

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL

B/UNIT33BLK286

Lot #:

Elevation:

BLOCK 60

Layout ID:

51012

Job Track: PlanLog:

203556 413168

Ref#

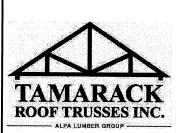
Page:

1 of 3

Date:

07-08-2021

Designer:


Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	T10G GABLE	6 /12	22-08-08	8-01-04	2 x 4	1-05-00	1-02-00 8-01-04	243.75 153.67		
	1 2-ply	T101 Half Hip Girder	6 /12	19-05-08	4-01-04	2 x 4 2 x 6	1-03-08	1-02-00 4-01-04	182.72 116.00		
	1	T102 Half Hip	6 /12	19-05-08	5-01-04	2 x 4	1-03-08	1-02-00 5-01-04	79.56 50.67		
	1	T103 Half Hip	6 /12	19-05-08	6-01-04	2 x 4	1-03-08	1-02-00 6-01-04	86.12 54.83		
	1	T104 Half Hip	6 /12	19-05-08	7-01-04	2 x 4	1-03-08	1-02-00 7-01-04	86.52 54.00		
	1	T104X Half Hip	6 /12	19-05-08	7-01-04	2 x 4	1-03-08	1-02-00 7-01-04	88.21 54.67		
	3	T105 Half Hip	6 /12	19-05-08	8-01-04	2 x 4	1-03-08	1-02-00 8-01-04	258.51 163.00		·
	5	T105X Piggyback Base	6 /12	19-05-08	8-01-04	2 x 4	1-03-08	1-02-00 8-01-04	439.32 275.00		
	1	T106 Half Hip	6 /12	19-05-08	9-01-04	2 x 4	1-03-08	1-02-00 9-01-04	90.51 57.00		
	1	T106X Half Hip	6 /12	19-05-08	9-01-04	2 x 4	1-03-08	1-02-00 9-01-04	92.67 58.17		
	1 2-ply	T112 Half Hip Girder	6 /12	20-10-08	6-01-04	2 x 4 2 x 6		5-08 6-01-04	215.22 127.67	-	
	1 2-ply	T113 Flat	0 /12	9-01-08	1-06-00	2 x 4	Г	1-06-00 1-06-00	61.18 40.33	ND HII I	7
	1	T114 Half Hip	6 /12	9-01-08	5-06-00	2 x 4		1-02-00 5-06-00	10 A DIVI 10 A DIVI 126.50 14/2(
	5	T115 Monopitch	6 /12	9-10-08	6-01-04	2 x 4	1-03-08	1-02-00 6-01-04	217.09 CEIVE	D	
				,				Per:jo	celyn.ag	uilar	

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

B / UNIT33BLK286

Model:

BLOCK 60

Lot #:

Elevation:

Page:

2 of 3

51012

203556

413168

Date:

Ref#

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Job Track:

PlanLog:

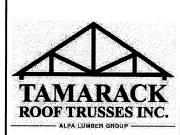
Layout ID:

Mario DiCano

Roof Trusses

	1 2-ply 2	T116 Flat Girder	0 /12			1	RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2			9-10-08	1-06-00	2 x 4 2 x 6		1-06-00 1-06-00	78.66 50.00		
		T128 Hip Girder	6 /12	9-06-00	3-01-04	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	80.58 51.67		
	2	PB101 Piggyback	6 /12	5-07-00	2-00-00	2 x 4		2-00-00	32.19 22.67		
	4	PB102 Piggyback	6 /12	5-07-00	2-09-08	2 x 4		2-09-08	58.98 40.00		
	2	PB103G GABLE	6 /12	8-10-00	2-09-08	2 x 4		2-09-08	51.18 35.33		
	7	J01 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	117.56 74.67		
F	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-04	50.28 33.33		
	4	J13 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-01	1-02-00 2-01-08	29.29 18.67		
	1	J14 Jack-Open	6 /12	2-00-00	3-01-08	2 x 4	1-03-08 1-10-15	1-02-00 2-02-00	9.87 6.00		
	1	J15 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 3-11-09	1-02-00 2-01-08	11.74 7.33		
	1	J16 Jack-Open	6 /12	3-10-15	3-01-08	2 x 4	1-03-08 1-11-09	1-02-00 3-01-08	14.29 8.67		
	3	J17 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-11-09	1-02-00 2-01-08	28.38 18.00		
TOTAL #TRU	5	J18 Jack-Open	6 /12	3-10-08	3-01-04	2 x 4	1-03-08	1-02-00 3-01-04	RICHMO DING DIVI 36.67 04/2(

TOTAL #TRUSS= 67


TOTAL BFT OF ALL TRUSSES= 1772.02

TOTAL WEIGHT OF ALL TRSSES 2805.68 LBS

RECEIVED

Per:____jocelyn.aguilar_

BFT.

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

Model: Lot #:

Elevation:

BLOCK 60

B/UNIT33BLK286

Job Track:

PlanLog:

51012 203556

Layout ID:

413168

Ref#

Page:

3 of 3

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

HARDWARE

QTY	TYPE	MODEL	LENGTH
1	Hardware	LUS24	
2	Hardware	HGUS26-2	

TOTAL NUMBER OF ITEMS= 3

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED

jocelyn.aguilar

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project: Location: **CENTREFIELD**

Model:

BLOCK 60

Lot #:

Elevation:

RICHMOND HILL

B/UNIT32BLK286

Page:

1 of 2

51012

203556

413169

Date:

Ref#

07-08-2021

Designer:

Job Track:

Layout ID:

PlanLog:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

PLY	TYPE	l					HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
	ITPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
5	T11 Piggyback Base	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1279.34 775.00		
4	T11B Piggyback Base	6 /12	45-00-08	8-01-04	2 x 6	1-03-08	1-02-00 1-02-00	1007.58 617.33		
1	T11G GABLE	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	272.06 169.67		
1	T11GB GABLE	6 /12	37-03-00	8-01-04	2 x 6	1-03-08	1-02-00 5-03-00	236.81 147.83		
1	T122 Hip Girder	6 /12	8-07-00	2-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	35.14 23.67		
1	T123 Common	6 /12	8-03-08	3-03-12	2 x 4	1-03-08	1-02-00 1-03-12	32.19 20.83		
1 3-ply	T127 Common Girder	6 /12	8-05-08	4-09-12	2 x 4 2 x 6		2-08-00 2-08-12	124.02 84.50		
8	PB06 Piggyback	6 /12	17-08-00	4-05-00	2 x 4			410.9 256.00		
1	PB06G GABLE	6 /12	17-08-00	4-05-00	2 x 4			50.76 31.00		
1	PB104 Piggyback	6 /12	17-08-00	3-11-04	2 x 4			57.06 37.00		-
1	PB105G Piggyback	6 /12	8-10-00	2-08-00	2 x 4		2-09-08	25.27 17.67		
2	J11 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 6-09	1-02-00 2-01-08	15.69 10.67		
2	J12 Jack-Open	6 /12	2-05-08	2-04-12	2 x 4	1-03-08	1-02-00LD 2-04-12	(101 IIIIO)	ID THEE	
2	J13 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-01	1-02-00 2-01-08	14.65 9.33 CEIVE	D	
	1 1 1 1 3-ply 8 1 1 2 2	Base 4 T11B Piggyback Base 1 T11G GABLE 1 T11GB GABLE 1 T122 Hip Girder 1 T123 Common Girder 8 PB06 Piggyback 1 PB06G GABLE 1 PB104 Piggyback 1 PB105G Piggyback 2 J11 Jack-Open 2 J12 Jack-Open	## Base Figgyback Figyback Figyba	## Base ## Bas	## Piggyback 6 /12 45-00-08 8-01-04 ## Piggyback 6 /12 45-05-00 8-01-04 ## ## ## ## ## ## ## ## ## ## ## ## ##	## Piggyback 6 /12 45-00-08 8-01-04 2 x 6 ## Piggyback 6 /12 45-05-00 8-01-04 2 x 6 ## T11G	## Base 1-03-08 1-03-0	Harmonia Harmonia	## Piggyback Piggyback 6/12 45-00-08 8-01-04 2 x 6 1-03-08 1-02-00 1007-88 617-33 ## Piggyback Piggyback 6/12 45-05-00 8-01-04 2 x 6 1-03-08 1-02-00 1007-88 617-33 ## Piggyback 6/12 45-05-00 8-01-04 2 x 6 1-03-08 1-02-00 272-06 617-33 ## Piggyback 6/12 37-03-00 8-01-04 2 x 6 1-03-08 1-02-00 236-81 1-02-00 236-81 1-02-00 236-81 1-03-08 1-02-00 236-81 1-03-08 1-02-00 236-81 1-03-08 1-02-00 236-81 1-03-08 1-02-00 236-81 1-03-08 1-02-00 236-81 1-03-08 1-02-00 236-81 1-03-08 1-02-00 236-81 1-03-08 1-02-00 236-81 1-03-08 1-02-00 236-81 1-03-08 1-02-00 236-81 1-03-12 20-83 1-03-08 1-03-08 1-02-00 236-81 1-03-12 20-83 1-03-12 20-13 20-83 1-03-12 20-13 2	## Piggyback Base 1-03-08 1-02-00 1-02-00 1007-58 1-02-0

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL

Lot #:

Elevation:

BLOCK 60

B / UNIT32BLK286

Job Track:

PlanLog:

51012 203556

Layout ID:

413169

Ref#

Page:

2 of 2

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

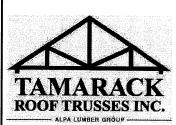
	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS

TOTAL #TRUSS= 33

TOTAL BFT OF ALL TRUSSES= 2212.5

BFT.

TOTAL WEIGHT OF ALL TRSSES 3578.55 LBS


HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	LJS26DS	
14	Hardware	H2.5T	
2	Hardware	LGT3	

TOTAL NUMBER OF ITEMS= 20

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED _jocelyn.aguilar_

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

B1 / UNIT31BLK286

Model: Lot #:

Elevation:

BLOCK 60

Page: Date:

413170

51012

203556

Ref#

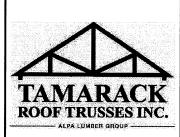
Job Track:

PlanLog:

Layout ID:

1 of 2 07-08-2021

Designer:


Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	5	T11 Piggyback Base	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1279.34 775.00		
	4	T11A Piggyback Base	6 /12	38-03-00	8-01-04	2 x 6	1-03-08	1-02-00 1-02-00	886.16 540.00		
	1	T11G GABLE	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	272.06 169.67		
	1	T11GB GABLE	6 /12	37-03-00	8-01-04	2 x 6	1-03-08	1-02-00 5-03-00	236.81 147.83		
	1 3-ply	T111 Piggyback Base Girder	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	843.15 519.00		
	1	T117 Half Hip Girder	6 /12	8-04-08	2-04-12	2 x 4	1-03-08	1-02-00 2-04-12	34.08 22.83		
	1	T118 Half Hip	6 /12	8-04-08	4-10-12	2 x 4		2-08-00 4-10-12	39.12 26.00		
	1	T119 Half Hip	6 /12	8-04-08	5-10-12	2 x 4		2-08-00 5-10-12	45.3 29.67		
	1	T120 Monopitch	6 /12	8-04-08	6-10-04	2 x 4		2-08-00 6-10-04	41.6 27.33	-	
	1 3-ply	T121 Monopitch Girder	6 /12	8-06-08	6-11-04	2 x 4 2 x 6		2-08-00 6-11-04	141.44 94.00		
	9	PB06 Piggyback	6 /12	17-08-00	4-05-00	2 x 4	·		462.27 288.00		·
	2	PB06G GABLE	6 /12	17-08-00	4-05-00	2 x 4		CITY OF	101.52 62.00	ID HILL	
	1 3-ply	PB06Z Piggyback	6 /12	17-08-00	4-05-00	2 x 4			ING DIVIS 154.09 96.00)4/2(
	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-0 4 RE	50.28 C33.33VE	D	
								Per:jo	celyn.agı	uilar	

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

B1 / UNIT31BLK286

Project:

CENTREFIELD

Location:

RICHMOND HILL

Model:

Lot #:

Elevation:

BLOCK 60

Page: Date:

2 of 2

51012

203556

413170

Ref#

07-08-2021

Designer:

Job Track:

Layout ID:

PlanLog:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	J11 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 6-09	1-02-00 2-01-08	7.85 5.33		
	3	J12 Jack-Open	6 /12	2-05-08	2-04-12	2 x 4	1-03-08	1-02-00 2-04-12	25.63 18.00		
	1	J13 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-01	1-02-00 2-01-08	7.32 4.67		

TOTAL #TRUSS= 45

TOTAL BFT OF ALL TRUSSES= 2858.66

BFT.

TOTAL WEIGHT OF ALL TRSSES 4628

LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	LUS24	
4	Hardware	LJS26DS	
1	Hardware	HGUS26-3	
14	Hardware	H2.5T	

TOTAL NUMBER OF ITEMS= 22

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED

__jocelyn.aguilar_

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

B2 / UNIT30BLK286

Project:

CENTREFIELD

Location: Model:

RICHMOND HILL

BLOCK 60

Lot #:

Elevation:

Ref#

51012 203556

PlanLog:

Layout ID:

413171

Page:

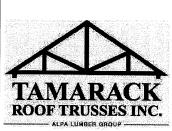
1 of 2

Date:

07-08-2021

Designer:

Job Track:


Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	5	T11 Piggyback Base	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1279.34 775.00		
	4	T11A Piggyback Base	6 /12	38-03-00	8-01-04	2 x 6	1-03-08	1-02-00 1-02-00	886.16 540.00		
	1	T11G GABLE	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	272.06 169.67		
	1	T11GB GABLE	6 /12	37-03-00	8-01-04	2 x 6	1-03-08	1-02-00 5-03-00	236.81 147.83		
	1 3-ply	T111 Piggyback Base Girder	6 /12	45-05-00	8-01-04	2 x 6	1-03-08	1-02-00 1-02-00	843.15 519.00		
	1	T117 Half Hip Girder	6 /12	8-04-08	2-04-12	2 x 4	1-03-08	1-02-00 2-04-12	34.08 22.83		
	1	T118 Half Hip	6 /12	8-04-08	4-10-12	2 x 4		2-08-00 4-10-12	39.12 26.00		
	1	T119 Half Hip	6 /12	8-04-08	5-10-12	2 x 4		2-08-00 5-10-12	, 45.3 29.67		
	1	T120 Monopitch	6 /12	8-04-08	6-10-04	2 x 4		2-08-00 6-10-04	41.6 27.33		
	1 3-ply	T121 Monopitch Girder	6 /12	8-06-08	6-11-04	2 x 4 2 x 6		2-08-00 6-11-04	141.44 94.00		
	9	PB06 Piggyback	6 /12	17-08-00	4-05-00	2 x 4			462.27 288.00		
	2	PB06G GABLE	6 /12	17-08-00	4-05-00	2 x 4	-		101.52 62.00		
	1 3-ply	PB06Z Piggyback	6 /12	17-08-00	4-05-00	2 x 4		CITY OF BUILD	RICHMOI ING DIVI 96.00 1///	ND HILL SION 121	
	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-04RE	50.28 CEIVE	D	
	l				<u>l</u>	1		Per:jo	celyn.ag	uilar	

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

Model: Lot #:

Elevation:

BLOCK 60

B2 / UNIT30BLK286

Page: Date:

2 of 2

51012

203556

413171

Ref#

07-08-2021

Designer:

Job Track:

Layout ID:

PlanLog:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	1	J11 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 6-09	1-02-00 2-01-08	7.85 5.33		
	3	J12 Jack-Open	6 /12	2-05-08	2-04-12	2 x 4	1-03-08	1-02-00 2-04-12	25.63 18.00		
	1	J13 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-01	1-02-00 2-01-08	7.32 4.67		

TOTAL #TRUSS= 45

TOTAL BFT OF ALL TRUSSES= 2858.66

BFT.

TOTAL WEIGHT OF ALL TRSSES 4628

LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	LUS24	
4	Hardware	LJS26DS	
1	Hardware	HGUS26-3	
14	Hardware	H2.5T	

TOTAL NUMBER OF ITEMS= 22

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/04/2021

RECEIVED __jocelyn.aguilar_

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

Model:

Lot #: Elevation: **BLOCK 60**

B / UNIT29BLK286

Job Track:

51012

PlanLog:

203556 413172

Layout ID:

Ref# Page:

1 of 2

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

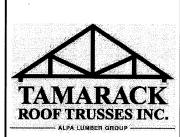
	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE #	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	5	T11 Piggyback Base	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	1279.34 775.00		
	4	T11B Piggyback Base	6 /12	45-00-08	8-01-04	2 x 6	1-03-08	1-02-00 1-02-00	1007.58 617.33		
	1	T11G GABLE	6 /12	45-05-00	8-01-04	2 x 6	1-03-08 1-03-08	1-02-00 1-02-00	272.06 169.67		
	1	T11GB GABLE	6 /12	37-03-00	8-01-04	2 x 6	1-03-08	1-02-00 5-03-00	236.81 147.83		
	1	T151 Half Hip Girder	6 /12	9-03-08	2-01-04	2 x 4	1-03-08	1-02-00 2-01-04	35.67 23.67		
	1 3-ply	T152 Half Hip Girder	6 /12	9-05-08	3-10-08	2 x 4 2 x 6	1-03-08	2-08-00 3-10-08	155.71 104.50		
	8	PB06 Piggyback	6 /12	17-08-00	4-05-00	2 x 4			410.9 256.00		
	1	PB06G GABLE	6 /12	17-08-00	4-05-00	2 x 4			50.76 31.00		
	1	PB104 Piggyback	6 /12	17-08-00	3-11-04	2 x 4			57.06 37.00		
	1	PB105G Piggyback	6 /12	8-10-00	2-08-00	2 x 4		2-09-08	25.27 17.67		
	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-04	50.28 33.33		
	4	J21 Jack-Open	6 /12	1-10-08	2-01-04	2 x 4	1-03-08	1-02-00 2-01-04	28.53 18.67		-
TOTAL #TDI	100	25	l	<u> </u>		· .		CITY OF	RICHMO	ND HILL	

TOTAL #TRUSS= 35

TOTAL BFT OF ALL TRUSSES= 2231.67

BFT.

TOTAL WEIGHT OF ALLITRISSES 3609.98 LBS


08/04/2021

RECEIVED

jocelyn.aguilar

HARDWARE

QTY	TYPE	MODEL	LENGTH
4	Hardware	LJS26DS	
14	Hardware	H2.5T	

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

Model:

RICHMOND HILL BLOCK 60

Lot #:

Elevation:

B / UNIT29BLK286

Job Track:

51012

PlanLog: Layout ID: 203556 413172

Ref#

Page:

2 of 2

Date:

07-08-2021

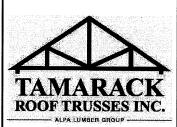
Designer:

Andrew Conway

Sales Rep:

Mario DiCano

HARDWARE


QTY	TYPE	MODEL	LENGTH
2	Hardware	LGT3	

TOTAL NUMBER OF ITEMS= 20

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED

jocelyn.aguilar

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location: Model: RICHMOND HILL

B / UNIT28BLK286

Lot #:

Elevation:

BLOCK 60

Ref# Page:

1 of 2

51012

203556

413173

Date:

07-08-2021

Designer:

Job Track:

Layout ID:

PlanLog:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK				T	OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	T10G GABLE	6 /12	22-08-08	8-01-04	2 x 4	1-05-00	1-02-00 8-01-04	243.75 153.67		
	1 2-ply	T101 Half Hip Girder	6 /12	19-05-08	4-01-04	2 x 4 2 x 6	1-03-08	1-02-00 4-01-04	182.72 116.00		
	1 2-ply	T101Z Half Hip Girder	6 /12	19-05-08	4-01-04	2 x 4 2 x 6	1-03-08	1-02-00 4-01-04	182.72 116.00		
	2	T102 Half Hip	6 /12	19-05-08	5-01-04	2 x 4	1-03-08	1-02-00 5-01-04	159.13 101.33		
	2	T103 Half Hip	6 /12	19-05-08	6-01-04	2 x 4	1-03-08	1-02-00 6-01-04	172.24 109.67		
	2	T104 Half Hip	6 /12	19-05-08	7-01-04	2 x 4	1-03-08	1-02-00 7-01-04	173.04 108.00		
	8	T105 Half Hip	6 /12	19-05-08	8-01-04	2 x 4	1-03-08	1-02-00 8-01-04	689.37 434.67		
	2	T106 Half Hip	6 /12	19-05-08	9-01-04	2 x 4	1-03-08	1-02-00 9-01-04	181.02 114.00		
	1	T107 Hip Girder	6 /12	9-06-00	2-04-12	2 x 4	1-03-08 1-03-08	1-02-00 1-02-00	37.9 25.50		
	2	T108 Hip	6 /12	9-06-00	4-10-12	2 x 4	1-03-08 1-03-08	2-08-00 2-08-00	99.25 67.00		
	1	T109 Hip	6 /12	9-06-00	3-10-12	2 x 4	1-03-08 1-03-08	2-08-00 2-08-00	45.71 31.67		
	1 2-ply	T110 Monopitch Girder	6 /12	5-10-08	4-01-04	2 x 4 2 x 6		1-02-00 4-01-04	58.39 37.67	ND HII I	
	2	PB101 Piggyback	6 /12	5-07-00	2-00-00	2 x 4			ING DIVI 1NG DIVI 22.67 14/2(
	4	PB102 Piggyback	6 /12	5-07-00	2-09-08	2 x 4		2-09-08 _E	58.98 C40.00VE	D	
		·				1		Per:jo	celyn.ag	ullar	

Lumber Yard:

TAMARACK LUMBER

Builder:

ROYAL PINE HOMES

Project:

CENTREFIELD

Location:

RICHMOND HILL

Model:

BLOCK 60

Lot #:

Elevation:

B / UNIT28BLK286

Job Track:

51012 203556

PlanLog: Layout ID:

413173

Ref#

Page:

2 of 2

Date:

07-08-2021

Designer:

Andrew Conway

Sales Rep:

Mario DiCano

Roof Trusses

	QTY	MARK					OVERHANG	HEEL HEIGHT	LBS.	BUNDLE#	LOAD BY
PROFILE	PLY	TYPE	PITCH	SPAN	HEIGHT	LUMBER	LEFT RIGHT	LEFT RIGHT	BFT.	STACK#	REMARKS
	2	PB103G GABLE	6 /12	8-10-00	2-09-08	2 x 4		2-09-08	51.18 35.33		
	11	J01 Jack-Open	6 /12	5-10-08	4-01-04	2 x 4	1-03-08	1-02-00 4-01-04	184.74 117.33		
	5	J03 Jack-Open	4 /12	3-07-00	1-11-03	2 x 4	1-03-08	3-15 1-03-04	50.28 33.33		
	2	J11 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 6-09	1-02-00 2-01-08	15.69 10.67		
	2	J12 Jack-Open	6 /12	2-05-08	2-04-12	2 x 4	1-03-08	1-02-00 2-04-12	17.09 12.00		
	3	J13 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 1-01	1-02-00 2-01-08	21.97 14.00		
	1	J14 Jack-Open	6 /12	2-00-00	3-01-08	2 x 4	1-03-08 1-10-15	1-02-00 2-02-00	9.87 6.00		
	1	J15 Jack-Open	6 /12	1-10-15	2-01-08	2 x 4	1-03-08 3-11-09	1-02-00 2-01-08	11.74 7.33		
	1	J16 Jack-Open	6 /12	3-10-15	3-01-08	2 x 4	1-03-08 1-11-09	1-02-00 3-01-08	14.29 8.67		
TOTAL #TRU	JSS=	62	TOTAL	BFT OF ALI	_TRUSSES=	1722.51	BFT.	TOTAL WEIG	HT OF AL	L TRSSES	2693.27

TOTAL WEIGHT OF ALL TRSSES 2693.27 LBS

HARDWARE

QTY	TYPE	MODEL	LENGTH
3	Hardware	LUS24	
1	Hardware	HGUS26-2	

TOTAL NUMBER OF ITEMS= 4

CITY OF RICHMOND HILL **BUILDING DIVISION**

08/04/2021

RECEIVED

jocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412868 T10G TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 10:22:39 2021 Page ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-R8Izrke7RKetFAUC3nbSg0rZCxUXPq?LTSBvf8z0TvE 1.5-0 0-0 1-11-12 1-11-12 2-0-0 3-11-12 2-0-0 5-11-12 2-0-0 7-11-12 2-0-0 9-11-12 2-0-0 2-0-0 11-11-12 13-10-8 22-8-8 8-10-0 6.00 12 х W U 4x4 = 1-5-0 22-8-8 $\frac{1\cdot 11\cdot 12}{1\cdot 11\cdot 12} \frac{1\cdot 11\cdot 12}{2\cdot 0\cdot 0} \frac{3\cdot 11\cdot 12}{2\cdot 0\cdot 0} \frac{5\cdot 11\cdot 12}{2\cdot 0\cdot 0} \frac{7\cdot 11\cdot 12}{2\cdot 0\cdot 0} \frac{9\cdot 11\cdot 12}{2\cdot 0\cdot 0} \frac{9\cdot 11\cdot 12}{2\cdot 0\cdot 0} \frac{11\cdot 11\cdot 12}{1\cdot 10\cdot 12} \frac{13\cdot 10\cdot 8}{11\cdot 10\cdot 12}$ 22-8-8 TOTAL WEIGHT = 4 X 122 = 488 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER N. L. G. A. RULES CHORDS SIZE SIZE LUMBER DESIGN CRITERIA DESCR DRY DRY DRY BEARINGS 2x4 2x4 B G J O O No.2 SPF SPECIFIED LOADS: No.2 SPF THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS. 2x4 DRY DRY SPF THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. PSF BOT CH. No.2 SPF PSF

AC-A -A - J -AC-T -T P 2x4 DRY No.2 SPF ALL WEBS DRY No.2 SPF ALL GABLE WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

GABLE STUDS SPACED AT 2-0-0 OC.

PL	ATES (table is	s in inches)				
	TYPE	PLATES	W	LEN	Υ	Х
В	TMV+p	MT20	3.0	4.0		
	D, E, F, H, I, K	, L, M, N				
С	TMW+w	MT20	2.0	4.0		
	TS-t	MT20	3.0	6.0		
	TTW-m	MT20	4.0	4.0		
	TMVW-t	MT20	4.0	4.0		
Р	BMV1+p	MT20	3.0	4.0		
Q		MT20	4.0	4.0		
	8, U, V, W, X,					
R		MT20	2.0	4.0		
T	BS-t	MT20	3.0	6.0		
AC	BMV1+p	MT20	3.0	4.0		

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

		PRDS FACTORED FORCE (LBS) -271 / 0 0 / 30 -21 / 0	FACTO VERT. LC (PL FROM 0.0 -91.8 -91.8	AD LC .F) TO 0.0	0.03 (1) 0.14 (1)	7.81 10.00	мемв.	B S MAX. FACTO FORCE (LBS) -200 / 0 -182 / 0 -190 / 0	0.25 0.23 0.24
	C-D D-E	0 / 10 0 / 9 ·	-91.8 -91.8	-91.8 -91.8	0.05 (1)		U- K V- J	-149 / 0 -95 / 0	0.19
	E-F F-G	0 / 14 0 / 16	-91.8 -91.8	-91.8 -91.8	0.04 (1) 0.04 (1)	10.00 10.00	AB- C AA- D	-118 / 0 -196 / 0	0.02
	G-H H-I	0 / 16 0 / 19	-91.8 -91.8	-91.8 -91.8	0.04 (1)		Z-E Y-F	-179 / 0 -183 / 0	0.05
	1- J J- K	0 / 13 0 / 20	-91.8 -91.8	-91.8 -91.8	0.05 (1)		X- H W- I	-180 / 0 -200 / 0	0.11
	K-L L-M	0 / 20 0 / 20	-91.8 -91.8	-91.8 -91.8	0.05 (1)	10.00	Q-0	-79 / 0	0.18 0.11
	M- N N- O	0 / 20 0 / 20	- 9 1.8	-91.8	0.05 (1)	10.00 10.00			
	P- 0	0/20	-9 1.8 0.0	0.0	0.05 (1) 0.00 (1)	10.00 10.00			
	AC-AB AB-AA	0/0 -4/0	-18.5 -18.5	-18.5	0.02 (4)	10.00 10.00			
	AA- Z Z- Y	-9/0 -12/0	-18.5 -18.5	-18.5 -18.5		10.00 6.25			
	Y-X	-14/0	-18.5	-18.5	0.01 (4)	6.25			
	X-W W-V	-16 / 0 -18 / 0	-18.5 -18.5	-18.5 -18.5	0.02 (4)	6.25 6.25			
	V- U	-20 / 0	-18.5	-18.5	0.01 (4)	6.25			
٦	U-T T-S	-20 / 0 -20 / 0	-18.5 -18.5	-18.5 -18.5		6.25			
	S-R	-20 / 0	-18.5		0.02 (4)	6.25 6.25			
1	R-Q	-20 / 0	-18.5	-18.5	0.02 (4)	6.25			
-	Q-P	0/0	-18.5	-18.5	0.02 (4)	10.00			

LL = DL = LL = DL = AD = 6.0 0.0 7.4 TOTAL, LOAD 39.0 **PSF**

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 096 14 - CSA 086-14

- TPIC 2014

MAX CSI (LC)

0.25 (1)

0.23 (1) 0.24 (1) 0.19 (1) 0.12 (1)

0.02 (1) 0.04 (1) 0.05 (1)

0.07 (1) 0.11 (1)

0.18 (1)

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.14/1.00 (A-B:1) , BC=0.02/1.00 (Q-R:4) , WB=0.25/1.00 (N-Q:1) , SSI=0.09/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

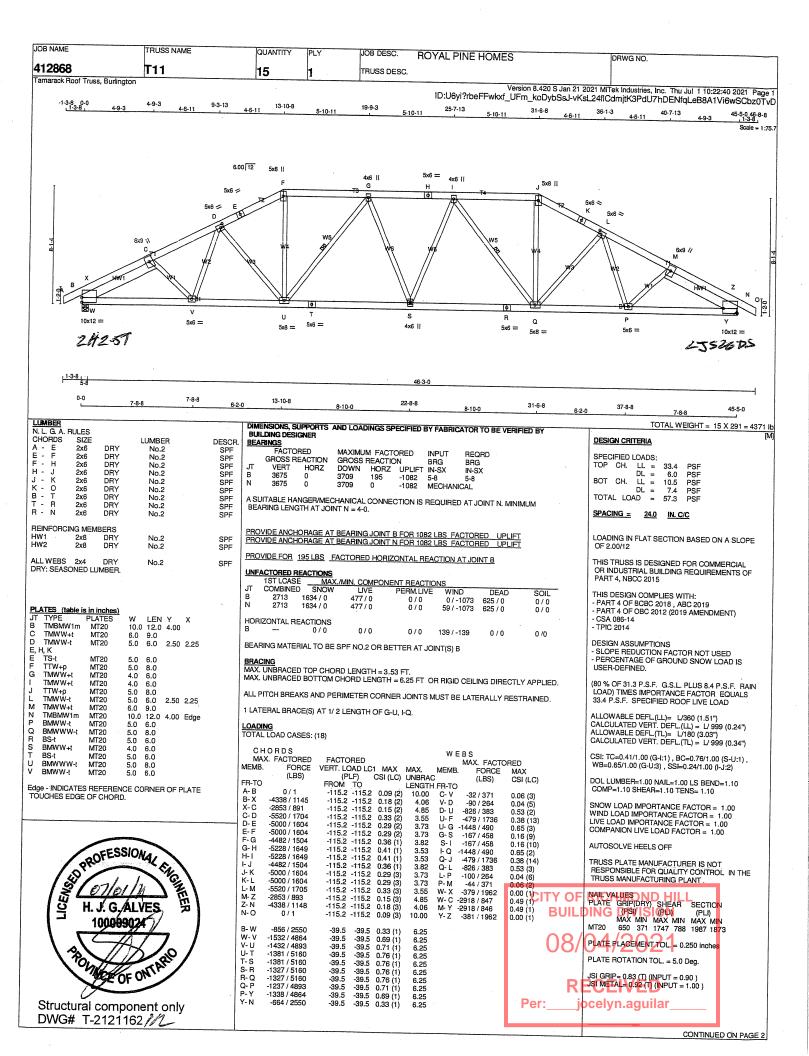
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.59 (J) (INPUT = 0.90) JSI METAL= 0.08 (I) (INPUT = 1.00) **BUILDING DIVISION**

RECEIVED

jocelyn.aguilar

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	DRWG NO.
412868	T11	15	1	TRUSS DESC.	THE THE THOMES	Driwg NO.
Tamarack Roof Truss, Burlington			- Li		Version 8.420 S Jan 21 2021	iTek Industries, Inc. Thu Jul 1 10:22:40 2021 Page 2
					ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-vKsL24t	CdmjtK3PdU7hDENfqLeB8A1Vi6wSCbz0TvD

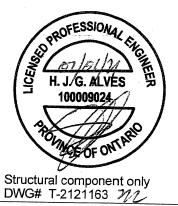
TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF { 9.2} PSF AT {31-0-0} FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CPCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM). INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

Structural component only DWG# T-2121162 7/1

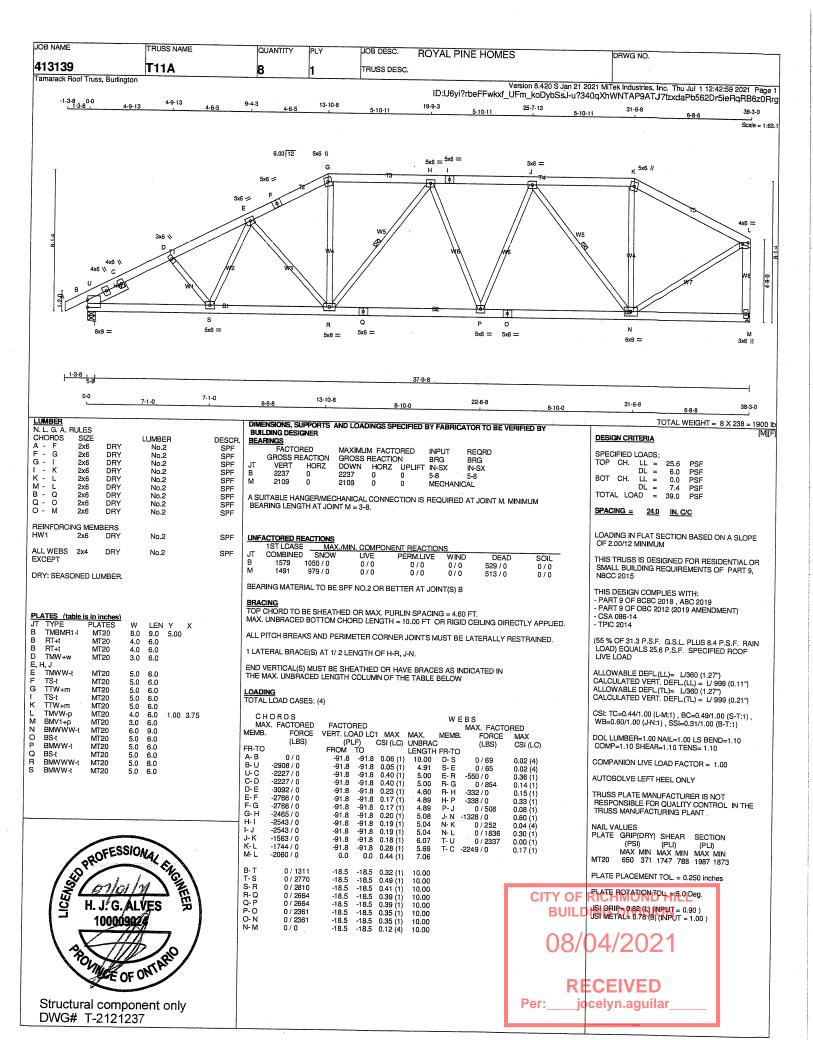
CITY OF RICHMOND HILL BUILDING DIVISION

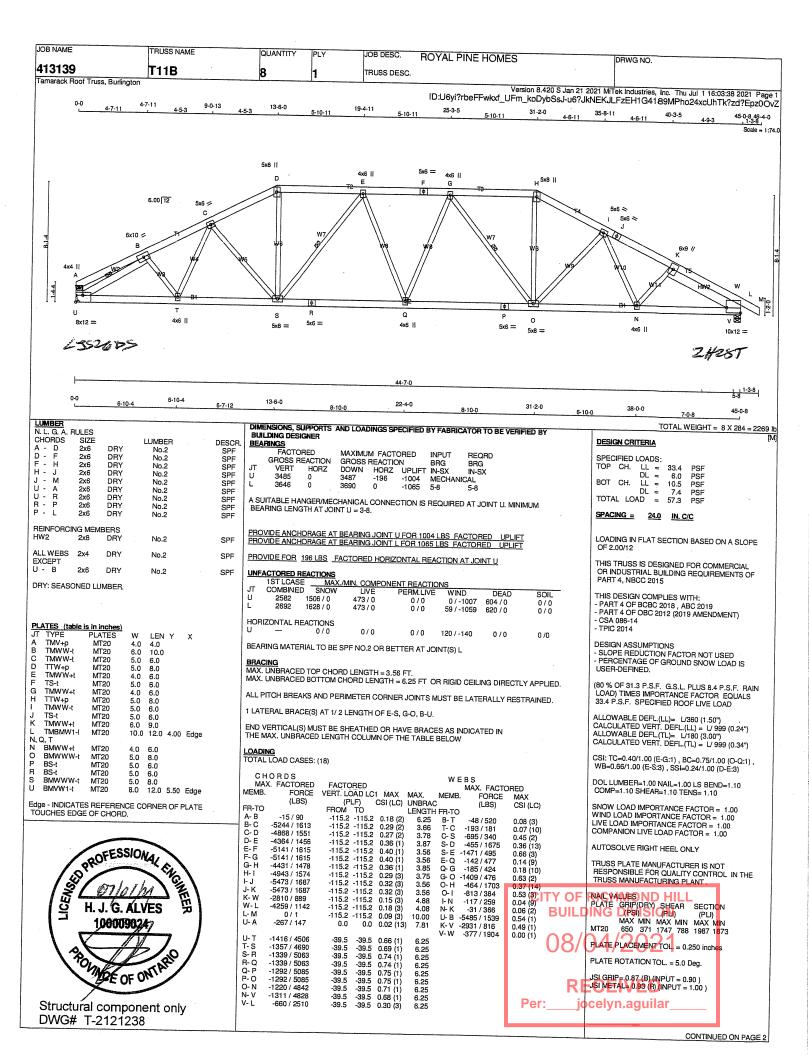
08/04/2021


RECEIVED

Per:____jocelyn.aguilar_

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412868 T11G TRUSS DESC amarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 10:22:42 2021 Page 1 ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-rjz6Tmg?kF0R6eCnkv99lfT5g8V3cBMo9QPZGTz0TvB -1-3-8 0-0 1-11-12 3-11-12 5-11-12 7-11-12 9-11-12 11-11-12 13-10-8 11-3-8 1-11-12 2-0-0 2-0-0 2-0-0 2-0-0 1-10-12 31-6-8 17-8-0 45-5-0 46-8-8 1-3-8 13-10-8 5x8 = 5x6 = 6.00 12 o P o 3x4 II 3x4 II 3x4 II 5x6 / ΑZ AX AT AS AW ΑV ΑU 3x8 || ΑJ AG AF 1-3-8 45-5-0 1-3-8 45-5-0 LLMBER N. L. G. A CHORDS BC- B A - F F - J J - O O - T T - X X - AC AD- AB TOTAL WEIGHT = 2 X 272 = 544 li DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER DESCR SPF SIZE LUMBER BEARINGS **DESIGN CRITERIA** DRY 2x6 2x6 DRY THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS. SPECIFIED LOADS: SPF PSF PSF PSF No.2 SPE TOP CH. LL 25.6 2x6 DRY No.2 DL 6.0 0.0 7.4 THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. DRY DRY DRY 2x6 SPF PSF PSF No.2 SPE BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) DL. 2x6 No 2 SPF TOTAL LOAD 39.0 2×8 DRY BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT. BC-AT-AT AK SPACING = No.2 SPF 24.0 IN. C/C 2x6 DRY No.2 MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. AD 2x6 SPF LOADING IN FLAT SECTION BASED ON A SLOPE ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. ALL WEBS 2x3 DRY No.2 SPE OF 2.00/12 MINIMUM ALL GABLE WEBS LOADING TOTAL LOAD CASES: (4) THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR No.2 SPF DRY: SEASONED LUMBER SMALL BUILDING REQUIREMENTS OF PART 9, **NBCC 2015** CHORDS WEBS GABLE STUDS SPACED AT 2-0-0 OC. FACTORED VERT. LOAD LC1 MAX MAX. FACTORED MAX. FACTORED FORCE MAX (LBS) CSI THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MEMB. FORCE (LBS) MAX MEMB (PLF) FROM TO CSI (LC) UNBRAC CSI (LC) FR-TO LENGTH FR-TO - CSA 086-14 BC- B -260 / 0 0 / 29 0.0 PLATES (table is in inches)
JT TYPE PLATES AL- T AM- S AN- R 0.02 (1) A-B B-C C-D -186 / 0 - TPIC 2014 -91.8 0.06 (1 w I FN Y 0.21 (1) -50 / 0 -91.8 -91.8 -91.8 B, AB, AD, BC -183 / 0 0.21 (1) DESIGN ASSUMPTIONS -24 / 0 -19 / 0 B C, D, E, G, H, I, U, V, W, Y, C TMW+w MT20 F TS-t MT20 AO- Q AP- P AQ- N AR- M 0.02 (1) 6.25 -183 / 0 D- E -OVERHANG NOT TO BE ALTERED OR CUT OFF. -91.8 0.02 (1 6.25 0.21 (1) -91.8 -91.8 -91.8 6.25 6.25 E-F F-G -13/0 -91.8 0.02 (1 (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF 0.21 (1) 4.0 6.0 2.00 1.25 -183 / 0-13/0 -9/0 -5/0 -91.8 -91.8 TS-t TTW-m 0.21 (1) 0.21 (1) 0.21 (1) 0.02 (1 -184 / 0 G- H H- I I- J 2.50 2.75 AS- L AU- K -184 / 0 -163 / 0 0.02 (1. 10.00 MT20 5.0 LIVE LOAD -91.8 -91.8 -91.8 -918 0.02 (1 0.02 (1 , M, N, P, Q, R, S -3/0 0/0 0/0 0.18 (1) -91.8 -91.8 KOT 10.00 0.14 (1) 0.09 (1) TMW+w AJ- U -183 / 0J- K K- L L- M M- N 0.02 (1 10.00 AI- V CSi: TC=0.06/1.00 (AB-AC:1) , BC=0.03/1.00 (AD-AE:1) , WB=0.21/1.00 (S-AM:1) , SSI=0.07/1.00 (AB-AC:1) MT20 5.0 6.0 -91.8 -91.8 0.02 8.0 6.0 8.0 5.0 5.0 2.75 4.00 2.50 2.75 2.50 3.75 -182 / 0 0.06 (1) TTW-m MT20 0/0 0/0 0/0 -91.8 -91.8 -91.8 -91.8 0.02 (1 MT20 MT20 10.00 AG-Y -180 / 0 0.04 (1 AD TMBMV1+p MT20 AE, AF, AG, AH, AI, AJ, AL 10.00 AF- Z -188 / 0 N- O O- P P- Q 3.0 -91.8 -91.8 0.02 (1 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 AM. AN. AO. 0.02 (1) 0/0 -91.8 -91.8 -91.8 0.02 (1) AU AV AW AX AV- J BB- C -159 / 00.18 (1 0/0 0.02 (1) 0.03 (1) 10.00 -137/0MT20 6.0 Q-R R-S 3.0 AK BS-t AT BS-t BC TMBMV1+p BA- D AZ- E AY- G -91.8 -91.8 0.02 (1 10.00 5.0 5.0 3.0 COMPANION LIVE LOAD FACTOR = 1.00 6.0 MT20 0/0 -91.8 -91.8 -91.8 0.02 (1) 0.02 (1) -918 MT20 -180 / 0 0.04 (1) 0/0 0.06 (1) 0.10 (1) 10.00 -181 / 0 2.50 0.50 AUTOSOLVE HEELS OFF -2/0 -5/0 -183 / 0 -184 / 0 0.02 (1 10.00 0.02 (1) -91.8 -91.8 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. -91.8 -91.8 -9 / 0 10.00 W- X X- Y -14/0 -14/0 -91.8 0.02 (1) 6.25 -91.8 -91.8 0.02 (1 6.25 6.25 6.25 Y-Z Z-AA AA-AB AB-AC -91.8 -91.8 -91.8 -20 / 0 -91.8 -91.8 0.02 (1) 0.02 (1) -24 / 0 -51 / 0 PLATE GRIP(DRY) SHEAR SECTION -91.8 0.05 (1) PROFESSIONAL ENGINEERS H. J. G. ALVES (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873 -91.8 0.0 0 / 29 -91 8 AD-AB -260 / 0 MT20 BC-BB 0 / 33 -18.5 -18.5 0.03 (1) PLATE PLACEMENT TOL. = 0.250 inches -18.5 -18.5 -18.5 -18.5 BB-BA 0 / 24 0.01 (1) 10.00 BA-AZ 0/17 0.01 (4) 10.00 AZ-AY AY-AX AX-AW PLATE ROTATION TOL. = 5.0 Deg. CITY OF 0.01 (4) 0.01 (4) 0/12 -18.5 -18.5 0/8 -18.5 -18.5 -18.5 0.01 (4) JSI GRIP 0.25 (3) (INPUT = 0.90) JSI METAL= 0.09 (AD) (INPUT = 1.00) 0/5 0/2 0/0 10.00 1000<u>09</u>024 AW-AV AV-AU -18.5 0.01 (4) 0.01 (4) 10.00 10.00 -18.5 -185 -18.5 AU-AT AT-AS AS-AR AR-AQ -18.5 0.01 (4) 10.00 E OF ONTARIO -18.5 -18.5 0.01 (4) 10.00 POLI 0.01 (4) 0.01 (4) 0/0 -18.5-18.5 0/0 -18.5 -18.5 10.00 AQ-AP AP-AO AO-AN -18.5 0.01 (4) 10.00 -18.5 -185 0.01 -18.5 -18.5 -18.5 -18.5 -18.5 -18.5 RECEIVED 0/0 -18.5 AN-AM AM-AL AL-AK AK-AJ 0/0 0/0 0/2 0.01 (4) 10.00 iocelyn.aguilar 0.01 (4) 0.01 (4) 0.01 (4) 10.00 10.00 -18.5 Structural component only -18.5 DWG# T-2121163 10.00


CONTINUED ON PAGE 2


JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. ROYAL PINE HOMES	DRWG NO.
412868	T11G	2	1	TRUSS DESC.	
Tamarack Roof Truss, B	urlington			Version 8.420 S Jan	21 2021 MiTek Industries, Inc. Thu Jul 1 10:22:42 2021 Page 2
				ID:U6yi?rbeFFwkxf UFm koDybSsJ-ı	riz6Tmg?kF0R6eCnkv99lfT5g8V3cBMo9QPZGTz0TvB
		FR-TO Al-AH AH-AG AG-AF AF-AE	D S CTORED	FACTORED WEBS FACTORED WAX. FACTORED VERT. LOAD LC1 MAX MAX. MEMB. FORCE MAX (PLF) CSI (LC) UNBRAC (LBS) CSI (LC) FROM TO -18.5 -18.5 0.01 (4) 10.00 -18.5 -18.5 0.01 (4) 10.00 -18.5 -18.5 0.01 (1) 10.00 -18.5 -18.5 0.01 (1) 10.00 -18.5 -18.5 0.03 (1) 10.00 -18.5 -18.5 0.03 (1) 10.00	

CITY OF RICHMOND HILL BUILDING DIVISION

jocelyn.aguilar

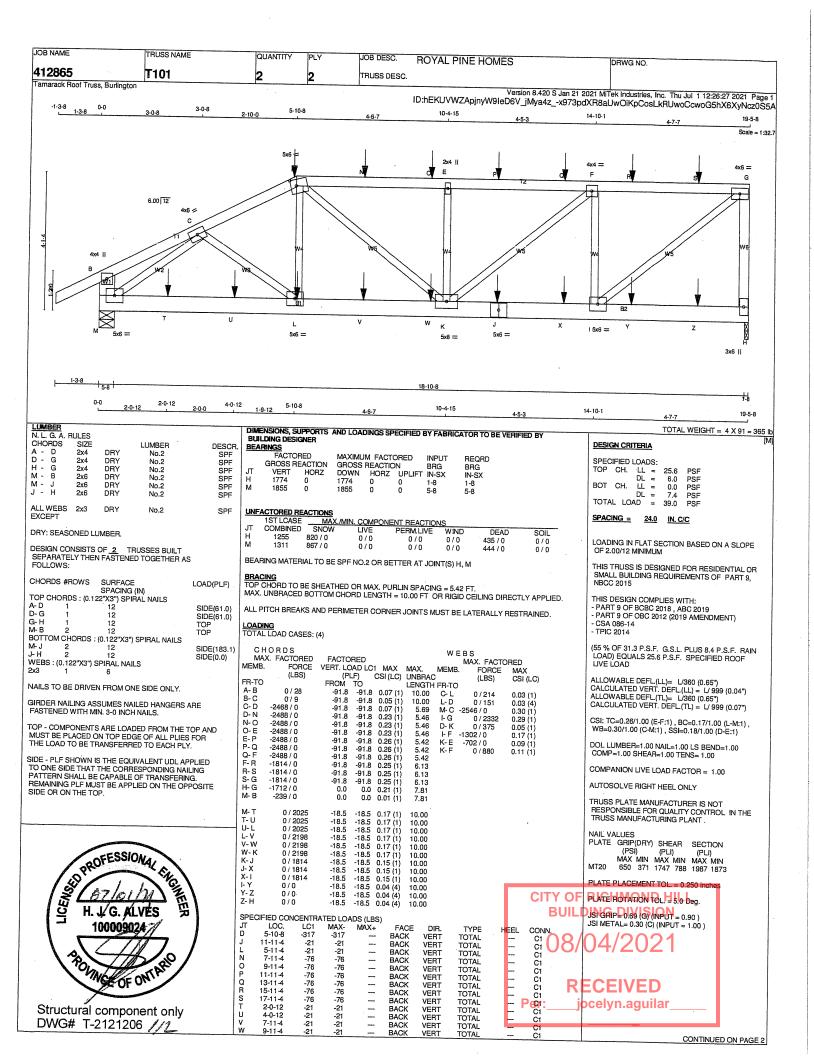
JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	DRWG NO.
413139	T11B	8	1	TRUSS DESC.		
Tamarack Roof Truss, Burlington			·		Version 8.420 S Jan 21 2021 ID:U6yi?rbeFFwkxf UFm koDybSsJ-u6?JkNE	

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF { 9.2} PSF AT {30-0-0}. FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM), INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST {0-0}. FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

CITY OF RICHMOND HILL BUILDING DIVISION

08/04/2021


RECEIVED

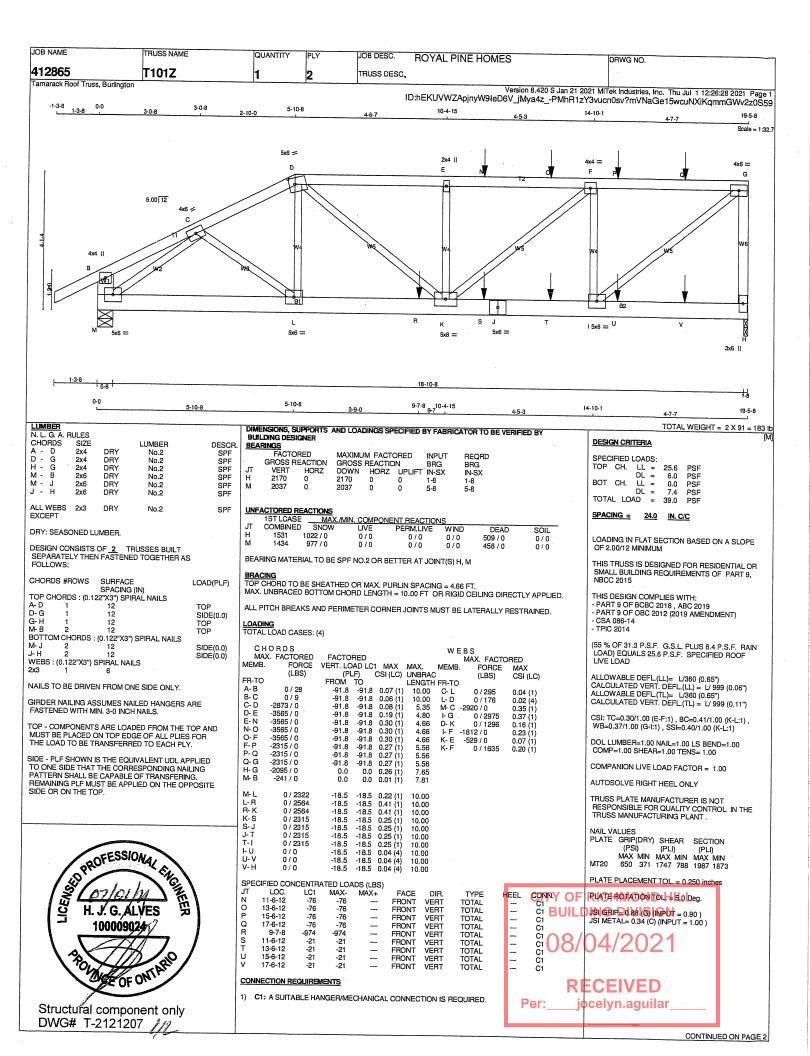
Per:____jocelyn.aguilar_

JOB NAME TRUSS NAME QUANTITY JOB DESC. PLY **ROYAL PINE HOMES** DRWG NO 412865 **T11GB** TRUSS DESC. amarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:26 2021 Page 1 ID:hEKUVWZApjnyW9IeD6V_jMya4z_-TzZhcHWpNGM3nYmce4L6BDxp6pIE3qzXISnPrAz0S5B 37-3-0 Scale = 1:61.5 5x6 \\ 6.00 12 _ 5x6 // N O 4x4 [] 4x4 || 5x6 = AO ΑK ΑJ 3x8 II AC AB 5x8 [[5x8 WB || 1-3-8 LUMBER TOTAL WEIGHT = 2 X 238 = 475 lb DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER
BEARINGS N. L. G. A. RULES CHORDS SIZE **DESIGN CRITERIA** SIZE LUMBER DESCR AR-A -F -DRY DRY B SPF SPECIFIED LOADS: TOP CH. LL = No.2 SPF THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS. LL = DL = LL = DL = AD = 2x6 DRY No.2 25.6 PSF 10L88 DRY DRY No.2 No.2 6.0 0.0 7.4 PSF THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE. <u>o</u> -BOT CH. SPF DRY 2x6 No.2 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) PSF X -AR-AK-AF-DRY DRY DRY TOTAL LOAD 2×4 39.0 <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED. SPF SPACING = 24.0 IN. C/C No.2 SPF ALL WEBS 2x3 ALL GABLE WEBS DRY LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM No.2 SPF ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. DRY No.2 LOADING TOTAL LOAD CASES: (7) THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 DRY: SEASONED LUMBER. GABLE STUDS SPACED AT 2-0-0 OC. CHORDS WEBS MAX. FACTORED FACTORED VERT. LOAD LC1 MAX MAX. FACTORED THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MEMB. FORCE (LBS) FORCE (LBS) MAX MEMB MAX CSI (LC) (PLF) CSI (LC) UNBRAC LENGTH FR-TO FR-TO FROM 0.0 -91.8 PLATES (table is in inches)
JT TYPE PLATES AR- B A- B B- C 0.02 (1 0.19 (1) w LEN Y TPIC 2014 -91.8 -91.8 -91.8 0 / 29 0.06 (1 B, AE, AF, AR 0.23 (1) -91.8 -91.8 -18/0 DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF. B C, D, E, G, H, I, U, V C TMW+w N F TS-t N -183 / 0 C-D 0.02 (1 10.00 AD- Q -183 / 0 0.21 (1) 0 / 16 -91.8 -91.8 0.02 (1 10.00 10.00 AE- P -184 / 0 -183 / 0 MT20 MT20 4.0 5.0 5.0 -91.8 -91.8 0.02 (1) 0/23-91.8 AG- N (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD 0.21 (1) F- G G- H H-1 Edge 2.75 0 / 23 0 / 27 0.21 (1) 0.21 (1) 10:00 AH- M -184/0MT20 -91.8 -91.8 -186 / 0 -178 / 0 0.02 (1) 10.00 L, M, N, P, Q, R, S -91.8 -91.8 -91.8 0 / 31 -91.8 0.02 (1) TMW+w 0.20(1)MT20 -91.8 -91.8 -91.8 0 / 27 I- .I Z- U Y- V -206/00.16 (1) MT20 5.0 6.0 0.02 (1 10.00 -173 / 0 CSI: TC=0.06/1.00 (A-B:1) , BC=0.01/1.00 (AK-AL:4) , WB=0.23/1.00 (S-AB:1) , SSI=0.07/1.00 (A-B:1) TTW+m MT20 5.0 6.0 0 / 33 -91.8 0.02 (1 TMVW+p MT20 MT20 MT20 MT20 W X Y 4.0 3.0 0.16 (1) -91.8 -91.8 -91.8 L-M 0/33AQ- C AP- D BMV1+p BMWW1-t -122 / 0 0.02 (1 6.0 0 / 33 0.02 (1) 0.03 (1) 0.04 (1) 0.06 (1) -91.8 0.02 10.00 -193 / 0 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 N- O O- P P- Q 5.0 6.0 AO- E AN- G AM- H 0 / 33 -91.8 0.02 (1 10.00 AA, AB, AC, AD, AG, AI BMW1+w MT20 , LA ,i. 3.0 COMP=1.10 SHEAR=1.10 TENS= 1.10 AL, AM, AN, AO, AP, AQ 0 / 33 -91.8 -91.8 -91.8 0.02 (1) -181 / 0 0/33 -91.8 -91.8 0.09 (1) 10.00 -182/0Q-R R-S T-U V-W COMPANION LIVE LOAD FACTOR = 1.00 BBW1+I MT20 5.0 8.0 -91.8 0.03 (1) 10.00 -198 / 0 -91.8 0.03 (1) -91.8 0.03 (1) -91.8 0.03 (1) -91.8 0.03 (1) -91.8 0.03 (1) AK BSW1+I MT20 4.50 2.50 2.75 0.25 -91.8 -91.8 -91.8 -91.8 0/33TMBMV1+p MT20 -68 / 0 0.03 (1) AUTOSOLVE RIGHT HEEL ONLY 0 / 33 0 / 26 0 / 34 10.00 Edge - INDICATES REFERENCE CORNER OF PLATE 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. TOUCHES EDGE OF CHORD. -91.8 0.0 0 / 32 X-W 0.00(1) 10.00 NAIL VALUES AR-AQ -18.5 -18.5 -18.5 0.01 (4) 0.01 (4) 0.01 (4) 0/0 -18.5 GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) AQ-AP AP-AO AO-AN AN-AM -8/0 -15/0 10.00 (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 -18.5PROFESSIONAL ENGINEERS H. J.G. ALVES 6.25 6.25 6.25 -18.5 -18.5 0.01 (4) 0.01 (4) -20 / 0 -185 -24 / 0 AM-AL AL-AK AK-AJ -18.5 -18.5 0.01 (4) PLATE PLACEMENT TOL. = 0.250 inches -18.5 6.25 6.25 -31 / 0 -18.50.01 (4) -18.5 -18.5 -33 / 0ATE ROTATION TOL. = 5.0 Deg. AJ-AI AJ-AH AH-AG -18.5 0.01 (4) 6.25 CITY OF TY OF RICHMOND HLL

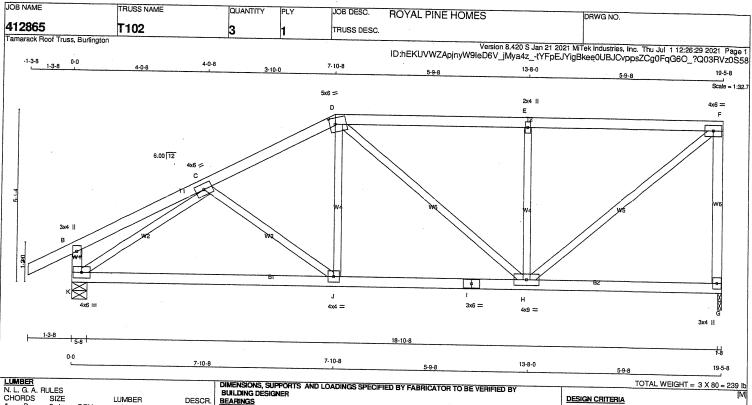
JSI GRIP= 0.38 (Y) (INPUT = 0.90)

BUILD JSI METAL = 0.07 (AR) (INPUT = 1.00) 0.01 (4) 0.01 (4) 0.01 (4) 0.01 (4) -33 / 0 -18.5 -18.5 -33 / 0 -18.5 -18.5 -18.5 AG-AF -33 / 0 -33 / 0 -33 / 0 6.25 AF-AE AE-AD 100009024 6.25 6.25 -18.5 -18.5 0.01 (4) -18.5 -18.5 -185 AD-AC AC-AB AB-AA AA- Z Z- Y Y- X -33 / 0 -33 / 0 -33 / 0 0.01 (4) 6.25 -18.5-18.56.25 POMMO OF ONT ARE 0.01 (4) 6.25 6.25 -18.5 -18.5 -30 / 0 -27 / 0 -18.5 0.01 (4) 6.25 0/0 RECEIVED iocelyn.aguilar Structural component only DWG# T-2121205

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL F	PINE HOME	ES		DRWG NO.	
412865	T101	2	2	TRUSS DESC	C .					
Tamarack Roof Truss, Burlin	gton				ID:hEKUVV	VZApinvW9Ie	Version 8.420 S	lan 21 2021 N	AiTek Industries, Inc. Ti	nu Jul 1 12:26:27 2021 P: woCcwoG5hX6XyNcz(
PLATES (table is in inches	s)							от оражно	aowon poosekhor	WOCCWOGSHAGAYNCZI
JT TYPE PLATES B TMV+p MT20 C TMWW-t MT20 D TTWW-m MT20 E TMW+w MT20 F TMWW-t MT20 G TMVW-t MT20 I BMV1+p MT20 I BMWW-t MT20	W LEN Y X 4.0 4.0 5.0 6.0 2.25 2.00 2.0 4.0 4.0 6.0 3.0 6.0 5.0 6.0	1	-21 -2 -21 -2 -21 -2 REQUIREMENTS	1 E 1 E 1 E	FACE DIR. BACK VERT BACK VERT BACK VERT	TYPE TOTAL TOTAL TOTAL	HEEL CONN. C1 C1 C1			
J BS-t MT20 K BMWWW-t MT20 L BMWW-t MT20 M BMVW1-t MT20	5.0 6.0 5.0 8.0 5.0 6.0	,	, 1542 17 11 1321	WILDI IANIOAL C	CHINECTION	REQUIRED.				
M BMVW1-t MT20	5.0 6.0									
							•			
			,							
										, .
										,
1										


Structural component only DWG# T-2121206 7/1

CITY OF RICHMOND HILL BUILDING DIVISION


08/04/2021

RECEIVED

er:____jocelyn.aguilar_

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOME	-6	loc			<u> </u>
412865	T101Z	1	2	TRUSS DESC.		:5	DF	WG NO.		
Tamarack Roof Truss, Burlington					ID:hEKUVWZApjnyW9leD	Version 8.420 S Jan 21 2 6V iMva4z -PMhR1z	021 MiTek Y3vucn0s	Industries, Inc.	Thu Jul 1 12:26	5:28 2021 Page
B IMV+p MT20 4, D TTWW-m MT20 5, E TMW+w MT20 2, G TMVW-t MT20 4, G TMVW-t MT20 4, H BMV1+p MT20 3, J BS-t MT20 5, L BMWWW-t MT20 5,	0 6.0 0 6.0 0 6.0								Swearvarqu	iiii WWZZUSS:
		:								
										-
POWNER OF O	}/- /-					08/	04/	MOND H DIVISION 2021		
Structural compone DWG# T-2121207	ent only							aguilar_ —–		

The state of the s	LUMBER N. L. G. A. F CHORDS A - D G - F G - F K - B K - I I - G ALL WEBS	SULES SIZE 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF					
	EXCEPT			No.2	SPF					
ĺ	DUI. SEAS	DRY: SEASONED LUMBER.								

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	х
В	TMV+p	MT20	3.0	4.0		
С	TMW W-t	MT20	4.0	6.0		
D	TTWW-m	MT20	5.0	6.0	2.25	2.00
E	TMW+w	MT20	2.0	4.0		
F	TMVW-t	MT20	4.0	6.0		
G	BMV1+p	MT20	3.0	4.0		
Н	BMWWW-t	MT20	4.0	9.0		
1	BS-t	MT20	3.0	6.0		
J	BMWW-t	MT20	4.0	4.0		
K	BMVW1-t	MT20	4.0	6.0		

REA	RINGS						
	FACTO GROSS R		MAXIMUI GROSS			INPUT	REQRD
JT	VERT	HORZ	DOWN	HORZ		BRG	BRG
G	1073	0	1073	0	UPLIFT	IN-SX	IN-SX
ĸ	1197	ň	1197	0	0	1-8	1-8
		•	110/	U	U	5-8	5-8

UNF	ACTORED RE	ACTIONS					
	1ST LCASE	MAX./N	AIN. COMPO	NENT REACTION	vs.		
G K	COMBINED 759 844	SNOW 498 / 0 567 / 0	UVE 0/0 0/0	PERM.LIVE 0 / 0 0 / 0	WIND 0/0 0/0	DEAD 261 / 0 277 / 0	SOIL - 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.39 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX MEMB. FR-TO A- B B- C C- D D- E E- F G- F	O R D S C FACTORED FORCE (LBS) 0 / 28 0 / 18 -1207 / 0 -996 / 0 -996 / 0 -1026 / 0	-91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.8 -91.6 0.0 0.0	CSI (LC) 3 0.12 (1) 3 0.21 (1) 3 0.24 (1) 3 0.55 (1) 3 0.56 (1) 0 0.45 (1)	10.00 10.00 5.54 5.39 5.39	MEME FR-TC C- J J- D D- H H- E H- F	(LBS)	MAX CSI (LC) 0.07 (1) 0.06 (4) 0.10 (1) 0.25 (1) 0.29 (1) 0.57 (1)	
K-B	-266 / 0	0.0 0.0		7.81	0	143170	0.57 (1)	
K- J J- I I- H H- G	0 / 1212 0 / 1068 0 / 1068 0 / 0							

SPEC	IFIED	LOA	os:		
TOP	CH.	LL	=	25.6	PSF
		DŁ	=	6.0	PSF
BOT	CH.	LL		0.0	PSF
		DL	=	7.4	PSF
TOTA	1 10	۸n	_	00.0	000

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.65")
CALCULATED VERT. DEFL.(LL) = L/999 (0.04")
ALLOWABLE DEFL.(TL) = L/360 (0.65")
CALCULATED VERT. DEFL.(TL) = L/999 (0.15")

CSI: TC=0.56/1.00 (E-F:1) , BC=0.34/1.00 (H-J:4) , WB=0.57/1.00 (C-K:1) , SSI=0.26/1.00 (E-F:1)

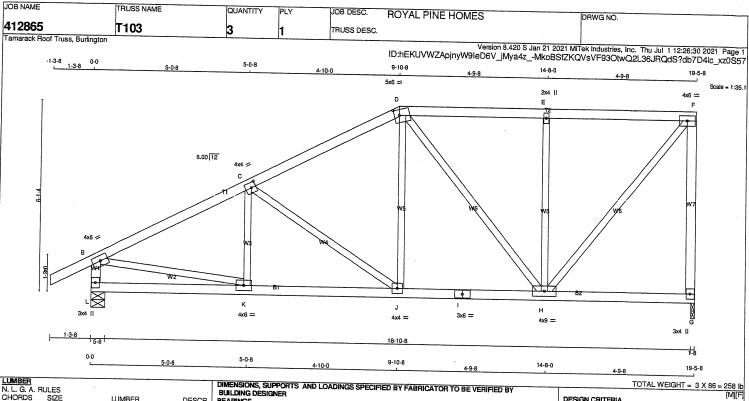
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches


RECEIVED

jocelyn.aguilar

E OF ONT ARIO PON Structural component only DWG# T-2121208

PROFESSIONAL ENGLISH OF LAND AND ADDRESS TO THE PROFESSIONAL ENGLISH OF LAND AND ADDRESS TO THE PROFESSIONAL ENGLISH OF LAND AND ADDRESS TO THE PROFESSIONAL ENGLISH OF LAND ADDRESS TO THE PROFESSION ADDRESS TO

PLATE ROTATION TOL 3 5.0 Deg.

PL	PLATES (table is in inches)									
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW-t	MT20	4.0	6.0						
С	TMWW-t	MT20	4.0	4.0	2.00	1.75				
D	TTWW-m	MT20	5.0	6.0	2.25	2.00				
E	TMW+w	MT20	2.0	4.0						
F	TMVW-t	MT20	4.0	6.0						
G	BMV1+p	MT20	3.0	4.0						
Н	BMWWW-t	MT20	4.0	9.0						
1	BS-t	MT20	3.0	6.0						
J	BMWW-t	MT20	4.0	4.0						
K	BMWW-t	MT20	4.0	6.0	,					
L	BMV1+p	MT20	3.0	4.0						

DRY: SEASONED LUMBER

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
BEARINGS	

BEA	RINGS				
JT G L	FACTO GROSS RI VERT 1073 1197	MAXIMUI GROSS I DOWN 1073 1197		INPUT BRG IN-SX 1-8 5-8	REQRD BRG IN-SX 1-8 5-8

1.	UNF	ACTORED RE	ACTIONS					
1	JT	1ST LCASE	100 0 000		NENT REACTION	VS.		
П		COMBINED 759	SNOW 498 / 0	LIVE 0/0	PERM.LIVE	WIND	DEAD	SOIL
1	Ĺ	844	567 / 0	0/0	0/0 0/0	0/0	261 / 0 277 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, L

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.17 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4

	HORDS X. FACTORED FORCE (LBS)		AD LC _F)		MAX. UNBRAC		MAX. FACTO	DRED MAX CSI (LC)
A-B B-C C-E E-F G-F L-B	0 / 28 -1400 / 0 -1030 / 0 -720 / 0 -720 / 0 -1035 / 0 -1157 / 0	FROM -91.8 -91.8 -91.8 -91.8 -91.8 0.0	-91.8 -91.8 -91.8 -91.8 -91.8	0.31 (1) 0.29 (1) 0.27 (1)	5.17 5.83 6.25 6.25 7.72	FR-TO K-C-J D-H-E-F H-B-K	-118 / 43 -454 / 0 0 / 343 -292 / 0 -543 / 0 0 / 1126 0 / 1291	0.03 (1) 0.28 (1) 0.08 (1) 0.32 (1) 0.32 (1) 0.25 (1) 0.29 (1)
L- K K- J J- I I- H H- G	0 / 0 0 / 1273 0 / 905 0 / 905 0 / 0	-18.5 -18.5 -18.5 -18.5 -18.5	-18.5	0.25 (1) 0.19 (1) 0.19 (1)	10.00 10.00 10.00 10.00 10.00			

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	25.6	PSF
			=	6.0	PSF
BOT	CH.	LL	=	0.0	PSF
		DL	=	7.4	PSF
TOTA	L LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL)= L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL)= L/999 (0.07")

CSI: TC=0.75/1.00 (F-G:1) , BC=0.25/1.00 (J-K:1) , WB=0.32/1.00 (E-H:1) , SSI=0.21/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

| NAIL VALUES | VALUE

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg. BUIL DISI GRIP= 0.87 (F) (INPUT = 0.90)
JSI METAL= 0.35 (B) (INPUT = 1.00)

ECEIVED ocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T104 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:31 2021 Page 1 ID:hEKUVWZApjnyW9IeD6V_jMya4z_-qwMaf_ayBo_MtJeaRdxHuHfYnqxOk?LHSkVAWNz0S56 1-3-8 0-0 6-0-8 11-10-8 15-7-8 5-10-0 19-5-8 3-10-0 4x4 = 3x4 II Scale = 1:39.2 D 6.00 12 4x4 🗲 4v6 == 3x4 II 4x9 == 1-3-8 18-10-8 0.0 6-0-8 11-10-8 5-10-0 19-5-8 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY TOTAL WEIGHT = 3 X 87 = 260 lb

LUMBER N. L. G. A. R CHORDS A - D D - F G - F K - B K - I I - G	ULES SIZE 2x4 2x4 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

ĺ	PL	ATES (table)	is in inches)				
١	JT	TYPE	PLATES	W	LEN	Υ	Х
	В	TMVW-t	MT20	4.0	6.0		
	С	TMWW-t	MT20	4.0	4.0	2.00	1.75
١	D	TTW-m	MT20	4.0	4.0		
ł	Е	TMWW-t	MT20	4.0	4.0		
ĺ	F	TMV+p	MT20	3.0	4.0		
l	G	BMVW1-t	MT20	4.0	4.0		
l	Н	BMWWW-t	MT20	4.0	9.0		
l	1	BS-t	MT20	3.0	6.0		
	J	BMWW-t	MT20	4.0	6.0		
	K	BMV1+p	MT20	3.0	4.0		

BEA	RINGS				
JT G K	FACTO GROSS R VERT 1073 1197	MAXIMU GROSS DOWN 1073 1197	M FACTO REACTION HORZ 0 0	INPUT BRG IN-SX 1-8 5-8	REQRD BRG IN-SX 1-8 5-8

UNFACTORED REACTIONS
1ST LCASE MAX
JT COMBINED SNOW ../MIN. COMPONENT REACTIONS
LIVE PERM.LIVE ___MAX JT G K WIND DEAD SOIL 759 498 / 0 0/0 0/0 0/0 261 / 0 844 567 / 0 0/0 277 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K

TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.99 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-G.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E	EBS	
	X. FACTORED	FACTO					MAX. FACTO	RED
MEMB.		VERT. LC	AD LC:	MAX 1	MAX.	MEMB		MAX
l	(LBS)	(PL	.F)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO	. , ,	LENGTH		(200)	OSI (LU)
A-B	0 / 28	-91.8	-91.8	0.12(1)		J- C	-70 / 66	0.00(4)
B-C	-1384 / 0	-91.8	-91.8	0.45 (1)		C- H	-629 / 0	0.02 (4)
C-D	-855 / 0	-91.8	-91.8	0.42 (1)		H- D		0.61 (1)
D-E	-738 / 0	-91.8	-91.8	0.17 (1)		H- E	0/69	0.02 (4)
E-F	0/0	-91.8	-91.8	0.22 (1)			0/512	0.12(1)
G-F	-134 / 0	0.0	0.0	0.03 (1)	6.25			0.41(1)
K-B	-1148 / 0	0.0	0.0			B- J	0 / 1276	0.29 (1)
		0.0	0.0	0.12 (1)	7.42			
K-J	0/0	-18.5	40.5	04444				
J-1				0.14 (4)	10.00			
	0 / 1264	-18.5	-18.5	0.33(1)	10.00			
I- H	0 / 1264	-18.5	-18.5	0.33 (1)	10.00			
H-G	0 / 496	-18.5		0.26 (4)	10.00			

-18.5 -18.5 0.26 (4) 10.00

DESIGN CRITERIA

SPEC	IFIED	LOAI	os:		
TOP	CH.	LL	=	25.6	PSF
		DL		6.0	PSF
BOT	CH.		=	0.0	PSF
		DL	==	7.4	PSF
TOTA	L LO	AD	=	39.0	PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL(LL)= L/360 (0.65")
CALCULATED VERT. DEFL(LL) = L/999 (0.04")
ALLOWABLE DEFL(TL)= L/360 (0.65")
CALCULATED VERT. DEFL(TL) = L/999 (0.11")

CSI: TC=0.45/1.00 (B-C:1) , BC=0.33/1.00 (H-J:1) , WB=0.61/1.00 (C-H:1) , SSI=0.24/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg. **CITY OF** BUIL JSI GRIP=0.74 (J) (INPUT = 0.90) JSI METAL= 0.37 (I) (INPUT = 1.00)

ECEIVED ocelyn.aguilar

JOB NAME TRUSS NAME JOB DESC. QUANTITY **ROYAL PINE HOMES** DRWG NO. 412865 T104X TRUSS DESC amarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MTek Industries, Inc. Thu Jul 1 12:26:32 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-I7wytKbay66DVTDm?LSWQUBkjDEHTPJQhOEj2pz0S55 -1-3-8 0-0 1-3-8 6-0-8 11-10-8 15-7-8 19-5-8 444 = 3x4 || 4x4 = 6.00 12 4x4 = 3x6 = 5-8 0-0 6-0-8 11-10-8 5-10-0 19-5-8 7-7-0 TOTAL WEIGHT = 88 II

LUMBER N. L. G. A. F CHORDS A - D D - F G - F	SIZE 2x4 2x4	DRY DRY DRY	LUMBER No.2 No.2	DESCR. SPF SPF
G - F K - B A - I I - G	2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY	No.2 No.2 No.2 No.2 No.2	SPF SPF SPF SPF SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	х
Α	TBM1-m	MT20	4.0	4.0		Edge
В	TMVW-t	MT20	4.0	4.0	2.00	1.25
С	TMWW-t	MT20	4.0	4.0	2.00	1.75
D	TTW-m	MT20	4.0	4.0		
E	TMWW-t	MT20	4.0	4.0		
F	TMV+p	MT20	3.0	4.0		
G	BMVW1-t	MT20	4.0	4.0		
Н	BMWWW-t	MT20	4.0	9.0		
1	BS-t	MT20	3.0	6.0		
J	BMWW-t	MT20	4.0	4.0		
K	BMV+p	MT20	3.0	4.0		

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

GHOSS REACTION GROSS REACTION BRG	
A 1151 0 1151 0 0 5-8 5	REQRD BRG IN-SX 5-8 1-8

UNFACTORED REACTIONS

-	1ST LCASE	MAX.		NENT REACTION	NS		
JT A G	COMBINED 814 814	SNOW 534 / 0 534 / 0	0/0 0/0	PERM.LIVE 0/0 0/0	WIND 0/0 0/0	DEAD 280 / 0 280 / 0	SOIL 0 / 0 0 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) A, G

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.24 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERAULY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, E-G.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS					W E	BS	
MEMB.	C. FACTORED	FACTO					MAX. FACTO	RED
IVICIVID.	FORCE (LBS)	VERT. LO			MAX.	MEMB		MAX
FR-TO	(LD3)	(PL FROM		CSI (LC)			(LBS)	CSI (LC)
A-M	-2504 / 0	-91.8	-91.8	0.16 (1)	LENGTH 4.24			
M-B	-2072 / 0	-91.8	-91.8	0.17 (1)		J- C C- H	0 / 169 -846 / 0	0.05 (4)
B-C	-1693 / 0	-9 1.8	-91.8	0.44 (1)		H- D	0 / 84	0.82 (1) 0.03 (4)
C-D	-947 / 0	-91.8	-91.8	0.40(1)		H- E	0 / 601	0.03 (4)
D-E	-823 / 0	-91.8	-91.8	0.17(1)	6.25	E-G	-1101/0	0.44 (1)
E-F G-F	0 / 0 -134 / 0	-91.8	-91.8	0.22 (1)	10.00	B-J	-335 / 0	0.21 (1)
K-B	-100 / 62	0.0 0.0	0.0	0.03 (1)	6.25	L- M	0 / 721	0.00 (1)
	100 / 02	0.0	0.0	0.02 (4)	7.81			
A-L	0 / 1862	-18.5	-18.5	0.48 (1)	10.00			
L-K	0 / 1862	-18.5	-18.5	0.48 (1)	10.00			
K- J	0 / 1862	-18.5	-18.5	0.42(1)	10.00			
J- I I- H	0 / 1531	-18.5	-18.5	0.37 (1)	10.00			
H-G	0 / 1531 0 / 540	-18.5		0.37 (1)	10.00			
	0 / 540	-18.5	-18.5	0.27 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = PSF PSF PSF TOP CH. 25.6 6.0 0.0 7.4 BOT CH. PSF PSF TOTAL LOAD 39.0

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.70")
CALCULATED VERT. DEFL.(LL) = L/999 (0.06")
ALLOWABLE DEFL.(TL)= L/360 (0.70")
CALCULATED VERT. DEFL.(TL) = L/999 (0.14")

CSI: TC=0.44/1.00 (B-C:1) , BC=0.48/1.00 (A-L:1) , WB=0.82/1.00 (C-H:1) , SSI=0.44/1.00 (A-L:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

LATE ROTATION TOL. = 5.0 Deg. TY OF RICHMOND HILL

JSI GRIP= 0.82 (A) (INPUT = 0.90)

BUIL DSIMETAL= 0.70 (A) (INPUT = 1.00)

ECEIVED ocelyn.aguilar

Per:

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T105 TRUSS DESC amarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MTek Industries, Inc. Thu Jul 1 12:26:33 2021 Page 1 ID:hEKUVWZApjnyW9IeD6V_jMya4z_-mJUK4gcCjQE36dozY2ziziksOdd1CzSZv2_HaGz0S54 1-3-8 0-0 13-10-8 19-5-8 4x6 == 6.00 12 3x6 / 4x6 = 3x4 || 0-0 13-10-8 19-5-8 6-10-0 TOTAL WEIGHT = 11 X 86 = 948 II

1			L						
LUMBER									
N. L. G. A. F CHORDS	RULES		LUMBER	2500					
A - D D - E E - F G - F K - B	2x4 2x4 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY DRY	No.2 No.2 No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF					
1 - G	2x4	DRY	No.2	SPF					
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF					
DRY: SEASO	DRY: SEASONED LUMBER.								

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	X
В	TMVW-t	MT20	4.0	6.0		
C	TMWW-t	MT20	4.0	4.0	2.00	1.75
D	TS-t	MT20	3.0	6.0		
Е	TTW-m	MT20	4.0	4.0		
F	TMVW-t	MT20	4.0	6.0		
G	BMV1+p	MT20	3.0	4.0		
Н	BMWWW-t	MT20	4.0	9.0		
1	BS-t	MT20	3.0	6.0		
J	BMWW-t	MT20	4.0	6.0		
K	BMV1+p	MT20	3.0	4.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS				
Л G К	FACTO GROSS RI VERT 1073 1197	MAXIMUI GROSS I DOWN 1073 1197		INPUT BRG IN-SX 1-8 5-8	REQRD BRG IN-SX 1-8 5-8

	UNF	ACTORED RE	ACTIONS					
i		1ST LCASE	MAX.	MIN. COMPO	NENT REACTION	JS.		
	JT G K	COMBINED 759 844	SNOW 498 / 0 567 / 0	UVE 0/0	PERM.LIVE 0/0	WIND 0/0	DEAD 261 / 0	SOIL 0/0
	1	044	56770	0/0	0/0	0/0	277 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K

BRACING
TOP CHORD TO BE SHEATHED OR MAX, PURLIN SPACING = 4.69 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, C-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

MAX	ORDS X. FACTORED	FACTO	RED			WE	B S MAX, FACTO	iDED.
MEMB.	FORCE	VERT. LO	AD LC	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F)	CSI (LC)			(LBS)	CSI (LC)
FR-TO		FROM			LENGTH		(450)	OGI (LC)
A-B	0 / 28	-91.8	-91.8	0.12(1)		J- C	-8 / 113	0.04 (4)
B-C	-1355 / 0	-91.8	-91.8	0.64 (1)		C- H	-821 / 0	0.38 (1)
C-D	-649 / 0	-91.8	-91.8	0.58 (1)		H- E	-216 / 6	0.27 (1)
D-E	-649 / 0	-91.8	-91.8	0.58 (1)		H-F	0 / 951	0.27 (1)
E-F	-546 / 0	-91.8	-91.8	0.37 (1)		B- J	0 / 1252	0.28 (1)
G-F	-1034 / 0	0.0	0.0	0.31 (1)	6.18	- •	0. 1202	0.20 (1)
K-B	-1144/0	0.0	0.0	0.12 (1)	7.43			
K-J	0.10							
	0/0	-18.5		0.22 (4)	10.00			
J- I	0 / 1243	-18.5	-18.5	0.32 (4)	10.00			
I- H	0 / 1243	-18.5	-18.5	0.32 (4)	10.00			
H- G	0/0	-18.5	-18.5	0.15 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = SPECIFIED LOADS.

TOP CH. LL = :

DL =

BOT CH. LL =

DL =

TOTAL LOAD = 25.6 PSF 6.0 PSF 0.0 PSF 7.4 PSF 39.0 PSF

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL) = L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL) = L/999 (0.10")

CSI: TC=0.64/1.00 (B-C:1) , BC=0.32/1.00 (H-J:4) , WB=0.38/1.00 (C-H:1) , SSI=0.28/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOLH 5.0 Deg. BUILD JSI GRIP=0.84 (F; (INPUT = 0.90) JSI METAL= 0.41 (I) (INPUT = 1.00)

RECEIVED jocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T105X TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:34 2021 Page ID:hEKUVWZApjnyW9leD6V_jMya4z_-EV2iH0cqUjNwknN96mU_WvH1l1v_xOLj8ijq7iz0S53 ·1-3-8 1-3-8 7-0-8 7-0-8 19-5-8 6-10-0 6.00 12 4x4 = 5x8 == 5.8 0.0 7-0-8 13-10-8 6-10-0 19-5-8 TOTAL WEIGHT = 5 X 88 = 439 lb [M][F]

	LUMBER				
	N. L. G. A. F	RULES			
	CHORDS	SIZE		LUMBER	DESCR
	A - D	2x4	DRY	No.2	SPF
	D - E	2x4	DRY	No.2	SPF
	E-F	2x4	DRY	No.2	SPF
	G-F	2x4	DRY	No.2	SPF
	К-В	2x4	DRY	No.2	SPF
ı	A - 1	2x4	DRY	No.2	SPF
Į	1 - G	2x4	DRY	No.2	SPF
i					
į	ALL WEBS	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER.

	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
Α	TBM1-m	MT20	4.0	4.0		Edge					
В	TMVW+p	MT20	4.0	4.0	1.50	2.00					
С	TMWW-t	MT20	4.0	4.0	2.00	1.75					
D	TS-t	MT20	3.0	6.0							
E	TTW-m	MT20	4.0	4.0							
F	TMVW+p	MT20	4.0	6.0							
G	BMV1+p	MT20	3.0	4.0							
Н	BMWWW-t	MT20	5.0	8.0							
I	BS-t	MT20	3.0	6.0							
J	BMWW-t	MT20	4.0	4.0							
ĸ	BMV+p	MT20	3.0	4.0							

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	RINGS				
JT G A	FACTO GROSS R VERT 1151 1151	MAXIMU GROSS DOWN 1151 1151		INPUT BRG IN-SX 1-8 5-8	REQRD BRG IN-SX 1-8 5-8

UNFACTORED REACTIONS

_	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	vs.		
JT G	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
A	814 814	534 / 0 534 / 0	0/0	0/0	0/0	280 / 0	0/0
	014	JJ4 / U	0/0	0/0	0/0	280 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, A

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.13 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, C-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	IORDS					WE	BS	
	X. FACTORED	FACTO					MAX. FACTO	RED
MEMB.		VERT. LC		1 MAX	MAX.	MEMB.		MAX
	(LBS)	(Pl		CSI (LC)	UNBRAC		(LBS)	CSI (LC
FR-TO		FROM			LENGTH	FR-TO	,	(
A-M	-2641 / 0	-91.8		0.17(1)		J- C	0/214	0.06 (4)
M-B	-2142 / 0	-91.8		0.25 (1)			-1010 / 0	0.46 (1)
B-C	-1610 / 0	-91.8	-91.8			H-E	-196 / 15	0.25 (1)
C-D	-706 / 0	-91.8	-91.8	0.55 (1)	6.18	H-F	0 / 1045	0.24(1)
D-E	-706 / 0	-91.8	-91.8	0.55 (1)	6.18	B-J	-496 / 0	0.46 (1)
E-F	-600 / 0	-91.8	-91.8	0.37 (1)	6.25	L- M	0 / 845	0.00(1)
G-F	-1111 / 0	0.0	0.0	0.33(1)	6.01			0.00 (1)
K-B	-112 / 75	0.0	0.0	0.02 (4)	7.81			
A-L	0 / 1050	40.5	40.5					
L-K	0 / 1950	-18.5		0.53 (1)				
K-J	0 / 1950	-18.5		0.53 (1)	10.00			
J-1	0 / 1950			0.45 (1)	10.00			
J-1	0 / 1457							
H-G	0 / 1457	-18.5			10.00			
n- G	0/0	-18.5	-18.5	0.16 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS:									
TOP	CH.	LL =		PSF					
		DL =		PSF					
BOT	CH.	LL =	0.0	PSF					
		DL =	. ,	PSF					
TOTA	u io	AD -	. 20 n	DOE					

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.70")
CALCULATED VERT. DEFL.(LL)= L/999 (0.08")
ALLOWABLE DEFL.(TL)= L/360 (0.70")
CALCULATED VERT. DEFL.(TL)= L/999 (0.17")

CSI: TC=0.60/1.00 (B-C:1) , BC=0.53/1.00 (A-L:1) , WB=0.46/1.00 (C-H:1) , SSI=0.52/1.00 (A-L:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOLL # 5.0 Deg. BUILD JSI GRIP= 0.86 (A) (INPUT = 0.90)
JSI METAL= 0.74 (A) (INPUT = 1.00)

RECEIVED

jocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T106 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:35 2021 Page 1 ID:hEKUVWZApjnyW9IeD6V_jMya4z_-iic4VMdSF1VnMxyLgT?D27p8SRHEgoGsNMTNf8z0S52 8-0-8 7-10-0 4x6 || 6.00 12 3x4 II 3x6 = 18-10-8 0-0 8-0-8 15-10-8 7-10-0 LUMBER N I C A BUILES TOTAL WEIGHT = 3 X 91 = 272 lb [M][F NSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY **BUILDING DESIGNER** DESIGN CRITERIA SPECIFIED LOADS: TOP CH. 25.6

N. L. G. A. F	IULES								
CHORDS	SIZE		LUMBER	DESCR.					
A - D	2x4	DRY	No.2	SPF					
D - E	2x4	DRY	No.2	SPF					
E-F	2x4	DRY	No.2	SPF					
G-F	2x4	DRY	No.2	SPF					
K - B	2x4	DRY	No.2	SPF					
K - I	2x4	DRY	No.2	SPF					
I - G	2x4	DRY	No.2	SPF					
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF					
DRV SEASO	DRV-SEASONED LUMBER								

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMVW-t	MT20	4.0	6.0							
C	TMWW-t	MT20	4.0	4.0	2.00	1.75					
D	TS-t	MT20	3.0	8.0							
E	TTW-m	MT20	4.0	4.0							
F	TMVW+p	MT20	4.0	6.0							
G	BMV1+p	MT20	3.0	4.0							
Н	BMWWW-t	MT20	5.0	8.0							
1	BS-t	MT20	3.0	6.0							
J	BMWW-t	MT20	4.0	6.0							
K	BMV1+p	MT20	3.0	4.0							
1											

FACTORED GROSS REACTION JT VERT HORZ G 1073 0 K 1197 0	MAXIMU GROSS DOWN 1073 1197			INPUT BRG IN-SX 1-8 5-8	REQRD BRG IN-SX 1-8 5-8
--	---	--	--	-------------------------------------	-------------------------------------

UNFACTORED REACTIONS

	OOL LUAGE	IVIAX./I		VENT REACTION	VS.		
3	COMBINED	SNOW	LIVE	PERM.LIVE	WIND	DEAD	SOIL
GK	759	498 / 0	0/0	0/0	0/0	261 / 0	0/0
^	844	567 / 0	0/0	0/0	0/0	277 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, K

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.15 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, C-H, E-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

MAX	ORDS CFACTORED	FACTO				W E	BS MAX. FACTO	RED
MEMB.	FORCE	VERT. LO		MAX	MAX.	MEMB.		MAX
	(LBS)	(PL		CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH		(440)	001 (20)
A-B	0 / 28	-9 1.8	-91.8	0.12(1)	10.00	J- C	0 / 149	0.05 (4)
B- C	-1311 / 0	-91.8	-91.8	0.86 (1)			-1000/0	0.61 (1)
C-D	-439 / 0	-91.8		0.77 (1)		H-E	-255 / 0	0.14 (1)
D-E	-439 / 0	-9 1.8	-91.8	0.77 (1)		H-F	0 / 961	
E-F	-353 / 0	-91.8	-91.8	0.15 (1)		B-J	0 / 1214	0.22 (1) 0.27 (1)
G-F	-1057 / 0	0.0	0.0	0.41 (1)	6.13		0 / 1214	0.27 (1)
K-B	-1138 / 0	0.0	0.0	0.11 (1)	7.45			
K- J	0/0	-18.5	-18.5	0.30 (4)	10.00			
J- i	0 / 1208	-18.5		0.40 (4)	10.00			
I- H	0 / 1208	-18.5	-18.5	0.40 (4)	10.00			
H- G	0/0	-18.5	-18.5	0.15 (4)	10.00			

LL = DL = LL = DL = AD = PSF PSF PSF 6.0 0.0 7.4

SPACING = 24.0 IN. C/C

TOTAL LOAD

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14

LIVE LOAD

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.65")
CALCULATED VERT. DEFL.(LL) = L/999 (0.05")
ALLOWABLE DEFL.(TL)= L/360 (0.65")
CALCULATED VERT. DEFL.(TL) = L/999 (0.14")

CSI: TC=0.86/1.00 (B-C:1) , BC=0.40/1.00 (H-J:4) , WB=0.61/1.00 (C-H:1) , SSI=0.32/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. # 5.0 Deg. **CITY OF**

BUILD USI GRIP 0.83 (H) (INPUT = 0.90)
JSI METAL= 0.49 (I) (INPUT = 1.00)

RECEIVED jocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY JOB DESC. ROYAL PINE HOMES DRWG NO. 412865 T106X TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:35 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-iic4VMdSF1VnMxyLgT?D27p9lRFvgjKsNMTNf8z0S52 -1-3-8 1-3-8 15-10-8 19-5-8 4x6 II 6.00 12 D 4x4 = 5v8 == 3x4 II 20-3-8 拙 8-0-8 15-10-8

LUMBER N. L. G. A. F OC C - E E - F G - F A - I I - G ALL WEBS DRY: SEASO	SIZE 2x4 2x4 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF SPF

PLATES (table is in inches)									
	JT	TYPE	PLATES	W	LEN	Υ	x		
	Α	TBMH1-m	MT20	3.0	8.0	1.75	Edge		
	В	TMWW-t	MT20	4.0	4.0	2.00	1.75		
į	С	TS-t	MT20	3.0	8.0				
	D	TMWW-t	MT20	4.0	4.0	2.00	1.75		
	Ε	TTW-m	MT20	4.0	4.0				
	F	TMVW+p	MT20	4.0	6.0				
	G	BMV1+p	MT20	.3.0	4.0				
	Н	BMWWW-t	MT20	5.0	8.0	2.25	4.00		
	1	BS-t	MT20	3.0	6.0				
	J	BMWW-t	MT20	4.0	4.0				
	K	BMW+w	MT20	2.0	4.0				

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

7-10-0

JT G A	FACTO GROSS R VERT 1151 1151	MAXIMU GROSS DOWN 1151 1151		INPUT BRG IN-SX 1-8 5-8	REQRD BRG IN-SX 1-8 5-8	HEEL WEDGE 2x4 L

UNFAC	TORED	REACTIONS

rr	1ST LCASE	MAX./I	MAX./MIN. COMPONENT REACTIONS							
G A	814 814	SNOW 534 / 0 534 / 0	0/0 0/0	PERM.LIVE 0/0 0/0	WIND 0/0 0/0	DEAD 280 / 0 280 / 0	SOIL 0/0 0/0			

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, A

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 4.24 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

1 LATERAL BRACE(S) AT 1/2 LENGTH OF F-G, D-H, E-H.

END VERTICAL(S) MUST BE SHEATHED OR HAVE BRACES AS INDICATED IN THE MAX. UNBRACED LENGTH COLUMN OF THE TABLE BELOW

LOADING TOTAL LOAD CASES: (4)

	ORDS					\// E	BS		
	K. FACTORED	FACTO	RED			** L	MAX. FACTO	DED	
MEMB.		VERT. LO	AD LC	1 MAX	MAX.	MEMB.		MAX	
	(LBS)		-F)	CSI (LC)			(LBS)	CSI (LC)	
FR-TO		FROM	TO		LENGTH	FR-TO	(120)	001 (20)	
A-M	-2452 / 0	-91.8	-91.8	0.15(1)		J- D	0 / 254	0.07 (4)	
M-B	-2188 / 0	-91.8	-91.8	0.34 (1)	4.27	D- H	-1163 / 0	0.71 (1)	
B-C	-1519 / 0	- 9 1.8	-91.8	0.77 (1)	4.24	H- E	-250 / 0	0.13 (1)	
C-D	-1519 / 0	-91.8	-91.8	0.77 (1)	4.24		0 / 1044	0.23 (1)	
D-E	-468 / 0	- 9 1.8	-91.8	0.72 (1)	6.25	K-B	-171 / 94	0.03 (4)	
E-F	-383 / 0	-91.8	-91.8	0.15(1)	6.25	B- J	-674 / 0	0.93 (1)	
G-F	-1134 / 0	0.0	0.0	0.44 (1)	5.97	L- M	0 / 486	0.00 (1)	
A-L	0 / 2047	-18.5	10.5	0.55 (4)				0.00 (1)	
L-K	0 / 2047	-18.5		0.55 (1)	10.00				
K-J	0 / 2047	-18.5	-18.5	0.55 (1)	10.00				
J- I	0 / 1377	-18.5		0.51 (1)	10.00				
I- H	0 / 1377	-18.5		0.40 (1)	10.00				
H- G	0/13//	-18.5		0.40 (1)	10.00				
	0,0	-10.0	-10.5	0.16 (4)	10.00				

DESIGN CRITERIA

SPECIFIED LOADS: LL = DL = LL = DL = AD = 25.6 PSF 6.0 PSF 0.0 PSF 7.4 PSF 39.0 PSF BOT CH. TOTAL LOAD

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

TOTAL WEIGHT = 93 II

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) CSA 086-14

- TPIC 2014

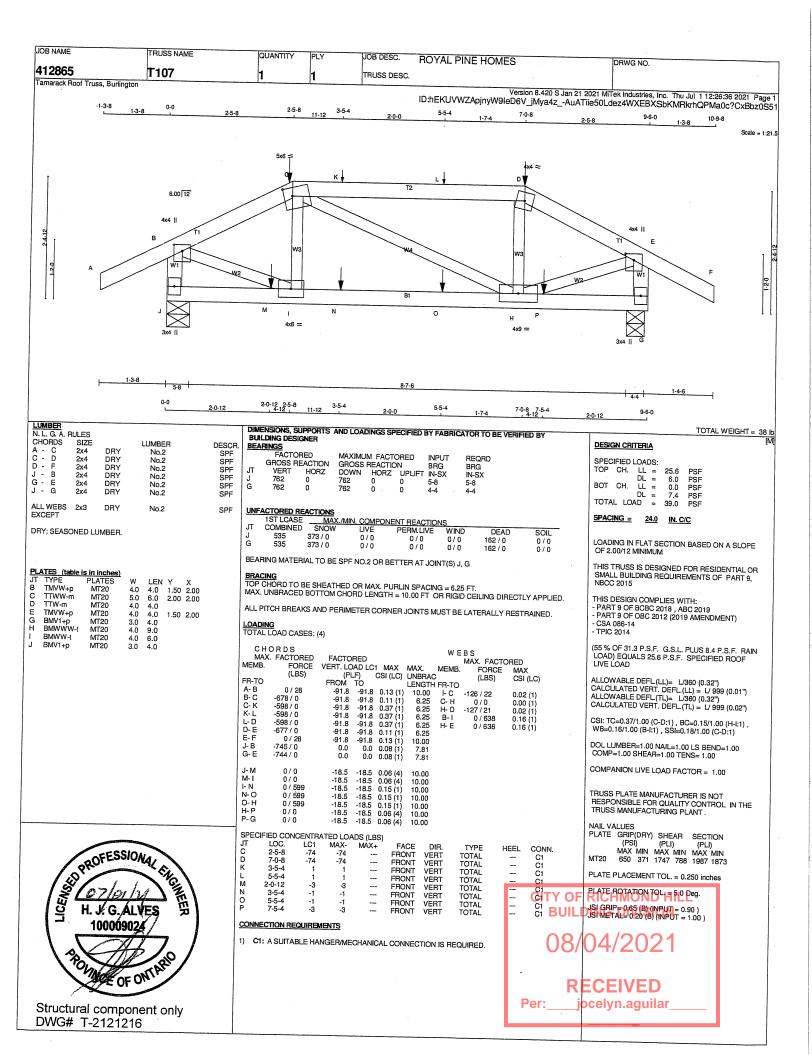
(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.70")
CALCULATED VERT. DEFL.(LL)= L/999 (0.09")
ALLOWABLE DEFL.(TL)= L/360 (0.70")
CALCULATED VERT. DEFL.(TL)= L/999 (0.21")

CSI: TC=0.77/1.00 (B-D:1) , BC=0.55/1.00 (A-L:1) , WB=0.93/1.00 (B-J:1) , SSI=0.31/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

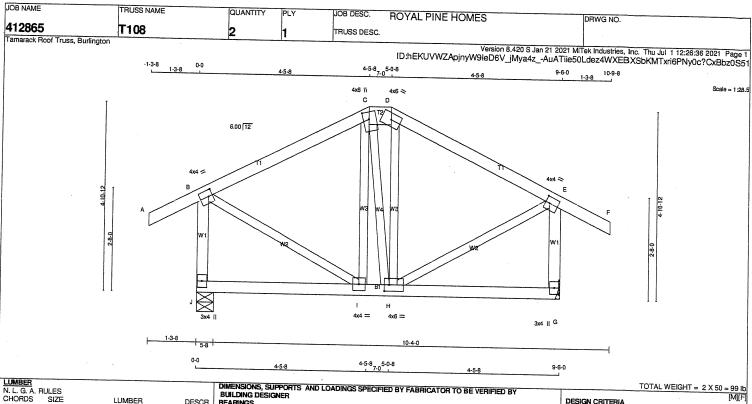

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOLH 5.0 Deg. **CITY OF**

RECEIVED jocelyn.aguilar

LUMBER N. L. G. A. F CHORDS A - C C - D D - F J - B G - E J - G ALL WEBS	SULES SIZE 2x4 2x6 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF SPF
EXCEPT	2X3	DHY	No.2	SPF

DRY: SEASONED LUMBER.

PL	ATES (table i	s in inches)				
JT	TYPE	PLATES	W	LEN	Υ	Χ
В	TMVW-t	MT20	4.0	4.0	2.00	1.25
С	TTWW+m	MT20	4.0	6.0	2.25	1.75
D	TTW-h	MT20	4.0	6.0		
Ε	TMVW-t	MT20	4.0	4.0	2.00	1.25
G	BMV1+p	MT20	3.0	4.0		
Н	BMWWW-t	MT20	4.0	6.0	2.00	1.50
1	BMWW-t	MT20	4.0	4.0		
J	BMV1+p	MT20	3.0	4.0		

BEA	RINGS				
JT J G	FACTO GROSS R VERT 648 648	MAXIMU GROSS DOWN 648 648	UPLIFT 0	INPUT BRG IN-SX 5-8 MECHANI	REQRE BRG IN-SX 5-8 CAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 1-8.

ı	UNFACTORED REA	ACTIONS
	1ST LCASE	MAX./MI

_	ISTLUASE	MAX./N	<u> MN. COMPO</u>	NENT REACTION	vs.		
JT J	COMBINED 456 456	SNOW 312 / 0 312 / 0	0/0 0/0	PERM.LIVE 0/0 0/0	WIND 0/0 0/0	DEAD 144 / 0 144 / 0	SOIL 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

TO THE LOND CASES	: (4)
CHORDS	

	PRDS FACTORED FORCE (LBS)	FACTO VERT. LC	AD LC _F)		MAX. UNBRAC	MEMB.	B S MAX. FACTO FORCE (LBS)	PRED MAX CSI (LC)
A-B	0 / 28	FROM -91.8	TO -91.8	0.12 (1)	LENGTH 10.00			
B- C	-309 / 0	-91.8	-91.8	0.23 (1)		1- C H- D	-88 / 7 -96 / 7	0.03 (1) 0.03 (1)
C-D D-E	-278 / 0 -307 / 0	-91.8 -91.8	-91.8 -91.8	0.00 (1) 0.23 (1)		B-1	0/315	0.07 (1)
E-F	0 / 28	-91.8	-91.8	0.12 (1)	6.25 10.00	H- E C- H	0/314 -7/0	0.07 (1) 0.00 (1)
J-B G-E	-615 / 0 -614 / 0	0.0 0.0	0.0	0.09 (1)	7.81		•	0.00 (1)
		0.0	0.0	0.09 (1)	7.81			
J- I I- H	0 / 0 0 / 279	-18.5 -18.5	-18.5 -18.5	0.08 (4) 0.10 (4)	10.00 10.00			
H- G	0/0	-18.5	-18.5	0.08 (4)	10.00			

SPACING = 24.0 IN. C/C

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.23/1.00 (B-C:1) , BC=0.10/1.00 (H-I:4) , WB=0.07/1.00 (B-I:1) , SSI=0.14/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

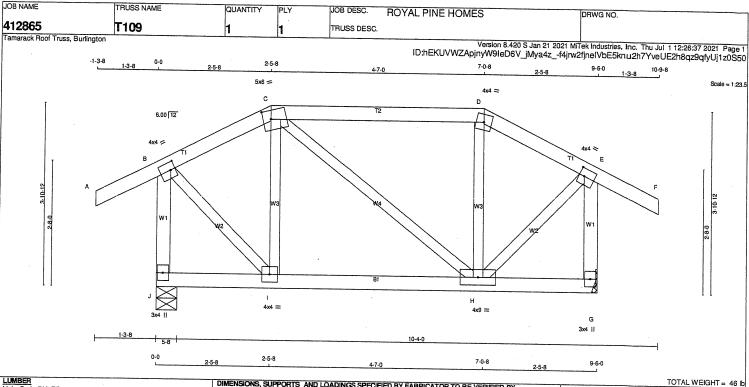

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL = 5.0 Deg. CITY OF BUIL USI METAL= 0.45 (B) (INPUT = 0.90)

ECEIVED ocelyn.aguilar

LUMBER				
N. L. G. A. F	RULES			
CHORDS A - C C - D D - F J - B G - E J - G ALL WEBS	SIZE 2x4 2x4 2x4 2x4 2x4 2x4 2x4 2x4	DRY DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF SPF
EXCEPT				

DRY: SEASONED LUMBER.

PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMVW-t	MT20	4.0	4.0	2.00	1.25				
С	TTWW-m	MT20	5.0	6.0	2.25	2.00				
D	TTW-m	MT20	4.0	4.0						
Ε	TMVW-t	MT20	4.0	4.0	2.00	1.25				
G	BMV1+p	MT20	3.0	4.0						
Н	BMWWW-t	MT20	4.0	9.0						
ŧ	BMWW-t	MT20	4.0	4.0						
J	BMV1+p	MT20	3.0	4.0						

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

	RINGS	CHER				
JT J G	FACTO GROSS R VERT 648 648		MAXIMU GROSS DOWN 648 648		INPUT BRG IN-SX 5-8 MECHAN	REQRD BRG IN-SX 5-8 IICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G \thickapprox 1-8.

UNF	ACTORED RE						
۱ ــ	1ST LCASE	77.07.71.117.11	IIN. COMPO	NENT REACTION	NS		
G J	456 456	SNOW 312/0 312/0	0/0 0/0	PERM.LIVE 0 / 0 0 / 0	WIND 0/0 0/0	DEAD 144 / 0 144 / 0	SOIL 0/0 0/0
BEA	RING MATER	IAL TO BE SP	PF NO.2 OR	BETTER AT JOIN	NT(S) J		

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

	ŧ								THE PROPERTY OF
	LOADING TOTAL L	3 OAD CASES:	(4)						
		PACTORED FORCE	FACTO	AD LC		MAX.	W E	MAX. FACTO	RED MAX
	FR-TO	(LBS)	(PL FROM	TÓ		UNBRAC		(LBS)	CSI (LC)
	A- B B- C	0 / 28 -311 / 0	-91.8 -91.8	-91.8 -91.8	0.12 (1) 0.07 (1)		I- C C- H	-183 / 0 0 / 0	0.04 (1) 0.00 (1)
Ì	C- D D- E	-272 / 0 -311 / 0	-91.8 -91.8	-91.8 -91.8	0.25 (1)		H- D B- I	-183 / 0 0 / 378	0.04 (1)
I	E-F J-B	0 / 28 -633 / 0	-91.8 0.0	-91.8 0.0	0.12 (1) 0.09 (1)	10.00	H- E	0/377	0.08 (1)
l	G-E	-632 / 0	0.0	0.0	0.09 (1)				
	J- I I- H H- G	0 / 0 0 / 273 0 / 0		-18.5 -18.5 -18.5	0.06 (4) 0.08 (4) 0.06 (4)	10.00			

TOTAL WEIGHT = 46 IL

DESIGN CRITERIA									
SPECIFIED	LOADS:								
TOP CH.	LL =	25.6	PSF						
	DL =	6.0	PSF						
BOT CH.	LL =	0.0	PSF						
	DL =	7.4	PSF						
TOTAL LO	AD =	39.0	PŚF						

SPACING =

- TPIC 2014

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.25/1.00 (C-D:1) , BC=0.08/1.00 (H-I:4) , WB=0.09/1.00 (B-I:1) , SSI=0.16/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

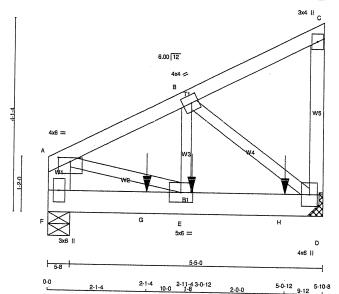
COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg. **CITY OF** BUILD JSI GRIP= 0.52 (B) (INPUT = 0.90)
JSI METAL= 0.14 (B) (INPUT = 1.00)

RECEIVED jocelyn.aguilar



JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T110 TRUSS DESC. Tamarack Roof Truss, Burlington

Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:38 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-7HHD70fLYytMD0gwLbZwglRs9eM2tGvJ3Jh1GTz0S5?

0-0 2-11-4 2-11-4

Scale = 1:23.4

LUMBER N. L. G. A. RULES CHORDS SIZE LUMBER DESCR. SPF - C 2x4 2x4 DRY DRY A - C D - C F - A F - D No.2 No.2 2x6 DRY SPF 2x6 ALL WEBS 2x3 DRY No.2 EXCEPT

DRY: SEASONED LUMBER.

DESIGN CONSISTS OF 2 TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE LOAD(PLF) SPACING (IN TOP CHORDS: (0.122"X3") SPIRAL NAILS A-C C-D F-A 12 12 TOP TOP TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(183.1) WEBS : (0.122"X3") SPIRAL NAILS 2x3

NAILS TO BE DRIVEN FROM ONE SIDE ONLY.


GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP.

PLATES (table is in inc

JT	TYPE	PLATES	W	LEN	Υ	Х	
Α	TMVW-p	MT20	4.0	6.0	1.00	3.00	
В	TMWW-t	MT20	4.0	4.0	2.00	1.75	
С	TMV+p	MT20	3.0	4 0			

Structural component only DWG# T-2121219 1/2-

DIMENCIONIC CUIDOCOTTO	AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY
DIMENSIONS, SUPPORTS	AND LOADINGS SPECIFIED BY FARRICATOR TO BE VERIEUS BY
DISCOUNTED	TO BE VENIFIED BY
BUILDING DESIGNER	
DEADNICO	
READINGS	

BEA	RINGS				
JT D F	FACTO GROSS R VERT 1408 1130	MAXIMU GROSS DOWN 1408 1130		INPUT BRG IN-SX MECHAN 5-8	REQRD BRG IN-SX ICAL 5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 4-0.

UNFACTORED REACTIONS

-	1ST LCASE		N. COMPO	NENT REACTION	VS.		
JT D F	989 794	SNOW 688 / 0 550 / 0	0/0 0/0	PERM.LIVE 0/0 0/0	WIND 0/0 0/0	DEAD 301 / 0 244 / 0	SOIL 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS X. FACTO		FACTO VERT. LC		MAX	MAX.	W MEME	EBS MAX. FA		
	(LI	BS)	(PL		CSI (LC)	UNBRAC		I. FOR(MAX SI(LC)
FR-TO			FROM		()	LENGTH) (200	, .	SI (LC)
A-B	-1250 /		-91.8	-91.8			E-B	0 / 110	0.0	.14 (1)
B- C D- C	-11/0		- 9 1.8	-91.8	0.05 (1)	6.25		-1419/0		.17 (1)
F- A	-110 / (-971 / (0.0		0.01 (1)		A-E	0 / 116	6 0.	.14 (1)
1 - 74	-5/1/1	,	0.0	0.0	0.03 (1)	7.81				
F-G	0/0)	-18.5	-185	0.11 (1)	10.00				
G-E	0/0)	-18.5		0.11 (1)	10.00				
E-H		1128	-18.5		0.20 (1)	10.00				
H- D	0 / 1	1128	-18.5	-18.5	0.20 (1)	10.00				
SPECIF	FIED CON	CENTR	ATEDIO	ADS // E	161					
JT	LOC.	LC1	MAX-	MAX.		CE E	OIR.	TVDE		
E	3-0-12	-441	-441				RT	TYPE TOTAL	HEE	
	2-1-4	-441	-441				RT	TOTAL		C1
Н	5-0-12	-443	-443				RT	TOTAL		C1
										01

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL =

DL =

BOT CH. LL = 25.6 PSF PSF PSF 6.0 0.0 7.4 TOTAL LOAD 39.0

24.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

TOTAL WEIGHT = 2 X 29 = 58 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.06/1.00 (A-B:1) , BC=0.20/1.00 (D-E:1) , WB=0.17/1.00 (B-D:1) , SSI=0.17/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00

COMPANION LIVE LOAD FACTOR = 1.00

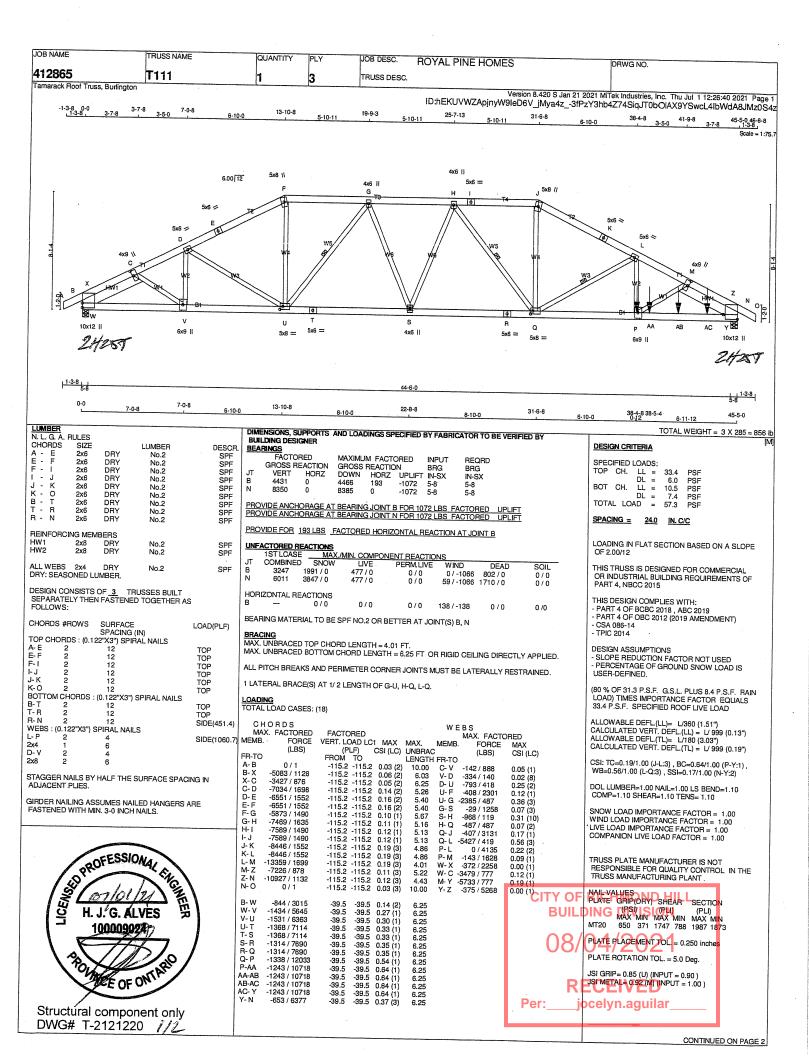
AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.


HSI METAL 0.25 (D) (INPUT + 1.00) **CITY OF BUILDING DIVISION**

RECEIVED

jocelyn.aguilar

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY PLY	JOB DESC.	ROYAL PINE HOMES	IDDINO NO.
412865	T110	1 2	TRUSS DESC.		DRWG NO.
Tamarack Roof Truss, Burlington				Version 8.420 S Jan 21 202 ID:hEKUVWZApjnyW9IeD6V jMya4z -7HHD70	 1 MiTek Industries, Inc. Thu Jul 1 12:26:38 2021 Page 2 DfLYytMDOgwLbZwgIRs9eM2tGvJ3Jh1GTz0S5
PLATES (table is in inches) JT TYPE PLATES V	V JEN V V				g ===g://decimizavadam@12035;
JT TYPE PLATES V D BMVW1+p MT20 4 E BMWW-t MT20 5 F BMV1+p MT20 3	V LEN Y X .0 6.0 .0 6.0 .0 6.0				•
F BMV1+p MT20 3.	.0 6.0				
		·			
	·				
	·				
					-
					·
	•				
PROFESSIO.	NALE				
PROFESSIO PROFESSIO BY PROFESSIO 10000902				CITY OF R	ICHMOND HILL
H. J. G. AL	VES B			BUILDI	NG DIVISION
10000902				08/0	4/2021
3/1/				00/0	11/20/21
White of (MIAR			RF	CEIVED
					elyn.aguilar
DWG# T-2121219	ent only				
Structural compon DWG# T-2121215		·		RE	CEIVED

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOMES	DRWG NO.				
412865	T111	1	3	TRUSS DESC.		in a new				
Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:40 2021 Page 2 ID:hEKUVWZApinyW9leD6V jMya4z -3fPzY3hb4Z74SiqJT0bOlAX9YSwcL4lbWdA8JMz0S4z										

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

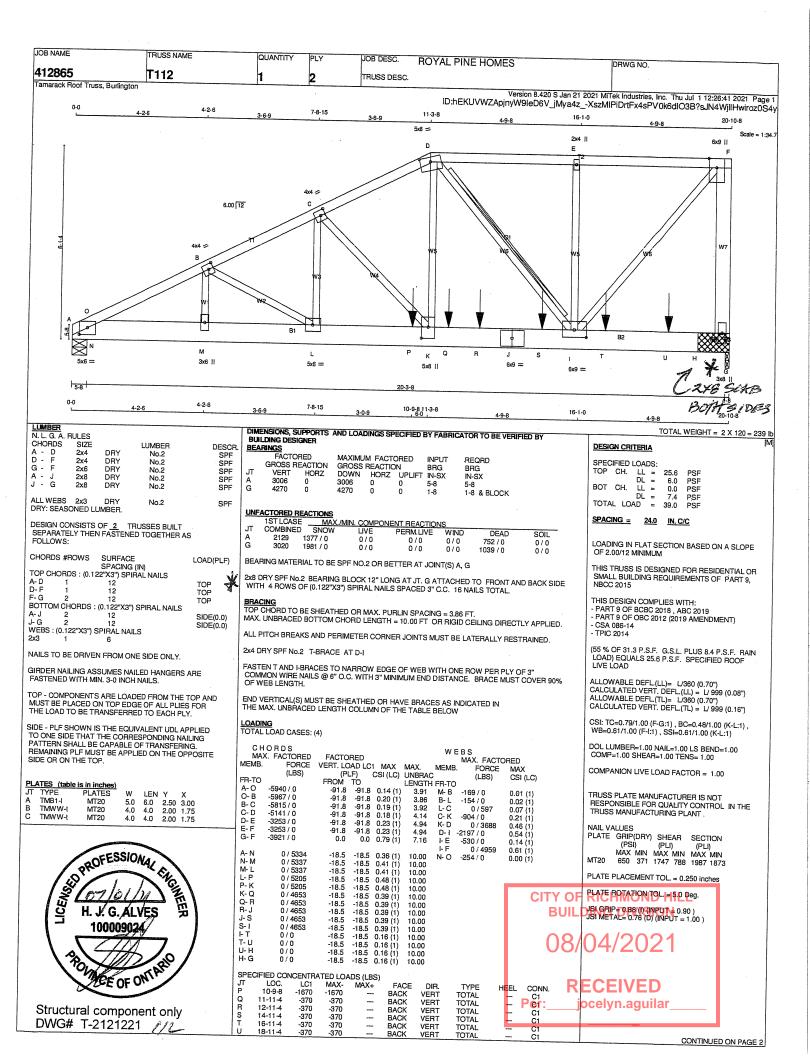
SPE	CIFIED COI	VCENTRA	TED LOA	NDS (LBS)					
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
P	38-5-4	-2896	-2896		BACK	VERT	TOTAL		C1
AA AB	39-3-12	-312	-312		BACK	VERT	TOTAL		C1
AC	41-3-12 43-3-12	-312	-312		BACK	VERT	TOTAL		C1
AU	43-3-12	-312	-312		BACK	VERT	TOTAL		C1

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (9.2) PSF AT (30-0-0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CpCg, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM). INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE.TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.


Structural component only DWG# T-2121220 MU

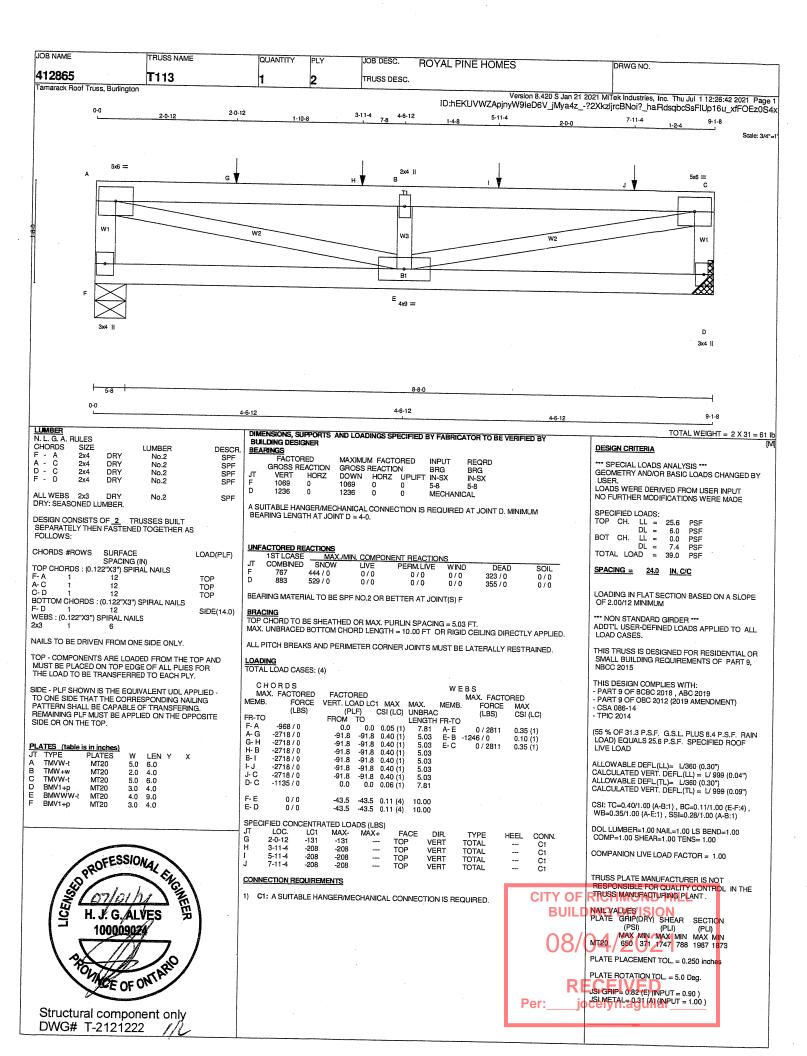
CITY OF RICHMOND HILL BUILDING DIVISION

08/04/2021

RECEIVED

Per:___jocelyn.aguilar

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC. ROYAL PINE HOMES		DRWG NO.	
412865	T112	1	2	TRUSS DESC.			
Tamarack Roof Truss, Burlin	ngton			Version 8.420 ID:hEKUVWZApjnyW9IeD6V	S Jan 21 20	21 MiTek Industries, Inc. Thu Ju	ul 1 12:26:41 2021 Page
BLATTO (1)			***************************************	ID:TIEROVWZADINYW9IeD6V	iMya4z -X	(szMIPiDrtFx4sPV0k6dIO3	B?sJN4WjllHwiroz0S4
PLATES (table is in inche JT TYPE PLATES D TTWW-m MT20	S) W LENY X						
E IMW+w MT20	2.0 4.0	CONNECTION					
F TMVW+p MT20 G BMV1+p MT20 I BMWWW-t MT20	6.0 9.0 Edge 3.0 8.0 6.0 9.0 2.75 4.50	1) C1: A SUF	TABLE HANGE	R/MECHANICAL CONNECTION IS REQUIRED.			
J BS-t MT20 K BMWW+t MT20	6.0 9.0 5.0 8.0 4.25 2.50					,	
L BMWW-t MT20 M BMW+w MT20	5.0 6.0 3.0 6.0						
Edge - INDICATES REFER	RENCE CORNER OF PLATE DRD.						
TOUCHES EDGE OF CHO	ORD.						
	•					•	
		į					
				•			
		1			1		


Structural component only DWG# T-2121221 1

CITY OF RICHMOND HILL BUILDING DIVISION

08/04/2021

RECEIVED

Per:____jocelyn.aguilar_

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T114 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:43 2021 Page 1 ID:hEKUVWZApjnyW9IeD6V_jMya4z_-TE56A5jUNUVfJ9Zu8995Np8g_f47YVI2DbPowhz0S4w Scale = 1:30.2 6.00 12 WE 4x4 = D 5-8 4-5-4 9-1-8 LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER TOTAL WEIGHT = 41 IL BUILDINGS BEARINGS FACTORED LUMBER DESCR. SPF SPF DESIGN CRITERIA DRY 2x4 No 2 REQRD 2x6 DRY DRY BRG SPF

N. L. G. A. RULES CHORDS SIZE A - C D - C - A 2x4 DRY No.2 SPF ALL WEBS DRY No.2 SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES LEN Y X 4.0 2.00 1.25 4.0 2.00 1.75 6.0 Edge 3.00 6.0 4.0 4.0 3.0 5.0 4.0 TMVW-TMW W-t MT20 TVM-p BMVW1-t MT20 MT20 MT20 BMWW-t 4.0 BMV1+p MT20 3.0

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

GROSS REACTION VERT HORZ VERT 503 IN-SX 503 0 503 5-8 5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT D. MINIMUM BEARING LENGTH AT JOINT D = 1-8.

UNFACTORED REACTIONS
1ST LCASE MA

MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND COMBINED DEAD SOIL 233 / 0 233 / 0 356 0/0 0/0 122 / 0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS	E. 070				WE	BS	
	. FACTORED	FACTO					MAX. FACTO	RED
MEMB.	FORCE	VERT. LO		1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC	3	(LBS)	CSI (LC)
FR-TO		FROM	TÓ	,	LENGTH		(200)	COI (LC)
A-B	-491 / 0	-91.8	-91.8	0.25 (1)		E- B	0 / 86	0.00.40
B- C	-22 / 0	-91.8		0.24 (1)		B- D		0.03 (4)
D-C	-166 / 0	0.0	0.0	0.07 (1)	7.81		-551 / 0	0.26 (1)
F- A	-471 / 0	0.0		0.07 (1)		A-E	0 / 469	0.11 (1)
	, 0	0.0	0.0	0.05 (1)	7.81			
F-E	0/0	10 5	105	0 4 4 44	40.00			
		-18.5		0.11 (4)	10.00			
E-D	0 / 460	-185	-125	D + 4 (4)	10.00			

PSF PSF PSF 6.0 0.0 7.4 DL = TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, **NBCC 2015**

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.30")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.30")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02")

CSI: TC=0.25/1.00 (A-B:1) , BC=0.14/1.00 (D-E:4) , WB=0.26/1.00 (B-D:1) , SSI=0.18/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.79 (A) (INPUT = 0.90)
JSI METAL= 0.20 (A) (INPUT = 1.00)
RICHMOND HILL **CITY OF BUILDING DIVISION**

RECEIVED _jocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** PLY DRWG NO. 412865 T115 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:44 2021 Page 1 ID:hEKUVWZApjnyW9IeD6V_jMya4z_-xRfUORk67odWxJ84isgKw0hq33Q?HxdBRF8MS7z0S4v 0-0 1-3-8 4-11-4 9-10-8 3x4 II Scale = 1:33.9 6.00 12 4x4 =E 9-10-8

LUMBER
N. L. G. A. RULES
CHORDS SIZE
A - D 2x4
E - D 2x4
G - B 2x4
G - E 2x4 LUMBER DESCR. SPF DRY No.2 No.2 DRY SPF No.2 SPF DRY No.2 SPF ALL WEBS 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER.

PLATES (table is in inches)
JT TYPE PLATES
B TMVW-t MT20
C TMWW-t MT20 LEN Y 4.0 2. 4.0 2. 4.0 4.0 4.0 Y X 2.00 1.25 2.00 1.75 4.0 4.0 3.0 4.0 4.0 TMWW-t TMV+p BMVW1-t MT20 MT20 MT20 BMWW-t BMV1+p MT20

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

BEA	FINGS				
JT E G	FACTO GROSS F VERT 544 669	MAXIMU GROSS DOWN 544 669	N UPLIFT	INPUT BRG IN-SX MECHAN 5-8	REQRD BRG IN-SX ICAL 5-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT E. MINIMUM BEARING LENGTH AT JOINT E = 1-8.

UNFACTORED REACTIONS

1ST LCASE MAX./A	LIVE	PERMLIVE			
JT COMBINED SNOW E 385 253 / 0 G 471 322 / 0	0/0	0/0 0/0	WIND 0/0 0/0	DEAD 132 / 0 149 / 0	SOIL 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS FACTORED	FACTO	RED			WE		
MEMB.	FORCE	VERT. LC		1 ΜΔΥ	MAX.	MEMB.	MAX. FACTO	
	(LBS)			CSI (LC)	UNBRAC			MAX
FR-TO		FROM	TO	(LU)	LENGTH		(LBS)	CSI (LC)
A-B	0 / 28	-91.8	-91.8	0.12(1)		F- C	0 / 97	0.00 (4)
B-C	-534 / 0	-91.8	-91.8	0.29 (1)		C-E	-602/0	0.03 (4)
C-D	-25 / 0	-91.8	-91.8	0.28(1)		B-F	0 / 507	0.35 (1)
E- D	-172 / 0	0.0	0.0	0.12(1)		U-1	0 / 50/	0.11 (1)
G-B	-633 / 0	0.0	0.0	0.06(1)				
G-F	0.40							
F-E	0/0	-18.5		0.12 (4)	10.00			
F- E	0 / 499	-18.5	-18.5	0.17 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = 25.6 PSF
DL = 6.0 PSF
BOT CH. LL = 0.0 PSF
DL = 7.4 PSF
TOTAL LOAD = 39.0 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

TOTAL WEIGHT = 5 X 43 = 217 lb

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 065 14 - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.33")
CALCULATED VERT. DEFL.(LL)= L/ 999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.33")
CALCULATED VERT. DEFL.(TL)= L/ 999 (0.02")

CSI: TC=0.29/1.00 (B-C:1) , BC=0.17/1.00 (E-F:4) , WB=0.35/1.00 (C-E:1) , SSI=0.20/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRV) SHEAR SECTION (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

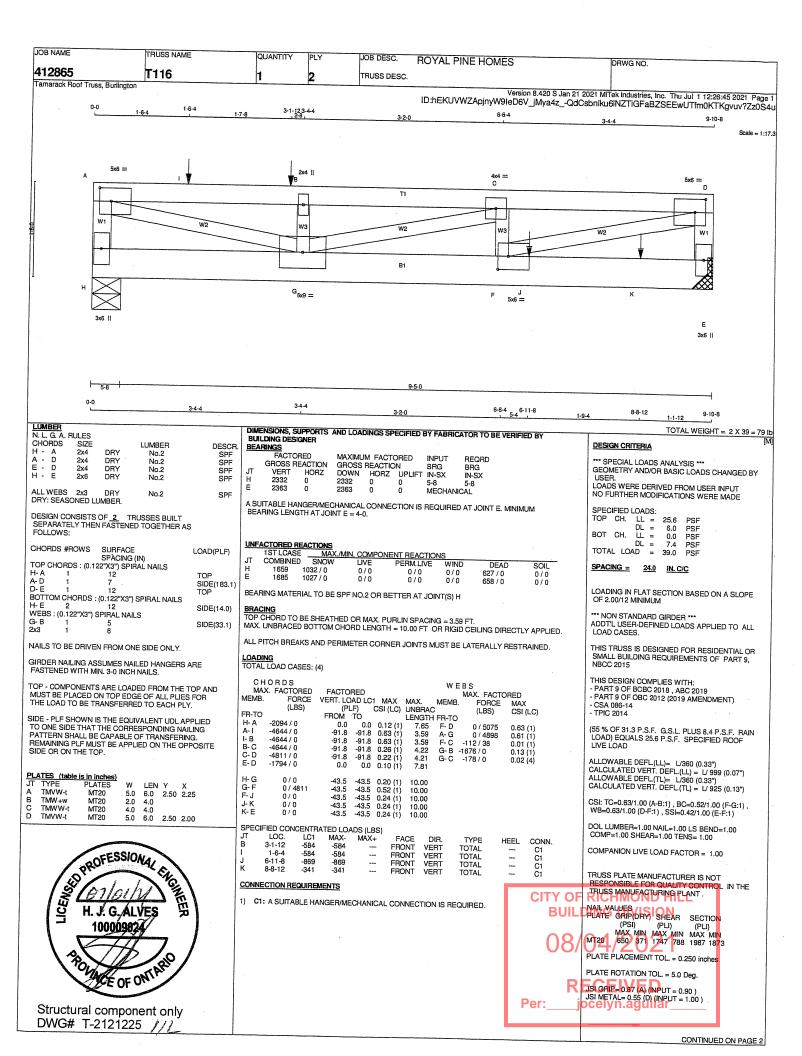

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.87 (B) (INPUT = 0.90) JSI METAL= 0.24 (B) (INPUT = 1.00) **CITY OF BUILDING DIVISION**

ECEIVED ocelyn.aguilar

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOME	S	DRWG NO.	
412865 Tamarack Roof Truss, Burlington	T116	1	2	TRUSS DESC.				
rama act ricor ricos, Bullington					ID:hEKUVWZApjnyW9I	Version 8.420 S Jan 21 eD6V jMya4z -Qd0	2021 MiTek Industries, Inc. Thu Jul 1 1 SSDNIKu6INZTIGFaBZSEEwUTfm0	2:26:45 2021 Page 2
PLATES (table is in inches) JT TYPE	LEN Y X 0 6.0 0 6.0 2.50 2.00 0 9.0 0 6.0							
· ·								
·								

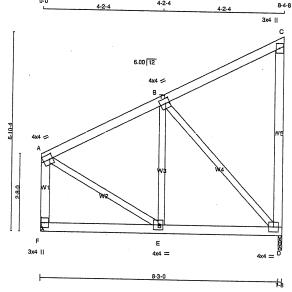
PROFESSION PROFESSION A7/01/11 H. J.'. G/ALV 100009022	W. ENG.					AITV -	DIOLING VID.	
	" .					BUILI	RICHMOND HILL DING DIVISION 04/2021	
POLIMET OF O						RI	ECEIVED ocelyn.aguilar	
Structural compone DWG# T-2121225	ent only					<u>-</u>		

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T118 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:47 2021 Page 1 ID:hEKUVWZApjnyW9IeD6V_jMya4z_-M?Kd0Tm_Qi?4onsfN_D1XfJL9GSsUMHd7DN03Sz0S4s 4-5-8 8-4-8 4x4 == В С 6.00 12 4-5-8 DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER TOTAL WEIGHT = 39 lb N. L. G. A. RULES CHORDS SIZE SIZE 2x4 LUMBER BEARINGS FACTORED DESIGN CRITERIA A - B
B - C
D - C
F - A
F - D DESCR DRY SPF No.2 INPUT MAXIMUM FACTORED SPECIFIED LOADS: 2x4 DRY No.2 No.2 GROSS REACTION GROSS REACTION BRG DOWN HORZ UPLIFT IN-SX 2x4 DRY DRY BRG LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 AD = 39.0 CH. SPF HORZ 0 VERT PSF IN-SX PSF PSF No.2 SPE 462 2x4 DRY No.2 SPF CH. 462 PSF ALL WEBS DRY No.2 A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8. TOTAL LOAD SPF EXCEPT 24.0 IN, C/C DRY: SEASONED LUMBER. LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM UNFACTORED REACTIONS
1ST LCASE MAX
T COMBINED SNOW ./MIN. COMPONENT REACTIONS

PERM.LIVE WIND DEAD PLATES (table is in inches)
JT TYPE PLATES SOIL THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015 LEN Y 4.0 2.1 4.0 4.0 214 / 0 0/0 w 112/0 214/0 TMVW-t MT20 0/0 4.0 4.0 2.00 1.25 MT20 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) 4.0 TMVW-t MT20 BMV1+p BMWWW-t BMV1+p <u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 9.0 MT20 4.0 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LOADING TOTAL LOAD CASES: (4) LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01") CHORDS WEBS MAX. FACTORED MB. FORCE FACTORED MAX. FACTORED MEMB. VERT. LOAD LC1 MAX MAX. (PLF) CSI (LC) UNBRAC FORCE /EHT. LOAD (PLF)
FROM TO
-91.8 -91
-91.8 -91 MAX (LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO CSI: TC=0.23/1.00 (A-B:1) , BC=0.09/1.00 (E-F:4) , WB=0.10/1.00 (B-E:1) , SSI=0.14/1.00 (A-B:1) A-B B-C D-C F-A -91.8 0.23 (1) -91.8 0.18 (1) 0.0 0.17 (1) 0.0 0.06 (1) E-B E-C A-E 6.25 6.25 0.10(1) -212 / 0 0/333 0.07 (1) 0.06 (1) -436 / 0 7.81 0 / 246 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 F-E E-D 0/0 -18.5 0.09 (4) -18.5 0.09 (4) -18.5 -18.5 10.00 COMPANION LIVE LOAD FACTOR = 1.00 10.00 TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. NAIL VALUES PLAT & GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873 PROFESSIONAL CHOMES TO THE PROFESSIONAL CHOMES TO THE PROFESSIONAL CHARGE T PLATE PLACEMENT TOL. = 0.250 in CITY OF PLATE ROTATION TOL. = 5.0 Deg. BUILD USI GRIP-0.36 (A) (NPUT = 0.90)
JSI METAL= 0.11 (A) (INPUT = 1.00) 100009924 ROW OF ONT ARIO RECEIVED jocelyn.aguilar Structural component only

DWG# T-2121227

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T119 TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 Mirck Industries, Inc. Thu Jul 1 12:26:47 2021 Page 1 ID:hEKUVWZApjnyW9IeD6V_jMya4z_-M?Kd0Tm_Qj?4onsfN_D1XfJKtGQGULId7DN03Sz0S4s 0-0 6-5-8 4x4 = Scale = 1:33.8 4x4 = С D 6.00 12 4x4 = 4x9 = LUMBER DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY TOTAL WEIGHT = 45 N. L. G. A. RULES CHORDS SIZE BUILLINGS BEARINGS FACTORED **BUILDING DESIGNER** SIZE LUMBER DESCR. SPF **DESIGN CRITERIA** A - C C - D E - D G - A No.2 No.2 2x4 DRY DRY DRY REQRD SPECIFIED LOADS: SPF GROSS REACTION VERT HORZ TOP CH. LL = 25.6 DL = 6.0 BOT CH. LL = 0.0 No.2 PSF PSF PSF 6.0 0.0 7.4 DRY No.2 SPF E G 0 G-E 1-8 462 462 MECHANICAL DL = ALL WEBS EXCEPT A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT G. MINIMUM BEARING LENGTH AT JOINT G = 1-8. 2x3 DRY TOTAL LOAD No.2 SPF SPACING = 24.0 IN. C/C DRY: SEASONED LUMBER. LOADING IN FLAT SECTION BASED ON A SLOPE UNFACTORED REACTIONS
1ST LCASE MA
JT COMBINED SNOW OF 2.00/12 MINIMUM MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE V
214 / 0 0 / 0 0 / 0 THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,
 PLATES
 (table is in inches)


 JT
 TYPE
 PLATES

 A
 TMV+p
 MT20

 B
 TMWW-t
 MT20
 DEAD SOIL 0/0 0/0 112/0 LEN Y 0/0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 9.0 4.0 ABCDEF BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E TTW-m TMVW-t THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) MT20 BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED. 3.0 4.0 4.0 BMV1+c MT20 BMWWW-t TPIC 2014 ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED. (55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LOADING TOTAL LOAD CASES: (4) LIVE LOAD ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.28") CHORDS WEBS MAX. FACTORED MAX. FACTORED FACTORED MEMB. VERT. LOAD LC1 MAX MAX. (PLF) CSI (LC) UNBRAC FROM TO LENGTH I FORCE MEMB. FORCE CALCULATED VERT. DEFL.(TL) = L/ 999 (0.05") (LBS) FR-TO LENGTH FR-TO 10.00 B- F 6.25 F- C CSI: TC=0.32/1.00 (D-E:1) , BC=0.19/1.00 (F-G:4) , WB=0.16/1.00 (B-G:1) , SSI=0.13/1.00 (A-B:1) -91.8 -91.8 0.16 (1) -91.8 -91.8 0.12 (1) -91.8 -91.8 0.04 (1) A- B B- C C- D E- D G- A 0 / 16 B-F -175/0 F-C -135/0 0.08 (1) 0.07 (1) 0.09 (1) -162 / 0 -128 / 0 -135 / 0 0 / 416 -385 / 0 6.25 7.81 7.81 DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10 0.0 0.32 (1) -483 / 0 -113 / 0 COMPANION LIVE LOAD FACTOR = 1.00 0 / 243 -18.5 -18.5 0.19 (4) -18.5 -18.5 0.18 (4) TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT. NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873 PROFESSIONAL CHAIR SERVICES TO THE PROFESSION CHAIR SERVICES PLATE PLACEMENT TOL. = 0.250 inches PLATE ROTATION TOL. - 5.0 Deg. **CITY OF** BUIL JSI GRIP 0.55 (D) (INPUT = 0.90) JSI METAL= 0.12 (D) (INPUT = 1.00) 100009024 FORME OF ONT ARE RECEIVED jocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T120 TRUSS DESC Tamarack Roof Truss, Burlington

Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:48 2021 Page 1 ID:hEKUVWZApjnyW9leD6V_jMya4z_-qCu?DoncB17xQwRrxikG4ssWKgonDnEnMt6Zbuz0S4r

LUMBER N. L. G. A. RULES
CHORDS SIZE
A - C 2x4
D - C 2x4
F - A 2x4
F - D 2x4 SIZE LUMBER DESCR. DRY No.2 No.2 SPF DRY DRY DRY SPF No.2 SPF ALL WEBS 2x3 DRY No.2 SPF

DRY: SEASONED LUMBER.

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	X
Α	TMVW-t	MT20	4.0	4.0	2.00	1.25
В	TMWW-t	MT20	4.0	4.0	2.00	1.75
С	TMV+p	MT20	3.0	4.0		
D	BMVW1-t	MT20	4.0	4.0		
Е	BMWW-t	MT20	4.0	4.0		
F	BMV1+p	MT20	3.0	4.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER

4-2-4

REA	RINGS					
JT D F	FACTO	PRED EACTION HORZ 0 0	MAXIMU GROSS DOWN 462 462	DN UPLIFT 0	INPUT BRG IN-SX 1-8 MECHAN	REQRD BRG IN-SX 1-8 IICAL

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 1-8.

UNFACTORED REACTIONS
1ST LCASE MA
JT COMBINED SNOW MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE WIND SOIL 0/0 0/0 DEAD 326 112/0 112/0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS FACTORED	FACTO	RED			WE		
MEMB.	FORCE	VERT. LC					MAX. FACTO	
					MAX.	MEMB.	FORCE	MAX
FD 70	(LBS)	(PI		CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	(/	00. (20)
A-B	-280 / 0	-9 1.8	-9 1.8	0.21(1)		E-B	EQ / EC	0.00 (4)
B-C	-21 / 0	-91.8	-91.8				-58 / 56	0.02 (4)
D-C	-145 / 0					B- D	-393 / 0	0.24 (1)
F- A		0.0		0.14 (1)		A-E	0 / 309	0.07(1)
F- A	-431 / 0	0.0	0.0	0.06 (1)	7.81			(.,
F-E	0.40							
	0/0	-18.5	-18.5	0.09 (4)	10.00			
E- D	0 / 269	-18.5	-18.5	0.11 (4)	10.00			

DESIGN CRITERIA

SPECIFIED LOADS:

LL = 25.6 DL = 6.0 LL = 0.0 DL = 7.4 PSF PSF PSF DL = TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, **NBCC 2015**

TOTAL WEIGHT = 42 I

Scale = 1:37.9

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL) = L/999 (0.01")

CSI: TC=0.21/1.00 (A-B:1) , BC=0.11/1.00 (D-E:4) , WB=0.24/1.00 (B-D:1) , SSI=0.17/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL. IN THE TRUSS MANUFACTURING PLANT.

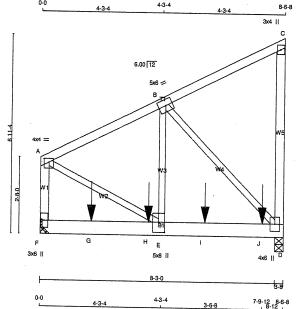
NAIL VALUES

PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.44 (A) (INPUT = 0.90)
JSI METAL= 0.12 (A) (INPUT = 1.00)
RICHMOND HILL **CITY OF BUILDING DIVISION**


RECEIVED

jocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T121 TRUSS DESC. Tamarack Roof Truss, Burlington

Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:49 2021 Page ID:5hmlqDWy3rdQ?RwMW_6szaya40M-IOSNR8oEyKFo1401UPGVd4Oi940dy42wbXs78Kz0S4q

LUMBER N. L. G. A CHORDS . RULES DESCR. SPF SPF SIZE LUMBER F - A A - C D - C F - D 2x4 2x4 2x4 No.2 No.2 DRY DRY No.2 2x6 DRY No.2 ALL WEBS 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE LOAD(PLF) SPACING (IN) TOP CHORDS: (0.122"X3") SPIRAL NAILS F- A A- C C- D 12 12 TOP TOP TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS SIDE(545.9) WEBS: (0.122"X3") SPIRAL NAILS

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOO SIDE OR ON THE TOP.

PL	ATES (table	is in inches)				
JT	TYPE	PLATES	W	LEN	Υ	X
Α	TMVW-p	MT20	4.0	4.0	1.50	2.00
В	TMWW-t	MT20	5.0	6.0		
С	TMV+p	MT20	3.0	4.0		

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER BEARINGS

DEA	TUNGS				
JT F D	FACTO GROSS R VERT 4121 5184	MAXIMU GROSS DOWN 4121 5184	N UPLIFT	INPUT BRG IN-SX MECHANI 3-8	REQRD BRG IN-SX ICAL 3-8

A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED AT JOINT F. MINIMUM BEARING LENGTH AT JOINT F = 4-0.

UNFACTORED REACTIONS

	1ST LCAS		IIN. COMPO	NENT REACTION	vs.			
JT F D	2911 3662	9 SNOW 1927 / 0 2424 / 0	UVE 0/0 0/0	PERM.LIVE 0/0 0/0	WIND 0/0 0/0	DEAD 984 / 0 1238 / 0	SOIL 0/0 0/0	

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) D

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 5.99 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED

LOADING TOTAL LOAD CASES: (4)

		•	,								
MA	HORDS	ORED					w	EBS MAX.	FACTO	ORED	
MEMB FR-TO	(L	ORCE .BS)	VERT. LC (PL FROM	_F) •	MAX CSI (LC)			(ORCE LBS)	MAX CSI (
F- A A- B	-3150 / -3223 /	0	0.0 -9 1.8	0.0 9 1.8	0.10(1)	5.99	A- E E- B	0	/ 3284 / 3972	0.25 0.30	
B-C. D-C	-18 / -156 /		-91.8 0.0	-91.8 0.0	0.08 (1) 0.05 (1)	6.25	B- D	-4167	0	0.85	
F- G G- H H- E E- I	0 / 0 / 0 /	0	-18.5 -18.5	-18.5 -18.5	0.47 (1) 0.47 (1) 0.47 (1) 0.59 (1)	10.00					
I- J J- D	0/	2899 2899	-18.5 -18.5	-18.5	0.59 (1) 0.59 (1)	10.00					
SPECI	FIED CON	CENTR	ATED LO	ADS (LE	BS)						
J G H JT	LOC. 1-9-12	LC1 -1476 -1476	MAX- -1476 -1476	MAX-	+ FA - BAC - BAC - BAC	CK VE	DIR. ERT ERT ERT ERT	TYPI TOTAI TOTAI TOTAI	L L	HEEL 	CONI C1 C1 C1 C1

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DESIGN CRITERIA

SPECIFIED LOADS: TOP CH. LL = DL = LL = 25.6 25.6 PSF 6.0 PSF 0.0 PSF BOT CH. DL = TOTAL LOAD

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

TOTAL WEIGHT = 3 X 47 = 141 lb

Scale = 1:38.

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.03")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.06")

CSI: TC=0.14/1.00 (A-F:1) , BC=0.59/1.00 (D-E:1) , WB=0.85/1.00 (B-D:1) , SSI=0.66/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

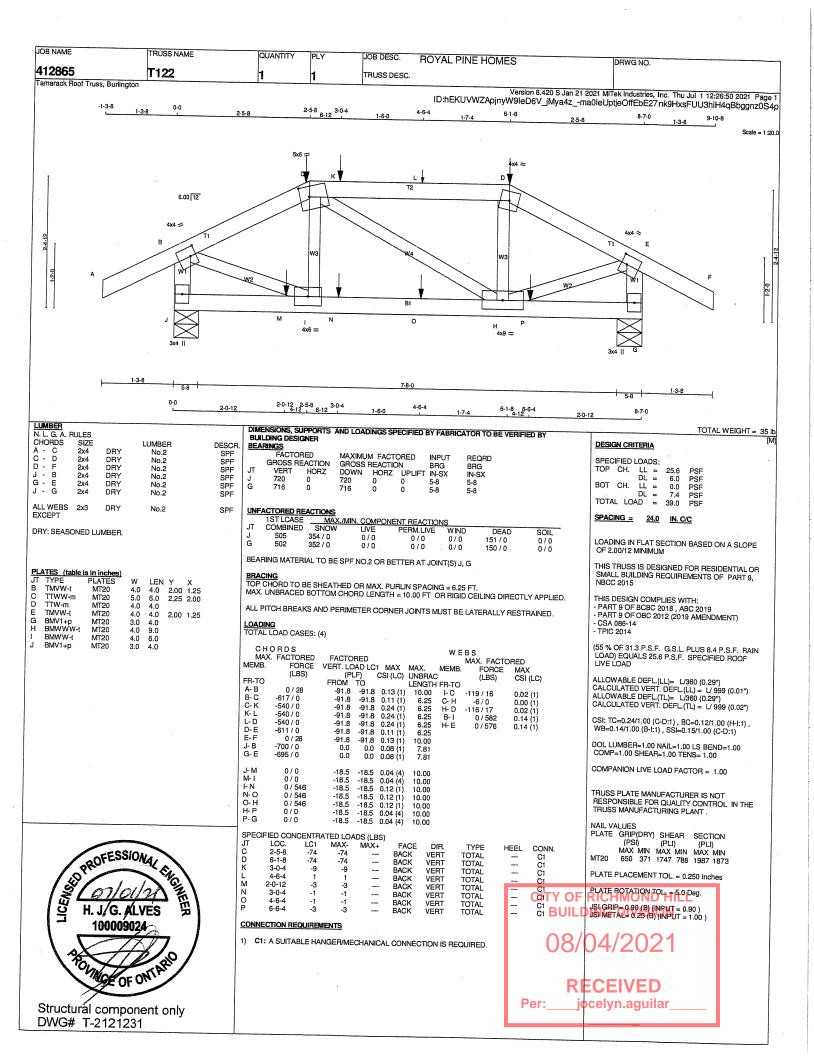
NAIL VALUES PLATE GRIP(DRY) SHEAR (PLI) (PLI) (PLI) (PLI) (PLI) (PLI) (MAX MIN MAX MIN MAX MIN MAX MIN MT20 650 371 1747 788 1987 1873

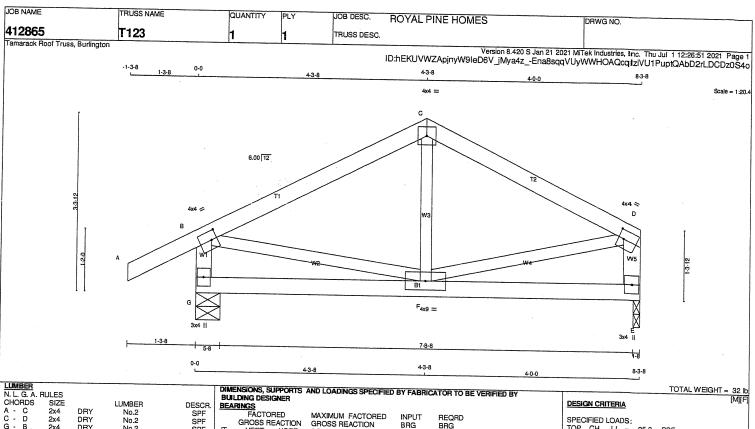
PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.86 (A) (INPUT = 0.90) JSI METAL= 0.44 (D) (INPUT = 1.00

CITY OF RICHMOND HILL **BUILDING DIVISION**


RECEIVED


jocelyn.aguilar

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HOME	S .	DRWG NO.	
412865 Tamarack Roof Truss, Burling	T121	1	3	TRUSS DESC.				
The state of the s	1011				ID:5hmlqDWy3rdQ?RwM	Version 8.420 S Jan 21 2021 N W 6szava40M-IOSNR80	 MiTek Industries, Inc. Thu Jul 1 1 EyKFo1401UPGVd4Oi940d	2:26:49 2021 Page :
PLATES (table is in inches) JT TYPE PLATES	!						-yra 9140101 GV44019400	/42WDXS/8KZUS4
JT TYPE PLATES E BMWW+t MT20 F BMV1+p MT20	5.0 8.0 4.25 2.50							
, pww.14b wi150	3.0 6.0							
							•	
						1.0		
						, i		
						j		
•								
,	ŕ							
POFESS	ION4							
PROFESS PRO	THE !							
13/07/01	(4) []						CHMOND HILL	
일 H. J. G/A	ALVES 9						G DIVISION	
100009	824	•	•			00/0	1/2024	
12/1/1/	5/5/					08/04	4/2021	
ROUNCEON	ONTARIO					-		
TCE OF	FUN	•					EIVED	
Structural compo						Per:joce	lyn.aguilar	

Structural component only DWG# T-2121230 7/1

LUMBER N. L. G. A. F CHORDS A - C C - D G - B	RULES SIZE 2x4 2x4 2x4	DRY DRY DRY	LUMBER No.2 No.2	DESCR. SPF SPF						
E D G - E	2x4 2x4 2x4	DRY	No.2 No.2 No.2	SPF SPF SPF						
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF						
DRY: SEASO	DRY: SEASONED LUMBER.									

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	х					
В	TMVW-t	MT20	4.0	4.0	2.00	1.25					
С	TTW-p	MT20	4.0	4.0							
D	TMVW-t	MT20	4.0	4.0	2.00	1.25					
Е	BMV1+p	MT20	3.0	4.0							
F	BMWWW-t	MT20	4.0	9.0							
G	BMV1+p	MT20	3.0	4.0							

	RINGS	CHILLI				
Л G E	FACTO GROSS R VERT 582 457		MAXIMU GROSS DOWN 582 457		INPUT BRG IN-SX 5-8 1-8	REQRD BRG IN-SX 5-8 1-8

UNFACTORED	REACTIONS

177	1ST LCASE	MAX./I		NENT REACTION	NS		
G E	COMBINED 409 323	SNOW 282 / 0 212 / 0	0/0 0/0	PERM.LIVE 0/0 0/0	WIND 0/0 0/0	DEAD 127 / 0 111 / 0	SOIL 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) G, E

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	RDS FACTORED	FACTO	DEN			WE		
MEMB.	FORCE	VERT. LO					MAX. FACTO	RED
WILLIAM.				1 MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	.F)	CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH		()	OO! (LO)
A- B	0 / 28	-91.8	-91.8	0.12(1)		F- C	-54 / 52	0.00(4)
B- C	-364 / 0	-91.8		0.22 (1)		B-F	0/332	0.02 (4)
C-D	-364 / 0	-91.8		0.19 (1)		F-D	0/332	0.07 (1)
G-B	-550 / 0	0.0	0.0		7.81	1-0	0 / 330	0.08 (1)
E- D	-428 / 0	0.0						
	.2070	0.0	0.0	0.04 (1)	7.81			
G-F	0/0	10.5	40.5					
		-18.5	-18.5	0.09 (4)	10.00			
F-E	0/0	-18.5	-18.5	0.09 (4)	10.00			

1			_						
SPECIFIED LOADS:									
TOP	CH.	LL	=	25.6	PSF				
		DL		6.0	PSF				
BOT	CH.	LL	=	0.0	PSF				
		DL	=	7.4	PSF				
IOIA	L LO	AD:	=	39.0	PSF				

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14
- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.28")
CALCULATED VERT. DEFL.(LL)= L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.28")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.22/1.00 (B-C:1) , BC=0.09/1.00 (F-G:4) , WB=0.08/1.00 (D-F:1) , SSI=0.14/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.56 (B) (INPUT = 0.90) JSI METAL= 0.17 (B) (INPUT = 1.00

CITY OF RICHMOND HILL **BUILDING DIVISION**

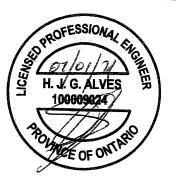
RECEIVED

jocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 T127 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 15:50:48 2021 Page 1 ID:4yza9PaaQpqU0dqb94LAvFyZ5Xk-RzUD84vLfmFEsy9HzJKb91oF_h9r3VrOyA6FCRz0P5b 4-3-8 4x6 II 6.00 12 **B**1 3x6 || D 8x9 == 2HT516 TOTAL WEIGHT = 3 X 41 = 124 lb

LUMBER N. L. G. A. F CHORDS A - B B - C F - A D - C F - D	SIZE 2x4 2x4 2x4 2x4 2x4 2x6	DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF
DRY: SEASO	ONED LU	JMBER.		

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:


CHORDS #ROV	VS SURFACE SPACING (IN)	LOAD(PLF)
TOP CHORDS :	(0.122"X3") SPIRAL NAIL	.s
A-B 1	12	TOP
B-C 1	12	TOP
F-A 2	4	SIDE(419.6)
D-C 1	12	TOP 1
BOTTOM CHOR	DS: (0.122"X3") SPIRAL	NAILS
F-D 2	4	SIDE(1383.3)
WEBS : (0.122")	(3") SPIRAL NAILS	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2x3 1	6	

STAGGER NAILS BY HALF THE SURFACE SPACING IN

GIRDER NAILING ASSUMES NAILED HANGERS ARE FASTENED WITH MIN. 3-0 INCH NAILS.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

SIDE - PLF SHOWN IS THE EQUIVALENT UDL APPLIED TO ONE SIDE THAT THE CORRESPONDING NAILING PATTERN SHALL BE CAPABLE OF TRANSFERING. REMAINING PLF MUST BE APPLIED ON THE OPPOSITE SIDE OR ON THE TOP

Structural component only DWG# T-2121233

DIRECTORIC CLIDOCOCCO	AND LOADINGS SPECIFIED BY FABRICATOR TO BE	
DIMILLIAGIONG, GUPPOR 15	AND LUADINGS SPECIFIED BY FARRICATOR TO BE	VEDICIED DV
BUILDING DESIGNER	TO BE	. veniries by
DOLLUMO DESIGNER		

BEAL	RINGS				
JT F D	FACTOR GROSS RE VERT 9505 6418	MAXIMUI GROSS I DOWN 9505 6418		INPUT BRG IN-SX 3-11 3-8	REQRD BRG IN-SX 3-11 3-8

PROVIDE ANCHORAGE AT BEARING JOINT F FOR 2751 LBS FACTORED UPLIFT PROVIDE ANCHORAGE AT BEARING JOINT D FOR 1848 LBS FACTORED UPLIFT

PROVIDE FOR 179 LBS FACTORED HORIZONTAL REACTION AT JOINT F

UNF	UNFACTORED REACTIONS								
	1ST LCAS			NENT REACTIO	NS				
JT F	COMBINED		LIVE	PERM.LIVE	WIND	DEAD	SOIL		
D	4724	4224 / 0 2852 / 0	1190 / 0 803 / 0	0/0	167 / -2729	1584 / 0	0/0		
-	-7/2-	2002 / 0	60370	0/0	117 / -1836	1069 / 0	0/0		
	IZONTAL RI	EACTIONS							
F	-	0/0	0/0	0/0	128 / -126	0/0	0 /0		
BEA	BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) F, D								

MAX. UNBRACED TOP CHORD LENGTH = 4.89 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (18)

MA)	ORDS C. FACTORED	FACTORED			W E	BS MAX. FACTO	RFĎ
MEMB.	FORCE	VERT. LOAD LO	1 MAX	MAX. N	IEMB.	FORCE	MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH F	R-TO	(230)	001 (20)
A-B	-5261 / 1585	-115.2 -115.2	0.19 (2)	4.89		1236 / 4312	0.32 (3)
B-C	-5261 / 1587	-115.2 -115.2	0.18 (3)			1523 / 5326	0.40 (1)
F-A	-5094 / 1494	0.0 0.0	0.22 (1)			1544 / 5396	0.40 (1)
D-C	-5232 / 1532	0.0 0.0	0.23 (1)		_ 0	10447 3030	0.40 (1)
F-G	-133 / 154	-39.5 -39.5		6.25			
G- H	-133 / 154	-39.5 -39.5	0.66 (1)	6.25			
H-E	-133 / 154	-39.5 -39.5	0.66(1)	6.25			
E-1	-23 / 47	-39.5 -39.5	0.65 (3)	6.25			
I- D	-23 / 47	-39.5 -39.5	0.65 (3)	6.25			

SPEC	IFIED COI	VCENTR/	ATED LOA	NDS (LBS)				
JT	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL
E G	4-4-4 4-4	-2685 -2697	-2685 -2697	605	FRONT	VERT	TOTAL	
н	2-4-4	-2697 -2685	-2685	601 605	FRONT	VERT VERT	TOTAL	
1	6-4-4	-2685	-2685	605	FRONT	VERT	TOTAL TOTAL	

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (9.2) PSF AT (30-0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CPC3, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM, INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2), BUILDING MAY BE LOZATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE-TRUSS UP-LIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

DESIGN CHITERI	^								
SPECIFIED LOADS:									
TOP CH. LL	=	33.4	PSF						
DL	=	6.0	PSF						
	=	10.5	PSF						
DL	==	7.4	PSF						
TOTAL LOAD	=	57.3	PSF						

SPACING = 24.0

IIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018, ABC 2019
- PART 4 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS
- SLOPE REDUCTION FACTOR NOT USED
- PERCENTAGE OF GROUND SNOW LOAD IS USER-DEFINED.

(80 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 33.4 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL) = L/360 (0.28")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.05")
ALLOWABLE DEFL.(TL) = L/180 (0.56")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.07")

CSI: TC=0.23/1.00 (C-D:1) , BC=0.66/1.00 (E-F:1) , WB=0.40/1.00 (C-E:1) , SSI=0.89/1.00 (E-F:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00 LIVE LOAD IMPORTANCE FACTOR = 1.00 COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE GRIP(DRY) SHEAR SECTION

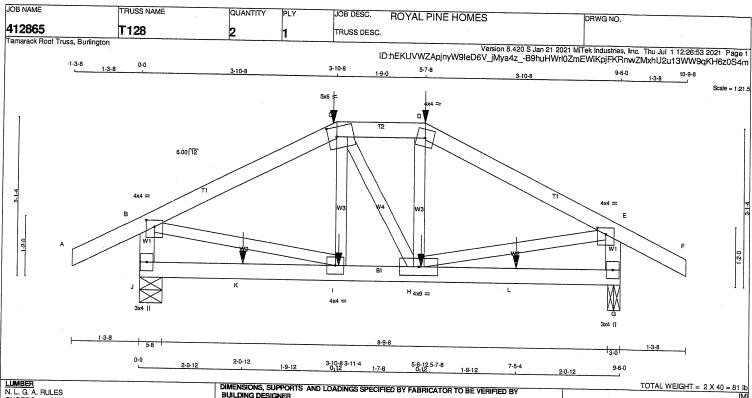
C1 C1 C1 (PLI) (PLI) MT20 H 650 371 1747 788 1987 1873

NAIL VALUES

CONN

CITY OF PLATE PLACEMENT TOL. = 0.250 inch

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.87 (A) (INPUT = 0.90) JSI METAL= 0.41 (A) (INPUT = 1.00)

celyn.aguilar

CONTINUED ON PAGE 2

JOB NAME	TRUSS NAME	QUANTITY	PLY	JOB DESC.	ROYAL PINE HON	MES	DRWG NO.		
412865 Tamarack Roof Truss, Burlingt	T127	1	3	TRUSS DESC.					
					ID:4yza9PaaQpqU0	Version 8.420 S Jan 21 0dqb94LAvFyZ5Xk-wA2	2021 MiTek Industries, cLQwzQ4N5I J6kTX	Inc. Thu Jul 1 15	:50:49 2021 Page
PLATES (table is in Inches) JT	W LEN Y X 5.0 6.0 Edge 4.0 8.0 Edge 5.0 6.0 Edge 3.0 6.0 8.0 9.0 4.25 4.50 4.0 9.0 5.50							TSUIT EMPSORE	<u>ys radipkuzups</u>
TOUCHES EDGE OF CHORE	D.								
									. ·
	Ou								
PROFESSI BY 07/01 9 H. J. G. A 1000099	ONAL FIRE III					CITY OF	RICHMOND DING DIVISION	HILL	
	-7//-						04/202		
Structural compo	ONTARIO						CEIVED		

Structural component only DWG# T-2121233 WL

LUMBER N. L. G. A. F CHORDS A - C C - D D - F	RULES SIZE 2x4 2x4 2x4	DRY DRY DRY	LUMBER No.2 No.2 No.2	DESCR. SPF SPF SPF					
J - B J - B	2x4 2x4 2x4	DRY DRY DRY	No.2 No.2 No.2	SPF SPF SPF					
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF					
DRY- SEASO	DRY: SEASONED LUMBER								

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	X					
В	TMVW-p	MT20	4.0	4.0	1.50	2.00					
С	TTWW-m	MT20	5.0	6.0	2.25	2.00					
D	TTW-m	MT20	4.0	4.0							
E	TMVW-p	MT20	4.0	4.0	1.50	2.00					
G	BMV1+p	MT20	3.0	4.0							
Н	BMWWW-t	MT20	4.0	9.0							
ı	BMWW-t	MT20	4.0	4.0							
J	BMV1+p	MT20	3.0	4.0							

DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY BUILDING DESIGNER READINGS.

FACTORED	MAXIMU GROSS DOWN 921 920			INPUT BRG IN-SX 5-8 3-0	REQRD BRG IN-SX 5-8 3-0
----------	---------------------------------------	--	--	-------------------------------------	-------------------------------------

UNF	ACTURED RE	ACTIONS					
	1ST LCASE	MAX./N	IIN. COMPO	NENT REACTION	NS		
JT J G	COMBINED 647 647	SNOW 447 / 0 447 / 0	UVE 0/0 0/0	PERM.LIVE 0/0 0/0	WIND 0/0 0/0	DEAD 200 / 0 200 / 0	SOIL 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) J, G

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.07 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	ORDS					WE	BS	
	. FACTORED	FACTO					MAX. FACTO	BED
MEMB.	FORCE	VERT. LC	AD LC	1 MAX	MAX.	MEMB.		MAX
	(LBS)	(Pl	-F)		UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO	,	LENGTH		(200)	OOI (LO)
A-B	0 / 28	-91.8	-91.8	0.13 (1)		I- C	-100 / 28	0.02 (1)
B-C	- 9 05 / 0	-91.8	-91.8			C- H	0/2	0.02 (1)
C-D	-805 / 0	-91.8	-91.8	0.06(1)		H- D	-100/30	0.00 (4)
D-E	-907 / 0	-91.8	-91.8	0.28 (1)		B-I	0 / 827	0.02 (1)
E-F	0 / 28	-91.8	-91.8	0.13 (1)		H- E		0.20 (1)
J-B	-883 / 0	0.0	0.0	0.10 (1)			0 / 020	0.21 (1)
G-E	-882 / 0	0.0	0.0					
							•	
J-K	0/0	-18.5	-18.5	0.09 (4)	10.00			
K-1	0/0	-18.5	-18.5	0.09 (4)				
I- H	0 / 805			0.17 (1)				
H-L	0/0	-18.5	-18.5	0.09 (4)				
L-G	0/0	-18.5	-18.5	0.09 (4)	10.00			
COFOIC								

SPECIFIED CONCENTRATED LOADS (LBS)

	JΤ	LOC.	LC1	MAX-	MAX+	FACE	DIR.	TYPE	HEEL	CONN.
	C	3-10-8	-172	-172		BACK	VERT	TOTAL		C1
	D.	5-7-8	-172	-172		BACK	VERT	TOTAL		C1
	Н	5-6-12	-10	-10		BACK	VERT	TOTAL		Č1
		3-11-4	-10	-10		BACK	VERT	TOTAL		C1
i	K	2-0-12	-10	-10		BACK	VERT	TOTAL		Či
	L	7-5-4	-10	-10		BACK	VERT	TOTAL		Ct

CONNECTION REQUIREMENTS

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

DEGIGA CHITERIA								
SPEC	IFIED	LOA	os:					
TOP	CH.	LL	=	25.6	PSF			
		DL	==	6.0	PSF			
BOT	CH.	LL	=	0.0	PSF			
		DL	=	7.4	PSF			

SPACING = 24.0

TOTAL LOAD

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12 MINIMUM

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH: - PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

- TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.32")
CALCULATED VERT. DEFL.(TL)= L/999 (0.02")

CSI: TC=0.28/1.00 (D-E:1) , BC=0.17/1.00 (H-I:1) , WB=0.21/1.00 (E-H:1) , SSI=0.14/1.00 (D-E:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.00 COMP=1.00 SHEAR=1.00 TENS= 1.00


COMPANION LIVE LOAD FACTOR = 1.00

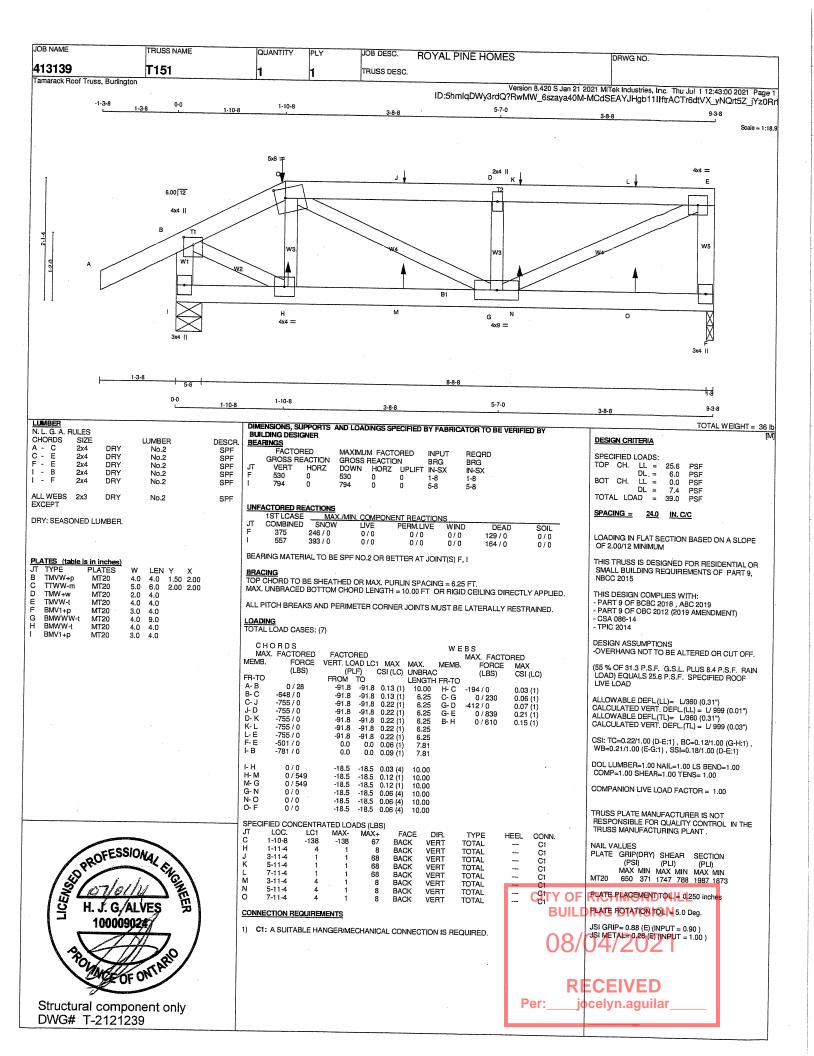

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL # 5.0 Deg. BUILD JSI GRIP= 0.88 (I) (INPUT = 0.90)
JSI METAL= 0.29 (E) (INPUT = 1.00)

jocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 413139 T152 TRUSS DESC. Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 16:07:21 2021 Page ID:5hmlqDWy3rdQ?RwMW_6szaya40M-t0_dYdxCotLKUZa7eMfSvRQux_4nDYcZHA9HZOz0Os4 5-11-4 9-5-8 Scale ≈ 1:23.0 2x4 | 7x8 = D E 6.00 12 5x6 = W5 W1 В1 κ 5x8 || 2673113 2-5-0 5-11-4 2-5-0 TOTAL WEIGHT = 3 X 52 = 156 II DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY

LUMBER				
N. L. G. A. I	RULES			
CHORDS A - C C - E F - E I - B I - F	SIZE 2x4 2x4 2x4 2x6 2x6	DRY DRY DRY DRY DRY	LUMBER No.2 No.2 No.2 No.2 No.2	DESCR. SPF SPF SPF SPF SPF
ALL WEBS EXCEPT	2x3	DRY	No.2	SPF

DRY: SEASONED LUMBER

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORD	S #ROWS	SURFACE	LOAD(PLF)				
ļ.		SPACING (IN)	, ,				
TOP CH	IORDS : (0.	122"X3") SPIŘAĹ NAILS					
A-C	1 `	12	TOP				
C-E	1	12	TOP				
E-F	1	12	TOP				
I-B	2	12	TOP				
BOTTO	u CHORDS	: (0.122"X3") SPIRAL NAILS	TOP				
l-F	2	12	TOP				
WEBS: (0.122"X3") SPIRAL NAILS							
2x3	1 ,	6					

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR THE LOAD TO BE TRANSFERRED TO EACH PLY.

PL	PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х					
В	TMVW-p	MT20	5.0	6.0	1.75	3.00					
С	TTWW-m	MT20	5.0	6.0	2.25	2.00					
D	TMW+w	MT20	2.0	4.0							
Е	TMVW-t	MT20	7.0	8.0	Edge	3.50					
F	BMV1+t	MT20	4.0	9.0	Edge	0.50					
G	BMWWW-t	MT20	8.0	9.0	4.25	3.00					
Н	BMWW+t	MT20	5.0	8.0	4.25	2.25					
ı	BMV1+p	MT20	3.0	6.0							

DEM	JINGS .				
JT F	FACTO GROSS R VERT 7453 8768	MAXIMUI GROSS I DOWN 7453 8768		INPUT BRG IN-SX 3-8 5-8	REQRD BRG IN-SX 3-8 5-8

PROVIDE ANCHORAGE AT BEARING JOINT F FOR 2222 LBS FACTORED UPLIF-PROVIDE ANCHORAGE AT BEARING JOINT I FOR 2582 LBS FACTORED UPLIFT

PROVIDE FOR 213 LBS FACTORED HORIZONTAL REACTION AT JOINT I

UNF	ACTORED R						
_	1ST LCASI			NENT REACTIO	NS		
ĺΨ	COMBINE		LIVE	PERM.LIVE	WIND	DEAD	SOIL
F	5486	3313 / 0	931 / 0	0/0			0/0
'	6445	3920 / 0	1075 / 0	0/0	114 / -2544	1450 / 0	0/0
HOR	IZONTAL RE	EACTIONS					
1		0/0	0/0	0/0	152 / -94	0/0	0 /0
BEA	RING MATE	RIAL TO BE S	SPF NO.2 OR E	BETTER AT JOI	NT(S) F, I		

BRACING

MAX. UNBRACED TOP CHORD LENGTH = 4.58 FT.

MAX. UNBRACED BOTTOM CHORD LENGTH = 6.25 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (18)

MA	ORDS X. FACTORED				W	EBS MAX. FACTO	RED
MEMB.		VERT. LOAD LO		MAX.	MEMB		MAX
	(LBS)	(PLF)	CSI (LC)	UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM TO		LENGTH	FR-TC)	00. (20)
A-B	0 / 41	-115.2 -115.2	0.06 (2)	10.00		-412 / 1408	0.11 (2)
B-C	-5879 / 1802		0.11 (13	4.77		-482 / 1507	0.11 (3)
C-D	-6323 / 1953	-115.2 -115.2	0.12 (1)	4.59		-422 / 223	0.03 (3)
D-E	-6323 / 1953	-115.2 -115.2	0.13 (1)			-2645 / 8864	0.66 (1)
F-E	-6404 / 1941	0.0 0.0	0.45 (1)	5.81	B- H	-2068 / 7073	0.53 (1)
I-B	-7678 / 2282	0.0 0.0	0.22 (1)	6.48		200077070	0.55 (1)
l- J	-166 / 110	-39.5 -39.5	0.37 (3)	6.25			
J- H	-166 / 110	-39.5 -39.5		6.25			
H-K	-1606 / 5289	-39.5 -39.5					
K-L	-1606 / 5289	-39.5 -39.5		6.25			
L-G	-1606 / 5289	-39.5 -39.5	0.62 (2)				
G-M		-39.5 -39.5					
M-F	-26 / 66	-39.5 -39.5		6.25			
SPECIFIED CONCENTRATED LOADS (LBS)							

LOC LC1 MAX--2685 DIR. VERT FACE TYPE -2685 -2685 TOP TOP TOTAL -2685 605 VERT

TOTAL 2685 -2685 TOTAL VERT TOTAL

CONNECTION REQUIREMENTS

C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

TRUSS HAS BEEN CHECKED FOR UNBALANCED LOADING AS PER NBCC 4.1.6.2.(8)

WIND LOAD APPLIED IS DERIVED FROM REFERENCE VELOCITY PRESSURE OF (9.2) PSF AT (30-0) FT-IN-SX REFERENCE HEIGHT ABOVE GRADE AND USING EXTERNAL PEAK COEFFICIENTS, CPC9, BASED ON THE (MAIN WIND FORCE RESISTING SYSTEM) INTERNAL WIND PRESSURE IS BASED ON DESIGN (CATEGORY 2). BUILDING MAY BE LOCATED ON (OPEN TERRAIN), AND TRUSS IS DESIGNED TO BE LOCATED AT LEAST (0-0) FT-IN-SX AWAY FROM EAVE. TRUSS UPLIFT IS BASED ON TOP AND BOTTOM CHORD DEAD LOADS OF 5.0 PSF AND 5.0 PSF RESPECTIVELY.

	DESIGN CRITERIA									
		IFIED	LOAI	os:						
	TOP	CH.	LL	=	33.4	PSF				
		_	DL	==	6.0	PSF				
1	BOT	CH.	LL	=	10.5	PSF				
-	TOTA	L LO	DL AD	=	7.4 57.3	PSF PSF				

24.0 IN. C/C

SPACING =

LOADING IN FLAT SECTION BASED ON A SLOPE OF 2.00/12

THIS TRUSS IS DESIGNED FOR COMMERCIAL OR INDUSTRIAL BUILDING REQUIREMENTS OF PART 4, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 4 OF BCBC 2018, ABC 2019
- PART 4 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS - SLOPE REDUCTION FACTOR NOT USED - PERCENTAGE OF GROUND SNOW LOAD IS USER-DEFINED.

(80 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) TIMES IMPORTANCE FACTOR EQUALS 33.4 P.S.F. SPECIFIED ROOF LIVE LOAD

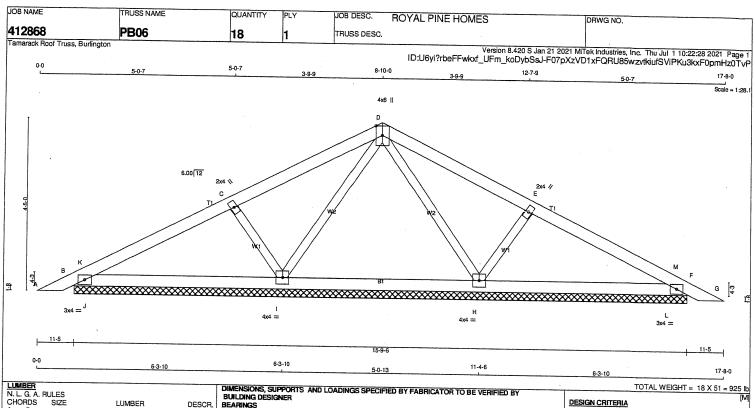
ALLOWABLE DEFL.(LL)= L/360 (0.32")
CALCULATED VERT. DEFL.(LL) = L/999 (0.04")
ALLOWABLE DEFL.(TL)= L/180 (0.63")
CALCULATED VERT. DEFL.(TL) = L/999 (0.05")

CSI: TC=0.45/1.00 (E-F:1) , BC=0.62/1.00 (G-H:2) , WB=0.66/1.00 (E-G:1) , SSI=0.82/1.00 (G-H:2)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

SNOW LOAD IMPORTANCE FACTOR = 1.00 WIND LOAD IMPORTANCE FACTOR = 1.00
WIND LOAD IMPORTANCE FACTOR = 1.00
LIVE LOAD IMPORTANCE FACTOR = 1.00
COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY


TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

CATY OF RACHINEOND HILL C1 BUILE PLATE GRIP(DBY) CHEAR SECTION (PSI) (PLI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inche

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.86 (H) (INPUT = 0.90) JSI METAL= 0.64 (H) (INPUT = 1.00) celyn.aguilar

LUMBER				
N. L. G. A. F	ULES			
CHORDS	SIZE		LUMBER	DESCR.
A - D	2x4	DRY	No.2	SPF
D - G	2x4	DRY	No.2	SPF
B - F	2x4	DRY	No.2	SPF
ALL WEBS	2x3	DRY	No.2	SPF
DRY: SEASO	ONED L	UMBER.		O

PLATES (table is in inches)										
JT	TYPE	PLATES	W	LEN	Υ	Х				
В	TMB1-I	MT20	3.0	4.0						
С	TMW+w	MT20	2.0	4.0						
D	TTWW+p	MT20	4.0	6.0	Edge					
Ë	TMW+w	MT20	2.0	4.0	3 -					
	TMB1-I	MT20	3.0	4.0						
Н	BMWW1-t	MT20	4.0	4.0						
i	BMWW1-t	MT20	4.0	4.0						

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

DIMENSIONS, SUPPORTS BUILDING DESIGNER	AND LOADINGS SPECIFIED I	BY FABRICATOR TO BE VERIFIED BY
BEARINGS		
EACTORED	A 44 3 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	

BEA	ARINGS						
	FACTO GROSS R			M FACTO		INPUT BRG	REQRD BRG
JΤ	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
В	340	0	340	0	0	15-9-6	15-9-6
F	340	0	340	0	0	15-9-6	15-9-6
Н	610	0	610	0	0	15-9-6	15-9-6
i	610	0	610	0	0	15-9-6	15-9-6

UNFACTORED F	REACTIONS					
1ST LCAS			NENT REACTION	NS		
JT COMBINE B 239 F 239 H 432	ED SNOW 166 / 0 166 / 0 283 / 0 283 / 0	0/0 0/0 0/0 0/0 0/0	PERM.LIVE 0/0 0/0 0/0 0/0	WIND 0/0 0/0 0/0 0/0	DEAD 73 / 0 73 / 0 149 / 0 149 / 0	SOIL 0/0 0/0 0/0 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, F, H, I

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

MAX.	ORDS FACTORED	FACTO	RED			W E	BS MAX. FACTO	RED
MEMB.	FORCE	VERT. LO	AD LC	MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL	F)		UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO	. ,	LENGTH		(220)	001 (20)
A-B	0 / 17	-91.8	-91.8	0.05(1)		D- H	-197 / 0	0.07(1)
B-K	-199 / 0	-91.8	-91.8	0.06 (4)		H- E	-396 / 0	0.07 (1)
K-C	-143 / 0	-91.8	-91.8	0.23 (1)	6.25	I- D	-197 / 0	0.07 (1)
C-D	0 / 54	-91.8	-91.8	0.24 (1)		C-1	-396 / 0	0.07 (1)
D-E	0 / 54	-91.8	-91.8	0.24 (1)		J- K	-69 / 58	0.00 (1)
E-M	-143 / 0	-9 1.8	-91.8	0.23 (1)	6.25	L- M	-69 / 58	0.00 (1)
M-F	-199 / 0	-91.8	-91.8	0.06 (4)	6.25			0.00 (1)
F-G	0 / 17	-91.8	-91.8	0.05 (1)	10.00			
B-J	0 / 149	-18.5	-18.5	0:08 (1)	10.00			
J- 1	0 / 149	-18.5	-18.5	0.12 (4)	10.00			
I- H	0 / 40	-18.5	-18.5	0.12 (4)	10.00			
H-L	0 / 149	-18.5	-18.5	0.12 (4)	10.00			
L-F	0 / 149	-18.5	-18.5	0.08 (1)	10.00			
				(.,				

===:			=					
SPECIFIED LOADS:								
TOP	CH.	LL	=	25.6	PSF			
		DL	=	6.0	PSF			
BOT	CH.	LL	=	0.0	PSF ·			
		DL	=	7.4	PSF			
TOTA	L LO	AD	=	39.0	PSF			

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018 , ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

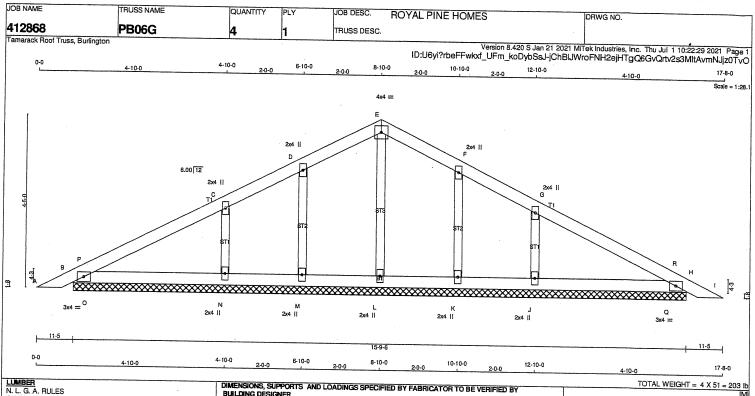
CSI: TC=0.24/1.00 (C-D:1) , BC=0.12/1.00 (I-J:4) , WB=0.07/1.00 (D-H:1) , SSI=0.15/1.00 (C-D:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.24 (B) (INPUT = 0.90) JSI METAL= 0.08 (E) (INPUT = 1.00)

CITY OF RICHMOND HILL **BUILDING DIVISION**

ocelyn.aguilar_

LUMBER
N. L. G. A. RULES
CHORDS SIZE
A - E 2x4
E - I 2x4
B - H 2x4 LUMBER DESCR DRY No.2 No.2 SPE DRY ALL WEBS 2x3 ALL GABLE WEBS DRY No.2 SPF 2x3 DRY DRY: SEASONED LUMBER. No.2 SPF

GABLE STUDS SPACED AT 2-0-0 OC.

PLATES (table is in inches)									
JT TYPE	PLATES	W	LEN	Υ	Χ				
B TMB1-I	MT20	3.0	4.0						
C, D, F, G									
C TMW+w	MT20	2.0	4.0						
E TTW-p	MT20	4.0	4.0						
H TMB1-I	MT20	3.0	4.0						
J, K, L, M, N									
J BMW1+w	MT20	2.0	4.0						

BUILDING DESIGNER BEARINGS

THIS TRUSS DESIGNED FOR CONTINUOUS BEARINGS.

THIS TRUSS REQUIRES RIGID SHEATHING ON EXPOSED FACE.

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S)

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS				WEBS					
MAX. FACTORED			FACTORED			MAX. FACTORED			
ı	MEMB.	FORCE	VERT. LC		MAX	MAX.	MEMB.		MAX
		(LBS)				UNBRAC		(LBS)	CSI (LC)
ı	FR-TO		FROM		()	LENGTH		(200)	031 (EU)
	A-B	0 / 17	-91.8	-91.8	0.05 (1)			-131 / 0	0.04 (1)
1	B-P	-44 / 0	-91.8	-91.8	0.02 (4)		M-D	-160 / 0	0.03 (1)
1	P-C	-44 / 0	-91.8	-91.8	0.13(1)		N- C	-306 / 0	0.05 (1)
ļ	C-D	-60 / 0	-9 1.8	-91.8	0.13(1)		K-F	-160 / 0	0.03 (1)
ı	D-E	-45 / 0	-9 1.8	-91.8	0.05 (1)		J- G	-306 / 0	0.05 (1)
1	E-F	-45 / 0	-91.8	-91.8	0.05 (1)		O- P	-171 / 5	0.00 (1)
ĺ	F-G	-60 / 0	-91.8	-91.8	0.13 (1)		Q-R	-171 / 5	0.00 (1)
1	G-R	-44 / 0	-91.8	-9 1.8	0.13 (1)				0.00 (1)
1	R-H	-44 / 0	-91.8	-91.8	0.02 (4)	6.25			
ĺ	H- I	0 / 17	-91.8	-91.8	0.05(1)				
1									
1	B-O	0 / 49	-18.5	-18.5	0.10(1)	10.00			
1	O- N	0 / 49	-18.5	-18.5	0.10(1)	10.00			
Į	N- M	0 / 39	-18.5	-18.5	0.07(1)	10.00			
1	M- L	0 / 36	-18.5		0.02 (4)	10.00			
1	L-K	0 / 36	-18.5	-18.5	0.02 (4)	10.00			
	K-J	0 / 39	-18.5		0.07(1)	10.00			
ı	J-Q	0 / 49	-18.5		0.10(1)	10.00			
1	Q-H	0 / 49	-18.5	-18.5	0.10(1)	10.00			
١									

DESIGN CRITERIA

SPECIFIED LOADS:

LL DL LL DL PSF PSF PSF 6.0 0.0 7.4 CH.

TOTAL LOAD 39.0 PSF

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:

- PART 9 OF BCBC 2018 , ABC 2019 - PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.13/1.00 (G-R:1) , BC=0.10/1.00 (H-Q:1) , WB=0.05/1.00 (G-J:1) , SSI=0.14/1.00 (B-O:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES

 $\begin{array}{c|ccccc} \text{NAIL VALUES} & \text{SHEAR} & \text{SECTION} \\ \text{PLATE} & \text{GRIP(DRY)} & \text{(PLI)} & \text{(PLI)} \\ & \text{(PSI)} & \text{(PLI)} & \text{(PLI)} \\ & \text{MAX} & \text{MIN} & \text{MAX} & \text{MIN} \\ \text{MT20} & 650 & 371 & 1747 & 788 & 1987 & 1873 \\ \end{array}$

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.21 (B) (INPUT = 0.90) JSI METAL= 0.13 (G) (INPUT = 1.00)

Structural component only DWG# T-2121150

CITY OF RICHMOND HILL **BUILDING DIVISION**

RECEIVED

Per: ocelyn.aguilar

JOB NAME TRUSS NAME QUANTITY PLY JOB DESC. **ROYAL PINE HOMES** DRWG NO. 412865 PB06Z TRUSS DESC Tamarack Roof Truss, Burlington Version 8.420 S Jan 21 2021 MiTek Industries, Inc. Thu Jul 1 12:26:20 2021 Page 1 ID:U6yi?rbeFFwkxf_UFm_koDybSsJ-epCPLES2nQcw3dlTlpEixyimNOFMf9jfwWK4dWz0S5H 0-0 5-0-7 8-10-0 4x6 II 6.00 12 2x4 \\ 4:3 3x4 = 11-5 11-4-6 5-0-13 6-3-10 LUMBER N. L. G. A. RULES CHORDS SIZE DIMENSIONS, SUPPORTS AND LOADINGS SPECIFIED BY FABRICATOR TO BE VERIFIED BY TOTAL WEIGHT = 3 X 51 = 154 lb **BUILDING DESIGNER** SIZE LIMBER DESIGN CRITERIA

2x4 2x4 D DRV No.2 SPF No.2 SPE 2x4 DRY No.2 ALL WEBS 2x3 No.2 SPF DRY: SEASONED LUMBER.

DESIGN CONSISTS OF <u>3</u> TRUSSES BUILT SEPARATELY THEN FASTENED TOGETHER AS FOLLOWS:

CHORDS #ROWS SURFACE SPACING (IN) LOAD(PLF) TOP CHORDS : (0.122"X3") SPIRAL NAILS A-D 1 12 TOP 12 TOP BOTTOM CHORDS: (0.122"X3") SPIRAL NAILS B- F 1 12 TOP WEBS: (0.122"X3") SPIRAL NAILS 2x3 1 6

STAGGER NAILS BY HALF THE SURFACE SPACING IN ADJACENT PLIES.

TOP - COMPONENTS ARE LOADED FROM THE TOP AND MUST BE PLACED ON TOP EDGE OF ALL PLIES FOR MUST BE PLACED ON TOP EDGE OF ALL PLIES THE LOAD TO BE TRANSFERRED TO EACH PLY.

PLATES (table is in inches) TMB1-I TMW+w 3.0 2.0 4.0 2.0 4.0 4.0 6.0 4.0 4.0 MT20 TTWW+p MT20 Edge TMW+w TMB1-l MT20 3.0 BMWW1-t MT20 4.0 BMWW1-t

Edge - INDICATES REFERENCE CORNER OF PLATE TOUCHES EDGE OF CHORD.

PROFESSIONAL CHOMES

100009024

OF ONTARIO Structural component only DWG# T-2121199

PON

DEA	HENGS						
	FACTO GROSS F	MAXIMU GROSS	M FACTO	INPUT BRG	REQRD BRG		
JT	VERT	HORZ	DOWN	HORZ	UPLIFT	IN-SX	IN-SX
В	340	0	340	0	0	15-9-6	15-9-6
F	340	Ō	340	Ô	0		
Н	610	ő	610	0	0	15-9-6	15-9-6
ï	610	n		-	U	15-9-6	15-9-6
•	010	U	610	0	0	15-9-6	15-9-6

UNFACTORED REACTIONS MAX./MIN. COMPONENT REACTIONS
SNOW LIVE PERM.LIVE COMBINED 239 166 / 0 0/0 0/0 73 / 0 73 / 0 149 / 0 0/0 0/0 0/0 0/0 239 166 / 0 Н 0/0 283 / 0 0/0 149 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) B, F, H, I

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

	CHORDS MAX. FACTORED FACTORED				W E B S MAX. FACTORED				
	MEMB.	FORCE	VERT. LO		MAX	MAX.	MEMB.		MAX
	FR-TO	(LBS)	(PL		CSI (LC)	UNBRAC	;	(LBS)	CSI (LC)
-	A- B	0 / 47	FROM			LENGTH	FR-TO		, ,
Į	B- K	0 / 17	-91.8		0.02 (1)		D- H	-197 / 0	0.02(1)
- [-199 / 0	-91.8	-91.8	0.02 (4)		H- E	-396 / 0	0.02 (1)
1	K-C	-144 / 0	-91.8	-91.8	0.08 (1)		I- D	-197 / 0	0.02 (1)
- 1	C-D	0 / 54	-91.8	-91.8	0.08 (1)		C- I	-396 / 0	0.02 (1)
- [D-E	0 / 54	-91.8	-91.8	0.08(1)	10.00	J-K	-68 / 57	0.00 (1)
-1	E-M	-144 / 0	-91.8	-91.8	0.08(1)	6.25	L- M	-68 / 57	0.00 (1)
1	M-F	-199 / 0	-91.8	-91.8	0.02 (4)	6.25			0.00 (1)
ı	F-G	0 / 17	-91.8	-91.8	0.02 (1)	10.00			
	B-J	0 / 149	-18.5	-18.5	0.03 (1)	10.00			
1	J- I	0 / 149	-18.5	-18.5	0.04 (4)	10.00			
-	I- H	0 / 40	-18.5	-18.5	0.04 (4)	10.00			
1	H- L	0 / 149	-18.5		0.04 (4)	10.00			
1	L-F	0 / 149	-18.5		0.03 (1)	10.00			

SPECIFIED LOADS: LL = DL = LL = DL = AD = TOP CH. 6.0 0.0 7.4 PSF BOT CH. PSF PSF TOTAL LOAD 39.0 PSF

SPACING = 24.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14 - TPIC 2014

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

CSI: TC=0.08/1.00 (C-D:1) , BC=0.04/1.00 (I-J:4) , WB=0.02/1.00 (D-I:1) , SSI=0.05/1.00 (C-D:1)

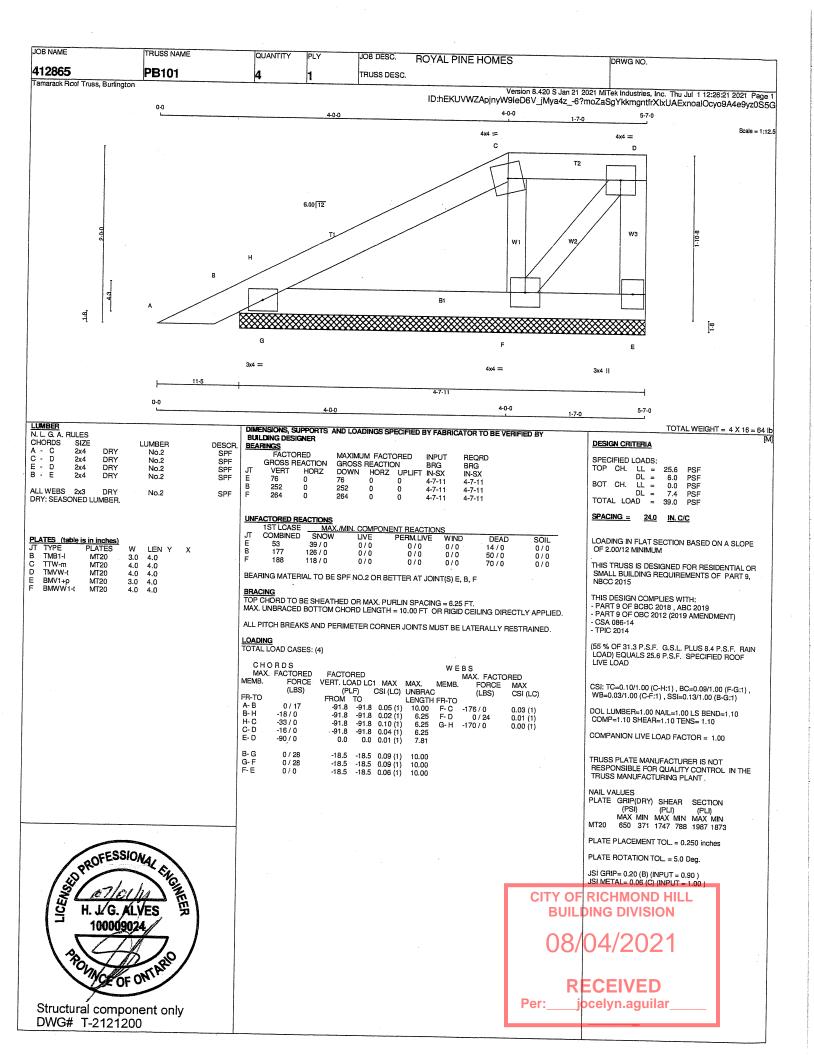
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

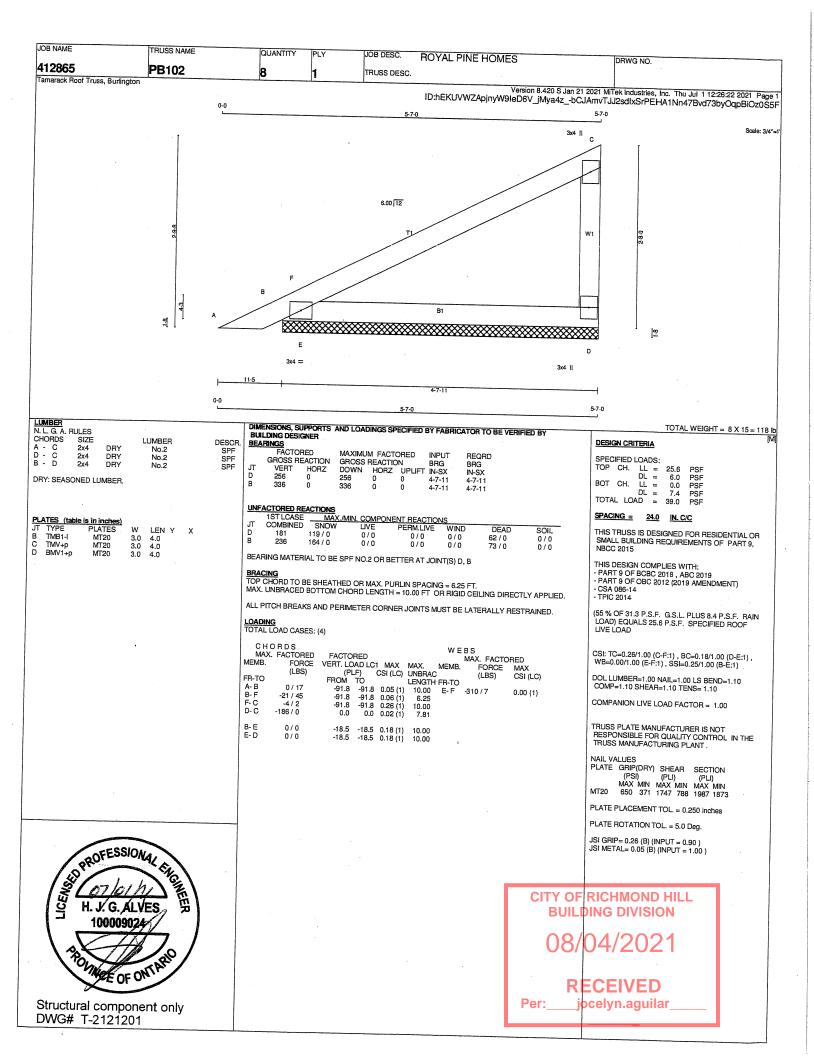
COMPANION LIVE LOAD FACTOR = 1.00

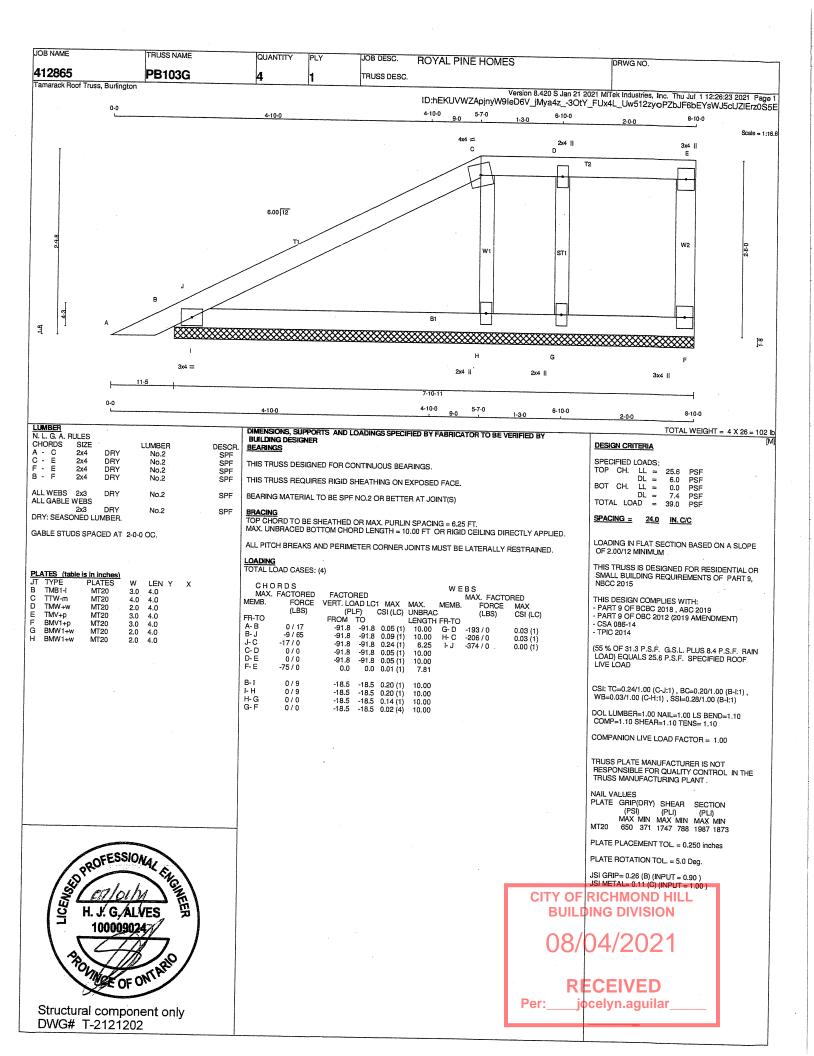
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

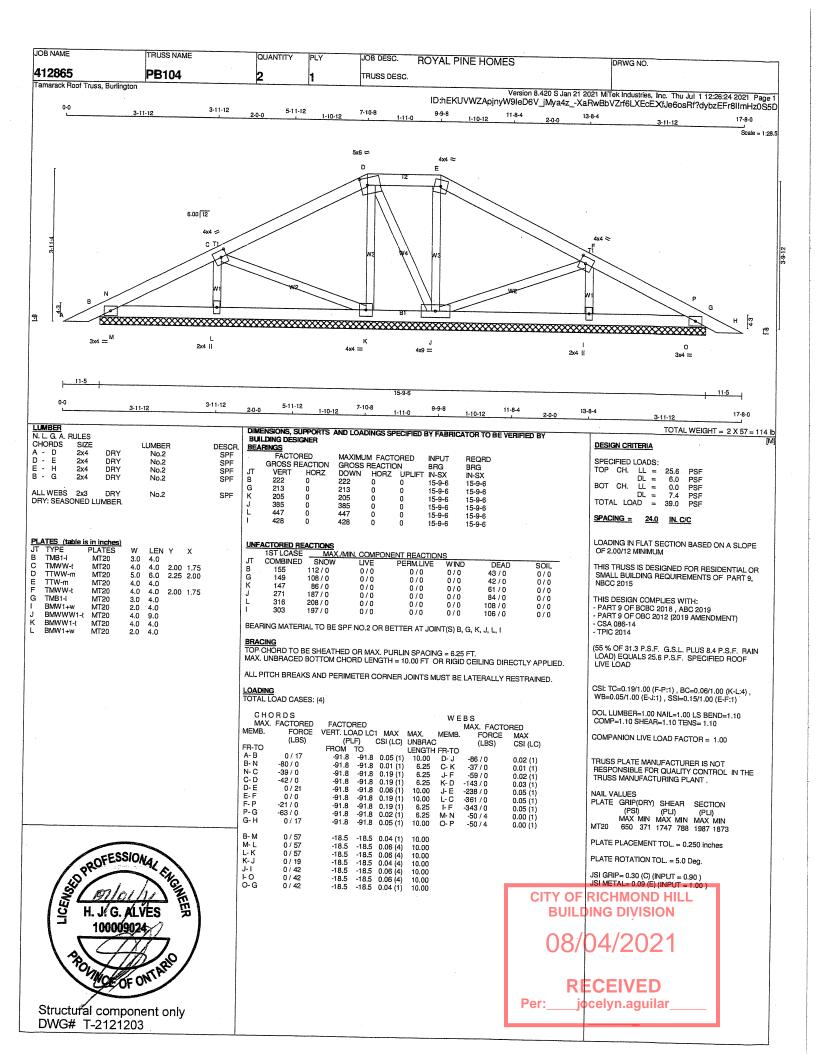
NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

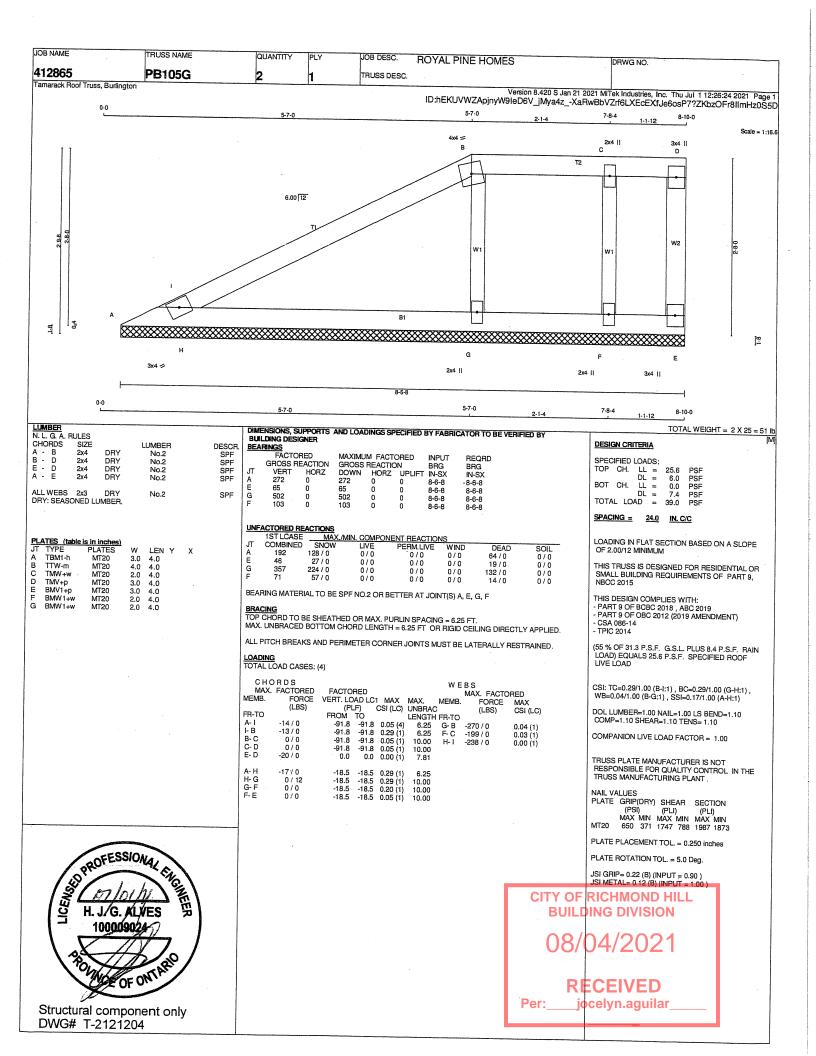
PLATE PLACEMENT TOL. = 0.250 inches

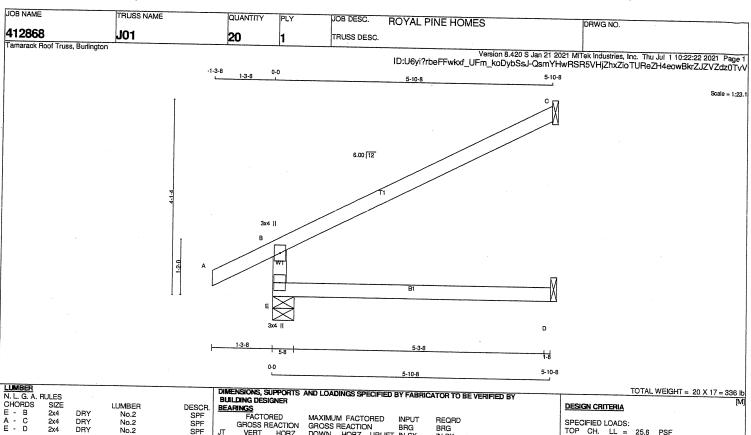

PLATE ROTATION TOL. = 5.0 Deg.


JSI GRIP= 0.08 (F) (INPUT = 0.90) JSI METAL= 0.03 (C) (INPUT = 1.00)


CITY OF RICHMOND HILL **BUILDING DIVISION**


RECEIVED


jocelyn.aguilar



 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 E
 BMV1+p
 MT20
 LEN Y 3.0

DRY

2x4

DRY: SEASONED LUMBER.

BEARINGS FACTORED GROSS REACTION MAXIMUM FACTORED INPLIT GROSS REACTION DOWN HORZ L BRG VERT HORZ 0 UPLIFT IN-SX IN-SX 5-8 1-8 0 202 1-8 1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS ____MAX COMBINED 0/0

COMPONENT REACTIONS

LIVE PERM.LIVE WIND JT E C D DEAD 257 / 0 113 / 0 0/0 111/0 0/0 0/0 0/0 139 26 / 0 36 0/0 0/0 0/0 36 / 0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

ECD

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

FACTORED

VERT. LOAD LC1 MAX MAX.

(PLF) CSI (LC) UNBRAC LENGTH CHORDS WEBS MAX. FACTORED MB. FORCE MAX. FACTORED FORCE MA MEMB. ŃЕМВ. (PLF) FROM TO 0.0 ((LBS) (LBS) CSI (LC) FR-TO LENGTH FR-TO E-B A-B B-C 0.0 0.13 (4) 0.0 0.0 0.13 (4) -91.8 -91.8 0.12 (1) -91.8 -91.8 0.54 (1) 0 / 28 -30 / 0 6.25 E- D 0/0 -18.5 -18.5 0.13 (4) 10.00

CH. 25.6 6.0 0.0 7.4 PSF 39.0

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.20")
CALCULATED VERT. DEFL.(LL) = L/ 999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.20")
CALCULATED VERT. DEFL.(TL) = L/ 999 (0.03")

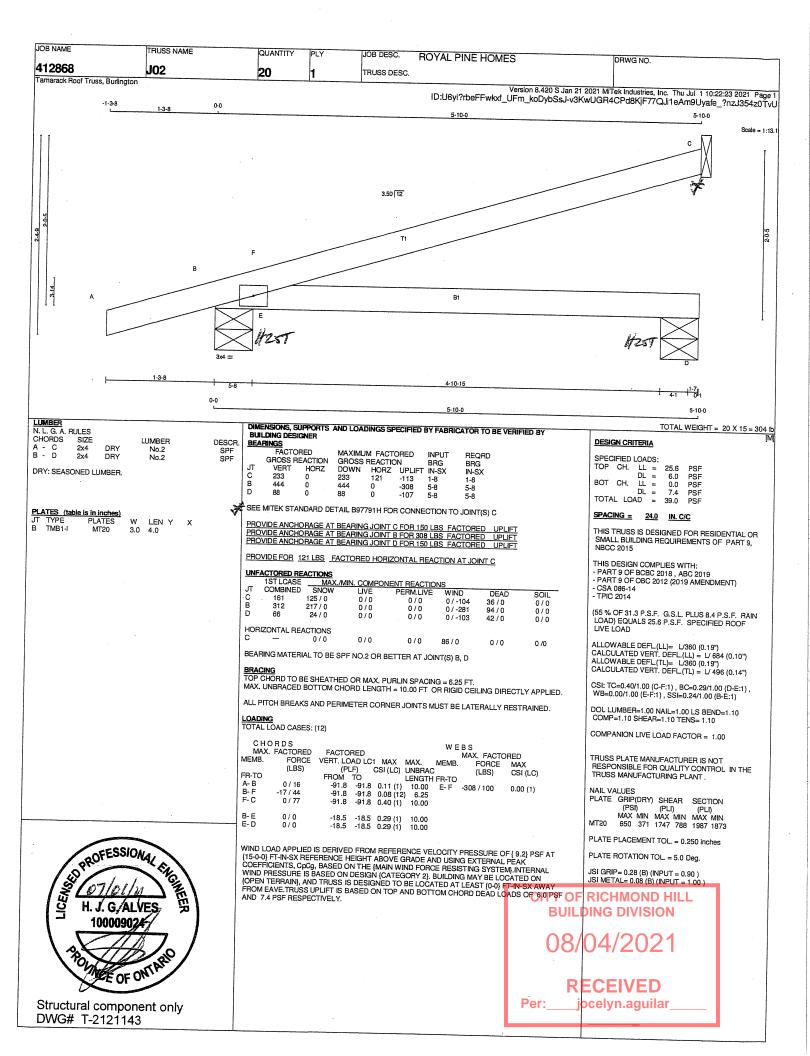
CSI: TC=0.54/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.24/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.


NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
650 371 1747 788 1987 1873

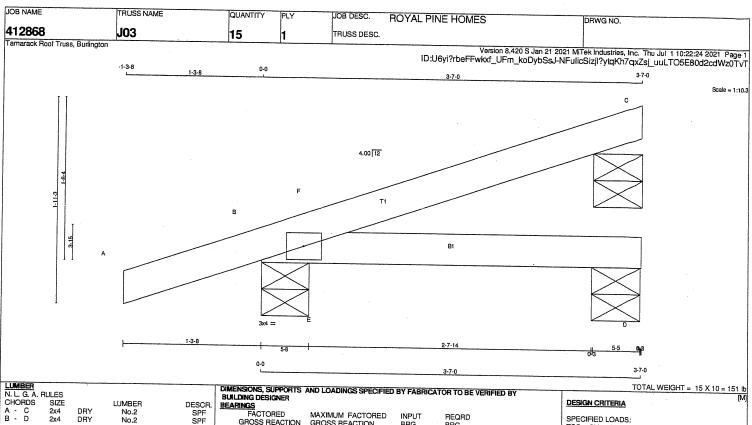

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg. TY OF USIGHIP = 0.18 (E) (INPUT = 0.90)
BUILD ISIMETAL 0.18 (B) (INPUT = 1.00)

RECEIVED jocelyn.aguilar

DRY: SEASONED LUMBER.

PLATES (table is in inches) LEN Y MT20 TMB1-I 3.0 4.0

	CHITCH						
	FACTO	ORED	MAXIMU	M FACTO	ORED	INPUT	REORD
	GROSS F	REACTION	GROSS	REACTIC	N	BRG	BRG
Л	VERT	HORZ	DOWN	HORZ	UPLIET	IN-SX	IN-SX
С	141	0	141	0	0	5-8 (5-7)	5-8
В	320	0	320	Õ	ň	5-8	5-8
D	57	Λ	57	Ö	ō	5-8	
_	•	•	J,	U	U	5-8	5-8

VALUE IN PARENTHESIS INDICATES EFFECTIVE BEARING LENGTH

BEVELED PLATE OR SHIM REQUIRED TO PROVIDE FULL BEARING SURFACE WITH TRUSS CHORD AT JT(S): C

UNFACTORED REACTIONS

	1ST LCASE		IIN. COMPO	NENT REACTION	NS		
JT C B D	98 224 42	SNOW 76 / 0 160 / 0	0/0 0/0	PERM.LIVE 0/0 0/0	WIND 0/0 0/0	DEAD 22 / 0 64 / 0	SOIL 0/0 0/0
0	42	16/0	0/0	0/0	0/0	26 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) C, B, D

<u>BRACING</u>
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	RDS FACTORED	FACTO	RED			WE		n=n
MEMB.	FORCE	VERT. LO		1 MAX	MAX.	мемв.	MAX. FACTOR	MAX
	(LBS)	(PL			UNBRAC		(LBS)	CSI (LC)
FR-TO		FROM	TO	. ,	LENGTH		(220)	001 (LO)
A- B	0 / 18	-91.8	-91.8	0.13 (5)		E-F	-138 / 5	0.00(1)
B-F	-10/0	-91.8	-91.8	0.04 (4)	6.25			0.00 (1)
F-C	0/2	-91.8	-91.8	0.15 (1)	10.00			
B-E	0/0	-18.5	-18.5	0.12 (1)	10.00			
E-D	0/0	-18.5	-18.5	0.12 (1)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

LL = DL = 6.0 0.0 7.4 PSF PSF PSF BOT CH. LL = 0.0 DL = 7.4 TOTAL LOAD = 39.0

SPACING = 24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL)= L/999 (0.01")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
L/360 (0.19") CALCULATED VERT. DEFL (TL) = L/ 999 (0.02")

CSI: TC=0.15/1.00 (C-F:1) , BC=0.12/1.00 (B-E:1) , WB=0.00/1.00 (E-F:1) , SSI=0.11/1.00 (B-E:1)

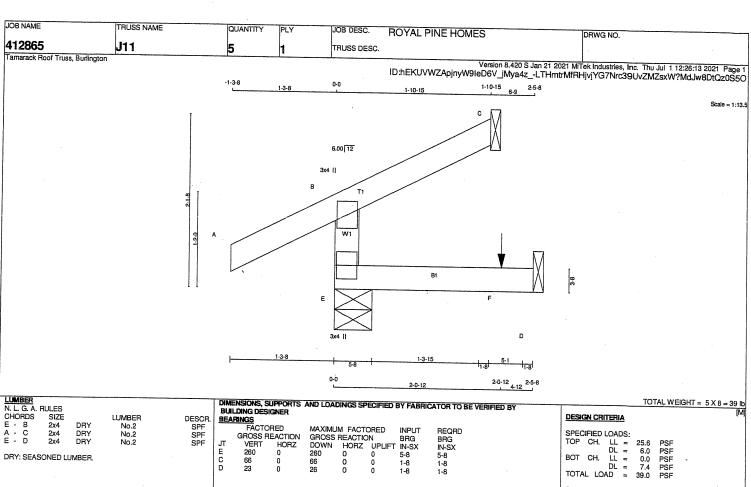
DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS=1.10

COMPANION LIVE LOAD FACTOR = 1.00

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES
PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) MAX MIN MAX MIN MAX MIN 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg.

JSI GRIP= 0.20 (B) (INPUT = 0.90) JSI METAL= 0.05 (B) (INPUT = 1.00)

CITY OF RICHMOND HILL **BUILDING DIVISION**

jocelyn.aguilar

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 E
 BMV1+p
 MT20
 W LEN 3.0

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS 1ST LCASE COMBINED ____MAX ../MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND DEAD 182 130 / 0 0/0 0/0 0/0 0/0 0/0 0/0 52/0 9/0 С 46 37 / 0 18 0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

СН	ORDS							\A/ E	BS		
	X. FACTOR		FACTO					** L	MAX. FAC	TORED	
MEMB.	FOR (LBS		ERT. LC				MAX.	_ MEMB.	FORC	E MAX	
FR-TO	(LDC	"		LF) TO	CSI (L	.C)	UNBRA	C H FR-TO	(LBS)	CSI	(LC)
E-B	-234 / 0		0.0	0.0	0.02	(4)	7.81				
A-B	0 / 28		-91.8	-91.8			10.00				
B- C	-10 / 0		-91.8	-91.8	0.06	(1)	10.00				
E-F	0/0		-18.5	-18.5	0.03	(4)	10.00				
F-D	0/0		-18.5	-18.5	0.03	(4)	10.00				
SPECIF	FIED CONC	ENTRA	TEDIO	ADS (LE	351						
JΤ	LOC.	LC1	MAX-	MAX		FA	CE I	DIR.	TYPE	HEEL	CONN
F	2-0-12	-3	-3	-		BAC	CK VI	ERT	TOTAL		C1
CONNE	CTION REC	V IIREN	ENTS								

1) C1: A SUITABLE HANGER/MECHANICAL CONNECTION IS REQUIRED.

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

24.0 IN. C/C

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

- CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL (LL) = L/360 (0.19")
CALCULATED VERT. DEFL (LL) = L/999 (0.00")
ALLOWABLE DEFL (TL) = L/360 (0.19")
CALCULATED VERT. DEFL (TL) = L/999 (0.00")

CSI: TC=0.13/1.00 (A-B:5) , BC=0.03/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.09/1.00 (A-B:5)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

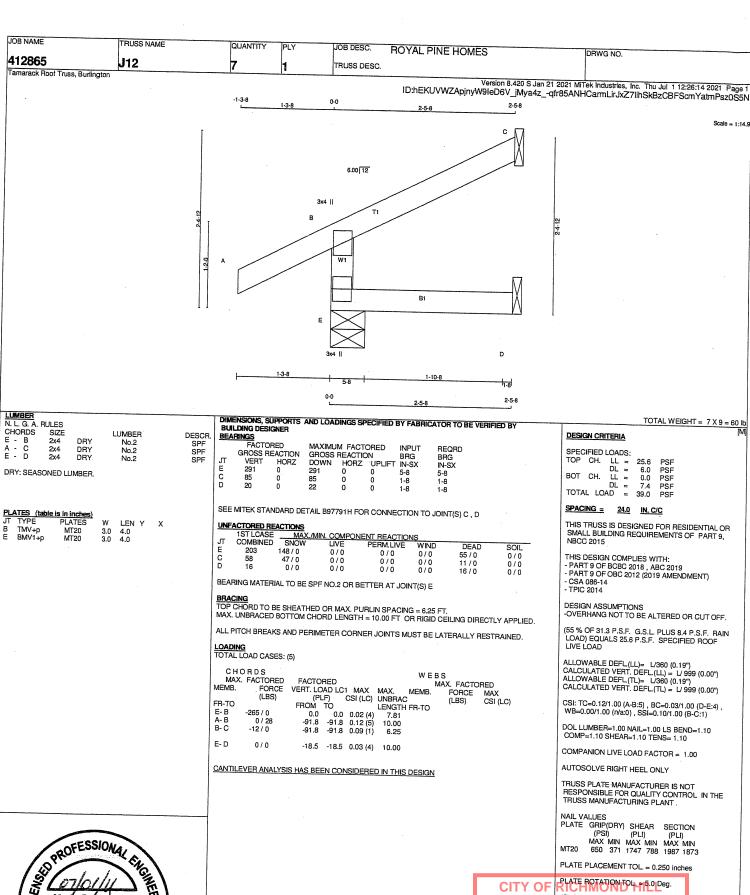
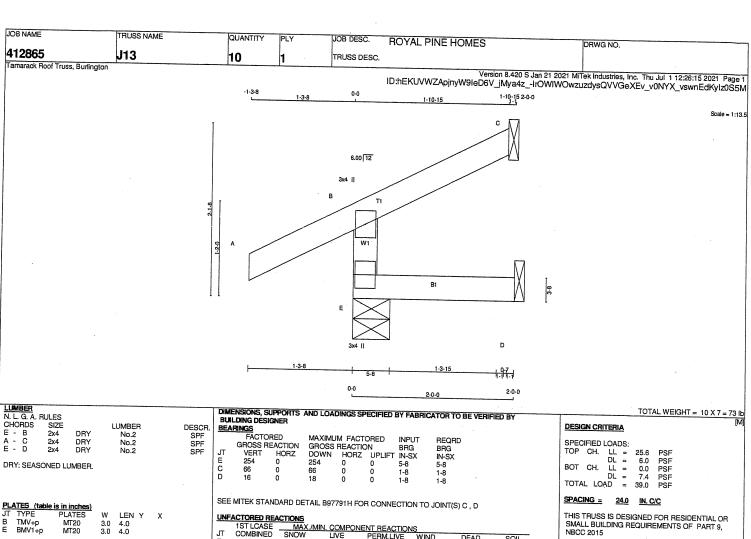

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION
(PSI) (PLI) (PLI)
MAX MIN MAX MIN MAX MIN
MT20 650 371 1747 788 1987 1873

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg. **CITY OF** JSI GRIP= 0.09 (E) (INPUT = 0.90) USI METAL= 0.06 (B) (INPUT = 1.00)

RECEIVED celyn.aguilar


PROFESSIONAL CHOMES TO THE PROFESSIONAL CHOMES TO THE PROFESSIONAL CHARGE T 100009024 PONTARIO OF ONTARIO

Structural component only DWG# T-2121192

BUILD JSI GRIP= 0:1/1 (E) (INPUT = 0:90)
USI METAL= 0:07 (B) (INPUT = 1:00)

RECEIVED

jocelyn.aguilar

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

ECD

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 10.00 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

0/0

0/0

DEAD 47 / 0 9 / 0

WIND

0/0

SOIL 0/0 0/0 0/0

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

46

13

130 / 0

37/0

0/0

0/0

0/0

CHORDS WEBS FACTORED MAX. FACTORED MEMB. FACTORED VERT. LOAD LC1 MAX MAX. MEMB. (PLF) CSI (LC) UNBRAC LENGTH FR-TO 0.0 0.0 0.01 (4) 7.81 -91.8 -91.8 0.12 (1) 10.00 -91.8 -91.8 0.06 (1) 10.00 FORCE FORCE MAX (LBS) (LBS) FR-TO E-B -234 / 0 A- B B- C 0 / 28 -10/0 E-D 0/0 -18.5 -18.5 0.02 (4)

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)

CSA 086-14 TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL(LL)= L/360 (0.19")
CALCULATED VERT. DEFL(LL) = L/999 (0.00")
ALLOWABLE DEFL(TL)= L/360 (0.19")
CALCULATED VERT. DEFL(TL) = L/999 (0.00")

CSI: TC=0.12/1.00 (A-B:1) , BC=0.02/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.09/1.00 (A-B:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

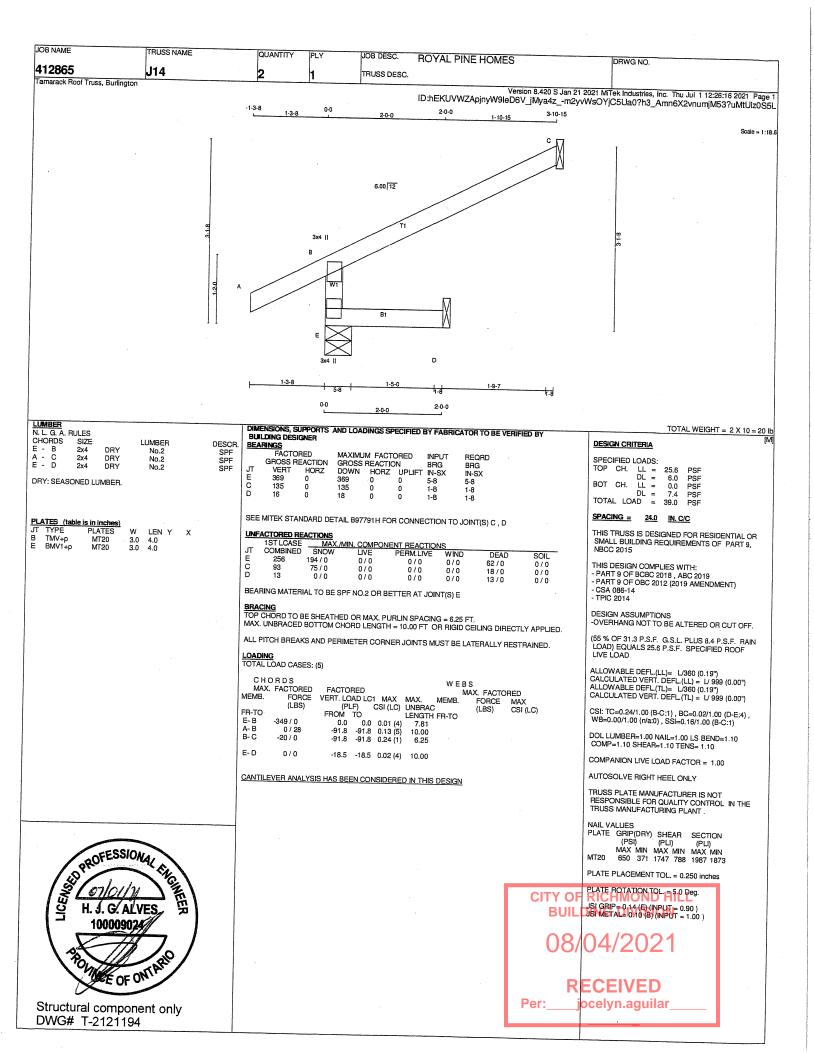
COMPANION LIVE LOAD FACTOR = 1.00

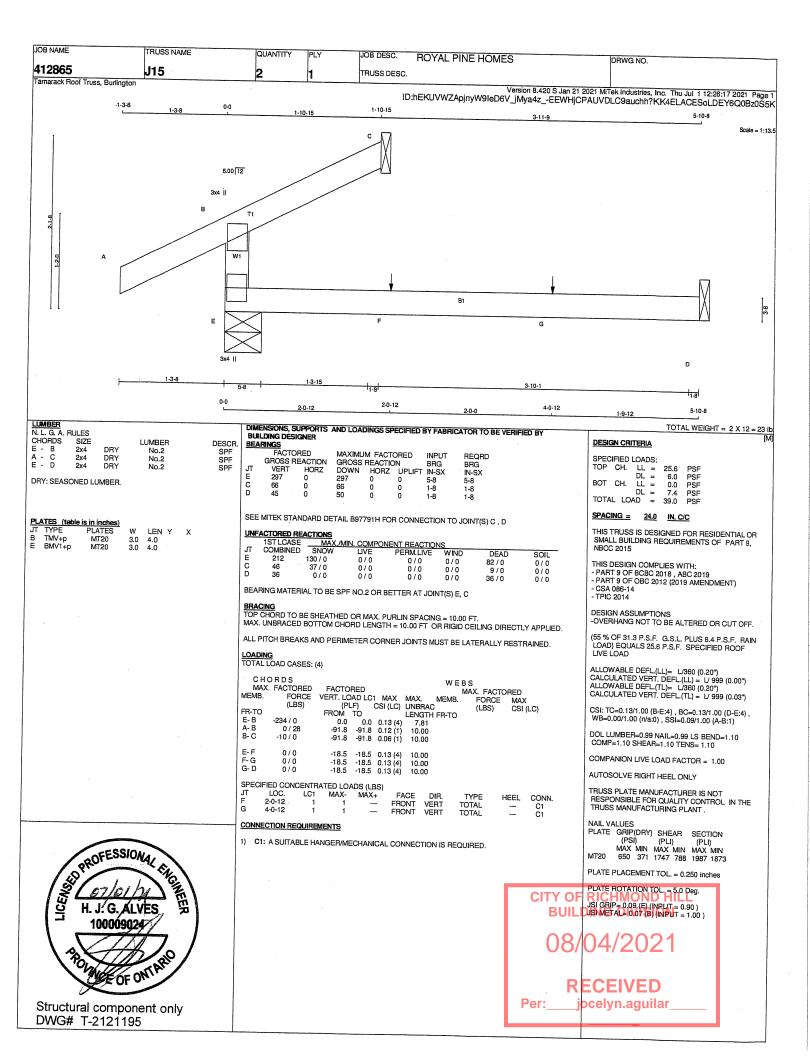
AUTOSOLVE RIGHT HEEL ONLY

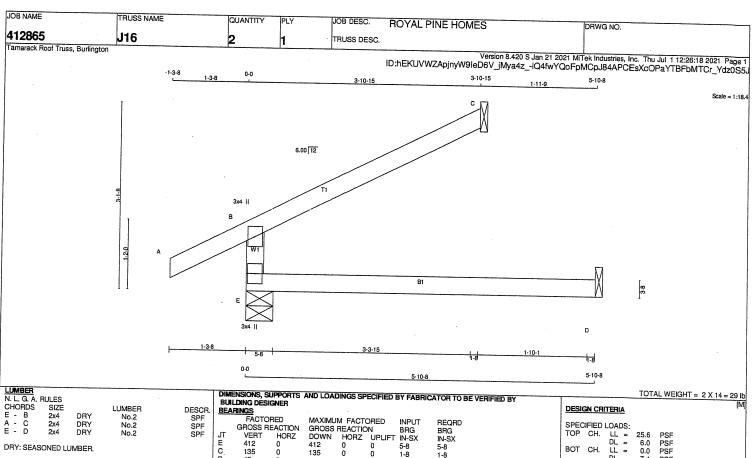
TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR (PSI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN


MT20 650 371 1747 788 1987 1873


PLATE PLACEMENT TOL. = 0.250 inches


PLATE ROTATION TOL. = 5.0 Deg. **CITY OF** BUIL DISI GRIP= 0.09 (E) (INPUT = 0.90)
USI METAL= 0.06 (B) (INPUT = 1.00)

RECEIVED ocelyn.aguilar

 PLATES (table is in inches)

 JT TYPE PLATES

 B TMV+p MT20

 E BMV1+p MT20
 LEN Y 3.0

BEA	RINGS				
JT E D	FACTO GROSS R VERT 412 135 45	MAXIMU GROSS DOWN 412 135 50		INPUT BRG IN-SX 5-8 1-8 1-8	REQRD BRG IN-SX 5-8 1-8 1-8

SEE MITEK STANDARD DETAIL B97791H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS MIN. COMPONENT REACTIONS
LIVE PERM.LIVE WIND SNOW JT COMBINED SOIL 0/0 0/0 UVE 0/0 DEAD ECD 291 0/0 194/0 0/0 97/0 18/0 93 75 / 0 36 0/0 0/0 BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E, C

BRACING
TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING = 6.25 FT.
MAX. UNBRACED BOTTOM CHORD LENGTH = 10.00 FT OR RIGID CEILING DIRECTLY APPLIED.

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (4)

CHORDS WEBS MAX. FACTORED FACTORED MAX. FACTORED MEMB. VERT. LOAD LC1 MAX MAX. MEMB.
(PLF) CSI (LC) UNBRAC
FROM TO LENGTH FR-TO FORCE MAX (PLF) FROM TO 0.0 0 -91.8 -91 (LBS) (LBS) CSI (LC) FR-TO E-B A-B B-C 0.0 0.13 (4) -91.8 0.12 (1) -91.8 0.24 (1) 0 / 28 -20 / 0 E-D 0/0 -18.5 -18.5 0.13 (4)

LL =
DL =
LL =
DL =
AD = PSF TOTAL LOAD 39.0

24.0

SPACING =

IN. C/C THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9, NBCC 2015

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT) - CSA 086-14

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL (LL)= L/360 (0.20")
CALCULATED VERT. DEFL (LL)= L/999 (0.00")
ALLOWABLE DEFL (TL)= L/360 (0.20") CALCULATED VERT. DEFL.(TL) = L/ 999 (0.03")

CSI: TC=0.24/1.00 (B-C:1) , BC=0.13/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.16/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

NAIL VALUES PLATE GRIP(DRY) SHEAR SECTION (PSI) (PLI) (PLI) (PLI)

MAX MIN MAX MIN MAX MIN MAX MIN

MT20 650 371 1747 788 1987 1873

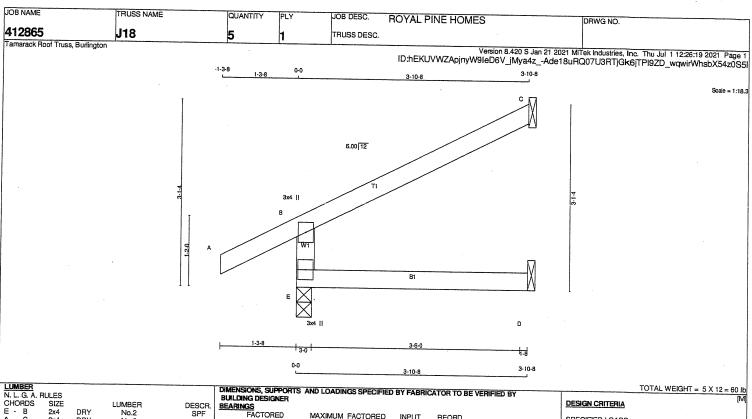

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION TOL. = 5.0 Deg. **CITY OF** BUILDISIMETAL = 0.10 (B) (INPUT = 0.90)

ocelyn.aguilar

N. L. G. A. RULES
CHORDS SIZE
E - B 2x4
A - C 2x4
E - D 2x4 SIZE 2x4 2x4 2x4 2x4 LUMBER No.2 No.2 DRY DRY DRY: SEASONED LUMBER.

 PLATES
 (table is in inches)

 JT
 TYPE
 PLATES

 B
 TMV+p
 MT20

 E
 BMV1+p
 MT20
 W 3.0 LEN Y 4.0 4.0 3.0

BEA!	RINGS						
	FACTO GROSS R	EACTION	MAXIMU GROSS			INPUT BRG	REQRD BRG
JT	VERT	HORZ	DOWN	HORZ	UPLIET	IN-SX	IN-SX
E	388	0	388	0	0	3-0	3-0
C	133	0	133	0	0	1-8	1-8
D	30	0	34	0	0	1-8	1-8

SEE MITEK STANDARD DETAIL B97791 H FOR CONNECTION TO JOINT(S) C , D

UNFACTORED REACTIONS

1 _	1ST LCASE		MIN. COMPO	NENT REACTION	NS		
ıπ	COMBINED	SNOW	LIVE	PERM, LIVE	WIND	DEAD	SOIL
E	272	193 / 0	0/0	0/0	0/0	78 / 0	0/0
C	92	74 / 0	0/0	0/0	0/0	17/0	0/0
10	24	0/0	0/0	0/0	0/0	24 / 0	0/0

BEARING MATERIAL TO BE SPF NO.2 OR BETTER AT JOINT(S) E

 $\frac{\text{BRACING}}{\text{TOP CHORD TO BE SHEATHED OR MAX. PURLIN SPACING} = 6.25 \text{ FT.} \\ \text{MAX. UNBRACED BOTTOM CHORD LENGTH} = 10.00 \text{ FT. OR RIGID CEILING DIRECTLY APPLIED.} \\$

ALL PITCH BREAKS AND PERIMETER CORNER JOINTS MUST BE LATERALLY RESTRAINED.

LOADING TOTAL LOAD CASES: (5)

	ORDS FACTORED	FACTO	RED			WE	BS MAX. FACTO	DED.
MEMB.	FORCE	VERT. LO		MAX	MAX.	MEMB.	FORCE	MAX
	(LBS)	(PL		CSI (LC)	UNBRAC)	(LBS)	CSI (LC)
FR-TO		FROM	TO		LENGTH	FR-TO	. ,	()
E-B	-347 / 0	0.0	0.0	0.05 (4)	7.81			
A-B	0 / 28	-91.8	-91.8	0.14 (5)	10.00			
B-C	-20 / 0	-91.8		0.23 (1)				
E-D	0/0	-18.5	-18.5	0.06 (4)	10.00			

CANTILEVER ANALYSIS HAS BEEN CONSIDERED IN THIS DESIGN

SPECIFIED LOADS: TOP CH. LL = LL = DL = LL = DL = AD = 25.6 PSF 6.0 PSF 0.0 PSF BOT CH. TOTAL LOAD

SPACING = 24.0

THIS TRUSS IS DESIGNED FOR RESIDENTIAL OR SMALL BUILDING REQUIREMENTS OF PART 9,

THIS DESIGN COMPLIES WITH:
- PART 9 OF BCBC 2018, ABC 2019
- PART 9 OF OBC 2012 (2019 AMENDMENT)
- CSA 086-14 - TPIC 2014

DESIGN ASSUMPTIONS -OVERHANG NOT TO BE ALTERED OR CUT OFF.

(55 % OF 31.3 P.S.F. G.S.L. PLUS 8.4 P.S.F. RAIN LOAD) EQUALS 25.6 P.S.F. SPECIFIED ROOF LIVE LOAD

ALLOWABLE DEFL.(LL)= L/360 (0.19")
CALCULATED VERT. DEFL.(LL) = L/999 (0.00")
ALLOWABLE DEFL.(TL)= L/360 (0.19")
CALCULATED VERT. DEFL.(TL)= L/999 (0.01")

CSI: TC=0.23/1.00 (B-C:1) , BC=0.06/1.00 (D-E:4) , WB=0.00/1.00 (n/a:0) , SSI=0.16/1.00 (B-C:1)

DOL LUMBER=1.00 NAIL=1.00 LS BEND=1.10 COMP=1.10 SHEAR=1.10 TENS= 1.10

COMPANION LIVE LOAD FACTOR = 1.00

AUTOSOLVE RIGHT HEEL ONLY

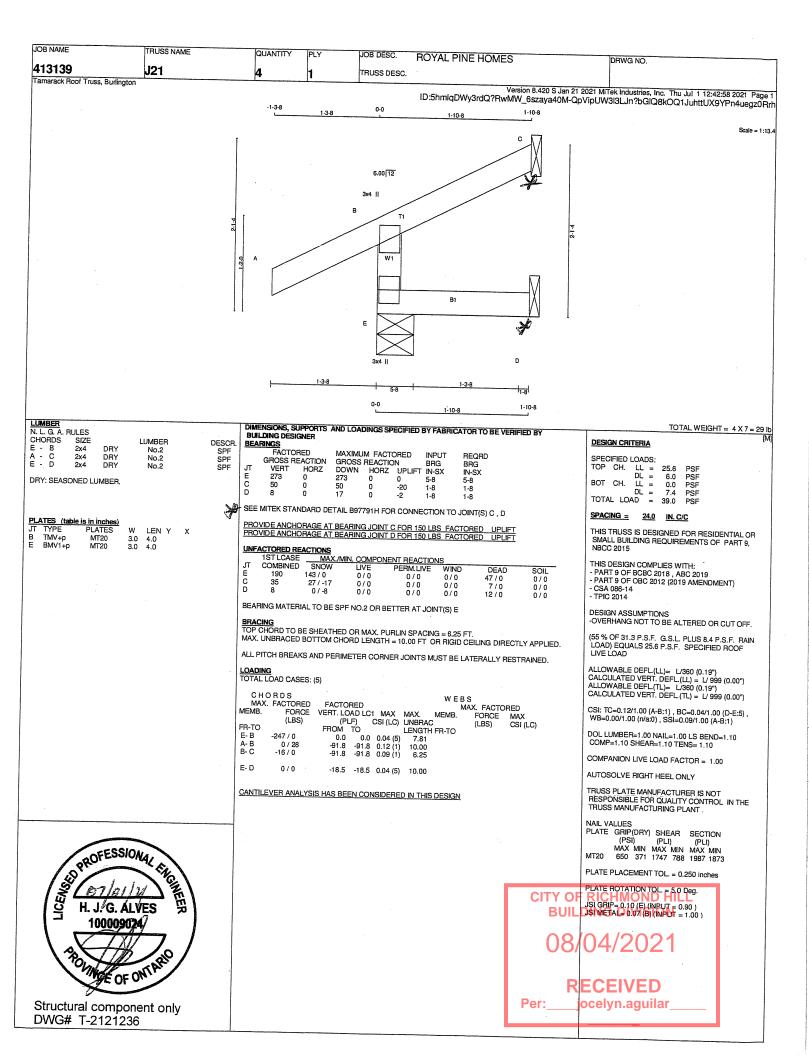

TRUSS PLATE MANUFACTURER IS NOT RESPONSIBLE FOR QUALITY CONTROL IN THE TRUSS MANUFACTURING PLANT.

PLATE PLACEMENT TOL. = 0.250 inches

PLATE ROTATION FOL 5.0 Deg. **CITY OF** BUILD JS! GRIP= 0.14 (E) (INPUT = 0.90)
JS! METAL= 0.10 (B) (INPUT = 1.00)

jocelyn.aguilar

Alves Engineering Services Inc.

5208 Easton road Burlington, Ontario L7L 6N6 (289) 259 5455

RESPONSABILITIES

1-Alves Engineering Services Inc. is responsible for the design of trusses as individual components

2-It is the responsibility of others to ascertain that the design loads utilized on this drawing meet or exceed the actual dead load imposed by the structure and the live load imposed by the local building code or the authorities having jurisdictions.

- 3- All dimensions are to be verified by owner, contractor, architect or other authority before manufacture.
- 4- Alves Engineering Services Inc. bears no responsibility for the erection of the trusses. Persons erecting trusses are cautioned to seek professional advice regarding temporary and permanent bracing system. Bracing shown on Alves Engineering Services Inc. drawings is specified for the truss as a single component and forms an integral part of the truss design, but is not meant to represent the only required bracing for that truss when trusses are installed in a series of trusses forming a roof truss system.
- 5- It is the manufactures responsibility to ensure that the trusses are manufactured in conformance with Alves Engineering Services Inc. specifications outlined below.

SPECIFICATIONS

1-Truss components sealed by Alves Engineering Services Inc. conform to the relevant sections of the current Building Code of Ontario and Canada (part 4 or part 9) or the current Canadian code for Farm Buildings in accordance with the application specified on the sealed truss component drawing. All truss component design procedures must conform to the current design standard issued by the truss plate institute of Canada (TPIC). All lumber and nailing stresses to conform to the current CSA wood design standard identified on the current Building Code and TPIC.

- 2- Lumber is to be the sizes and grade specified on the truss drawing.
- 3- Moist content of lumber is not to exceed 19% in service unless otherwise specified.
- 4- Plates shall be applied to both faces of the each truss joint and shall be positioned as shown on the truss drawings
- 5- Lumber used on manufacture of trusses is not to be treated with chemicals unless otherwise specified on the truss drawings.
- 6- The top chord is assumed to be continuously laterally braced by the roof sheathing or purlins at intervals specified on the truss drawing but not exceeding 24" c/c for (part 9) and not exceeding 48" for (part 4 or farm design)
- 7- When rigid ceiling is not attached directly to the bottom chord, lateral bracing is required and it should not exceed more than 3m or 10' intervals.

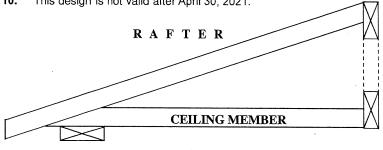
8-Refer to Mitek sheet MII7473C REV.10-08 attached for information on symbols, numbering system and General Safety notes.

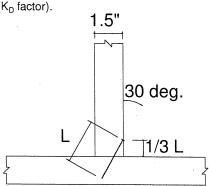
08/04/2021

RECEIVED jocelyn.aguilar

Por:

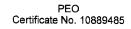
BEARING ANCHORAGE BY TOE-NAILS FOR LATERAL CAPACITY


B97791H1


NAIL TYPE	RENCEPT			
IVAIL TITLE	(B)	(0)	S-P-F	D. FIR
COMMON	3.00	0.144	132	147
WIRE	3.25	0.144	132	147
· VVIIILE	3.50	0.160	159	177
COMMON	3.00	0.122	97	108
SPIRAL	3.25	0.122	97	108
J. IIIAL	3.50	0.152	145	162

NOTES:

- 1. Rafter and ceiling members may be anchored to top and bottom chords of girder truss by toe-nailing rafter and ceiling members to girder chords provided the reaction does not exceed the lateral capacities in the table. Hangers (specified by others) are required for reactions higher than the maximum toe-nail capacity. Reactions are based on factored loads.
- 2. Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA O86-14, section 12.9.4.1.
- 3. For 9-3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- 4. Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in tables below.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42 (SPF), G = 0.49 (D. Fir).
- 6. Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See next page for nailing on bearing plate).
- 7. For loads due to **wind** the nail lateral capacity in this table may be multiplied by 1.15 (K_D factor).
- 8. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 9. Nail values in this table comply with CSA O86-14, section 12.9.4


This design is not valid after April 30, 2021.

Nail type	Common wire Common spir		Common wire	Common spiral
Nail dia. (in)	0.160	0.152	0.144	0.122
	(3.5	" nail)	(3" and :	3.25" nail)
LUMBER SIZE	1	AAXIMUM NUME	EFOFTOENA	LS
2X4 SPF	2	2	3	3
2X4 D. Fir	2	2	2	2
2X6 SPF	4	4	4	5
2X6 D Fir	વ	3	2	1

TOE-NAIL INSTALLATION

MiTek Canada Inc
100 Industrial Rd.
Rradford, Ontario L 37 3G7

Bradford, Ontario L3Z 3G7

jocelyn.aguilar

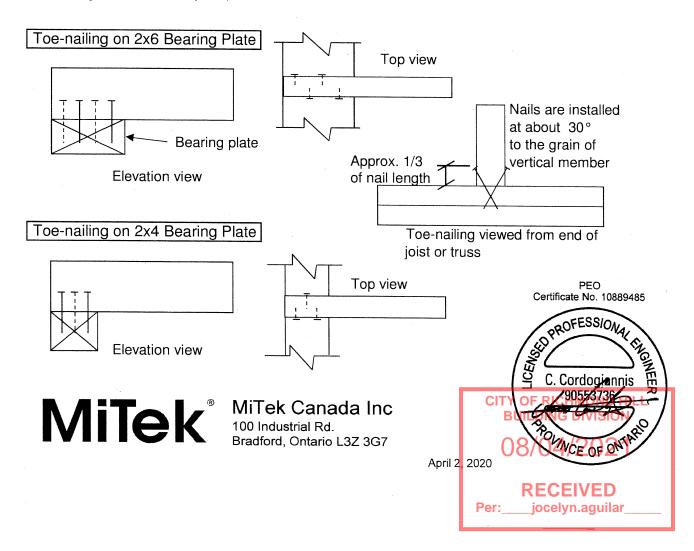
April 2, 2020

R R U D

 \mathbf{E}

R

BEARING ANCHORAGE BY TOE-NAILS FOR WIND LOADING


B97791H2

NAIL TYPE	ELEIGHT DIAMETER NAIMMITHEAWARCAPAGIS (LB)							
IVAIL THE		(in)	S-P-F	D. FIR	Note:			
COMMON	3.00	0.144	30	42	D. Fir I			
WIRE	3.25	0.144	32	45	bearing			
WIIL	3.50	0.160	38	52	in table			
COMMON	3.00	0.122	26	36				
SPIRAL	3.25	0.122	28	40	1			
JI IIIAL	3.50	0.152	36	50	1			

Note: If using truss with D. Fir lumber and S-P-F bearing plate, use values in table for S-P-F.

NOTES:

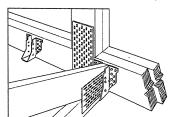
- 1. Truss chord, rafter, or ceiling members may be anchored to bearing plate by toe-nails, provided that the actual factored uplift force due to wind or earthquake load does not exceed the withdrawal capacities in the table. Hangers (specified by others) are required for uplift forces that are higher than the maximum toe-nail withdrawal capacity.
- Toe nail capacities shown in the table are for one toe-nail. For additional toe-nails multiply values in table by the number of toe-nails used. Toe-nail capacities take into account toe-nailing factor J_A in CSA O86-14, section 12.9.5.2.
- 3. For 9- 3/4 gauge 3.25" common wire gun nails (diameter = 0.120") use 3" common spiral nail values.
- **4.** Maximum number of toe-nails allowed depends on the lumber size & species to be toe-nailed to supporting member and nail diameter, as shown in table above.
- 5. Nail values in table are based on the following relative lumber densities: G = 0.42(SPF), G = 0.49(D. Fir).
- **6.** Toe-nails shall be driven at approximately 1/3 the nail length from the edge of the joist/truss chord and driven at an angle of 30° to the grain of the member (See drawing on detail B37579H1).
- 7. Lumber must be dry (< 19% moisture content) at the time of nail installation.
- 8. Nail values in this table comply with CSA O86-14, section 12.9.5
- 9. This design is not valid after April 30, 2021.

HUS/LJS - Double Shear Joist Hangers

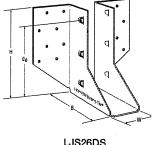
SIMPSON Strong-Tie

All hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

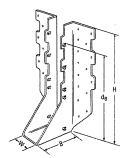
Material: See table Finish: G90 galvanized

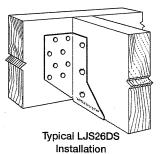

Design:

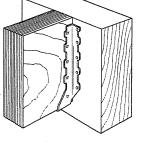
- Factored resistances are in accordance with CSA O86 -14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.


Installation:

- Use all specified fasteners
- Nails: 16d = 0.162" dia. x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

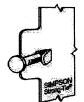

• See current catalogue for options



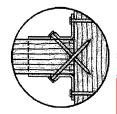


HUS210 (HUS26, HUS28, similar)

Typical HUS Installation


		Di	Dimensions (in.)			Fasteners		Factored Resistance (lb.)			
Model								D.F	ir-L	S-P-F	
No.	Ga.	,W	Н	В	d _e ¹	Face	Face Joist	Uplift (K _D =1.15)	Normal (K _D =1.00)	Uplift (K _D =1.15)	Normal (K _D =1.00)
								lb.	lb.	lb.	lb.
LJS26DS	18	19/16	5	3½	45%	(16) 16d	(6) 16d	2055	4265	1460	4115
HUS26	16	15/8	53⁄8	3	3 ¹⁵ / ₁₆	(14) 16d	(6) 16d	2705	4940	2065	3875
HUS28	16	15/8	73/32	3	63/32	(22) 16d	(8) 16d	3605	5365	2675	4345
HUS210	16	15⁄8	93/32	3	731/32	(30) 16d	(10) 16d	4505	5795	4010	4740
HUS1.81/10	16	113/16	9	3	8	(30) 16d	(10) 16d	4505	6450	4010	5200

1. de is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models).

U.S. Patent 5.603.580

Double Shear Nailing Side View. Do not bend tab back.

Double Shear Nailing

OF RIC **BUILDING DIVIS**

(800) 999-5099 strongtie.com

jocelyn.aguilar

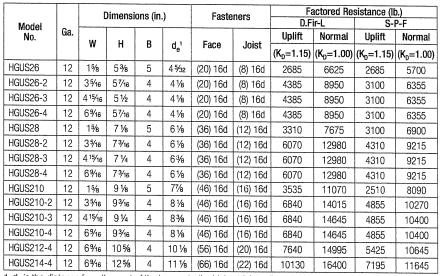
HGUS - Double Shear Joist Hangers

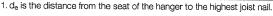
SIMPSON Strong-Tie

All HGUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections. Do not bend or remove tabs.

Material: 12 gauge Finish: G90 galvanized

Design:

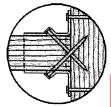

- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%.
 No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

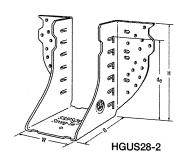

Installation:

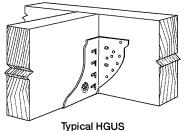
- Use all specified fasteners
- Nails: 16d = 0.162" dia x 31/2" long common wire
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads
- Not designed for welded or nailer applications

Options:

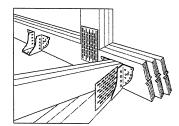
· See current catalogue for options



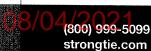

Dome Double Shear Nailing prevents tabs breaking off (available on some models). U.S. Patent



Double Shear Nailing Side View. Do not bend tab back.



Double Shear Nailing Top View



Installation

Typical HGUS Installation (Truss Designer to provide fastener quantity for connecting multiple members together)

Per:____jocelyn.aguilar

H - Seismic and Hurricane Ties

SIMPSON Strong-Tie

The H connector series provides wind and seismic ties for trusses and rafters.

Material: 18 gauge Finish: G90 galvanized

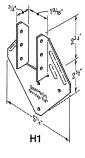
Design: • Factored resistances are in accordance with CSA 086-14

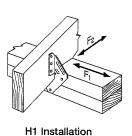

 Factored resistances have been increased 15%. No further increase is permitted.

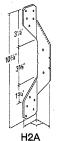
Installation: • Use all specified fasteners

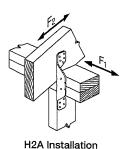
- Nails: 8d = 0.131" dia. x 2½" long common wire, 8d x 1½" = 0.131" x 1½ long, 10d x 1½" = 0.146" x 1½" long
- H1 can be installed with flanges facing outwards
- Hurricane ties do not replace solid blocking

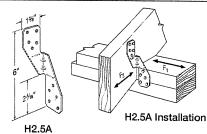
Factored resistances for more than one direction for a single connection cannot be added together. A factored load which can be divided into components in the directions given must be evaluated as follows: Factored Shear/Resisting Shear + Factored Tension/Resisting Tension \leq 1.0.

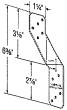

Hurricane Tie Installations to Achieve Twice the Load (Top View)

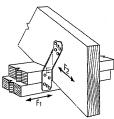


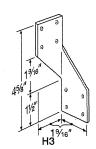


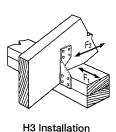

Install diagonally across from each other for minimum 2x truss.

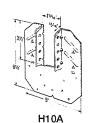

Nailing into both sides of a single ply 2x truss may cause the wood to split.

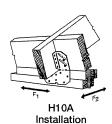












H2.5T

H2.5T Installation (Nails into both top plates)

Model No.			Fasteners		Factored Resistance (lb.)						
	Ga.		i dotellelo		D.Fir-L			S-P-F			
			To Plates	To Studs	Uplift	Normal		Unlift	Normal		
		To Rafter				F ₁	F ₂	Uplift	F ₁	F ₂	
					(K _D =1.15)			(K _D =1.15)			
H1	18	(6) 8d x 1½"	(4) 8d		740	685	300	680	485	215	
H2A	18	(5) 8d x 11/2"	(2) 8d x 11/2"	(5) 8d x 1½"	830	220	75	590	155	55	
H2.5A	18	(5) 8d	(5) 8d		805	160	160	755	160	160	
H2.5T	18	(5) 8d	(5) 8d		835	175	240	740	160	210	
H3	18	(4) 8d	(4) 8d		740	180	265	615	125	190	
H10A	18	(9) 10d x 1½"	(9) 10d x 1½"		1735	795	410	1505	565	290	

- Factored resistances have been increased 15% for earthquake or wind loading with no further increase allowed.
- 2. Factored resistances are for one anchor. A minimum rafter thickness of 21/2" must be used when framing anchors are installed on each side of the joist and on the same side of the plate.
- When cross-grain bending or cross-grain tension cannot be avoided, mechanical reinforcement to resist such forces should be considered.
- 4. Hurricane ties are shown installed on the outside of the wall for clarity. Installation on the inside of the wall is acceptable. For a Continuous Load Path, connections must be on same side of the wall.

CITY OF RICHARD MLL BUILDING DIVISION

(800) 999-5099 strongtie.com

LUS - Double Shear Joist Hangers

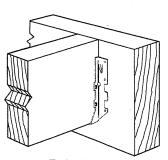
SIMPSON
Strong-Tie

LUS28

All LUS hangers have double shear nailing. This patented innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation and the use of common nails for all connections.

Material: 18 gauge Finish: G90 galvanized

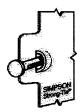
Design:


- Factored resistances are in accordance with CSA 086-14.
- Uplift resistances have been increased 15%. No further increase is permitted.
- Wood shear is not considered in the factored resistances given. The specifier must ensure that the joist and header capacities are capable of withstanding these loads.

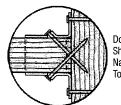
Installation:

- Use all specified fasteners.
- Nails: 16d = 0.162" dia. x 3½" long common wire, 10d = 0.148" x 3" long common wire.
- Double shear nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- Not designed for welded or nailer applications.

Options:


• These hangers cannot be modified

Typical LUS Installation


	Ga.	Dimensions (in.)				Fasteners		Factored Resistance (lb.)				
Model No.								D.Fir-L		S-P-F		
		w	Н	В	d _e 1	Face	Joist	Uplift	Normal	Uplift	Normal	
								(K ₀ =1.15)	$(K_D = 1.00)$	$(K_0=1.15)$	$(K_D=1.00)$	
LUS24	18	19/16	31∕8	13/4	1 ¹⁵ / ₁₆	(4) 10d	(2) 10d	710	1630	645	1155	
LUS24-2	18	31/8	31/8	2	1 ¹³ /16	(4) 16d	(2) 16d	835	2020	590	1435	
LUS26	18	19/16	43/4	13/4	3%	(4) 10d	(4) 10d	1420	2170	1290	1630	
LUS26-2	18	31/8	41/8	2	4	(4) 16d	(4) 16d	1720	2595	1545	1920	
LUS26-3	18	4%	43/16	2	31/4	(4) 16d	(4) 16d	1720	2595	1545	2340	
LUS28	18	19/16	6%	13/4	3¾	(6) 10d	(6) 10d	1420	2520	1290	1790	
LUS28-2	18	31/8	7	2	4	(6) 16d	(4) 16d	1720	3325	1545	2575	
LUS28-3	18	4%	61/4	2	31/4	(6) 16d	(4) 16d	1720	3325	1545	2375	
LUS210	18	19/16	7 13/16	13/4	37/s	(8) 10d	(4) 10d	1420	2785	1290	2210	
LUS210-2	18	31/8	9	2	6	(8) 16d	(6) 16d	2580	4500	2320	3195	
LUS210-3	18	45%	83/16	2	51/4	(8) 16d	(6) 16d	2580	3345	2320	2375	

 $^{1.\,}d_{\text{e}}$ is the distance from the seat of the hanger to the highest joist nail.



Dome Double Shear Nailing prevents tabs breaking off (available on some models). U.S. Patent

U.S. Paten 5,603,580

Double Shear Nailing Top View.

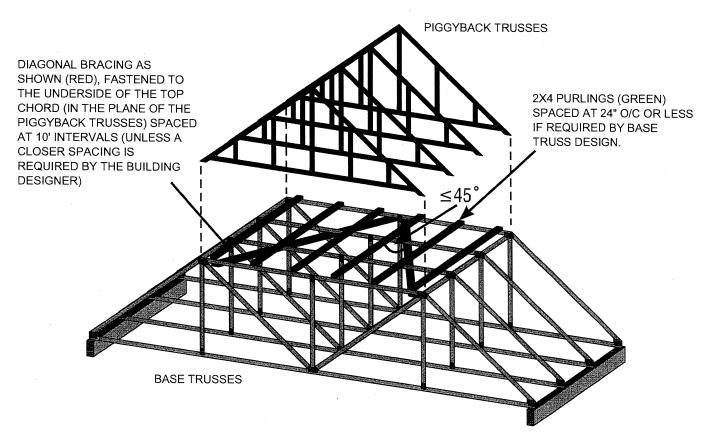
CITY OF RICHMAN HILL BUILDING DIVISION

(800) 999-5099 strongtie.com

Per· ioc

jocelyn.aguilar

TECH-NOTES


TN 15-001 **Piggyback Bracing**

Overview:

Where piggybacks are connected overtop of base trusses, 2x4 purlins must be first added to the flat portion of the base truss at a spacing no more than 24" o/c. These purlins not only provide support for the piggyback trusses above, but are required to laterally support the top chord of the base truss which will not have the sheathing directly connected to the flat portion of the base truss. This ensures the top chord, most often in compression, will not buckle laterally.

Further, the purlins in the plane of the flat portion require diagonal bracing to prevent lateral displacement of the purlins themselves where under certain conditions, the trusses may in fact all buckle in the same direction if this additional bracing is not added in the plane of the purlins.

Detail:

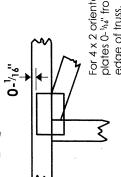
NOTE: THE SLOPED PORTION OF THE TOP CHORD OF THE BASE TRUSS AND PIGGYBACK TRUSS IN THIS SKETCH IS ASSUMED TO BE SHEATHED IN ACCORDANCE WITH THE OBC.

SKETCH FROM BCSI-CANADA 2013

CITY OF RICHMOND HILL **BUILDING DIVISION**

iocelyn.aguilar

Disclaimer:


OWTFA Tech Notes are intended to provide guidance to the design community both within the membership as well as to third party designers who might benefit from the information. The details have been developed by the OWTFA technical committee and although there may be professional engineers involved in development, the information contained in the technote are not intended to be used without having a professional engineer review the information for a specific application. The OWTFA takes no responsibility with respect to the information provided but has developed this tech-note to offer guidance where it is not currently readily available.

Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated.
Dimensions are in ft-in-sixteenths or mm.
Apply plates to both sides of truss Center plate on joint unless x, y and fully embed teeth.

For 4 x 2 orientation, locate plates 0-1/18" from outside edge of truss.

required direction of slots in This symbol indicates the connector plates.

*Plate location details available in MITek software or upon request.

PLATE SIZE

4 4 ×

width measured perpendicular The first dimension is the plate to slots. Second dimension is he length parallel to slots.

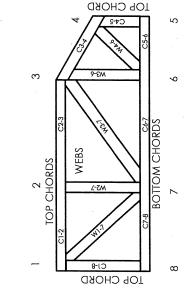
LATERAL BRACING LOCATION

BEARING

Indicated by symbol shown and/or by text in the bracing section of the output. Use T, I or Eliminator bracing if indicated.

ndicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.

jocetyn.aguilar


Industry Standards:

Truss Design Procedures and Specifications for Light Metal Plate Connected Wood Trusses Design Standard for Bracing. DSB-89: TPIC: BCS:

3uilding Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

CCMC Reports:

11996-L, 10319-L, 13270-L, 12691-R

© 2007 MTek® All Rights Reserved

MITek Engineering Reference Sheet: MII-7473C rev. 10-'08

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- wide truss spacing, individual lateral braces themselves may require bracing, or alternative T, I, or Eliminator bracing should be considered. Truss bracing must be designed by an engineer. For 5
- Never exceed the design loading shown and never stack materials on inadequately braced trusses. ь.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties. 4.
- Cut members to bear tightly against each other. 5.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by TPIC. ۰
- Design assumes trusses will be suitably protected from the environment in accord with TPIC. ζ.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication. ထဲ
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
 - 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable, environmental, health or performance risks. Consult with project engineer before use,
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient. 6.
- Design assumes manufacture in accordance with TPIC Quality Criteria. 8