Schedule 1: Designer Information

Use one form for each individual who reviews and takes responsibility for design activities with respect to the project.

A. Project Information					
Building number, street name				Unit no.	Lot/con.
Municipality	Postal code	Plan number/ other de	scription		•
BRAMPTON				4	
B. Individual who reviews and takes	responsibility fo	r design activities	$\overline{}$	7	
Name MICHAEL O'ROURKE		Firm HVAC DESIGNS LTD	3. 2		
Street address		in the second second second	Unit no	·	Lot/con.
375 FINLEY AVE			202		N/A
Municipality AJAX	Postal code L1S 2E2	Province ONTARIO	E-mail info@hvacde	esigns.ca	
Telephone number	Fax number		Cell number		
(905) 619-2300	(905) 619-2375		5 (-5)		
C. Design activities undertaken by in	dividual identifie	ed in Section B. (Bu	ilding Code Ta	able 3.5.2.1 O	F Division C]
☐ House	⊠ HVAC	- House		Building Str	uctural
☐ Small Buildings		g Services) 🗖	Plumbing -	House
☐ Large Buildings	☐ Detecti ☐ Fire Pr	on, Lighting and Po		Plumbing –	All Buildings vage Systems
Complex Buildings	□ FIIE PI			On-site Sev	vage Systems
Description of designer's work HEAT LOSS / GAIN CALCULATIONS		Model:			
DUCT SIZING		0 8	FIN BSMT		
RESIDENTIAL MECHANICAL VENTILATION RESIDENTIAL SYSTEM DESIGN per CSA-	N DESIGN SUMM	Project	: SUMMER RID	GE ESTATES	
D. Declaration of Designer	1 200-12	30			
	(1)	5	11	la at dala a a a a	
MICHAEL O'ROURKE	int name)		_ declare t	inat (choose one	e as appropriate):
☐ I review and take responsibility to Division C, of the Building Code.	or the design work of Lam qualified, and	on behalf of a firm regis the firm is registered, in	tered under subs a the	section 3.2.4.of appropr	iate
classes/categories.	Columbia	are min to registered, ii	1 410	арргорг	
Individual BCIN:					
Firm BCIN:					
☑ I review and take responsibility for designer" under subsection 3.2	or the design and a 2.5.of Di visio	m qualified in the appro		as an "other	
	19669	•			
		d qualification:	O.B.C SE	NTENCE 3.2	.4.1 (4)
☐ The design work is exempt	from the registrati	on and qualification req	uiroments of the	Puilding Code	
Basis for exemption from registra			ullernerits of the	building code.	
3	•				
I certify that:					
The information contained I have submitted this applica		ule is true to the best of edge and consent of the			
			med 1	1 -04/	21
April 24, 2024	_		Mucha	nd O'Kown	he.
Date	-		-	Signature	of Designer

NOTE

^{1.} For the purposes of this form, "individual" means the "person" referred to in Clause 3.2.4.7(1) d).of Division C, Article 3.2.5.1. of Division C, and all other persons who are exempt from qualification under Subsections 3.2.4. and 3.2.5. of Division C.

^{2.} Schedule 1 is not required to be completed by a holder of a license, temporary license, or a certificate of authorization, issued by the Ontario Association of Architects. Schedule 1 is also not required to be completed by a holder of a license to practise, a limited license to practise, or a certificate of authorization, issued by the Association of Professional Engineers of Ontario.

SITE NAME: BUILDER:				ATES				TYPE:	FIN BSM 2001	Т			GF.	A: 186	5		DATE: Apr-24 LO# 104851					CHANGE RATE 0.275 CHANGE RATE 0.086	HEAT LOSS		74 11			CSA-F280-12 RFORMANCE
ROOM USE				MBR			ENS					BE	D-2		BED-	3			BATH					E	в-втн		E	3-BED
EXP. WALL				12			22					1	0		12				0						0			10
CLG. HT.				9			9					9)		9				9						9			9
	FACTO	RS																										
GRS.WALL AREA	LOSS	GAIN		103			189					8	6		103				0						0			56
GLAZING				LOSS	GAIN	ı	LOSS	GAIN				LOS	SS GAI	IN	LOSS	GAIN			LOSS	GAIN				- 1	LOSS	GAIN	L	OSS GAIN
NORTH	20.8	12.8	0	0	0	0	0	0				0 (0	0	0	0		0	0	0				0	0	0	0	0 0
EAST	20.8	32.9	0	0	0	0	0	0				26 54	10 85	6 35	727	1152		0	0	0				0	0	0	10	208 329
SOUTH	20.8	19.8	0	0	0	13	270	258				0 (0	0	0	0		0	0	0				0	0	0	0	0 0
WEST	20.8	32.9	30	623	987	0	0	0				0 (0	0	0	0		0	0	0				0	0	0	0	0 0
SKYLT.	34.1	132.1	0	0	0	0	0	0				0 (0	0	0	0		0	0	0				0	0	0	0	0 0
DOORS	19.6	2.9	0	0	0	0	0	0				0 (0	0	0	0		0	0	0				0	0	0	0	0 0
NET EXPOSED WALL	3.5	0.5	73	254	38	176	611	91			- 1	60 20	8 31	1 68	236	35		0	0	0				0	0	0	0	0 0
NET EXPOSED BSMT WALL ABOVE GR	3.5	0.5	0	0	0	0	0	0				0 (0	0	0	0		0	0	0				0	0	0	30	105 16
EXPOSED CLG	1.3	0.6	260	326	145	161	202	90			2	05 25	7 11	4 20	1 252	112		70	88	39				0	0	0	0	0 0
NO ATTIC EXPOSED CLG	2.7	1.2	0	0	0	0	0	0				0 () 0	19	51	23		0	0	0				0	0	0	0	0 0
EXPOSED FLOOR	2.5	0.4	0	0	0	4	10	1				0 () 0	0	0	0		0	0	0				0	0	0	0	0 0
BASEMENT/CRAWL HEAT LOSS				0			0					()		0			1	0						126			326
SLAB ON GRADE HEAT LOSS				0			0					()		0			1	0						0			0
SUBTOTAL HT LOSS				1203			1093					10	05		1266			1	88						126			639
SUB TOTAL HT GAIN					1170			440					100			1322				39						0		345
LEVEL FACTOR / MULTIPLIER			0.20	0.39		0.20	0.39				0	20 0.	39	0.2	0.39			0.20	0.39					0.50	1.43		0.50	1.43
AIR CHANGE HEAT LOSS				472			429					39	94		497				34						180			915
AIR CHANGE HEAT GAIN					100			38					86	6		113				3						0		30
DUCT LOSS				0			152					()		0				0						0			0
DUCT GAIN					0			48					0)		0				0						0		0
HEAT GAIN PEOPLE	240		2		480	0		0				1	24			240		0		0				0		0	1	240
HEAT GAIN APPLIANCES/LIGHTS					471			0					47	1		471				0						0		471
TOTAL HT LOSS BTU/H				1675			1674					13			1763				122						306			1554
TOTAL HT GAIN x 1.3 BTU/H					2887			682					233	37		2790				55						0		1411
ROOM USE		-		GRT					K.	T/BF		ENT	RV-1		LAUN	ı	I	1	FOY		ENTRY-2	REC						BAS
EXP. WALL				10						12					0				12		14	11						35
CLG. HT.				10						10		1			9				11		11	9						9
525	FACTO	RS											•		•				•••			·						ĭ
GRS.WALL AREA				96						115		7	7		0				127		148	62						196
GLAZING																												LOSS GAIN
NORTH				LOSS	GAIN				L	oss g	AINI	LO	SS GA	JN	LOSS	GAIN			LOSS	GAIN								0 0
EAST	20.8	12.8			GAIN 0				0 L		AIN 0	LO 0 (GAIN 0		0	LOSS		LOSS GA	N LOSS GAIN					0	
EASII	20.8	12.8 32.9	0	0	0					0	0	0 () 0	0	LOSS 0 0	0		0	0	0	LOSS GA	N LOSS GAIN 0 0 0					0	
	20.8	32.9	0 37						0	0 0	0		0 0	0	0			11	0 229		LOSS GA	N LOSS GAIN 0 0 0 0 0 0					0	
SOUTH	20.8 20.8		0	0 769	0 1218				0 0 0	0 0 0	0 0 0	0 (0 0	0 0	0 0	0			0	0 362	LOSS GAI	N LOSS GAIN 0 0 0 0 0 0					0	0 0
	20.8 20.8 20.8	32.9 19.8	0 37 0	0 769 0	0 1218 0				0 0 0	0 0 0 582 9	0 0 0 0 022	0 (0 0 0 0 0	0 0 0	0 0	0 0 0		11 0	0 229 0	0 362 0	LOSS GAI 0 0 0 0 0 0 0 0 0	N LOSS GAIN 0 0 0 0 0 0 0 0 0					0	0 0
SOUTH WEST	20.8 20.8 20.8	32.9 19.8 32.9	0 37 0 0	0 769 0 0	0 1218 0 0				0 0 0 28	0 0 0 582 9	0 0 0 0 022	0 (0 (0 (0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0	0 0 0		11 0 0	0 229 0 0	0 362 0 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0	N LOSS GAIN 0 0 0 0 0 0 0 0 0 10 208 329 0 0 0					0 0	0 0 0 0 0 0
SOUTH WEST SKYLT.	20.8 20.8 20.8 34.1	32.9 19.8 32.9 132.1	0 37 0 0	0 769 0 0	0 1218 0 0				0 0 0 28 0 0	0 0 0 582 9	0 0 0 0 0 222 0	0 (0 0 (0 0 (0 0 (0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0		11 0 0 0	0 229 0 0	0 362 0 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N LOSS GAIN 0 0 0 0 0 0 0 0 0 10 208 329 0 0 0 6 0 0 0					0 0 0 0	0 0 0 0 0 0 0 0
SOUTH WEST SKYLT. DOORS	20.8 20.8 20.8 34.1 19.6	32.9 19.8 32.9 132.1 2.9	0 37 0 0 0	0 769 0 0 0	0 1218 0 0 0				0 0 0 28 0 0	0 0 0 582 9 0 0	0 0 0 0 222 0 0 :	0 (0 (0 (0 (0 (20 39	0 0 0 0 0 0 0 0 0 0 0 2 58	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		11 0 0 0 0 30	0 229 0 0 0 587	0 362 0 0 0 87	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 110	N LOSS GAIN 0 0 0 0 0 0 0 0 0 10 208 329 0 0 0 6 0 0 0					0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 392 58
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL	20.8 20.8 20.8 34.1 19.6 3.5	32.9 19.8 32.9 132.1 2.9 0.5	0 37 0 0 0 0 59	0 769 0 0 0 0 205	0 1218 0 0 0 0 0				0 0 0 28 0 0 0	0 0 0 582 9 0 0 302	0 0 0 0 222 0 0 :	0 (0 0 (0 0 (0 0 (0 0 (2 0 39 57 19	0 0 0 0 0 0 0 0 0 0 0 2 58 07 29	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0		11 0 0 0 30 86	0 229 0 0 0 587 299	0 362 0 0 0 87 44	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 111 108 376 56	N LOSS GAIN 0 0 0 0 0 0 0 0 0 10 208 329 0 0 0 5 0 0 0					0 0 0 0 0 20	0 0 0 0 0 0 0 0 0 0 0 0 0 392 58 0 0
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL	20.8 20.8 20.8 34.1 19.6 3.5 3.5	32.9 19.8 32.9 132.1 2.9 0.5 0.5	0 37 0 0 0 0 59	0 769 0 0 0 0 205	0 1218 0 0 0 0 0 30				0 0 0 28 0 0 87	0 0 0 582 0 0 302 0	0 0 0 0 0 222 0 0 0 245	0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	0 0 0 0 0 0 0 0 0 0 0 2 58 07 29 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0		11 0 0 0 30 86 0	0 229 0 0 0 587 299	0 362 0 0 0 87 44 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 111 108 376 56 0 0 0	N LOSS GAIN 0 0 0 0 0 0 0 0 0 10 208 329 0 0 0 5 0 0 0 0 0 33 116 17					0 0 0 0 0 20	0 0 0 0 0 0 0 0 392 58 0 0 369 55
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BMT WALL ABOVE GR EXPOSED CLG	20.8 20.8 20.8 34.1 19.6 3.5 3.5	32.9 19.8 32.9 132.1 2.9 0.5 0.5	0 37 0 0 0 0 59	0 769 0 0 0 0 205 0	0 1218 0 0 0 0 0 0 0				0 0 0 28 0 0 0 87 0	0 0 0 582 0 0 0 302 0	0 0 0 0 222 0 0 0 :	0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	0 0 0 0 0 0 0 0 0 0 0 0 2 58 07 29 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		11 0 0 0 30 86 0	0 229 0 0 0 587 299 0	0 362 0 0 0 87 44 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 111 108 376 56 0 0 0 0 0 0	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0 10 208 319 116 17 0 0 0					0 0 0 0 20 0 105	0 0 0 0 0 0 0 392 58 0 0 369 55 0 0
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BIMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG	20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0	0 769 0 0 0 0 205 0	0 1218 0 0 0 0 0 0 0				0 0 0 28 0 0 0 87 0 0	0 0 0 582 0 0 0 302 0	0 0 0 0 222 0 0 0 :	0 (0 0 (0 0 (0 0 (0 0 (0 0 0 (0 0 0 (0 0 0 (0	0 0 0 0 0 0 0 0 0 0 0 0 0 2 58 0 7 29 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		11 0 0 0 30 86 0	0 229 0 0 0 587 299 0	0 362 0 0 0 87 44 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 111 108 376 56 0 0 0 0 0 0 0 0 0	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 5 0 0 0 0 33 116 17 0 0 0 0					0 0 0 0 20 0 105 0	0 0 0 0 0 0 0 0 392 58 0 0 369 55 0 0
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR	20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0	0 769 0 0 0 0 205 0 0	0 1218 0 0 0 0 0 0 0				0 0 0 28 0 0 0 87 0 0	0 0 0 582 0 0 0 302 0	0 0 0 0 222 0 0 0 :	0 (0 0 (0 0 (0 0 (0 0 (0 0 0 (0 0 (0 0 0 (0	0 0 0 0 0 0 0 0 0 0 0 0 0 2 58 0 2 5 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		11 0 0 0 30 86 0	0 229 0 0 0 587 299 0	0 362 0 0 0 87 44 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 111 108 376 56 0 0 0 0 0 0 0 0 0	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0 0 0 33 116 17 0 0 0 0 0 0 0 0					0 0 0 0 20 0 105 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS	20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0	0 769 0 0 0 0 205 0 0 0	0 1218 0 0 0 0 0 0 0				0 0 0 28 0 0 87 0 0 0	0 0 0 5582 0 0 0 3002 0 0 0	0 0 0 0 222 0 0 0 :	0 (0 0 (0 0 (0 0 (0 0 (0 0 0 (0 0 0 (0 0 0 (0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		11 0 0 0 30 86 0	0 229 0 0 0 587 299 0 0 0	0 362 0 0 0 87 44 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 111 108 376 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0 0 0 33 116 17 0 0 0 0 0 0 0 732					0 0 0 0 20 0 105 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN	20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0	0 769 0 0 0 0 205 0 0 0 0	0 1218 0 0 0 0 0 0 0				0 0 0 28 0 0 87 0 0 0	0 0 0 5582 0 0 0 3002 0 0 0 0 0	0 0 0 0 222 0 0 0 :	0 (0 0 (0 0 (0 0 (0 0 (0 0 0 (0 0 0 (0 0 0 (0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 50 0	0 0 0 0 0 0 0 0		11 0 0 0 30 86 0	0 229 0 0 0 587 299 0 0 0	0 362 0 0 0 87 44 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 11/ 108 376 586 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 5 0 0 0 0 33 116 17 0 0 0 0 0 0 0 0 732 0 1056					0 0 0 0 20 0 105 0	0 0 0 0 0 0 0 0 392 58 0 0 0 369 55 0 0 0 0 641
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BANT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS	20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0	0 769 0 0 0 0 205 0 0 0 0 0 0	0 1218 0 0 0 0 30 0 0				0 0 0 28 0 0 87 0 0 0	0 0 0 5582 0 0 0 3002 0 0 0 0 0	0 0 0 0 0 222 0 0 0 245 0 0 0 0	0 (0 0 (0 0 (0 0 (0 0 (0 0 0 (0 0 0 (0 0 0 (0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 50 0 0	0 0 0 0 0 0 0 0 0 22 0		11 0 0 0 30 86 0	0 229 0 0 0 587 299 0 0 0 0	0 362 0 0 87 44 0 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 111 108 376 56 0 0 0 0 0 0 0 0 0 0 0 0 1159	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 5 0 0 0 0 33 116 17 0 0 0 0 0 0 0 0 732 0 1056					0 0 0 0 20 0 105 0	0 0 0 0 0 0 0 0 392 58 0 0 0 369 55 0 0 0 641 1401
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT LOSS SUB TOTAL HT GAIN	20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0 0	0 769 0 0 0 0 205 0 0 0 0 0 0	0 1218 0 0 0 0 30 0 0				0 0 0 28 0 0 87 0 0 0	0 0 0 0 5582 0 0 0 302 0 0 0 0 0 0	0 0 0 0 0 222 0 0 0 245 0 0 0 0	0 (0 0 (0 0 (0 0 (0 0 (0 0 (0 0 (0 0 (0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 50 0 0	0 0 0 0 0 0 0 0 0 22 0		11 0 0 30 86 0 0	0 229 0 0 0 587 299 0 0 0 0	0 362 0 0 87 44 0 0	LOSS GAI 0 1159 LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 1159 17:	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0 0 0 10 208 319 0 0 0 0 0 0 0 0 10 0 0 0 732 0 1056 2 346					0 0 0 0 20 0 105 0 0	0 0 0 0 0 0 0 0 392 58 0 0 369 55 0 0 0 0 0 0 641
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED US EXPOSED CLG NO ATTIC EXPOSED FLOOR EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER	20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0 0	0 769 0 0 0 0 205 0 0 0 0 0 0 0	0 1218 0 0 0 0 30 0 0				0 0 0 28 0 0 87 0 0 0	0 0 0 582 0 0 0 302 0 0 0 0 0 0 884	0 0 0 0 0 222 0 0 0 245 0 0 0 0	0 (0 0 (0 0 (0 0 (0 0 0 (0 0 (0 0 0 (0 0 0 (0 0 0 (0 0 0 (0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 22 0		11 0 0 30 86 0 0	0 229 0 0 0 587 299 0 0 0 0 0 1115	0 362 0 0 87 44 0 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 111 108 376 56 0 0 0 0 0 0 0 0 1159 175 0.30 0.59	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 1056 2 0 346 0.50 1.43 1513					0 0 0 0 20 0 105 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT GSN AIR CHANGE HEAT GAIN DUCT LOSS	20.8 20.8 34.1 19.6 3.5 3.5 1.3 2.7	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0 0	0 769 0 0 0 0 205 0 0 0 0 0 0 0	0 1218 0 0 0 0 30 0 0 0				0 0 0 28 0 0 87 0 0 0	0 0 0 582 0 0 0 302 0 0 0 0 0 0 884	0 0 0 0 0 222 0 0 0 45 0 0 0	0 (0 0 (0 0 (0 0 (0 0 0 (0 0 (0 0 0 (0 0 0 (0 0 0 (0 0 0 (0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 22 0 0		11 0 0 30 86 0 0	0 229 0 0 0 587 299 0 0 0 0 0 1115	0 362 0 0 87 44 0 0 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 111 108 376 56 0 0 0 0 0 0 0 0 1159 17: 0.30 0.59 680	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 1056 2 0 346 0.50 1.43 1513					0 0 0 0 20 0 105 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED WALL NET EXPOSED BSMT WALL ABOVE OR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUB TOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT GAIN DUCT LOSS DUCT GAIN	20.8 20.8 34.1 19.6 3.5 1.3 2.7 2.5	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0 0	0 769 0 0 0 0 205 0 0 0 0 0 973	0 1218 0 0 0 0 30 0 0 0				0 0 0 28 0 0 87 0 0 0	0 0 0 582 0 0 0 302 0 0 0 0 0 0 0 884 9	0 0 0 0 0 222 0 0 0 45 0 0 0	0 (0 0 (0 0 (0 0 (0 0 (0 0 (0 0 (0 0 (0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 22 0 0		11 0 0 30 86 0 0	0 229 0 0 0 587 299 0 0 0 0 0 1115	0 362 0 0 87 44 0 0 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 11/ 108 376 56 0 0 0 0 0 0 0 0 0 0 0 1159 173 0.30 0.59 680	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0 0 0 33 116 17 0 0 0 0 0 0 0 0 732 0 0 0 0 1056 2 0 346 0.50 1.43					0 0 0 0 20 0 105 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BANT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS DUCT GAIN DUCT GAIN HEAT GAIN PEOPLE	20.8 20.8 34.1 19.6 3.5 1.3 2.7 2.5	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0 0	0 769 0 0 0 0 205 0 0 0 0 0 973	0 1218 0 0 0 0 30 0 0 0 0				0 0 0 28 0 0 87 0 0 0	0 0 0 5582 S 0 0 0 302 0 0 0 0 0 0 0 0 8884 S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 (0 0 (0 0 (0 0 (0 0 (0 0 (0 0 (0 0 (0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 22 0 0		11 0 0 30 86 0 0	0 229 0 0 0 587 299 0 0 0 0 0 1115	0 362 0 0 87 44 0 0 0	LOSS GAI 0 1159 17: 0.30 0.59 680	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 1056 2 0 0 0 1056 2 0 0 0 0 1056 2 0 0 0 0 1056 2 0					0 0 0 0 20 0 105 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BANT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT CAIN DUCT GAIN HEAT GAIN PEOPLE HEAT GAIN APPLIANCES/LIGHTS	20.8 20.8 34.1 19.6 3.5 1.3 2.7 2.5	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0 0 0 0	0 769 0 0 0 0 205 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1218 0 0 0 0 30 0 0 0 0				0 0 0 28 0 0 0 87 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 22 0 0		11 0 0 30 86 0 0 0	0 229 0 0 0 587 299 0 0 0 0 1115 0.59 654	0 362 0 0 87 44 0 0 0 0	LOSS GAI 0 1159 17: 0.30 0.59 680 0	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0 0 0 10 20 0 0 10 20 0 10					0 0 0 0 20 0 105 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SOUTH WEST SKYLT. DOORS NET EXPOSED WALL NET EXPOSED BANT WALL ABOVE GR EXPOSED CLG NO ATTIC EXPOSED CLG EXPOSED FLOOR BASEMENT/CRAWL HEAT LOSS SLAB ON GRADE HEAT LOSS SUBTOTAL HT GAIN LEVEL FACTOR / MULTIPLIER AIR CHANGE HEAT LOSS AIR CHANGE HEAT LOSS DUCT GAIN DUCT GAIN HEAT GAIN PEOPLE	20.8 20.8 34.1 19.6 3.5 1.3 2.7 2.5	32.9 19.8 32.9 132.1 2.9 0.5 0.5 0.6 1.2	0 37 0 0 0 0 59 0 0 0 0	0 769 0 0 0 0 205 0 0 0 0 0 973	0 1218 0 0 0 0 30 0 0 0 0 0				0 0 0 28 0 0 0 87 0 0 0 0 0	0 0 0 0 5882 S S S S S S S S S S S S S S S S S S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 22 0 0		11 0 0 30 86 0 0 0	0 229 0 0 0 587 299 0 0 0 0 0 1115	0 362 0 0 0 87 44 0 0 0 0	LOSS GAI 0 0 0 0 0 0 0 0 0 0 0 0 0 40 783 111 108 376 56 0 0 0 0 0 0 0 0 1159 17: 0.30 0.59 680 15 0 0 0 0 0 0	N LOSS GAIN 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0 0 0 10 208 329 0 0 0 0 0 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 1056 2 0 0 1056 2 0 0 1056 2 0 0 0 0 1056 2 0 0 0 0 1056 2 0 0 0 0 1056 2 0 0 0 0 1056 2 0 0 0 0 1056 2 0 0 0 0 1056 3 346 1513 3 30 0 0 0 0 0 0 0 0 0 471 2569					0 0 0 0 20 0 105 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL HEAT GAIN BTU/H:

18327 TONS: 1.53 LOSS DUE TO VENTILATION LOAD BTU/H: 1593

STRUCTURAL HEAT LOSS: 22030

TOTAL COMBINED HEAT LOSS BTU/H: 23623

Mhebal Kounke. INDIVIDUAL BCIN: 1969 MICHAEL O'ROURKE

			R RIDGE		S			FIN E TYPE: 2001				DATE:	Apr-24			GFA:	1865	LO#	104851				
HEATING CFM TOTAL HEAT LOSS AIR FLOW RATE CFM	24.74		TOTAL H AIR FLOW F		18,091 30.12		а	furnace press furnace fi a/c coil press vailable pressi for s/a &	ilter 0.00 sure 0.15 ure		ORY INST	ALLED			59		M1410 SPEED LOW	26 0	₹	OUTPUT	AFUE = (BTU/H) = (BTU/H) =	26,000 25,000	
RUN COUNT S/A R/A All S/A diffusers 4"x10" unle	4th 0 0	3rd 0 0	2nd 8 4	1st 5 1	Bas 5 2		max	enum pressure s/a dif press. I usted pressure	oss 0.01		r/a r/a grille po adjusted pr		0.02			N	EDLOW MEDIUM M HIGH HIGH	545 770 0 0	т		GN CFM = CFM @ .	6 " E.S.P.	- °F
All S/A runs 5"Ø unless not				out.			min auju	isted pressure			adjusted pr	C33GIC I/G					111011						
RUN # ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK	1 MBR 0.84 21 1.44 43 0.22 56 190 246 0.09 5 154 316 3X10 A	2 ENS 1.67 41 0.68 21 0.22 72 220 292 0.08 5 301 154 3X10 A	3 BED-2 1.40 35 2.34 70 0.22 29 200 229 0.1 6 178 357 4X10 B		5 BED-3 0.88 22 1.39 42 0.22 26 0.1 4 252 482 3X10 B	6 BED-3 0.88 22 1.39 42 0.22 24 200 224 0.1 4 252 482 3X10 B	7 BATH 0.12 3 0.06 2 0.22 59 170 229 0.1 4 34 23 3X10 B		10 MBF 0.84 211 1.44 43 0.22 63 200 263 0.08 5 154 33(1) A		12 GRT 1.54 38 2.37 72 0.22 28 180 208 0.11 6 194 4X10 B		14 ENTRY-' 0.93 23 0.12 4 0.22 50 170 220 0.1 4 264 46 3X10 A	15 1 KT/BF 1.40 35 1.98 60 0.22 38 130 168 0.13 6 178 306 4X10 A		17 LAUN 0.07 2 0.64 19 0.22 44 230 274 0.08 4 23 218 3X10 A		19 FOY 1.77 44 0.70 21 0.22 15 180 195 0.11 4 505 241 3X10 B	20 ENTRY-2 1.84 45 0.24 7 0.22 55 180 235 0.1 5 330 51 3X10 A	21 REC7 2.57 64 1.10 33 0.22 50 0.09 5 470 242 3X10 A	22 B-BTH 0.31 8 0.00 0 0.22 24 120 144 0.16 5 5 9 0 3X10 B	23 B-BED 1.55 38 1.41 43 0.22 25 190 215 0.1 5 279 316 3X10 B	24 BAS 1.70 42 0.39 12 0.22 49 190 239 0.09 4 482 138 3X10 A
RUN# ROOM NAME RM LOSS MBH. CFM PER RUN HEAT RM GAIN MBH. CFM PER RUN COOLING ADJUSTED PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LENGTH ADJUSTED PRESSURE ROUND DUCT SIZE HEATING VELOCITY (ft/min) COOLING VELOCITY (ft/min) OUTLET GRILL SIZE TRUNK	25 BAS 1.70 42 0.39 12 0.22 11 130 141 0.16 4 82 138 3X10 B																						
SUPPLY AIR TRUNK SIZE																RETURN A							
TRUNK A TRUNK B TRUNK C TRUNK D TRUNK E TRUNK F	TRUNK CFM 294 546 0 0 0	STATIC PRESS. 0.08 0.08 0.00 0.00 0.00 0.00 0.00	8.9 11.2 0 0 0	10 14 0 0 0 0	x x x x x	8 8 8 8	VELOCITY (ft/min) 529 702 0 0 0	TRUN TRUN TRUI TRUN TRUN TRUN	IKH 0 NKI 0 IKJ 0 IKK 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00	S. DUCT 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	x x x x x	8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0 0	TRUNK O TRUNK P TRUNK Q TRUNK R TRUNK S TRUNK T TRUNK U TRUNK U	TRUNK CFM 0 0 0 0 0 0 0 0 0	STATIC PRESS. 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0	ROUND DUCT 0 0 0 0 0 0 0 0 0 0	RECT DUCT 0 0 0 0 0 0 0	x x x x x x	8 8 8 8 8	VELOCITY (ft/min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RETURN AIR # FLOOR AIR VOLUME PLENUM PRESSURE ACTUAL DUCT LGH. EQUIVALENT LENGTH TOTAL EFFECTIVE LH ADJUSTED PRESSURE ROUND DUCT SIZE INLET GRILL SIZE	1 2 65 0.20 71 215 286 0.07 5.2 8 X 14	2 55 0.20 63 255 318 0.06 5.1 8 X	3 2 70 0.20 78 175 253 0.08 5.2 8 X	4 2 80 0.20 42 155 197 0.10 5.1 8 X	5 1 180 0.20 37 240 277 0.07 7.6 8 X 24	6 B 45 0.20 33 165 198 0.10 4.2 8 X	0 0.20 1 0 1 19.60 0 0 X	0 0 0.20 0.2 1 1 1 0 0 1 1 1 19.60 19.0 0 0 0 X X X 0 0	0 0.20 1 0 1 1 60 19.6 0 0	1 0 1	1 0 1	0 0.20 1 0 1 19.60 0 0 X	0 0.20 1 0 1 19.60 0 0 X	0 0.20 1 0 1 19.60 0 0 X	BR B 50 0.20 41 175 216 0.09 4.4 8 X 14	TRUNK W TRUNK X TRUNK Y TRUNK Z DROP	0 545 465 230 545	0.06 0.06 0.06 0.06 0.06	12 11.3 8.7 12	18 14 10 24	x x x x	8 8 8 8 10	0 545 598 414 327

TYPE: 2001 SITE NAME: SUMME

SUMMER RIDGE ESTATES

LO # 104851 FIN BSMT

RESIDENTIAL MECHANICAL VENTILATION DESIGN SUMMARY

COMBUSTION APPLIANCES	9.32.3.1(1)	SUPPLEMENTAL V	ENTILATION CAPACITY		9.32.3.5.
a)		Total Ventilation Ca	pacity	148.4	cfm
b) Positive venting induced draft (except fireplaces)		Less Principal Venti	I. Capacity	79.5	cfm
c) Natural draft, B-vent or induced draft gas fireplace		Required Suppleme	ntal Capacity	68.9	cfm
d) Solid Fuel (including fireplaces)					
e) No Combustion Appliances		PRINCIPAL EXHAU	IST FAN CAPACITY		
		Model:	VANEE V150H	Location:	BSMT
HEATING SYSTEM		79.5	_cfm	_	✓ HVI Approved
Forced Air Non Forced Air		PRINCIPAL EXHAU	IST HEAT LOSS CALCUL		% LOSS
		79.5 CFM	X 74 F	X 1.08	X 0.25
Electric Space Heat		SUPPLEMENTAL F	ANS B	Y INSTALLING CON	ITRACTOR
		Location	Model	cfm	HVI Sones
HOUSE TYPE	9.32.1(2)	ENS BATH	BY INSTALLING CONTRAI BY INSTALLING CONTRAI		✓ 3.5 ✓ 3.5
✓ I Type a) or b) appliance only, no solid fuel		BATH	BY INSTALLING CONTRA	CTOR 50	√ 3.5
II Type I except with solid fuel (including fireplaces	5)	HEAT RECOVERY	VENTILATOR		9.32.3.11.
III Any Type c) appliance		Model:	VANEE V150H		
IV Type I, or II with electric space heat		150	cfm high	35	cfm low
Other: Type I, II or IV no forced air		75	% Sensible Efficien @ 32 deg F (0 deg		✓ HVI Approved
				-/	
SYSTEM DESIGN OPTIONS	O.N.H.W.P.	LOCATION OF INS	TALLATION		
STOTEM DESIGN OF HONG	O.N.II.W.F.	Lot:		Concession	
1 Exhaust only/Forced Air System		Township		Plan	
2 HRV with Ducting/Forced Air System		Township		Plan:	
HRV Simplified/connected to forced air system		Address			
4 HRV with Ducting/non forced air system		Roll #		Building Per	mit #
Part 6 Design		BUILDER:	ROYAL PIE HOME	ES .	
		Name:			
TOTAL VENTILATION CAPACITY	9.32.3.3(1)	Address:			
Basement + Master Bedroom 1 @ 21.2 cfm 21.2	cfm	City:			
Other Bedrooms <u>3</u> @ 10.6 cfm <u>31.8</u>	cfm	Telephone #:		Fax #:	
Kitchen & Bathrooms <u>5</u> @ 10.6 cfm <u>53</u>	cfm	INSTALLING CONT	RACTOR		
Other Rooms <u>4</u> @ 10.6 cfm <u>42.4</u>	cfm	Name:			
Table 9.32.3.A. TOTAL <u>148.4</u>	cfm	Address:			
		City:			
PRINCIPAL VENTILATION CAPACITY REQUIRED	9.32.3.4.(1)	- · · · · · · · · · · · · · · · · · · ·		- "	
1 Bedroom 31.8	cfm	Telephone #:		Fax #:	
2 Bedroom 47.7	cfm	DESIGNER CERTIF I hereby certify that	FICATION this ventilation system has	been designed	
3 Bedroom 63.6	cfm	in accordance with t	he Ontario Building Code. HVAC Designs Ltd	d.	
4 Bedroom 79.5	cfm	Signature:	<u> </u>	Mehad Ofound	
5 Bedroom 95.4	cfm	HRAI#	14	001820	٤.
	51111			April-24	
TOTAL 79.5 cfm I REVIEW AND TAKE RESPONIBILITY FOR THE DESIGN WORK AND AM QUAL	LIFIED IN THE APP	Date: PROPRIATE CATEGORY AS AN	"OTHER DESIGNER" UNDER DIV		JILDING CODE.

			CSA F2	80-12 Residential Hea	at Loss and Heat Gain	Calculations				
			Form	iula Sheet (For Air Lea	akage / Ventiliation C	alculation)				
LO#: 104	4851	Model: 2001		Builde	er: ROYAL PIE HOMES				Date:	2024-04-24
		Volume Calculation	on				Air Change & Delt	a T Data		
				1		·				
use Volume		1					TURAL AIR CHANG		0.275	
Level	Floor Area (ft²)	Floor Height (ft)	Volume (ft³)			SUMMER NA	ATURAL AIR CHANG	GE RATE	0.086	
Bsmt	942	9	8101.2							
First Second	942 943	10 9	9043.2 8109.8				Docian To	mperature Diff	oronco	
Third	0	9	0				Tin °C	Tout °C	ΔT °C	ΔT°F
Fourth	0	9	0			Winter DTDh	22	-19	41	74
		Total:	25,254.2 ft ³			Summer DTDc	24	30	6	11
		Total:	715.1 m³							
				•						
	5.2.3	3.1 Heat Loss due to A	ir Leakage			6.2.6	Sensible Gain due	to Air Leakage		
		V_{r}					V.			
	$HL_{airb} =$	$LR_{airh} \times \frac{V_b}{3.6} \times R_b$	$DTD_h \times 1.2$		H	$IG_{salb} = LR_{airc}$	$\times \frac{r_b}{2.6} \times DTD_c$	× 1.2		
0.275		_ x <u>41°C</u>		= 2705 W	= 0.086		3.6 x 6°C		_ Г	126 W
0.273	X 136.04	_	_	- 2703 VV	- 0.080	X 136.04	_ ^	X	L	120 VV
				= 9231 Btu/h	_T				= Γ	428 Btu/h
				3231 500/11	1				L	420 0 (4) 11
	5.2.3.2 He	at Loss due to Mecha	nical Ventilation			6.2.7 Se	nsible heat Gain d	ue to Ventilatio	n	
	$HL_{vairb} =$	$PVC \times DTD_h \times$	$1.08 \times (1-E)$		HL	$_{vairb} = PVC \times D$	$TD_h \times 1.08 \times$	(1 - E)		
					_				_	
80 CFM	x <u>74</u> °F	x 1.08	x 0.25	= 1593 Btu/h	80 CFM	x <u>11 °F</u>	x <u>1.08</u>	x <u>0.25</u>	_ = [236 Btu/h
			5.2.3.3 Calcula	tion of Air Change Heat	Loss for Each Room (Flo	or Multiplier Section)			
		HL_{α}	_{irr} = Level Fact	$or \times HL_{airbv} \times \{(H_{airbv}) \times \{$	$IL_{agcr} + HL_{bgcr}) \div$	$(HL_{agclevel} + HL$	bgclevel)}			
				HLairve Air Leakage +		T				
		Level	Level Factor (LF)	Ventilation Heat Loss	Level Conductive Heat	_				
			(2.7	(Btu/h)	Loss: (HL _{clevel})	HLairbv /	HLlevel)			
		1	0.5	15.47111	3,222	1.43	32			
		2	0.3	1	4,720	0.58	37			
		3	0.2	9,231	4,705	0.39	92			
		4	0	1	0	0.00	00		Michael O'Ro	urke
		5	0		0	0.00	00		BCIN# 19669	
		*HLairbv = A	Air leakage heat loss -	ventilation heat loss						1 Ofmule
									mul 1	1/7//

HEAT LOSS AND GAIN SUMMARY SHEET

MODEL:	2001	FIN	BSMT	BUILDER: ROYAL PIE HOMES	
SFQT:	1865	LO# 104	851	SITE: SUMMER RIDGE EST	TATES
DESIGN A	SSUMPTIONS				
DESIGN A	1330IVIPTIONS				
HEATING			°F	COOLING	°F
OUTDOO	R DESIGN TEMP.		-2	OUTDOOR DESIGN TEMP.	86
INDOOR I	DESIGN TEMP.		72	INDOOR DESIGN TEMP. (MAX 75°F)	75
				WINDOW SHGC	0.60
BUILDING	DATA				
ATTACHN	1ENT:	ATT	ACHED	# OF STORIES (+BASEMENT):	3
FRONT FA	ACES:		EAST	ASSUMED (Y/N):	Υ
AIR CHAN	IGES PER HOUR:		3.00	ASSUMED (Y/N):	Υ
				. ,	
AIR TIGHT	TNESS CATEGORY:		TIGHT	ASSUMED (Y/N):	Υ
WIND EXI	POSURE:	SHEL	.TERED	ASSUMED (Y/N):	Υ
HOUSE V	OLUME (ft³):	2	5254.2	ASSUMED (Y/N):	Υ
INTERNAI	_ SHADING:	BLINDS/CUI	PTAINS	ASSUMED OCCUPANTS:	5
IIVILINIVAI	SHADING.	BLINDS/COI	VIAINS	ASSOMILE OCCUPANTS.	3
INTERIOR	LIGHTING LOAD (Btu/	h/ft²):	1.50	DC BRUSHLESS MOTOR (Y/N):	Υ
FOUNDAT	TION CONFIGURATION	ı	BCIN 1	DEPTH BELOW GRADE:	5.6 ft
. 001.071		•		22	3.010
LENGTH:	54.0 ft	WIDTH:	21.0 ft	EXPOSED PERIMETER:	56.0 ft

2012 OBC - COMPLIANCE PACKAGE		
	Compliance	Package
Component	PERFOR	MANCE
	Nominal	Min. Eff.
Ceiling with Attic Space Minimum RSI (R)-Value	60	59.22
Ceiling Without Attic Space Minimum RSI (R)-Value	31	27.65
Exposed Floor Minimum RSI (R)-Value	31	29.80
Walls Above Grade Minimum RSI (R)-Value	22+1.5	21.40
Basement Walls Minimum RSI (R)-Value	20	21.12
Below Grade Slab Entire surface > 600 mm below grade Minimum RSI (R)-Value	-	-
Edge of Below Grade Slab ≤ 600 mm Below Grade Minimum RSI (R)-Value	10	10
Heated Slab or Slab ≤ 600 mm below grade Minimum RSI (R)-Value	10	11.13
Windows and Sliding Glass Doors Maximum U-Value	1.6	-
Skylights Maximum U-Value	2.6	-
Space Heating Equipment Minimum AFUE	96%	-
HRV/ERV Minimum Efficiency	75%	-
Domestic Hot Water Heater Minimum EF	0.9	-

INDIVIDUAL BCIN: 19669 MICHAEL O'ROURKE

Residential Foundation Thermal Load Calculator

Supplemental tool for CAN/CSA-F280

Wes	ther Sta	tion Description
Province:	Ontario	tion bescription
Region:	Brampto	on
	•	escription
Soil Conductivity:	Normal	conductivity: dry sand, loam, clay
Water Table:	Normal ((7-10 m, 23-33 ft)
Fo	oundatio	n Dimensions
Floor Length (m):	16.5	
Floor Width (m):	6.4	
Exposed Perimeter (m):	17.1	
Wall Height (m):	2.6	
Depth Below Grade (m):	1.71	Insulation Configuration
Window Area (m²):	1.9	
Door Area (m²):	1.9	
	Radi	ant Slab
Heated Fraction of the Slab:	0	
Fluid Temperature (°C):	33	
	Desig	n Months
Heating Month	1	
	Founda	ation Loads
Heating Load (Watts):		535

TYPE: 2001 FIN BSMT **LO#** 104851

Air Infiltration Residential Load Calculator

Supplemental tool for CAN/CSA-F280

Weather Statio	n Des	cript	ion		
Province:	Ontai	io			
Region:	Bram	pton			
Weather Station Location:	Open	flat te	rrain, {	grass	
Anemometer height (m):	10				
Local Sh	ieldin	g			
Building Site:	Subu	rban, fo	orest		
Walls:	Heav	y			
Flue:	Heav	y			
Highest Ceiling Height (m):	6.46				
Building Cor	figur	ation			
Туре:	Semi				
Number of Stories:	Two				
Foundation:	Full				
House Volume (m³):	715.1	•			
Air Leakage/	Venti	latior	1		
Air Tightness Type:	Attac	hed (3	.0 ACH)	
Custom BDT Data:	ELA @	9 10 Pa	Э.		801.1 cm ²
	3.00				ACH @ 50 Pa
Mechanical Ventilation (L/s):	To	tal Sup	ply		Total Exhaust
		37.5			37.5
Flue	Size				
Flue #:	#1	#2	#3	#4	
Diameter (mm):	0	0	0	0	
Natural Infilt	ation	Rate	S		
Heating Air Leakage Rate (ACH/H):		C).27	5	
Cooling Air Leakage Rate (ACH/H):		C	.08	6	

TYPE: 2001 FIN BSMT

LO# 104851

		3.								
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u> </u>	30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	Ø	6" SUPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	X	REDUCER		REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD.© AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING

I Michael O'Rourke have reviewed and take responsibility for the design work and am qualified under division C,3.2.5 of the building

FAN SPEED

545

Michael Offourke Michael O'Rourke BCIN # 19669 HVAC Designs Ltd.

ON LAYOUT. UNDERCUT

DOORS 1" min. FOR R/A

PERFORMANCE

DOYAL DIA

ROYAL PINE HOMES

2001 - FIN BSMT

Project Name

SUMMER RIDGE ESTATES BRAMPTON, ONTARIO

1865 sqft

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services
Installation to comply with the latest Ontario Building Code. All supply

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper. Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

	HEAT L	OSS 23623	BTU/H	# OF RUNS	S/A	R/A	FANS	Shee
		UN I T DATA		3RD FLOOR				
	MAKE	CARRIER		2ND FLOOR	8	4	3	
	MODEL 59SO	C6A026M14	10	1ST FLOOR	5	1	2	
	INPUT	26	MBTU/H	BASEMENT	5	2	1(2)	Date
_	OUTPUT		MBTU/H	ALL S/A DIFFU:	SERS	4 "x10)"	Scal
		25		UNLESS NOTE				
è	COOLING	1.5	TONS	ON LAYOUT. A UNLESS NOTE				
				J DINLLOO NOTE	011	1-1/1/	IOL	l -

cfm @ 0.6" w.c BASEMENT
HEATING
LAYOUT

Date APR/2024
Scale 3/16" = 1'-0"

BCIN# 19669

LO# 104851

PART. GROUND FLOOR PLAN, ELEV. 'B'

		3.								
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u> </u>	30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
SUPPLY AIR BOOT ABOVE 6" SUPPLY AIR STACK 2nd FLOOR FRA- FLOOR RETURN AIR GRILLE REDUCER									REVISIONS	

ALL DRAWINGS, CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD. © AND MAY NOT BE REPRODUCED, MODIFIED OR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM THE DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING

I Michael O'Rourke have reviewed and take responsibility for the design work and am qualified under division C,3.2.5 of the building code.

Michael Offinhe Michael O'Rourke BCIN # 19669 HVAC Designs Ltd.

PERFORMANCE

Cllent

ROYAL PINE HOMES

2001 - FIN BSMT

Project Name

SUMMER RIDGE ESTATES BRAMPTON, ONTARIO

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services

Installation to comply with the latest Ontario Building Code. All supply branch outlets shall be equipped with a manual balancing damper.

Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

FIRST FLOOR
HEATING
LAYOUT

Date APR/2024

Scale 3/16" = 1'-0"

BCIN# 19669 LO# 104851

PART SECOND FLOOR PLAN, ELEV. 'A' OPT. BATH LAYOUT

PART SECOND FLOOR PLAN, ELEV. 'B'

HVAC LEGEND								3.		
SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION	2.		
	SUPPLY AIR GRILLE		6" SUPPLY AIR BOOT ABOVE		14"x8" RETURN AIR GRILLE		RETURN AIR STACK ABOVE	1.		
	SUPPLY AIR GRILLE 6" BOOT	0	SUPPLY AIR STACK FROM 2nd FLOOR	<u></u>	30"x8" RETURN AIR GRILLE	\bowtie	RETURN AIR STACK 2nd FLOOR	No.	Description	Date
	SUPPLY AIR BOOT ABOVE	05	6" SLIPPLY AIR STACK 2nd FLOOR		FRA- FLOOR RETURN AIR GRILLE	Y	REDUCER	REVISIONS		

ALL DRAWINGS. CALCULATIONS AND SPECIFICATIONS ARE THE PROPERTY OF HVAC DESIGNS LTD. © AND MAY NOT BE REPRODUCED, MODIFIE DR ALTERED WITHOUT EXPRESSED WRITTEN CONSENT. THE DRAWINGS ARE DATED AND USE OF THESE DRAWINGS AFTER ONE YEAR FROM 1 DATED NOTED IS NOT AUTHORIZED. CONTRACTOR SHALL CHECK ALL CONDITIONS BEFORE PROCEEDING WITH WORK. LATEST MUNICIPAL APPROVED DRAWINGS ONLY TO BE USED DURING INSTALLATION OF HEATING SYSTEM. HVAC DESIGNS LTD. IS NOT LIABLE FOR ANY CLAIMS ARISING FROM UNAUTHORIZED USE OF THE DRAWINGS OR FROM ANY CHANGES TO ACCEPTED STANDARDS AND/OR THE ONTARIO BUILDING

I Michael O'Rourke have reviewed and take responsibility for the design work and am qualified under division C,3.2.5 of the building code.

Michael O'Rourke BCIN # 19669 HVAC Designs Ltd. PERFORMANCE

Cllent

ROYAL PINE HOMES

Project Name

SUMMER RIDGE ESTATES BRAMPTON, ONTARIO

HVA DESIGNS LTD.

375 Finley Ave. Suite 202 - Ajax, Ontario L1S 2E2 Tel. 905.619.2300 - 905.420.5300 Fax 905.619.2375 Email: info@hvacdesigns.ca Web: www.hvacdesigns.ca

Specializing in Residential Mechanical Design Services
Installation to comply with the latest Ontario Building Code. All supply

branch outlets shall be equipped with a manual balancing damper.

Ductwork which passes through the garage or unheated spaces shall be adequately insulated and be gas-proofed.

SECOND FLOOR
HEATING
LAYOUT
Date APR/2024
Scale 3/16" = 1'-0"

BCIN# 19669

LO#

104851

2001 - FIN BSMT 1865 sqft