Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information					
Building number, street name				Unit no.	Lot/con.
Municipality	Postal code	Plan number/ other des	cription		
RICHMOND HILL					
B. Individual who reviews and takes	ı responsibility fo	r design activities			
Name		Firm			
MICHAEL O'ROURKE		HVAC DESIGNS LTD.			T
Street address 375 FINLEY AVE			Unit no. 202		Lot/con. N/A
Municipality	Postal code	Province	E-mail		IN/A
AJAX	L1S 2E2	ONTARIO	info@hvacdes	igns.ca	
Telephone number	Fax number		Cell number		
(905) 619-2300	(905) 619-2375		()		
C. Design activities undertaken by in	dividual identific	ed in Section B. [Buil	ding Code Tab	ole 3.5.2.1 OF Divi	sion C]
☐ House	⊠ HVAC	– House		Building Structura	nl
☐ Small Buildings	Building	g Services	□ F	Plumbing – Hous	е
☐ Large Buildings☐ Complex Buildings	☐ Detecti☐ Fire Pro	on, Lighting and Pov		Plumbing – All Bu On-site Sewage S	
Description of designer's work	☐ File File	Model:		JII-sile Sewage S	bysterns
HEAT LOSS / GAIN CALCULATIONS		Model:	BELVEDERE		
DUCT SIZING					
RESIDENTIAL MECHANICAL VENTILATIO		ARY Project:	CENTREFIELD (\	WEST GORMLEY)	
RESIDENTIAL SYSTEM DESIGN per CSA-	F280-12				
D. Declaration of Designer					
MICHAEL O'ROURKE	int name)		declare the	at (choose one as ap	propriate):
	,				
 I review and take responsibility for Division C, of the Building Code. classes/categories. 				appropriate	
Individual BCIN: Firm BCIN:					
☐ I review and take responsibility for designer" under subsection 3.2		m qualified in the approp on C, of the Building Code		an "other	
Individual BCIN:	19669				
		d qualification:	O.B.C SENT	TENCE 3.2.4.1 (4)_
☐ The design work is exempt Basis for exemption from registra		ion and qualification requon:	irements of the B	Building Code.	
I certify that:					
	: 4 -:				
The information contained I have submitted this applications		ule is true to the best of nedge and consent of the			
April 19, 2021			Maken	Ofounde	-
Date	•			Signature of Desi	gner

NOTE

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

SOUTH 21.8 24.9 0 0 0 0 0 0 0 0 0	SITE NAME:	CENTR	EFIELD) (WES	T GOR	MLEY)													DATE:	Apr-21			v	VINTER	R NATURAL AIR C	HANGE RATE 0.227		HEAT	LOSS A	∆T °F. 78		CSA-F2	280-12
SEP-NALL ORIGINAL LARGE ORIGINAL SECTION ORIG	BUILDER:	ROYAL	PINE I	HOMES	3				TYPE:	38-11					GFA:	2674			LO#	87614			SI	JMMEF	R NATURAL AIR C	HANGE RATE 0.071		HEAT	GAIN A	∆T °F. 13	SB-12	PERFORM	IANCE
C.C.S. FT MCTUTES S S S S S S S S S	ROOM USE				MBR			ENS			WIC			BED-2			BED-3			BED-4			BATH					ENS-4					
GRAVALLAMOR (OSS GAM) OSS GAM) OSS GAM) OSS GAM OSS G	EXP. WALL				41			22			6			18			35			31			7					8					
CHI	CLG. HT.				9			9			9			9			9			9			9					9					
Column C		FACTO	RS																														
NOTITY 12.1 4.6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GRS.WALL AREA	LOSS	GAIN		369			198			54			162			315			279			63					72					
EMET 121 24 54 56 4 596 182 27 779 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GLAZING				LOSS	GAIN		LOSS	GAIN		LOSS	GAIN		LOSS	GAIN		LOSS	GAIN		LOSS	GAIN		LOSS	GAIN				LOSS	GAIN				
SOUTH 128 248 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NORTH	21.8	16.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0				
MET 21 54 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EAST	21.8	41.6	44	958	1828	22	479	914	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0				
SENTLY 18, 1912 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SOUTH	21.8	24.9	0	0	0	0	0	0	0	0	0	18	392	448	0	0	0	0	0	0	7	152	174			0	0	0				
SENTLY 138 1912 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WEST	21.8	41.6	0	0	0	0	0	0	0	0	0	0	0	0	51	1111	2119	55	1198	2285	0	0	0			0	0	0				
METERORISMULI MALE METERO	SKYLT.	35.8	101.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0			0	0	0				
METERORISMALI 42 2 7 32 107 70 70 70 70 70 70 70 70 70 70 70 70 7	DOORS	25.8	4.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0				
THE PROPERTY MALE ASSOCIATION 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NET EXPOSED WALL				1367	225	176	740	122	54	227	37	144	606		264	1110	183		942	155	56	236	39			72	303	50				
EMPORED CLG 2 3 1 0 5 0 50 47 209 02 14 77 90 22 46 122 200 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NET EXPOSED BSMT WALL ABOVE GR	3.7	0.6		0	0		0									0			0	0			0				0					
MAZIMINE PROPRIE CLAI 2 28 13 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					467	209		164	73		92	41	232	305	136	162	213	95		260	116		112	50			75	99	44				
BLAG OR PICOPS 2.8 2.4 0 0 0 0 0 0 0 0 0																																	
BASEMENTCRAWN. FEAT. LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						0	0		0	0	0	0	0		0						102		0	0			75	196	32				
SAR ON GRADE HEAT LOSS SUBTOTIAL HT CARL SUBTOTIA									-						-												1						
SUSTOTIAL HT CLOS 1272 1184 1190 1190 1190 1290 1280 1280 1290 1280 1290 128					•		1	•		1	•			•			•		1	•			•			1		0	ļ				
SUBTOTAL HT GAIN LT FLORM LT F					-		1	-		1	-			-			-		1	-			-			1		•	ļ				
LEVEL FACTOR MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOS						2262	1		1109	1		79			684	l		2464	1		2709			263		1			126				
ARCHANGE HEAT LOSS ON USE OF 114 0 56 0 1 0 0 0 0 0 0 1 175 0 163 0 1 14 0 154 0 1 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 124 0 1				0.20	0.18		0.20	0.18		0.20	0.18	. •	0.20	0.18		0.20	0.18		0.20	0.18		0.20	0.18			1	0.20	0.18					
ARICHANGE HEAT CANN 114 56 4 34 34 124 136 13 29 77 137 14 14 14 14 14 14 14 1										1																							
DUCT CASN HEAT GAIN PEOPLE 240 2 480 0 0 0 0 154 1515 177 200 1 1240 1 240 1 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					•••	114			56		••	4			34			124		000	136		•	13					6				
HAT GAIN PEOPLE 20 2 480 0 0 0 0 1 175 382 1 387 28					0			0	00		0	7		154	04		313	124		370			59					71	Ĭ				
HEAT GRAM PEOPLE HEAT GRAM PEOPLE TOTAL HIT LOSS BILLIN TOTAL HIT					٠	0		٠	0		٠	0		104	175		0.0	362		0.0	387		00	28				• • •	13				
HEAT GAIN APPLIANCESLIGHTS 199		240		,		-	0		-	١,			1			4			1			n					0						
TOTAL HT LOSS ETUH 3289 1635 377 1693 2500 3446 4074 6500		240		_			۰		-	۰									'			۰		-					-				
TOTAL HT QAIN x 1.3 BTUIN 4738 1515 167 2500 5173 5541 395 199					3299	, 50		1635	٠		377	٠		1693	750		3446	100		4074	150		650	١				776	٠				
ROOM USE FAM					0200	4738		1000	1515		0	107		1000	2500		0440	5173		40.4	55/1		000	305					180				
EXP. WALL CLG. HT. CACTORS GRIWALL AREA, LOSS GAIN GLAZING MORTH 21.8 22 35 354 394 0 105 0 107 110 110 110 110 110 110 110 110 1	TOTAL III GAIRX 1.0 BTO/II					4730			1313			107			2300			3173	l		3341			333		1			103				
CLG. HT. FACTORS GRS.WALL AREA LOSS GAIN GLAZING GRS.WALL AREA LOSS GAIN GLAZING GRS.WALL AREA LOSS GAIN LOSS GAIN LOSS GAIN	ROOM USE							FAM			KT/BR			LV/DN			LAUN			PWD			FOY		MUD							BAS	
GRS.WALLAREA LOSS GAIN GLAZING GRS.WALLAREA LOSS GAIN GLAZING GRS.WALLAREA LOSS GAIN GLAZING GRS.WALLAREA LOSS GAIN	EXP. WALL							32			35			39			0			6			29		15							168	
GR.WALL AREA (LOSS GAIN GLAZING GLAZIN	CLG. HT.							10			10			10			9			10			11		11							10	
GLAZING NORTH 12.8 24.8 41.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I																																
NORTH 21.8 16.0		LOSS	GAIN														-																
EAST 21.8 41.6	GLAZING							LOSS	GAIN		LOSS	GAIN		LOSS	GAIN		LOSS	GAIN		LOSS	GAIN		LOSS	GAIN	LOSS GAIN	1						LOSS	GAIN
SOUTH 21.8 24.9 0 0 0 0 0 0 0 0 0			16.0						0			0	0	0	0	0	0	0	0	0	0	0	0	0	0 0 0						(
WEST 21.8 41.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			41.6				22	479	914	63	1372	2618			0	0	0	0	0	0	0	-	0	0	0 0 0						9	9 196	374
SKYLT. 1. 5.8 10.1.2 DOORS 25.8 4.3 DOORS 25.8 4.3 SET EXPOSED MALL 4.2 0.7 SET EXPOSED MALL 4.2 0.7 SET EXPOSED MALL 4.2 0.7 SET EXPOSED MALL ABOVE CR 3.7 0.6 SEXPOSED FLOOR 2.8 1.3 SUBTOTAL H LOSS SUBSTOTAL H	SOUTH	21.8	24.9				0	0	0	0	0	0	38	828	946	0	0	0	9	196	224	0	0	0	0 0 0						•	6 131	149
DOORS 25.8 4.3							-	0	-	_	0	0		-	0		0	-		-	-					1			ļ		١,		
NET EXPOSED WALL ALZ 0.7 NET EXPOSED BANT WALL ABOVE GR 3.7 0.6 EXPOSED CLG 1.3 0.6 NO ATTIC EXPOSED FLOOR 2.8 1.3 SUBTOTAL HT LOSS SUBTOTAL HT GAIN AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS DUCT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PELAT CASINA TOTAL HT LOSS SUBTOTAL HT LOSS SUBTOTAL HT LOSS SUBTOTAL HT GAIN AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN HEAT GAIN PELAT CASINA HEAT GAIN PELAT CASINA TOTAL HT LOSS SUBTOTAL HT LOSS AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN HEAT GAIN PELAT CASINA SUBTOTAL HT LOSS SUBTOTAL HT LOS		35.8	101.2					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0							(0 0	
NET EXPOSED BSMT WALL ABOVE GR		25.8	4.3				0	0	0	0	0	0	0	0	0	0	0	0		0	0	40	1034	170	20 517 85						2	0 517	85
EXPOSED CLG 2.8 1.3 0.6								1267				201			246	0				217	36					1			ļ			•	
NO ATTIC EXPOSED CLG	NET EXPOSED BSMT WALL ABOVE GR	3.7	0.6	l				0	0		0	0	-		-	-				0	0	-	-	0		1					50	04 1857	305
EXPOSED FLOOR 2.6 0.4		-					1 0	0	0	0	0	0	0	0	0	95	125	56		0	0	-		0	0 0 0	1	1				(0 0	
BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT GAIN DUCT GAIN HEAT GAIN PEPULANCES/LIGHTS 790 790 790 790 790 790 148 547 3359 1501		-	0.6									•	0	0	0		0	-		0	•	-	0	-	0 0 0	1					(0 0	0
SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN APPLIANCES/LIGHTS TOTAL HT LOSS BTUIH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO ATTIC EXPOSED CLG	1.3 2.8	1.3				0		-		0	U	-							•	•		0										
SUBTOTAL HT LOSS SUB TOTAL HT GAIN 1123 2594 2594 1192 56 260 1101 186 914 914 914 914 914 914 914 914 914 914	NO ATTIC EXPOSED CLG EXPOSED FLOOR	1.3 2.8	1.3				0		-		0	0	-	0	0	0	0	0	U	U	U	۰	U	0	0 0 0				ļ		(0 0	0
SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER 0.30 0.32 0.30 0.30	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS	1.3 2.8	1.3				0		-		0 0 0	0	-		0	0	0	0	۰	0	U		0	0	0 0 0						(0
LEVEL FACTOR / MULTIPLIER	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS	1.3 2.8	1.3				0	0	-		0 0	0	-	0	0	0	0	0		0	U		•	0	0						(0
AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS	1.3 2.8	1.3				0	0 0 0	0		0 0	0	-	0		0	0	0		•		Ů	2536		0 0 1133						(5684	0
AIR CHANGE HEAT GAIN DUCT LOSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN	1.3 2.8	1.3				0	0 0 0 1746	0	0	0 0 0 2594	0	0	0 0 2324			0 0 125			413			2536		0 0 1133 186							5684 8384	914
DUCT LOSS 0	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN	1.3 2.8	1.3				0	0 0 0 1746	0	0	0 0 0 2594	0	0	0 0 2324			0 0 125			413			2536		0 0 1133 186							5684 8384	-
DUCT GAIN HEAT GAIN PEOPLE 10 TOTAL HT LOSS BTU/H 0 <th< td=""><td>NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS</td><td>1.3 2.8</td><td>1.3</td><td></td><td></td><td></td><td>0</td><td>0 0 0 1746</td><td>0</td><td>0</td><td>0 0 0 2594</td><td>0</td><td>0</td><td>0 0 2324 0.32</td><td></td><td></td><td>0 0 125 0.18</td><td></td><td></td><td>413</td><td></td><td></td><td>2536 0.32</td><td></td><td>0 0 1133 186 0.30 0.32</td><td></td><td></td><td></td><td></td><td></td><td></td><td>5684 8384 50 0.69</td><td>-</td></th<>	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS	1.3 2.8	1.3				0	0 0 0 1746	0	0	0 0 0 2594	0	0	0 0 2324 0.32			0 0 125 0.18			413			2536 0.32		0 0 1133 186 0.30 0.32							5684 8384 50 0.69	-
HEAT GAIN PEOPLE 240 790 790 790 790 0 0 0 0 0 0 790 790 790 790 0	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS	1.3 2.8	1.3				0	0 0 0 1746	1123	0	0 0 0 2594	2819	0	0 0 2324 0.32	1192		0 0 125 0.18	56		413	260		2536 0.32	1101	0 0 1133 186 0.30 0.32 368							5684 8384 50 0.69	914
HEAT GAIN APPLIANCES/LIGHTS 790 790 790 0 0 0 0 790 790 790 790 790 148 547 3359 1501 14199 14199	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN	1.3 2.8	1.3				0	0 0 1746 0.32 567	1123	0	0 0 0 2594 0.32 842	2819	0	0 0 2324 0.32 755	1192		0 0 125 0.18 23	56		413 0.32 134	260		2536 0.32 823	1101	0 0 1133 186 0.30 0.32 368							5684 8384 50 0.69	914
TOTAL HT LOSS BTU/H 2313 3436 3079 148 547 3359 1501 14199	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR, MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS	1.3 2.8	1.3				0	0 0 1746 0.32 567	1123	0	0 0 0 2594 0.32 842	0 2819 142	0	0 0 2324 0.32 755	1192		0 0 125 0.18 23	56		413 0.32 134	260		2536 0.32 823	1101	0 0 1133 186 0.30 0.32 368 9							5684 8384 50 0.69	914
	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN	1.3 2.8 2.6	1.3				0.30	0 0 1746 0.32 567	0 1123 56 0	0.30	0 0 0 2594 0.32 842	0 2819 142 0	0.30	0 0 2324 0.32 755	1192 60 0	0.20	0 0 125 0.18 23	56 3 0	0.30	413 0.32 134	260 13	0.30	2536 0.32 823	1101 55 0	0 0 1133 186 0.30 0.32 368 9 0						0.	5684 8384 50 0.69 5814	914 46 0
TOTAL HT GAIN Y 13 RTIVIH 2550 4975 2654 76 255 4502 255	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE	1.3 2.8 2.6	1.3				0.30	0 0 1746 0.32 567	1123 56 0	0.30	0 0 0 2594 0.32 842	0 2819 142 0 0	0.30	0 0 2324 0.32 755	1192 60 0	0.20	0 0 125 0.18 23	56 3 0	0.30	413 0.32 134	260 13 0	0.30	2536 0.32 823	1101 55 0	0 0 1133 186 0.30 0.32 368 9 0 0 0 0						0.	5684 8384 50 0.69 5814	914 46 0
10 DE 11 CARA 1.0 DE 011 2004 70 300 1003 200 201	NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS	1.3 2.8 2.6	1.3				0.30	0 0 1746 0.32 567	1123 56 0	0.30	0 0 0 2594 0.32 842	0 2819 142 0 0	0.30	0 0 2324 0.32 755	1192 60 0	0.20	0 0 125 0.18 23	56 3 0	0.30	413 0.32 134 0	260 13 0	0.30	2536 0.32 823 0	1101 55 0	0 0 1133 186 0.30 0.32 368 9 0 0 0 0 0 0						0.	5684 8384 50 0.69 5814 0	914 46 0

TOTAL HEAT GAIN BTU/H:

34984

TONS: 2.92

LOSS DUE TO VENTILATION LOAD BTU/H: 1670

STRUCTURAL HEAT LOSS: 44531

TOTAL COMBINED HEAT LOSS BTU/H: 46201

Michael Offmule.

		CENTRE ROYAL			ORMLEY)		TYPE:		0.0			DATE:	Apr-21			GFA:	2674	LO#	87614				
HEATING CFM TOTAL HEAT LOSS AIR FLOW RATE CFM	25.71		TOTAL H	LING CFM EAT GAIN RATE CFM	34,710 32.99		а	furr a/c coil vailable	pressure nace filter pressure pressure s/a & r/a	0.6 0.05 0.2 0.35								060-14V SPEED LOW	*CARRIE 60 820	R	OUTPUT	AFUE = (BTU/H) = (BTU/H) =	60,000 58,000	
RUN COUNT S/A R/A R/A All S/A diffusers 4"x10" unle All S/A runs 5"Ø unless not				1st 7 2 out.	<u>Bas</u> 4 1		max	s/a dif pı	essure s/a ress. loss essure s/a	0.18 0.02 0.16		r/a grille pre usted pre:		0.17 0.02 0.15			N	EDLOW MEDIUM M HIGH HIGH	0 1145 0 1520	т		GN CFM = CFM @ .	6 " E.S.P.	°F
RUN # ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK	1 MBR 1.65 42 2.37 78 0.17 69 130 199 0.09 6 214 398 4X10 A	2 ENS 1.63 42 1.51 50 0.17 37 140 177 0.1 5 308 367 3X10 B	3 WIC 0.38 10 0.11 4 0.17 30 120 150 0.11 4 115 46 3X10 B	4 BED-2 1.69 44 2.50 82 0.16 32 150 182 0.09 6 224 418 4X10 D	5 BED-3 1.72 44 2.59 85 0.16 34 140 174 0.09 6 224 433 4X10 C	6 BED-4 2.04 52 2.77 91 0.16 40 120 160 0.1 6 265 464 4X10 D	7 BATH 0.65 17 0.40 13 0.17 32 120 152 0.11 4 195 149 3X10 D	8 BED-3 1.72 44 2.59 85 0.16 42 150 192 0.08 6 224 433 4X10 C	9 BED-4 2.04 52 2.77 91 0.16 46 130 176 0.09 6 265 464 4X10 D	10 MBR 1.65 42 2.37 78 0.17 56 190 246 0.07 6 214 398 4X10 A	11 ENS-4 0.78 20 0.19 6 0.17 36 160 196 0.09 4 229 69 3X10 D		13 FAM 2.31 59 2.56 84 0.16 53 130 183 0.09 6 301 428 4X10 A	14 KT/BR 1.72 44 2.44 80 0.17 42 150 192 0.09 6 224 408 4X10 A	15 KT/BR 1.72 44 80 0.17 35 100 135 0.13 6 224 408 4X10 B	16 LV/DN 3.08 79 2.65 88 0.16 14 120 134 0.12 6 403 449 4X10 D	17 LAUN 0.15 4 0.08 3 0.17 32 180 212 0.08 4 46 34 3X10 B	18 PWD 0.55 14 0.35 12 0.17 14 130 144 0.12 4 161 138 3X10 C	19 FOY 3.36 86 1.50 50 0.16 30 130 160 0.1 6 438 255 4X10 C	20 MUD 1.50 39 0.25 8 0.17 45 140 185 0.09 4 447 92 3X10 A	21 BAS 3.55 91 0.57 19 0.16 48 130 178 0.09 6 464 97 4X10 A	22 BAS 3.55 91 0.57 19 0.16 29 110 139 0.12 6 464 97 4X10 B	23 BAS 3.55 91 0.57 19 0.16 8 130 138 0.12 6 464 97 4X10 B	24 BAS 3.55 91 0.57 19 0.16 20 120 140 0.12 6 464 97 4X10 C
RUN# ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK																								
SUPPLY AIR TRUNK SIZE																	RETURN A	AIR TRUNK						
TRUNK A TRUNK B TRUNK C TRUNK D TRUNK E TRUNK F	TRUNK CFM 317 599 279 543 0	STATIC PRESS. 0.07 0.07 0.08 0.08 0.00 0.00	9.4 12 8.7 11.2 0	10 16 10 16 0 0	x x x x x	8 8 8 8 8	VELOCITY (ft/min) 571 674 502 611 0		TRUNK G TRUNK H TRUNK I TRUNK J TRUNK K TRUNK L	TRUNK	STATIC PRESS. 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ROUND DUCT 0 0 0 0 0	DUCT 0 0 0 0 0 0 0	x x x x x	8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0 0 0 0	TRUNK O TRUNK P TRUNK Q TRUNK R TRUNK S TRUNK T TRUNK U TRUNK U	TRUNK CFM 0 0 0 0 0 0	STATIC PRESS. 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0	ROUND DUCT 0 0 0 0 0 0 0 0 0 0	DUCT 0 0 0 0 0 0 0 0 0 0 0	x x x x x x	8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RETURN AIR # AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE ROUND DUCT SIZE INLET GRILL SIZE INLET GRILL SIZE	1 0 130 0.15 49 195 244 0.06 7 8 X	2 0 130 0.15 41 175 216 0.07 6.8 8 X 14	3 0 75 0.15 39 275 314 0.05 6 8 X	4 0 75 0.15 46 235 281 0.05 6 8 X	5 0 85 0.15 45 195 240 0.06 6 8 X	6 0 340 0.15 24 120 144 0.10 8.9 8 X 30	7 0 130 0.15 39 215 254 0.06 7 8 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	0 0 0.15 1 0 1 14.80 0 0 X	180 0.15 14 135 149 0.10 7 8 X 14	TRUNK W TRUNK X TRUNK Y TRUNK Z DROP	0 1145 340 0 1145	0.05 0.05 0.05 0.05 0.05 0.05	16.6 10.5 0 16.6	0 32 14 0 24	x x x x	8 8 8 8 10	0 644 437 0 687

TYPE: 38-11 SITE NAME:

CENTREFIELD (WEST GORMLEY)

LO# 87614 RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL VENTILATION CAPACITY	9.32.3.5.
a)		Total Ventilation Capacity	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Ventil. Capacity 79.5	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Supplemental Capacity 90.1	cfm
d) Solid Fuel (including fireplaces)			
e) No Combustion Appliances		PRINCIPAL EXHAUST FAN CAPACITY	
e) Into Combustion Appliances		Model: VANEE 65H Location: BSN	1T
HEATING SYSTEM		79.5 cfm HV	I Approved
✓ Forced Air Non Forced Air		PRINCIPAL EXHAUST HEAT LOSS CALCULATION	
		CFM ΔT °F FACTOR 79.5 CFM X 78 F X 1.08 X	% LOSS 0.25
Electric Space Heat		78.5 OF WILL A 1.00 X	0.23
		SUPPLEMENTAL FANS BY INSTALLING CONTRACTOR	Canaa
HOUSE TYPE	9.32.1(2)	Location Model cfm HVI ENS BY INSTALLING CONTRACTOR 50 ✓	Sones 3.5
		BATH BY INSTALLING CONTRACTOR 50 ✓	3.5
Type a) or b) appliance only, no solid fuel		ENS-4 BY INSTALLING CONTRACTOR 50 ✓	3.5
II Type I except with solid fuel (including fireplaces))	PWD BY INSTALLING CONTRACTOR 50 ✓	3.5
		HEAT RECOVERY VENTILATOR	9.32.3.11.
III Any Type c) appliance		Model: VANEE 65H 155 cfm high 64	cfm low
IV Type I, or II with electric space heat		Cili Tilgri 04	JIII IOW
Other: Type I, II or IV no forced air		75 % Sensible Efficiency ✓ HV @ 32 deg F (0 deg C)	I Approved
, y		LOCATION OF INSTALLATION	
SYSTEM DESIGN OPTIONS	O.N.H.W.P.	LOCATION OF INSTALLATION	
		Lot: Concession	
1 Exhaust only/Forced Air System		Township Plan:	
2 HRV with Ducting/Forced Air System		Address	
HRV Simplified/connected to forced air system		Roll # Building Permit #	
4 HRV with Ducting/non forced air system		BUILDER: ROYAL PINE HOMES	
Part 6 Design		Name:	
TOTAL VENTILATION CAPACITY	9.32.3.3(1)		
	cfm		
— • —		City:	
Other Bedrooms 3 @ 10.6 cfm 31.8	ctm	Telephone #: Fax #:	
Kitchen & Bathrooms 5 @ 10.6 cfm 53	cfm	INSTALLING CONTRACTOR	
Other Rooms 4 @ 10.6 cfm 42.4	cfm	Name:	
Table 9.32.3.A. TOTAL <u>169.6</u>	cfm	Address:	
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	City:	
		Telephone #: Fax #:	
1 Bedroom 31.8	cfm	DESIGNER CERTIFICATION	
2 Bedroom 47.7	cfm	I hereby certify that this ventilation system has been designed in accordance with the Ontario Building Code.	
3 Bedroom 63.6	cfm	In accordance with the Ontario Building Code. Name: HVAC Designs Ltd.	
4 Bedroom 79.5	cfm	Signature: Maken Offmbe.	
5 Bedroom 95.4	cfm	HRAI # 001820	
TOTAL 79.5 cfm		Date: April-21	
I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUAL	IFIED IN THE APP	PPROPRIATE CATEGORY AS AN "OTHER DESIGNER" UNDER DIVISION C, 3.2.5 OF THE BUILDING CODE.	

			Form	nula Sheet (For Air Lea	akage / Ventiliation C	alculation)				
LO#: 876	14	Model: 38-11		Builde	er: ROYAL PINE HOMES				Date:	4/19/2021
		Volume Calculat	on				Air Change & Delt	a T Data		
				7					1	1
ise Volume	-1 (5:2)	T =1	(6.2)				TURAL AIR CHANG		0.227	
Level	Floor Area (ft²)	Floor Height (ft)	Volume (ft³)			SUMMER NA	TURAL AIR CHANG	SE RATE	0.071	
Bsmt	1154 1154	10	11540							
First Second	1520	10 9	11655.4 13680				Design Te	mperature Diff	aranca	
Third	0	9	0	-			Tin °C	Tout °C	ΔT °C	ΔT °F
Fourth	0	9	0	1		Winter DTDh	22	-21	43	78
		Total:	36,875.4 ft ³	†		Summer DTDc	24	31	7	13
		Total:	1044.2 m ³	1					· ·	
				_						
	5.2.3	3.1 Heat Loss due to	Air Leakage			6.2.6	Sensible Gain due	to Air Leakage		
		V_{ι}					V.			
	$HL_{airb} =$	$LR_{airh} \times \frac{V_b}{3.6} \times$	$DTD_h \times 1.2$		Н	$IG_{salb} = LR_{airc} >$	$\langle \frac{v_b}{2c} \times DTD_c \rangle$	× 1.2		
0.227				= 3408 W	= 0.071		5.0		_	175 W
0.227	x <u>290.05</u>	x 43 °C	_ XX	= 3406 W	= 0.071	x <u>290.05</u>	_ x <u> </u>	X	=	1/3 W
				= 11629 Btu/h	τ Ι				=	597 Btu/h
				- 11029 Btu/II	1				-	397 Btu/1
	5.2.3.2 He	at Loss due to Mecha	nical Ventilation			6.2.7 Sei	nsible heat Gain d	ue to Ventilatio	n	
	$HL_{vairb} =$	$PVC \times DTD_h \times$	$1.08 \times (1 - E)$		HL	$vairb = PVC \times D$	$TD_h \times 1.08 \times$	(1 - E)		
80 CFM	x 78 °F	x 1.08	x 0.25	= 1670 Btu/h	80 CFM	x 13 °F	x <u>1.08</u>	x 0.25	=	275 Btu/h
							_		<u>-</u> '	
			5.2.3.3 Calcula	tion of Air Change Heat	Loss for Each Room (Flo	or Multiplier Section)				
					\	(>-			
		HL	_{airr} = Level Fact	$or \times HL_{airbv} \times \{(H_{airbv}) \times \{$	$(L_{agcr} + HL_{bgcr}) \div$	$(HL_{agclevel} + HL_{eq})$	bgclevel)}			
				HLairve Air Leakage +	Laural Carrell and San Hand					
		Level	Level Factor (LF)	Ventilation Heat Loss	Level Conductive Heat	•				
				(Btu/h)	Loss: (HL _{clevel})	HLairbv / I	HLIevel)			
		1	0.5	1515/	8,384	0.69	3			
		2	0.3	1	10,746	0.32	5			
		3	0.2	11,629	12,804	0.18	2			
		4	0		0	0.00	0			
		5	0		0	0.00	0			
		· · · · · · · · · · · · · · · · · · ·	·	+ ventilation heat loss	· · · · · · · · · · · · · · · · · · ·					

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL:	38-11		BUILDER: ROYAL PINE HOMES	5
SFQT:	2674	LO# 87614	SITE: CENTREFIELD (WES	T GORMLEY)
DESIGN A	SSUMPTIONS			
HEATING		°F	COOLING	°F
	R DESIGN TEMP.	-6 -73	OUTDOOR DESIGN TEMP.	88
INDOOR	DESIGN TEMP.	72	INDOOR DESIGN TEMP. (MAX 75°F)	75
BUILDING	G DATA			
ATTACHM	1ENT:	DETACHED	# OF STORIES (+BASEMENT):	3
FRONT FA	ACES:	EAST	ASSUMED (Y/N):	Υ
AIR CHAN	IGES PER HOUR:	2.50	ASSUMED (Y/N):	Υ
AIR TIGHT	TNESS CATEGORY:	TIGHT	ASSUMED (Y/N):	Υ
WIND EXI	POSURE:	SHELTERED	ASSUMED (Y/N):	Υ
HOUSE V	OLUME (ft³):	36875.4	ASSUMED (Y/N):	Υ
INTERNAI	_ SHADING:	BLINDS/CURTAINS	ASSUMED OCCUPANTS:	5
INTERIOR	LIGHTING LOAD (Btu/h	/ft²): 1.65	DC BRUSHLESS MOTOR (Y/N):	Υ
FOUNDAT	TION CONFIGURATION	BCIN_1	DEPTH BELOW GRADE:	7.0 f
LENGTH:	52.0 ft	WIDTH: 32.0 ft	EXPOSED PERIMETER:	168.0 f

2012 OBC - COMPLIANCE PACKAGE		
	Compliance	Package
Component	SB-12 PERF	ORMANCE
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.20
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.70
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22+1.5	18.50
Basement Walls Minimum RSI (R)-Value	20	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	1.6	-
Skylights Maximum U-Value	2.6	-
Space Heating Equipment Minimum AFUE	0.96	-
HRV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	TE=94%	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

W	eather Stati	on Description
Province:	Ontario	-
Region:	Richmond	Hill
	Site Des	scription
Soil Conductivity:	Normal co	nductivity: dry sand, loam, clay
Water Table:	Normal (7-	10 m, 23-33 ft)
	Foundation	Dimensions
Floor Length (m):	15.8	
Floor Width (m):	9.8	
Exposed Perimeter (m):	0.0	
Wall Height (m):	3.0	
Depth Below Grade (m):	2.13	Insulation Configuration
Window Area (m²):	1.4	
Door Area (m²):	1.9	
	Radiaı	nt Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Design	Months
Heating Month	1	
	Foundati	on Loads
Heating Load (Watts):		1665

TYPE: 38-11 **LO#** 87614

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Sta	ition Description	
Province:	Ontario	
Region:	Richmond Hill	
Weather Station Location:	Open flat terrain, grass	
Anemometer height (m):	10	
	Shielding	
Building Site:	Suburban, forest	
Walls:	Heavy	
Flue:	Heavy	
Highest Ceiling Height (m):	6.74	
Building (Configuration	
Type:	Detached	
Number of Stories:	Two	
Foundation:	Full	
House Volume (m³):	1044.2	
Air Leakag	ge/Ventilation	
Air Tightness Type:	Energy Star Detached (2.5 ACH)	
Custom BDT Data:	ELA @ 10 Pa. 974.8 cm	2
	2.50 ACH @ 50 P	a
Mechanical Ventilation (L/s):	Total Supply Total Exhaust	
, , ,	37.5 37.5	
Flu	ue Size	
Flue #:	#1 #2 #3 #4	
Diameter (mm):	0 0 0 0	
Natural Inf	filtration Rates	
Heating Air Leakage Rate (ACH/H	H): 0.227	
Cooling Air Leakage Rate (ACH/H	H): 0.071	

TYPE: 38-11 **LO#** 87614

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE

ROYAL PINE HOMES

ONTARIO BUILDING CODE.

Project Name

CENTREFIELD (WEST GORMLEY) RICHMOND HILL, ONTARIO

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

	HEAT LO	SS 46201	BTU/H	# OF RUNS	S/A	R/A	FANS	Shee
		JN I T DATA		3RD FLOOR				
	MAKE C	ARRIER		2ND FLOOR	12	5	4	
	MODEL 59TN	I6A-060-14\	/	1ST FLOOR	7	2	2	
	INPUT	60	MBTU/H	BASEMENT	4	1	0	Date
_	OUTPUT		MBTU/H	ALL S/A DIFFU	SERS.	└── 4 "x10)"	Scale
	COOLING	58		UNLESS NOTE ON LAYOUT. A				
е		3.0	TONS	UNLESS NOTE	D OTH	IERW		
	FAN SPEED	1145	cfm @ 0.6" w.c.	ON LAYOUT. U DOORS 1" min.				L

Ξ	LO#	87614											
"Ø	ŀ	3CIN# 19669											
	Scale	3/16" = 1'-0"											
0	Date	SEPT/2020											
2		LAYOUT											
4		HEATING											
		ASEMENT											
NS	Sheet Title	4 OE											

38-11

GROUND FLOOR PLAN ELEV. 'B'

GROUND FLOOR PLAN ELEV. 'C

CSA-F280-12

SB-12 PERFORMANCE

	<u>.</u>			HVAC LE	EGEND			3.	•	
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.	REVISED AS PER ARCHITECTURALS	APR/2021
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.	REVISED TO PERFORMANCE	SEPT/2020
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR		30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.® AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING CODE.

Cllent

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY)
RICHMOND HILL, ONTARIO

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR
HEATING
LAYOUT

Date SEPT/2020

Scale 3/16" = 1'-0"

BCIN# 19669

LO#

87614

38-11 2674 sq

Cllent

ROYAL PINE HOMES

Project Name

CENTREFIELD (WEST GORMLEY)
RICHMOND HILL, ONTARIO

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR
HEATING
LAYOUT

Scale SEPT/2020 Scale 3/16" = 1'-0" BCIN# 19669

LO# 87614

38-11 2674 sq