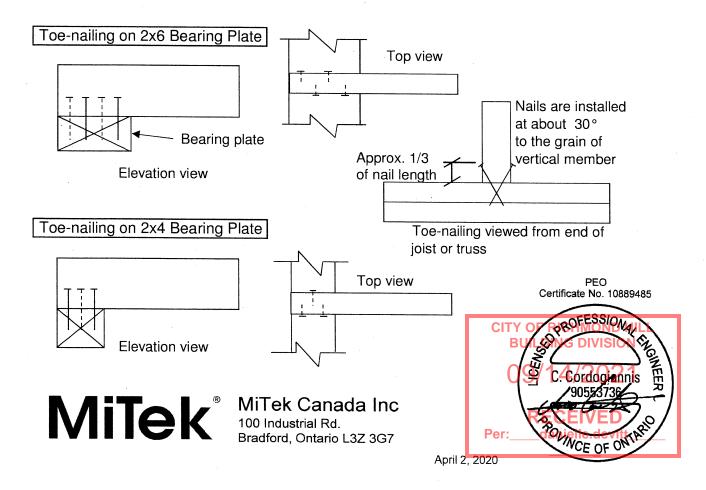
Nail type	Common wire	Common spiral	Common wire	Common spiral
Nail dia. (in)	0.160	0.152	0.144	0.122
	(3.5'	' nail)	(3" and 3	3.25" nail)
LUMBER SIZE	N. Carlotte	JANIMUU NUME	HIGHORIA	LS
2X4 SPF	2	2	3	3
2X4 D. Fir	2	2	2	2

PEO Certificate No. 10889485

2X6	SPF	4	4	4	5
2X6	D. Fir	3	3	3	4

Bradford, Ontario L3Z 3G7

BEARING ANCHORAGE BY TOE-NAILS FOR WIND LOADING


B97791H2

NAIL TYPE			HOUNTERING	MELLOGINALIA
TOTALE TITLE			S-P-F	D. FIR
COMMON	3.00	0.144	30	42
WIRE	3.25	0.144	32	45
WIILE	3.50	0.160	38	52
COMMON	3.00	0.122	26	36
SPIRAL	3.25	0.122	28	40
OI IIIAL	3.50	0.152	36	50

Note: If using truss with D. Fir lumber and S-P-F bearing plate, use values in table for S-P-F.

NOTES:

- 1. Truss chord, rafter, or ceiling members may be anchored to bearing plate by toe-nails, provided that the actual factored uplift force due to wind or earthquake load does not exceed the withdrawal capacities in the table. Hangers (specified by others) are required for uplift forces that are higher than the maximum toe-nail withdrawal capacity.
- 2. Toe nail capacities shown in the table are for **one** toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA O86-14, section 12.9.5.2.
- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- **4.** Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in table above.
- **5.** Nail values in table are based on the following relative lumber densities: G = 0.42(SPF), G = 0.49(D. Fir).
- **6.** Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See drawing on detail B37579H1).
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA O86-14, section 12.9.5
- 9. This design is not valid after April 30, 2021.

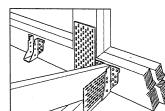
HUS/LJS - Double Shear Joist Hangers

SIMPSON Strong-Tie

All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

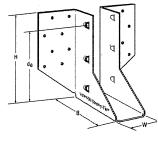
Material: See table Finish: G90 galvanized

Design:

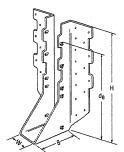

- · Factored resistances are in accordance with CSA O86 -14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

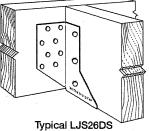
Installation:

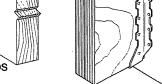
Options:


- · Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

• See current catalogue for options

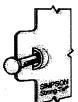




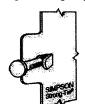

HUS210 (HUS26, HUS28, similar)

Typical HUS

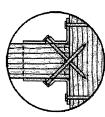
Installation



Installation


Model No.	Ga.	Dimensions (in.)				Fasteners		Factored Resistance (lb.)				
		a. W		В	d _e ¹	Face	Joist	D.F	ir-L	S-P-F		
			Н					Uplift (K ₀ =1.15)	Normal (K _D =1.00)	Uplift (K _D =1.15)	Normal (K _D =1.00)	
								lb.	lb.	lb.	lb.	
LJS26DS	18	19/16	5	3½	45/8	(16) 16d	(6) 16d	2055	4265	1460	4115	
HUS26	16	15/8	5%	3	315/16	(14) 16d	(6) 16d	2705	4940	2065	3875	
HUS28	16	15/8	73/32	3	63/32	(22) 16d	(8) 16d	3605	5365	2675	4345	
HUS210	16	15/8	93/32	3	731/32	(30) 16d	(10) 16d	4505	5795	4010	4740	
HUS1.81/10	16	113/16	9	3	8	(30) 16d	(10) 16d	4505	6450	4010	5200	

1. d_{e} is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580

Double Shear Nailing Side View. Do not bend tab hack

Double Shear Nailing

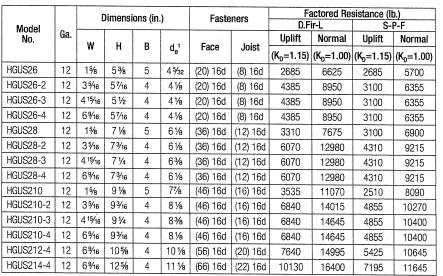
HGUS – Double Shear Joist Hangers

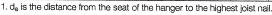
SIMPSON Strong-Tie

All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

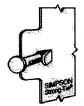
Design:

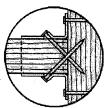

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%.
 No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.



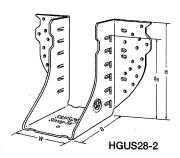
- · Use all specified fasteners
- Nails: 16d = 0.162" dia x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

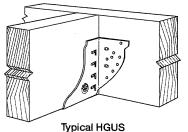
· See current catalogue for options





Dome Double Shear Nailing prevents tabs breaking off (available on some models)


U.S. Patent 5,603,580



Double Shear Nailing Side View. Do not bend tab back.



CITY O BUIL Shear Nailing O9

Installation

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

danielle.devitt

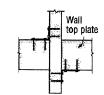
H - Seismic and Hurricane Ties

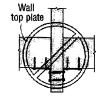
SIMPSON Strong-Tie

The H connector series provides wind and seismic ties for trusses and rafters.

Material: 18 gauge Finish: G90 galvanized

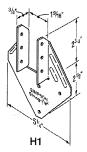
Design: • Factored resistances are in accordance with CSA 086-14

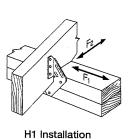

 Factored resistances have been increased 15%. No further increase is permitted.

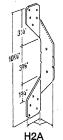

Installation: • Use all specified fasteners

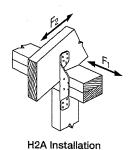
- Nails: 8d = 0.131" dia. x 2½" long common wire, 8d x 1½" = 0.131" x 1½ long, 10d x 1½" = 0.146" x 1½" long
- H1 can be installed with flanges facing outwards
- · Hurricane ties do not replace solid blocking

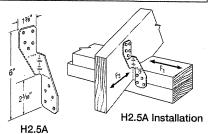
Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows: Factored Shear/Resisting Shear + Factored Tension/Resisting Tension ≤ 1.0 .

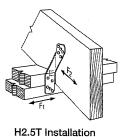

Hurricane Tie Installations to Achieve Twice the Load (Top View)

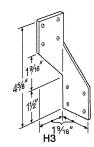


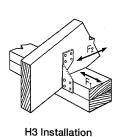


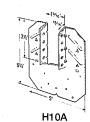

Install diagonally across from each other for minimum 2x truss.

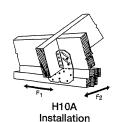

Nailing into both sides of a single ply 2x truss may cause the wood to split.










31/6

H2.5T

(Nails into both top plates)

Model No.			Fasteners		Factored Resistance (lb.)						
	Ga.		7 401011013			D.Fir-L		S-P-F			
					Uplift	Normal		Uplift	Normal		
		To Rafter	To Plates	To Studs	Opinit	F ₁	F ₂	Ohiiir	F ₁	F ₂	
						$(K_0=1.15)$		(K _D =1.15)			
H1	18	(6) 8d x 1½"	(4) 8d		740	685	300	680	485	215	
H2A	18	(5) 8d x 11/2"	(2) 8d x 11/2"	(5) 8d x 1½"	830	220	75	590	155	55	
H2.5A	18	(5) 8d	(5) 8d		805	160	160	755	160	160	
H2.5T	18	(5) 8d	(5) 8d		835	175	240	740	160	210	
H3	18	(4) 8d	(4) 8d		740	180	265	615	125	190	
H10A	18	(9) 10d x 11/2"	(9) 10d x 1½"		1735	795	410	1505	565	290C	

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- 2. Factored resistances are for one anchor. A minimum rafter thickness of 2½" must be used when framing anchors are installed on each side of the joist and on the same side of the plate.
- When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- 4. Hurricane ties are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable. For a Continuous Load Path, connections must be on same side of the wall.

danielle.devitt

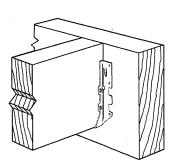
LUS - Double Shear Joist Hangers

SIMPSON Strong-Tie

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

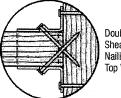
Installation:

- Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire,
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

Options:


• These hangers cannot be modified

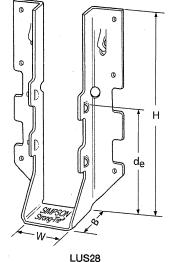
Typical LUS Installation


Model No.	Ga.		Nimensi	one (in	1	Faste	nore	Factored Resistance (lb.)			
		Dimensions (in.)				1 434011613		D.Fir-L		S-P-F	
		w	Ĥ	В	d _e 1	Face	Joist	Uplift	Normal	Uplift	Normal
								(K ₀ =1.15)	$(K_D = 1.00)$	(K _D =1.15)	(K _D =1.00)
LUS24	18	19/16	31⁄8	13/4	1 ¹⁵ / ₁₆	(4) 10d	(2) 10d	710	1630	645	1155
LUS24-2	18	31/8	31⁄8	2	1 13/16	(4) 16d	(2) 16d	835	2020	590	1435
LUS26	18	19/16	43/4	13/4	3%	(4) 10d	(4) 10d	1420	2170	1290	1630
LUS26-2	18	31/8	41//8	2	4	(4) 16d	(4) 16d	1720	2595	1545	1920
LUS26-3	18	4%	43/16	2	31/4	(4) 16d	(4) 16d	1720	2595	1545	2340
LUS28	18	19/16	6%	13⁄4	33/4	(6) 10d	(6) 10d	1420	2520	1290	1790
LUS28-2	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575
LUS28-3	18	45/8	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375
LUS210	18	19/16	7 13/16	13/4	37/s	(8) 10d	(4) 10d	1420	2785	1290	2210
LUS210-2	18	31/8	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195
LUS210-3	18	4%	83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375

^{1.} de is the distance from the seat of the hanger to the highest joist nail.

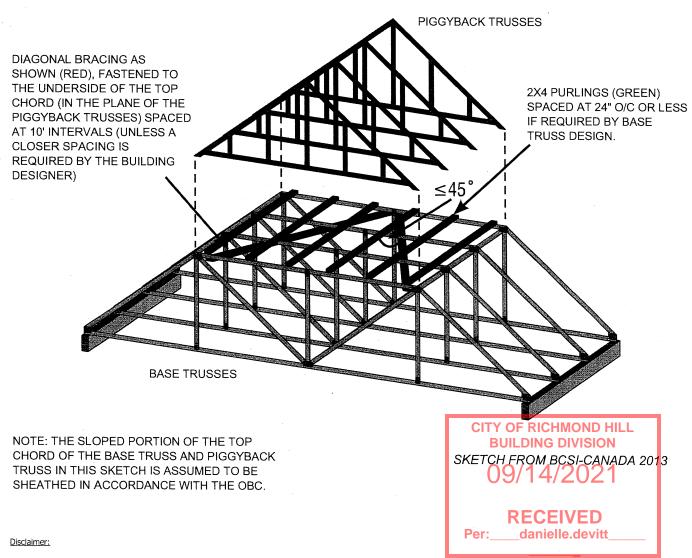
Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5,603,580



Double Shear Nailing Top View.

TECH-NOTES

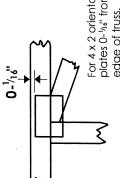

TN 15-001 Piggyback Bracing

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:


OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technote are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to the information provided but has developed this tech-note to offer guidance where it is not currently readily available.

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths or mm. Apply plates to both sides of truss and fully embed teeth.

For 4×2 orientation, locate plates 0^{-1} , if from outside edge of truss.

required direction of slots in connector plates.

This symbol indicates the

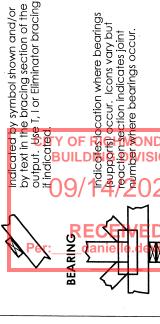

*Plate location details available in MITek software or upon request.

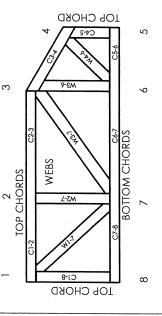
PLATE SIZE

4×4

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Industry Standards: Z


TPIC: Truss Design Procedures and Specifications for Light Metal Plate Connected Wood Trusses DSB-89: Design Standard for Bracing.

BCSI: Building Component Safety Information,

 Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MITek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473C rev. 10-'08

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- Truss bracing must be designed by an engineer. For wide itruss spacing, individual lateral braces themselves may require bracing, or alternative I, I, or Eliminator bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by TPIC.
- Design assumes trusses will be suitably protected from the environment in accord with TPIC.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of trus fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or after truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or freated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with TPIC Quality Criteria.