Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information							
Building number, street name						Unit no.	Lot/con.
Municipality	Postal code		Plan number/	other desc	cription		
RICHMOND HILL							
B. Individual who reviews and takes	responsibili	ity fo	r design act	ivities			
Name			Firm				
MICHAEL O'ROURKE			HVAC DESIG	SNS LTD.	I		Tr
Street address 375 FINLEY AVE					Unit no. 202		Lot/con. N/A
Municipality	Postal code		Province		E-mail		IV/A
AJAX	L1S 2E2		ONTARIO		info@hvacde	esigns.ca	
Telephone number	Fax number				Cell number		
(905) 619-2300	(905) 619-2	375	· (<u> </u>	(<u> </u>		
C. Design activities undertaken by in	dividual ide	entifie	ed in Section	ı B. [Build	chmond Hill ding Code T ling Division	able 3.5.2.1 OF Div	vision C]
☐ House	⊠ HV	<u> </u>		=\/IE\		Building Structur	ral
☐ Small Buildings			Services	ZVIEV		Plumbing – Hou	se
☐ Large Buildings			on, Lighting	DVV		Plumbing – All E	
☐ Complex Buildings	u Fr		ials:	PXV		On-site Sewage	Systems
Description of designer's work HEAT LOSS / GAIN CALCULATIONS				ivioaei:	2007		
DUCT SIZING							
RESIDENTIAL MECHANICAL VENTILATIO	N DESIGN S	UMM	ARY	Project:	CENTREFIELD	(WEST GORMLEY)	
RESIDENTIAL SYSTEM DESIGN per CSA-	F280-12			1 10,000	02.11.11.2.12.2		
D. Declaration of Designer							
I MICHAEL O'ROURKE					declare	that (choose one as a	ppropriate):
(pr	int name)						
 I review and take responsibility for Division C, of the Building Code. classes/categories. 						section 3.2.4.of appropriate	
Individual BCIN: Firm BCIN:							
I review and take responsibility for designer" under subsection 3.2			n qualified in t n C, of the Bui			as an "other	
Individual BCIN: Basis for exemption fr	19669 om registratio	on and	l qualification:		O.B.C SE	NTENCE 3.2.4.1	(4)
☐ The design work is exempt Basis for exemption from registra				cation requi	rements of the	Building Code.	
I certify that:							
The information contained I have submitted this applica			lle is true to the				
April 20, 2021	_				Mich	al Oxombe	::-
Date	-					Signature of De	esigner

NOTE

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

SITE NAME: C	CENTRE	FIELD	(WEST	GOR	MLEY)												DATE: Apr-21		,	WINTER	R NATURAL AIR CH	IANGE RATE 0.229	HEAT LOSS	ΔT °F.	78	CSA-F2	80-12
BUILDER: R	ROYAL	PINE H	OMES				1	TYPE: 2	2007				GFA:	1662			LO# 87524		S	UMMER	R NATURAL AIR CH	IANGE RATE 0.069	HEAT GAIN	ΔT °F.	13 SE	3-12 PERFORMA	ANCE
ROOM USE				MBR			ENS					BED-2			BED-3	3			BATH								
EXP. WALL				14			6					10			16				0								
CLG. HT.				8			8					8			9				8								
	FACTOR	RS																									
	LOSS	GAIN		112			48					80			144				0								
GLAZING			L	oss	GAIN	L	oss o	GAIN				LOSS	GAIN		LOSS	GAIN			LOSS	GAIN							
		16.0	0	0	0	0	0	0			0	0	0	0	0	0		0	0	0							
		41.6	0	0	0	0	0	0			29		1205		784	1496		0	0	0							
		24.9	0	0	0	0	0	0			0	0	0	0	0	0		0	0	0							
		41.6		610	1163	8		332			0	0	0	0	0	0		0	0	0							
		101.2	0	0	0	0	0	0			0	0	0	0	0	0		0	0	0							
	25.8	4.3	0	0	0	0	0	0			0	0	0	0	0	0		0	0	0							
	4.2 3.7	0.7 0.6	84 0	353	58 0	40 0	168 0	28 0			51 0	214 0	35 0	108 0	454 0	75 0		0	0	0							
	1.3	0.6		388	173		181	81			245	322	144	166	218	98		63	83	37							
	2.8	1.3	0	0	0	0	0	0			0	0	0	26	73	33		0	0	0							
		0.4	0	0	0	0	0	ŏ			203	530	87	25	65	11		36	94	15							
BASEMENT/CRAWL HEAT LOSS			-	0	-	-	0	-				0			0			-	0								
SLAB ON GRADE HEAT LOSS				0			0					0			0				0								
SUBTOTAL HT LOSS				1351			524					1698			1595				177								
SUB TOTAL HT GAIN					1395			441			l		1472	1		1712		1		52				1		1	
LEVEL FACTOR / MULTIPLIER			0.20	0.26		0.20	0.26				0.20	0.26		0.20	0.26			0.20	0.26								
AIR CHANGE HEAT LOSS				357			138					448			421				47								
AIR CHANGE HEAT GAIN					73			23					77			90				3							
DUCT LOSS				0			0					215			202				22								
DUCT GAIN					0			0					287			312				6							
	240		2		480	0		0			1		240	1		240		0		0							
HEAT GAIN APPLIANCES/LIGHTS					1077			0					1077			1077				0							
TOTAL HT LOSS BTU/H				1708			662					2361			2218				246								
TOTAL HT GAIN x 1.3 BTU/H					3932			604					4098			4459				79				<u> </u>			
ROOM USE									K/G/E	3									FOY		MUD					BAS	
EXP. WALL									23										32		12					68	
CLG. HT.									10										11		11					10	
F	FACTOR	RS																									
GRS.WALL AREA L	LOSS (SAIN							232										355		133					476	
GLAZING									LOSS	GAIN									LOSS	GAIN	LOSS GAIN					LOSS	GAIN
		16.0							0 0	0								0	0	0	0 0 0					0 0	0
		41.6							0 0	0								30	654	1247	0 0 0					0 0	0
		24.9							8 174	199								0	0	0	0 0 0					0 0	0
		41.6							78 1699	-								0	0	0	0 0 0			l		-	291
		101.2							0 0	0	l			1				0	0	0	0 0 0			1		0 0	0
		4.3 0.7							0 0 146 615	0 101								35 290	905 1220	149 201	20 517 85 113 476 78			l		20 517 0 0	85 0
	3.7	0.7							146 615	101	l			1				290	1220	201	0 0 0			1			124
	1.3	0.6							0 0	0	l			1				0	0	0	0 0 0			1		0 0	0
	2.8	1.3							30 84	38	l			1				0	0	0	0 0 0			1		0 0	0
		0.4							0 0	0	l			1				0	0	0	0 0 0			1		0 0	0
BASEMENT/CRAWL HEAT LOSS									0	-	l			1					0		0			1		2208	
SLAB ON GRADE HEAT LOSS									0		l			1				1	0		0			1		1	
SUBTOTAL HT LOSS									2573		l			1				1	2779		993			1		3629	
SUB TOTAL HT GAIN										3579	l			1				1		1596	163			1		1	500
LEVEL FACTOR / MULTIPLIER									0.30 0.33		l			1				0.30			0.30 0.33			1		0.50 0.97	
AIR CHANGE HEAT LOSS									858		l			1				1	927		331			1		3527	
										187	l			1				1		84	9			1		1	26
AIR CHANGE HEAT GAIN									0					Ī					0		0			l			1
DUCT LOSS									U													1					
DUCT LOSS DUCT GAIN									•	0										0	0						0
DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	240								0	0								0		0	0 0					0	0
DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS	240								0	0 1077								0	2700	-	0 0					0	-
DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	240								•	0 1077								0	3706	0	0 0					0 7156	0

TOTAL HEAT GAIN BTU/H:

22778 TONS: 1.90 LOSS DUE TO VENTILATION LOAD BTU/H: 1336

STRUCTURAL HEAT LOSS: 22811

TOTAL COMBINED HEAT LOSS BTU/H: 24147

258

ROUND DUCT SIZE

INLET GRILL SIZE

INLET GRILL SIZE

6

8

Χ

14

6.5

8

Χ

14

6

8

Χ

14

9.3

6

24

x 💙

6

8

Χ

14

0

0

Χ

I REVIEW AND TAKE RESPONSIBILITY FOR THE DESIGN WORK AND AM QUALIFIED IN THE APPROPRIATE CATEGORY AS AN "OTHER DESIGNER" UNDER DIVISION C, 3.2.5 OF THE BUILDING CODE.

0

0

Χ

0

0

Χ

0

0

Χ

0

0

Χ

0

0

X 0

0

0

X 0

0

0

Χ

0

0

Χ

0

0

0

Χ

0

7.1 8

Χ

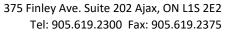
14

			EFIELD (\ PINE HO		ORMLEY)		TYPE: 20					DATE:	Apr-21			GFA:	1662	LO#	87524				
HEATING CFM TOTAL HEAT LOSS AIR FLOW RATE CFM	820 22,811 35.95	Д		LING CFM EAT GAIN RATE CFM	22,559		a	furnace pre furnace a/c coil pre vailable pres for s/a	e filter essure	0.6 0.05 0.2							59TN6A- FAN		CARRIE 60 820	R		AFUE = 9 (BTU/H) = 6 (BTU/H) = §	30,000	
RUN COUNT S/A R/A	4th 0 0	3rd 0	2nd 8 4	1st 5 1	Bas 3			enum pressu s/a dif press	re s/a	0.18	r/a		pressure				N	DLOW MEDIUM M HIGH	0 0 0		DESI	GN CFM = _ CFM @ .6		-
All S/A diffusers 4"x10" unle	ess note	d otherwi	ise on lay	•		ı		sted pressu		0.15			ssure r/a				WEDIO	HIGH	1520	Т	EMPERAT	URE RISE	65	°F
All S/A runs 5"Ø unless not				4		•	-			40				4.4	45			40	40		0.4		- 00	- 04
RUN# ROOM NAME RM COSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK	1 MBR 0.85 31 1.97 71 0.17 40 120 160 0.11 5 228 521 3X10 A	2 ENS 0.66 24 0.60 22 0.17 56 150 206 0.08 4 275 252 3X10 B	3 BED-2 1.18 42 2.05 74 0.17 43 160 203 0.08 5 308 543 3X10 B	4 BED-2 1.18 42 2.05 74 0.17 45 170 215 0.08 5 308 543 3X10 B	5 BED-3 1.11 40 2.23 81 0.16 33 120 153 0.11 5 294 595 3X10 C	6 BED-3 1.11 40 2.23 81 0.16 30 140 170 0.1 5 294 595 3X10 C	7 BATH 0.25 9 0.08 3 0.17 15 150 165 0.1 4 103 34 3X10 C			10 MBR 0.85 31 1.97 71 0.17 36 150 186 0.09 5 228 521 3X10 A	259		306	14 K/G/B 1.72 62 3.15 114 0.15 35 120 155 0.1 6 316 581 4X10 A	15 K/G/B 1.72 62 3.15 114 0.15 39 150 0.08 6 316 581 4X10 A			18 FOY 1.85 67 1.09 40 0.17 18 100 118 0.15 5 492 294 3X10 C	19 FOY 1.85 67 1.09 40 0.17 24 80 0.17 5 492 294 3X10 C	20 MUD 1.32 48 0.22 8 0.17 26 110 136 0.13 4 551 92 3X10 B	21 BAS 2.39 86 0.23 8 0.16 39 130 169 0.1 6 438 41 4X10 A		23 BAS 2.39 86 0.23 8 0.16 21 140 161 0.1 6 438 41 4X10 A	24 BAS 2.39 86 0.23 8 0.16 10 1120 0.14 6 438 41 4X10 C
RUN# ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK																								
SUPPLY AIR TRUNK SIZE																	RETURN A	IR TRUNK						
TRUNK A TRUNK B TRUNK C TRUNK C TRUNK E TRUNK F	TRUNK CFM 358 514 309 0 0	PRESS. 0.08 0.08 0.10 0.00 0.00 0.00	9.5 10.9 8.5 0 0	10 14 8 0 0	x x x x x	8 8 8 8 8	VELOCITY (ft/min) 644 661 695 0 0	TRI TR TR TR	UNK G UNK H RUNK I RUNK J RUNK K	TRUNK	STATIC PRESS. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROUND DUCT 0 0 0 0 0 0	DUCT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x x x x x	8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0	TRUNK O TRUNK P TRUNK Q TRUNK R TRUNK S TRUNK T TRUNK U TRUNK V	TRUNK CFM 0 0 0 0 0 0 0 0 0	STATIC PRESS. 0.05 0.05 0.05 0.05 0.05 0.05 0.05	ROUND DUCT 0 0 0 0 0 0 0 0 0 0	DUCT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X X X X	8 8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0 0 0 0 0
RETURN AIR # AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE ROUND DUCT SIZE	1 0 95 0.15 48 160 208 0.07 6	2 0 105 0.15 34 205 239 0.06 6.5	3 0 75 0.15 36 245 281 0.05	4 0 95 0.15 40 165 205 0.07	5 0 330 0.15 22 155 177 0.08 9.3	0 0 0.15 1 0 1 14.80	0 0 0.15 1 0 1 14.80	1 0 1	0 0 0.15 1 0 1 4.80	0 0 0.15 1 0 1 14.80	0 0 0.15 1 0 1 14.80	0 0 0.15 1 0 1 14.80	0 0 0.15 1 0 1 14.80	0 0 0.15 1 0 1 14.80	0 0 0.15 1 0 1 14.80	120 0.15 17 265 282 0.05 7.1	TRUNK W TRUNK X TRUNK Y TRUNK Z DROP	0 820 0 0 820	0.05 0.05 0.05 0.05 0.05 0.05	0 14.6 0 0 14.6	0 24 0 0 24	x x x x x	8 8 8 8 10	0 615 0 0 492

MICHAEL O'ROURKE

TYPE: 2007 SITE NAME: CENTREFIELD (WEST GORMLEY)

RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY


87524

LO#

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL VENTILATION CAPACITY 9.	32.3.5.
a)		Total Ventilation Capacity 137.8 cfm	n
b) Positive venting induced draft (except fireplaces)		Less Principal Ventil. Capacity 63.6 cfn	n
c) Natural draft, B-vent or induced draft gas fireplace		Required Supplemental Capacity 74.2 cfm	n
d) Solid Fuel (including fireplaces)			
e) No Combustion Appliances		PRINCIPAL EXHAUST FAN CAPACITY	
		Model: VANEE 65H Location: BSMT	
HEATING SYSTEM		63.6 cfm HVI App	roved
Forced Air Non Forced Air		PRINCIPAL EXHAUST HEAT LOSS CALCULATION CFM ΔT °F FACTOR % LO	SS
Electric Space Heat		63.6 CFM X 78 F X 1.08 X 0.2	5
		SUPPLEMENTAL FANS BY INSTALLING CONTRACTOR Location Model cfm HVI Son	es
HOUSE TYPE	9.32.1(2)	ENS BY INSTALLING CONTRACTOR 50 ✓ 3.5	5
✓ I Type a) or b) appliance only, no solid fuel		BATH BY INSTALLING CONTRACTOR 50 ✓ 3.5 PWD BY INSTALLING CONTRACTOR 50 ✓ 3.5	
II Type I except with solid fuel (including fireplaces	s)		
		HEAT RECOVERY VENTILATOR 9.33 Model: VANEE 65H	2.3.11.
		155 cfm high 64 cfm l	low
IV Type I, or II with electric space heat		75 % Sensible Efficiency ✓ HVI App	oroved
Other: Type I, II or IV no forced air		@ 32 deg F (0 deg C)	
0.02=14.0=0.001.0=1.001		LOCATION OF INSTALLATION	
SYSTEM DESIGN OPTIONS	O.N.H.W.P.	Lot: Concession	
1 Exhaust only/Forced Air System		Township Plan:	
2 HRV with Ducting/Forced Air System		Address	
3 HRV Simplified/connected to forced air system			
4 HRV with Ducting/non forced air system		Roll # Building Permit #	
Part 6 Design		BUILDER: ROYAL PINE HOMES	
·		Name:	
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:	
Basement + Master Bedroom 2 @ 21.2 cfm 42.4	cfm	City:	
Other Bedrooms 2 @ 10.6 cfm 21.2	cfm	Telephone #: Fax #:	
Kitchen & Bathrooms5 @ 10.6 cfm53	cfm	INSTALLING CONTRACTOR	
Other Rooms 2 @ 10.6 cfm 21.2	cfm	Name:	
Table 9.32.3.A. TOTAL <u>137.8</u>	cfm	Address:	
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	City:	
	, 1	Telephone #: Fax #:	
1 Bedroom 31.8	cfm	DESIGNER CERTIFICATION	
2 Bedroom 47.7	cfm	I hereby certify that this ventilation system has been designed in accordance with the Ontario Building Code.	
3 Bedroom 63.6	cfm	Name: HVAC Designs Ltd.	
4 Bedroom 79.5	cfm	Signature: Machan Kante.	
5 Bedroom 95.4	cfm	HRAI # 001820	
TOTAL 63.6 cfm		Date: April-21	

				80-12 Residential Hea						
			Form	nula Sheet (For Air Lea	akage / Ventiliation C	alculation)				
LO#:	87524	Model: 2007		Builde	er: ROYAL PINE HOMES				Date:	4/20/2021
		Volume Calculati	on			1	Air Change & Delt	a T Data		
				1					,	1
use Volume							TURAL AIR CHANG		0.229	
Level	Floor Area (ft²)	Floor Height (ft)	Volume (ft³)			SUMMER NA	TURAL AIR CHAN	GE RATE	0.069]
Bsmt	731	10	7310							
First	731 931	10 8	7383.1 7448				Docien To	mnoroturo Diff	0.000	
Second Third	0	9	0				Tin °C	mperature Difference Tout °C	erence ΔT °C	ΔT °F
Fourth	0	9	0			Winter DTDh	22	-21	43	78
rourtii	U	Total:	22,141.1 ft ³			Summer DTDc	24	31	7	13
		Total:	627.0 m ³			Summer DTDC	2-7	<u> </u>	. ,	13
			02710111	_						
	5.	2.3.1 Heat Loss due to A	ir Leakage			6.2.6 S	ensible Gain due	to Air Leakage		
		17					17			
	HL_{ainh}	$= LR_{airh} \times \frac{V_b}{3.6} \times$	$DTD_{h} \times 1.2$		Н	$IG_{salb} = LR_{airc} \times$	$\frac{V_b}{V_b} \times DTD_a$	× 1.2		
		5.0			- I		5.0			_
0.229	x <u>174.1</u>	6 x 43 °C	_ x <u>1.2</u>	= 2068 W	= 0.069	x <u>174.16</u>	x <u>7°C</u>	x <u>1.2</u>	_ =	103 W
					,					
				= 7055 Btu/h	<u> </u>				=	352 Btu/h
	52221	leat Loss due to Mecha	nical Ventilation		+	6 2 7 Son	sible heat Gain d	ue to Ventilatio	n	
	3.2.3.2	icat 2033 due to Micena	incar ventuation			0.2.7 301	isibic ficat dairi d	ue to ventuatio		
	HL_{nairh}	$= PVC \times DTD_h \times$	$1.08 \times (1 - E)$		HL	$_{vairb} = PVC \times DT$	$TD_h \times 1.08 \times$	(1 - E)		
	vanb	n	,		,	vali b				
64 CFM	x 78 °F	x 1.08	x 0.25	= 1336 Btu/h	64 CFM	x 13 °F	x 1.08	x 0.25	=	220 Btu/h
		_	_	<u> </u>	<u> </u>	_			-	
			5.2.3.3 Calcula	tion of Air Change Heat	Loss for Each Room (Flo	or Multiplier Section)				
			_		`	,	``			
		HL_{c}	_{airr} = Level Fact	$or \times HL_{airbv} \times \{(H_{airbv}) \times \{$	$(L_{agcr} + HL_{bgcr}) \div$	$(HL_{agclevel} + HL_{l}$	gclevel)}			
				HLairve Air Leakage +	Level Conductive Heat	Air Leelie ee Heet Lee	a Bandaindian (LE			
		Level	Level Factor (LF)	Ventilation Heat Loss						
				(Btu/h)	Loss: (HL _{clevel})	HLairbv / H	ilieveij			
		1	0.5	1=1	3,629	0.97	2			
		2	0.3	1	6,345	0.33	4	•		
		3	0.2	7,055	5,345	0.26	4	•		
		4	0		0	0.00)	•		
		5	0	1	0	0.00	ס	•		

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL:	2007		BUILDER: ROYAL PINE HOMES	
SFQT:	1662	LO# 87524	SITE: CENTREFIELD (WEST	GORMLEY)
DESIGN A	SSUMPTIONS			
HEATING		°F	COOLING	°F
_	R DESIGN TEMP.	-6	OUTDOOR DESIGN TEMP.	88
INDOOR D	DESIGN TEMP.	72	INDOOR DESIGN TEMP. (MAX 75°F)	75
BUILDING	i DATA			
ATTACHM	IENT:	ATTACHED	# OF STORIES (+BASEMENT):	3
FRONT FA	CES:	EAST	ASSUMED (Y/N):	Υ
AIR CHAN	GES PER HOUR:	2.50	ASSUMED (Y/N):	Υ
AIR TIGHT	NESS CATEGORY:	TIGHT	ASSUMED (Y/N):	Υ
WIND EXP	POSURE:	SHELTERED	ASSUMED (Y/N):	Υ
HOUSE VO	OLUME (ft³):	22141.1	ASSUMED (Y/N):	Υ
INTERNAL	. SHADING:	BLINDS/CURTAINS	ASSUMED OCCUPANTS:	4
INTERIOR	LIGHTING LOAD (Btu/h	n/ft²): 1.80	DC BRUSHLESS MOTOR (Y/N):	Υ
FOUNDAT	TION CONFIGURATION	BCIN_1	DEPTH BELOW GRADE:	7.0
LENGTH:	52.0 ft	WIDTH: 20.0 ft	EXPOSED PERIMETER:	68.01

2012 OBC - COMPLIANCE PACKAGE		
	Compliance	Package
Component	SB-12 PERI	ORMANCE
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.20
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.70
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22+1.5	18.50
Basement Walls Minimum RSI (R)-Value	20	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	1.6	-
Skylights Maximum U-Value	2.6	-
Space Heating Equipment Minimum AFUE	0.96	-
HRV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	TE=94%	-

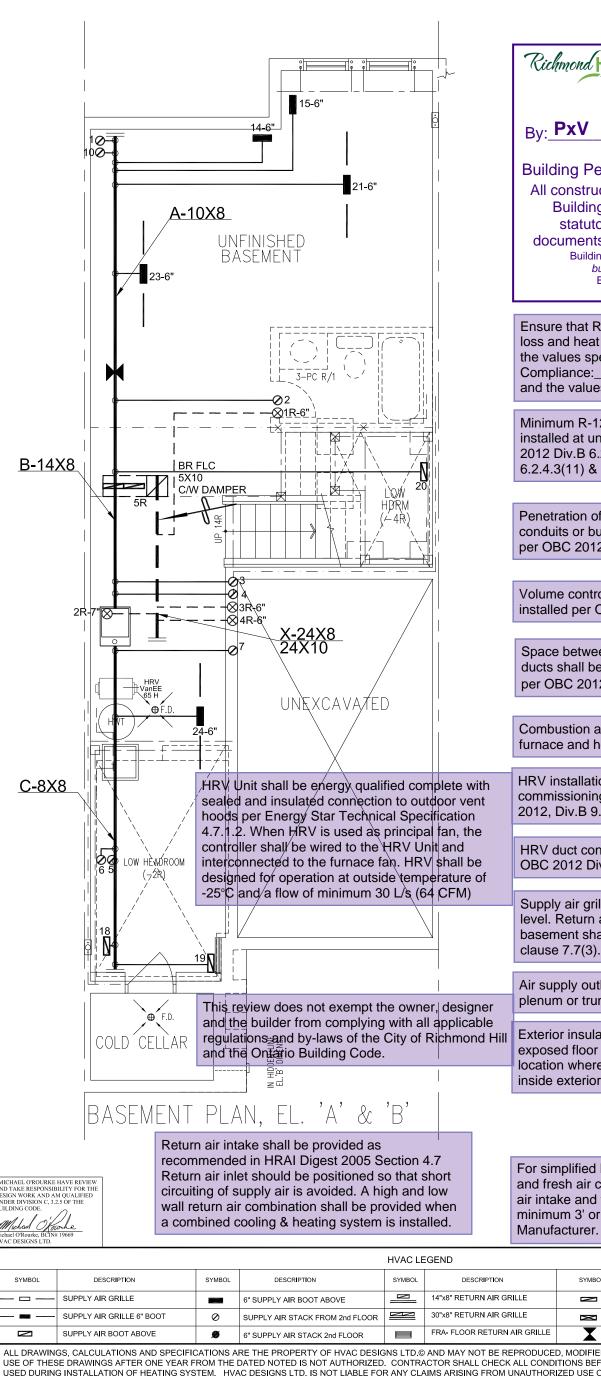
INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

We	eather Sta	tion Description
Province:	Ontario	·
Region:	Richmon	d Hill
	Site D	escription
Soil Conductivity:	Normal o	conductivity: dry sand, loam, clay
Water Table:	Normal (7-10 m, 23-33 ft)
I	oundatio	n Dimensions
Floor Length (m):	15.8	
Floor Width (m):	6.1	
Exposed Perimeter (m):	20.7	
Wall Height (m):	3.0	
Depth Below Grade (m):	2.13	Insulation Configuration
Window Area (m²):	0.7	
Door Area (m²):	1.9	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ntion Loads
Heating Load (Watts):		647

TYPE: 2007 **LO#** 87524



Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Sta	ation Des	cripti	on		
Province:	Ontar	io			
Region:	Richm	ond H	ill		
Weather Station Location:	Open	flat te	rrain, g	rass	
Anemometer height (m):	10				
	Shielding	3			
Building Site:	Subur	ban, fo	orest		
Walls:	Heavy	,			
Flue:	Heavy	,			
Highest Ceiling Height (m):	6.43				
Building	Configura	tion			
Type:	Semi				
Number of Stories:	Two				
Foundation:	Full				
House Volume (m³):	627.0				
Air Leaka	ge/Ventil	ation)		
Air Tightness Type:	Energ	y Star	Detach	ed (2.5	5 ACH)
Custom BDT Data:	ELA @	10 Pa	١.		585.3 cm ²
	2.50				ACH @ 50 Pa
Mechanical Ventilation (L/s):	To	tal Sup	ply		Total Exhaust
		30.0			30.0
Flo	ue Size				
Flue #:	#1	#2	#3	#4	
Diameter (mm):	0	0	0	0	
Natural In	filtration	Rate	S		
Heating Air Leakage Rate (ACH/	н):	0	.22	9	
Cooling Air Leakage Rate (ACH/I	1):	0	.06	9	

TYPE: 2007 **LO#** 87524

Richmond Hill

City of Richmond Hill **Building Division**

REVIEWED

By: PxV

Date: SEPT/01/2021

Building Permit #: ____BP#-2021-50732

All construction shall comply with the Ontario Building Code and all other applicable statutory regulations. The reviewed documents must be kept on site at all times.

> Building inspection line: 905-771-5465 (24 hr) buildinginspections@richmondhill.ca Building inquiry line 905-771-8810 building@richmondhill.ca

Ensure that R-Values and U-Values used for heat loss and heat gain calculations are consistent with the values specified by SB-12 Performance Compliance: Energy Modeling/air leak test and the values used for architectural design.

Minimum R-12 Insulation Value required for ducts installed at unheated or exposed condition (OBC 2012 Div.B 6.2.4.3(10) and seal the ducts as per 6.2.4.3(11) & HRAI Digest 2005, Clause 4.5.

Penetration of Air Barrier System by ducts, wires, conduits or building materials shall be sealed as per OBC 2012, Div.B 9.25.3.3.(9) & (10).

Volume control dampers to all branches to be installed per OBC 2012, Div.B, 6.2.4.5.

Space between studs and joists used as return ducts shall be separated from unused portion as per OBC 2012 Div.B 6.2.4.7(6)

Combustion air supply shall be provided to the furnace and hot water tank.

HRV installation, testing, startup and commissioning shall be in compliance with OBC 2012, Div.B 9.32.3.11, 9.32.3.11(7)&(10)

HRV duct connection shall be in compliance with OBC 2012 Div.B 9.32.3.6(3) & 9.32.3.4(7).

Supply air grill at finished basement shall be at low level. Return air grill for finished or unfinished basement shall be at low level. HRAI digest 2005, clause 7.7(3).

Air supply outlet shall not be installed on a furnace plenum or trunk duct. (HRAI Digest 2005, 4.6)

Exterior insulation effective R-Value for wall, roof or exposed floor shall be maintained at the respective location where duct or sanitary pipes are routed inside exterior envelope.

For simplified HRV/ERV installation, with stale air and fresh air connected to return air plenum, stale air intake and fresh air supply shall be separated minimum 3' or as recommended by HRV/ERV

		3.									
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.	REVISED AS PER ARCHITECTURALS	APR/2021	
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE	SEPT/2020	
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date	
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS		

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD. AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY) RICHMOND HILL, ONTARIO

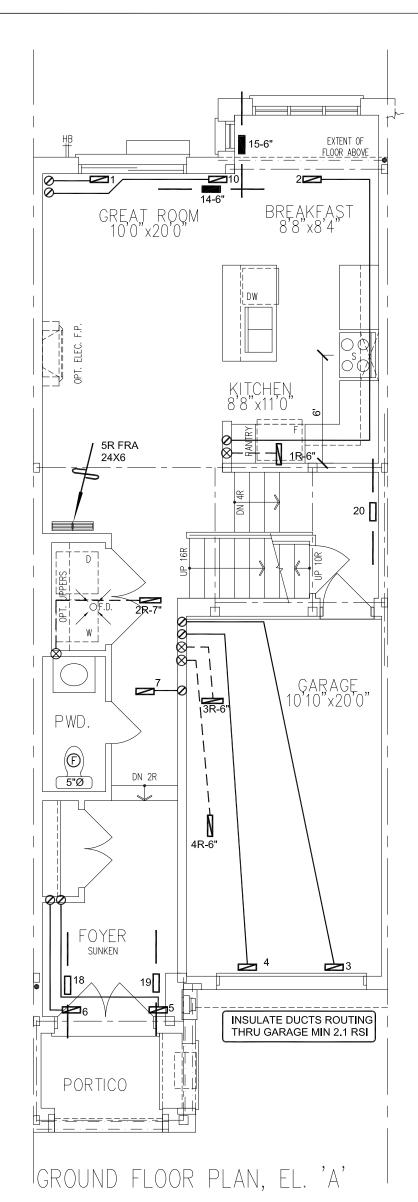
375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca

Web: www.hvacdesigns.ca Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

	HEAT L	OSS 24147	BTU/H	# OF RUNS	S/A	R/A	FANS	SI
		UNIT DATA		3RD FLOOR				
	MAKE	CARRIER		2ND FLOOR	8	4	2	
	MODEL 59T	N6A-060-14\	/	1ST FLOOR	5	1	2	
	INPUT	60	MBTU/H	BASEMENT	3	1	0	D
	OUTPUT	58	MBTU/H	ALL S/A DIFFU				S
be	COOLING	2.0	TONS	ON LAYOUT. A	LL S/A	RUN	S 5"Ø	

ON LAYOUT. UNDERCUT


DOORS 1" min. FOR R/A

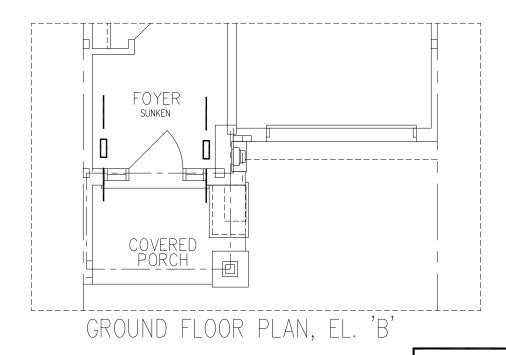
FAN SPEED

820

BASEMENT **HEATING** LAYOUT SEPT/2020 3/16" = 1'-0" BCIN# 19669 87524 LO#

2007

Kitchen hood exhaust duct shall be provided as per OBC 2012, Div.B 9.32.3.10, 9.32.3.5(2).


Laundry dryer exhaust duct shall be provided as per OBC 2012 Div.B 6.2.3.8(7).

Volume control dampers to all branches to be installed per OBC 2012, Div.B, 6.2.4.5.

Penetration of Air Barrier System by ducts, wires, conduits or building materials shall be sealed as per OBC 2012, Div.B 9.25.3.3.(9) & (10).

Exterior insulation effective R-Value for wall, roof or exposed floor shall be maintained at the respective location where duct or sanitary pipes are routed inside exterior envelope.

Space between studs and joists used as return ducts shall be separated from unused portion as per OBC 2012 Div.B 6.2.4.7(6)

I MICHAEL O'ROURKE HAVE REVIEW
AND TAKE RESPONSIBILITY FOR TH
DESIGN WORK AND AM QUALIFIED
UNDER DIVISION C, 3.2.5 OF THE
BUILDING CODE.

Michael O'Rourke BONS 19669

CSA-F280-12

SB-12 PERFORMANCE

								_		
			3.							
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.	REVISED AS PER ARCHITECTURALS	APR/2021
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE	N	RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE	SEPT/2020
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u></u>	30"x8" RETURN AIR GRILLE	×	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE

Cllent

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY)
RICHMOND HILL, ONTARIO

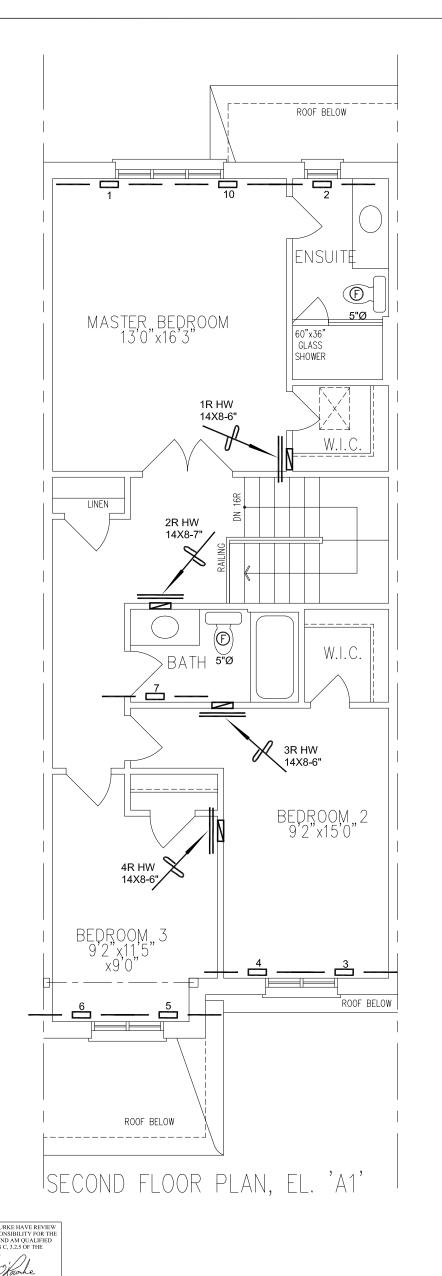
HVA DESIGNS LTD.

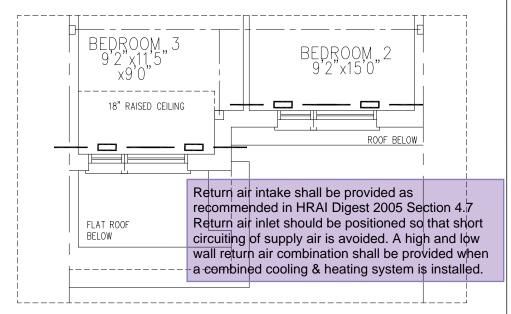
375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

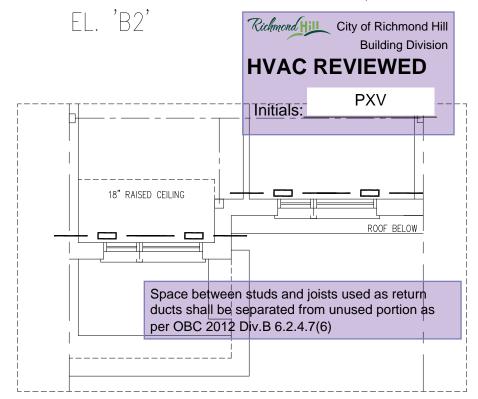
Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR HEATING LAYOUT

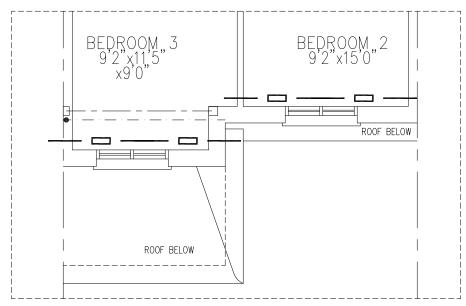

Date SEPT/2020 Scale 3/16" = 1'-0"


BCIN# 19669

LO# 87524


2007

1662 sqft



PART. SECOND FLOOR PLAN,

SECOND FLOOR PLAN, EL. 'B1'

PART. SECOND FLOOR PLAN,

EL. 'A2'

CSA-F280-12

SB-12 PERFORMANCE

HVAC LEGEND								3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.	REVISED AS PER ARCHITECTURALS	APR/2021
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE	SEPT/2020
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE

Cllent

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY)
RICHMOND HILL, ONTARIO

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR HEATING LAYOUT

Date SEPT/2020 Scale 3/16" = 1'-0" BCIN# 19669

LO#

87524

2007 1662 sqft adequately insulated and be gas-proofed.